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Grasslands cover approximately a third of the Earth’s land surface and account for about a third of
terrestrial carbon storage. Yet, we lack strong predictive models of grassland plant biomass, the
primary source of carbon in grasslands. This lack of predictive abilitymay arise from the assumption of
linear relationships between plant biomass and the environment and an underestimation of
interactions of environmental variables. Using data from 116 grasslands on six continents, we show
unimodal relationships between plant biomass and ecosystem characteristics, such as mean annual
precipitation and soil nitrogen. Further,we found that soil nitrogen andplant diversity interacted in their
relationships with plant biomass, such that plant diversity and biomass were positively related at low
levels of nitrogen and negatively at elevated levels of nitrogen. Our results show that it is critical to
account for the interactive and unimodal relationships between plant biomass and several
environmental variables to accurately include plant biomass in global vegetation and carbon models.

Grasslands account for about 34% of the global terrestrial organic carbon
stock1,2 and by far the main source of this carbon is plant biomass. Yet it
remainsunclearhowplant biomass in grasslands is related to the combination
of climate3–5, soil characteristics6, andplant species diversity7–9.One important
reason for this might be that many previous studies about plant biomass
applied only linear models that do not include interactions among environ-
mental factors and plant diversity10.While interactions are widely assumed in
ecology, they are rarely tested11,12, despite the fact that these interactionsmight
be very important for making predictions at the global scale.

Aboveground plant biomass (APB), often called aboveground net
primary production in grasslands, is widely assumed to be linearly related to
mean annual precipitation (MAP), but evidence for this paradigm is not
conclusive13. Some studies have found a positive linear relationship between
MAP and APB in grasslands3,14. Other studies have reported that APB
increases linearly withMAP at low levels ofMAP and plateaus at high levels
ofMAP8,15. In contrast, a globalmeta-analysis observedaunimodal, i.e., bell-
shaped relationship between MAP and APB in grasslands5. It seems likely
that very high MAP ( > 1500mm) can also negatively affect plant biomass
since it might cause leaching of nutrients from soil16, soil acidification17, and

anoxia18,19. Thus, it can be hypothesized that APB in grasslands is highest at
intermediate levels ofMAP and intermediate levels of the aridity index (AI),
which is the ratio of MAP and evapotranspiration.

The relationships of APB and other abiotic ecosystem characteristics
might also follow a unimodal function, similar to the relationship between
APB and MAP, since it can be expected that APB decreases as conditions
diverge from optimum growth conditions. For example, APB in grasslands
might be positively related to temperature in the low temperature range, but
negatively at very high temperatures since they cause high evapo-
transpiration. Furthermore, clay is beneficial for APB because it can hold
and release nutrients; however, very high clay content promotes anoxia in
soils and hampers root growth20. Thus, the relationship between APB and
soil clay content might also follow a unimodal function. Besides, the
availability of some nutrients, such as phosphorus, is highest at neutral pH
and reduced at acidic and alkaline pH21,22. Thus, the relationship between
APB and soil pH might therefore also follow a unimodal function. In
addition, lownitrogen inputs to ecosystems are usually beneficial forAPB in
grasslands becausemost grasslands are nitrogen limited.However, beyond a
certain rate of (atmospheric or fertilizer) nitrogen input, biomass decreases
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with further inputs due to nitrogen toxicity23–25. Thus, there might be a
unimodal (quadratic) relationship between APB and nitrogen.

In addition to unimodal, quadratic models, in which a variable inter-
acts with itself (i.e., is multiplied with itself), different explanatory variables
can also interact with each other in their relationshipwithAPB. Specifically,
MAP and several environmental factors might interact with each other in
their relationships with APB, which could modulate the relationship
between MAP and APB. For instance, a high soil clay content might
enhance anoxia at sites with high MAP13,20,26, leading to an interaction of
MAPand soil clay content in their relationshipswithAPB. In addition, there
might be an interaction ofMAP and temperature in their relationships with
APB since both MAP and temperature affect the soil water content27.

Plant diversity can influence plant biomass, yet this relationship is still
not well understood in natural grasslands9,28. A meta-analysis showed that
out of 102 relationships between plant diversity and biomass in grasslands,
39 were positive, nine were negative, and 54 were not statistically
significant28. One reason why many studies observed no significant rela-
tionship betweenAPBanddiversitymight be thatAPBnot only depends on
diversity but also on environmental factors, which might obscure the rela-
tionship between APB and plant diversity if not taken into account7,28–30.
Furthermore, plant diversity and environmental factors might interact in
their relationships with APB. For instance, nitrogen can reduce the positive
relationship between plant diversity and APB in grasslands31–33. The rela-
tionship between diversity and APB is also affected by plant productivity
(which is often related to nitrogen availability), such that the relationship
between APB and diversity in global grasslands is positive at low pro-
ductivity and negative at high productivity34. The complex relationships
between plant biomass, plant diversity, and nitrogenmaynot be captured in
linear models that do not include interactions.

Theobjective of the study is to answer four corequestions aboutAPB in
grasslands:
1. How is APB in grasslands related to precipitation and other abiotic

variables?Wehypothesize that a quadratic, unimodalmodel can better
describe the relationship between APB and several environmental
factors (MAP, AI, soil clay content, soil pH, and atmospheric nitrogen
deposition) than a linear, monotonic model.

2. DoesMAP interact with other abiotic variables in its relationship with
APB in grasslands?We hypothesize that MAP and soil clay content as
well asMAP and temperature interact in their relationships with APB.

3. How does plant species diversity contribute to predicting APB in
grasslands? We hypothesize that APB can be predicted from plant
diversity if the model includes an interaction with soil nitrogen or
atmospheric nitrogen deposition.

4. To what extent do different variables (that are related with APB
through complex functions) explain variation inAPBwhen considered
together?

To address these research questions and test the hypotheses, we col-
lected standardized APB, plant diversity, and environmental data at 116
natural and semi-natural grasslands on six continents (Fig. 1). MAP at the
sites varies between 192 and 1877 mm, while mean annual temperature
(MAT) varies between−6.6 and 27.3 °C. The sites are a part of the Nutrient
Network Global Research Cooperative (https://nutnet.org). The sites did
not receive any fertilizer and were not experimentally manipulated at the
time of study. At all sites, APB was measured at peak biomass, i.e., at the
specific time of the year when aboveground plant biomass is highest. We
used linear, monotonic as well as quadratic functions with one or two
predictors (with andwithout interactions) to address the first three research
questions andweapplied structural equationmodeling to address the fourth
question. Structural equation modeling allowed us to explore the con-
tributions of multiple variables (which are related with APB through dif-
ferent functions, and that might covary or interact with each other) to
explain variability in APB.

Results
Wefound that the relationship betweenAPBandMAP followed aquadratic
model across all 116 sites (P < 0.001, R2 = 0.34; Table 1, Fig. 2A) and across
the subset of 55 sites for which data on soil clay content was available
(P < 0.001, R2 = 0.33; Table 1). Maximum APB was observed at 1138mm
MAP (Fig. 2A and Supplementary Fig. S1A). We also found a significant
linear relationship between APB and MAP across the 116 sites (but not
across the 55 sites), yet it had a substantially higher AIC than the quadratic
model. If we restricted the analysis to sites with relatively low MAP and
MAT (for instance, MAP between 260 and 1200mm and MAT between 3
and 22 °C), we observed a significant positive linear relationship between
APB and MAP (P < 0.001, R2 = 0.16, N = 74; Supplementary Fig. S2). The
relationshipsbetweenAPBand themeanprecipitationof thewettest quarter
of the year (Pwet) were similar to the relationship between APB and MAP

Fig. 1 | Map depicting mean annual precipitation and the locations of the 116
grassland sites studied here. Yellow dots indicate the location of the grassland sites
for which data on climate, aboveground plant biomass (APB), and plant diversity
were collected. Red crosses indicate the 55 sites for which additional data on soil

properties, including soil clay content were collected. The map was created in R
(version 4.2.2) using the package ‘tmap’ (version 3.3.3). Mean annual precipitation
data were retrieved from Chelsa65.
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(Table 1). Furthermore, we found that a quadratic function described the
relationship betweenAPB and AI substantially better than a linear function
across all 116 sites, as indicated by the considerably lower AIC of the
quadratic model (Table 1). Across the subset of 55 sites, we found only a
significantquadratic relationshipbetweenAPBandAI (P < 0.001,R2 = 0.24)
but not a significant linear relationship (Table 1). Furthermore, the rela-
tionship between APB and elevation of the 116 sites only followed sig-
nificantly a quadratic, unimodal (P = 0.017; R2 = 0.07) but not a linear,
monotonic function (Table 1).

The relationship between APB and soil total nitrogen content also fol-
lowed a significant quadratic function (P < 0.001; R2 = 0.30; Table 1, Fig. 2B),
but not a linear, monotonic one (P = 0.326; Table 1). APB had its maximum
at a soil nitrogen content of 5.96 g kg−1 (Supplementary Fig. 2B and Fig. S1B).
Soil nitrogen and MAP were linearly positively correlated (Fig. 3). The
relationship of APB and atmospheric nitrogen deposition followed both a

significant linear (P = 0.001, R2 = 0.18) and a quadratic model (P= 0.002,
R2 = 0.21)with the sameAIC (Table 1). Similarly, we found both a significant
linear (P = 0.005, R2 = 0.14; Table 1) and a quadratic relationship (P = 0.018,
R2 = 0.14; Table 1) for APB as a function of the soil clay content. Plant
available soil calcium content was linearly positively related with APB
(P = 0.041,R2 = 0.08;Table 1).Other abiotic site characteristics (including soil
pH,nutrients, anddifferentmeasuresof temperature, includingMAT)aswell
as plant diversity (Shannon and Simpson indices), plant species richness and
evennesswerenot significantly relatedwithAPB,neither througha linear nor
a quadratic relationship (Table 1).Of all variables, the Shannon index of plant
diversity was only significantly correlated with elevation (Fig. 3). Taken
together, we found that quadratic, unimodal functions described the rela-
tionship between APB and MAP, APB and AI as well as APB and soil
nitrogenbetter than linear,monotonic functions, as indicatedby substantially
lower AICs of the quadratic models (Table 1).

Table 1 | Summary of linear and quadratic models of log-transformed aboveground plant biomass (APB) as a function of one
abiotic or biotic predictor (X)

Sites X Linear model Quadratic model

P value Multiple R2 Adjusted R2 Slope AIC P value Multiple R2 Adjusted R2 AIC

All sites (N = 116) MAP <0.001 0.18 0.17 pos. 263 <0.001 0.34 0.33 240

MAT 0.096 - - - 283 0.241 - - 285

AI 0.005 0.07 0.06 pos. 278 <0.001 0.19 0.18 263

PWet <0.001 0.09 0.08 pos. 275 <0.001 0.31 0.30 245

TDry 0.401 - - - 285 0.221 - - 285

TWarm 0.531 - - - 286 0.787 - - 288

TMax 0.869 - - - 286 0.944 - - 288

elevation 0.122 - - - 284 0.017 0.07 0.05 280

Shannon 0.250 - - - 285 0.445 - - 287

Simpson 0.207 - - - 284 0.440 - - 286

richness 0.101 - - - 283 0.261 - - 285

evenness 0.656 - - - 286 0.462 - - 286

Subset of sites with soil
data (N = 55)

MAP 0.096 - - - 124 <0.001 0.33 0.30 107

MAT 0.211 - - - 125 0.320 - - 127

AI 0.218 - - - 125 <0.001 0.24 0.21 114

PWet 0.500 - - - 126 <0.001 0.26 0.20 113

TDry 0.100 - - - 124 0.122 - - 125

TWarm 0.457 - - - 126 0.614 - - 128

TMax 0.864 - - - 127 0.977 - - 129

elevation 0.203 - - - 125 0.084 - - 124

NDep 0.001 0.18 0.17 pos. 116 0.002 0.21 0.18 116

Clay 0.005 0.14 0.12 pos. 118 0.018 0.14 0.11 120

pH 0.299 - - - 126 0.544 - - 128

N 0.326 - - - 126 <0.001 0.30 0.27 110

C:N 0.855 - - - 127 0.976 - - 129

P 0.105 - - - 124 0.261 - - 126

K 0.950 - - - 127 0.967 - - 129

Ca 0.041 0.08 0.06 pos. 122 0.122 - - 125

Shannon 0.697 - - - 127 0.481 - - 127

Simpson 0.452 - - - 126 0.638 - - 128

richness 0.448 - - - 126 0.626 - - 128

evenness 0.966 - - - 127 0.611 - - 128

Shown are theP values, the coefficients of determination (multiple and adjustedR2), as well as the Akaike InformationCriterion (AIC).Multiple and adjustedR2 are shown for all significantmodels (P < 0.05).
For all significant linearmodels, it is indicated if the regression is positive (pos.) or negative (neg.). All modelswere calculated basedon site-level data. The independent variables (X) were centered, andAPB
was log-transformed (natural logarithm).
MAPmean annual precipitation,MATmean annual temperature,AI aridity index,PWetmean precipitation of thewettest quarter of the year, TDrymean temperature of the driest quarter of the year, TWarm
mean temperature of warmest quarter of the year, TMaxmaximum temperature of warmest month,NDep atmospheric nitrogen deposition,Clay soil clay content, pH soil pH,N soil total nitrogen content,
C:N soil carbon:nitrogen ratio, P plant available soil phosphorus, K plant available soil potassium, Ca plant available soil calcium.
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We compared quadratic models of APB for different pairs of variables
(Supplementary Table S1), selected according to our second and third
hypotheses. Themodels with the lowest AIC for different pairs of predictors
all contained only one quadratic function (Table 2 and S1, Fig. 4), except for
themodel describing APB as a function ofMAP and themean temperature
during the driest quarter of the year (TDry). For three pairs of predictors
(MAP and MAT, soil nitrogen and the Shannon index, as well as atmo-
spheric nitrogen deposition and the Shannon index), the two predictors
interacted significantly to influence APB (Table 2 and S1, Fig. 4). However,
there was no significant interaction of MAP and soil clay content in their
relationships with APB (Table 2 and S1, Fig. 4).

Concerning the interaction of soil nitrogen and plant diversity, we
found thatAPBwas highest at lowplant diversity andmedium soil nitrogen

content (Fig. 4C). This relationship was very similar for the Shannon index,
the Simpson index, and plant species richness (Supplementary Table S1).
APB increased with increasing plant diversity at low levels of soil nitrogen
and decreased with increasing plant diversity at medium levels of soil
nitrogen (4–7 g nitrogen kg−1 soil; Fig. 4C). At low levels of diversity, APB
increased strongly with soil nitrogen up to nitrogen contents of about
6 g kg−1, while it increased less with nitrogen at high levels of plant diversity
(Fig. 4C). Similarly, the best model of APB as a function of the Shannon
index and atmospheric nitrogen deposition indicates that APB increased
strongly with atmospheric nitrogen deposition at low levels of plant diver-
sity, and less so at very high levels of plant diversity (Table 2 and Fig. 4D).
The significant interactions were not caused by the log-transformation of
the variable APB, as the same interactions were statistically significant
(P < 0.05) if the models were calculated with non-transformed data (Sup-
plementary Table S2).

We further tested how different ecosystem characteristics and their
interactions act in concert in a piecewise structural equation model (SEM)
containing two quadratic functions and two interactions (Fig. 5). The SEM
suggests thatMAPaffectedAPBdirectly (through aquadratic function), but
mainly indirectly through its significant positive impact on soil nitrogen (see
thickness of the arrows depicting the path coefficients in Fig. 5). Soil
nitrogen was highly significantly (P < 0.001) related with APB through a
quadratic function (Fig. 5). Soil nitrogen and the Shannon index sig-
nificantly interacted to influence APB. Further, atmospheric nitrogen
deposition was positively related with APB. MAT and MAP did not sig-
nificantly interact to influence APB in the SEM (Fig. 5).

Discussion
Here we show that the relationships of APB with several abiotic ecosystem
properties, including MAP, AI, and soil nitrogen, followed unimodal
functions, and that plant diversity interacted with soil nitrogen and
atmospheric nitrogen deposition in its relationship with APB in global
grasslands.
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Biomass as a function of climate
In accordance with our first hypothesis, the relationship between APB and
MAP followed aquadraticmodel.Our results show thatAPB increasedwith
MAP at low to mediumMAP, but decreased with increasing MAP beyond
1138mmMAP (Fig. 2A). The quadratic, unimodal function describing the
relationship between APB and MAP is in accordance with Sun et al. 5 who
also foundaunimodal relationshipbetweenAPBandMAP inaglobalmeta-
analysis considering grasslands with MAP of up to 2000 mm. Our results
show that the relationship between APB and MAP is range-dependent.
Whenwe restricted our analysis to siteswith relatively lowMAP,we found a
positive linear relationship. For instance, if we selected sites that match the
MAP andMAT levels of sites considered in the seminal paper by Sala et al. 3,
i.e.,MAPbetween260and1200mmandMATbetween3 and22 °C,we also
observed a significant, positive linear relationship between APB and MAP
(Supplementary Fig. S2). Thus, our results do not contradict studies
reporting a linear, positive relationshipbetweenAPBandMAPfor siteswith
MAP below 1100 mm3,14. Instead, our findings demonstrate that the rela-
tionship between APB and MAP is range-dependent, and that APB is only
negatively related to MAP beyond 1140mm (Supplementary Fig. S1A).
Some previous studies about the relationship between APB and MAP in
grasslands reported that APB increases linearly withMAP at lowMAP and
plateaued at very high MAP4,15. The reason why these studies found no4 or
only a moderate15 decrease in APB at highMAP is likely that they included
very few observations of sites withMAPbeyond 1000mm15 or beyond 1500
mm4 in their analyses. These comparisons show thatmeasurements of plant
biomass across wide environmental gradients are required to fully under-
stand the relationships among abiotic and biotic ecosystem properties.

According to Whittaker’s classification of biomes, all biomes occur
under specific combinations of MAT and MAP35. For instance, temperate
grasslands occur at a MAT of - 3 to 22 °C andMAP below 800mm. At the
same temperature range, but higher MAP, forests dominate35. The com-
parison to Whittaker’s classification emphasizes the fact that some of the
grasslands studied here are located in areas that would naturally mostly be
covered by forest. Yet, other grasslands studied here that have very high
MAP are natural grasslands located at relatively high elevation and some of
them regularly experience fire, which maintains them as grasslands and
prevents bush encroachment36. The relatively low APB at sites at high ele-
vation with high MAP might also explain the unimodal relationship
between APB and elevation (Table 1). Our findings show that APB of
grasslands at high MAP, i.e., at the transition of grasslands and forests, is
lower than at intermediate levels of MAP at which grasslands occur. Thus,
our results indicate that APB of grasslands does not increase continuously
with increasingMAPat the transition fromgrassland to forest. Instead,APB
in grasslands with very high MAP ( > 1500mm) is reduced compared to
APB at the optimal MAP conditions at which grasslands occur at a global
scale. Consequently, our study suggests that models assuming a linear
positive relationship betweenplant biomass andMAPat the global scalewill
likely overestimate grassland biomass at many sites with high precipitation.

Low APB at low MAP is most likely caused by water limitation3–5. In
contrast, the reason for the negative relationship between APB andMAP at
high levels ofMAP is likely that highMAP leads to leaching of nutrients that
are very mobile in soil, such as potassium16,37. This is supported by the
negative correlation ofMAP and plant available soil potassium and calcium
(Fig. 3). In addition, low APB at the sites with MAP > 1500mm might be
caused by the rather low soil pHat these sites, as described inprevious global
analyses17. The pH ranged between 4.8 and 5.6 at these sites, whereas the
mean across all sites was pH 6.0, andMAP and pHwere strongly negatively
correlated (Fig. 3). In contrast, it seems unlikely that the low APB observed
at high MAP is due to anoxia fostered by high soil clay contents since clay
had an overall positive effect on APB (Fig. 4B) and there was no significant
interaction (P = 0.528) of clay and MAP in their relationships with APB
(Table 2 and S1, Fig. 4B). In addition, highMAP did not lead to substantial
leaching of nitrogen aswe observed apositive correlation betweenMAPand
soil total nitrogen (Fig. 3). The reason for this is that soil nitrogen is mostly
covalently bound in soil organic matter38 (see discussion below), in contrast
to potassiumand calcium. This leaves leaching ofmobile nutrients from soil
and low soil pH as the main reasons for low APB at high MAP.

In addition to MAP, we also found a significant unimodal model for
APB as a function of AI (Table 1), indicating that APB is lower at the
extreme arid and moist ends of the AI gradient compared to medium AI.
This finding indicates that not only precipitation, but also the combination
of precipitation and evaporation affects APB. At the moist end of the AI
gradient, AI and APB are likely negatively related because AI affects soil
water dynamics, andhence leachingprocesses,while at the arid endof theAI
gradient, APB is likely limited by water availability. Our finding that the
relationship between APB and AI follows a quadratic, unimodal relation-
ship is in agreement with a recent meta-analysis5.

Interactions of abiotic variables
We found only partial support for our second hypothesis stating that MAP
interacts with various abiotic variables in its relationship with APB. Against
our second hypothesis, MAP and soil clay content did not significantly
interact in their relationshipswithAPB (Table 2 andS1, Fig. 4B). The reason
for this might be that the sites with very high MAP (i.e., MAP > 1500mm)
did not have a soil clay content higher than 20%, and half of these sites had a
clay content below 3.5%.

In accordance with the second hypothesis, MAP and MAT interacted
significantly in their relationshipswithAPB.Ouranalysis shows that different
measuresof temperature, suchasMATaswell as themean temperatureof the
driest and warmest quarter of the year were not significantly related to APB,
neither through a linear nor through a unimodal function (Table 2). MAT
was only significantly related to APB in interaction with MAP (Table 2 and
Fig. 4). This indicates that temperature itself does not limit plant growth in
global grasslands, andMAT is only significantly related toAPB in interaction
with MAP. MAT and MAP-squared (MAP2) interacted significantly in a
quadratic model (Table 2), showing that MAT modulates the relationship

Table 2 | Summary of the best-fitmodels of log-transformed abovegroundplant biomass (APB)with oneor twoquadratic terms,
without and with multiplicative interactions

X1 X2 Model structure P value P value
interaction
X1 and X2

P value
interaction
X1

2 and X2

Multiple R2 Adjusted R2

MAP MAT Y ~ X1*X2+ X1
2*X2 < 0.001 0.079 0.034 0.42 0.36

MAP TDry Y ~ X1+ X2+ X1
2+ X2

2 < 0.001 - - 0.41 0.36

MAP Clay Y ~ X1+ X1
2+ X2 < 0.001 - - 0.38 0.34

N Sha Y ~ X1*X2+ X1
2*X2 < 0.001 0.027 0.025 0.38 0.32

NDep Sha Y ~ X1*X2+ X1
2*X2 0.004 0.122 0.030 0.29 0.21

Shown is the best-fit model for each set of predictors, selected based on the AIC (for model comparisons see Supplementary Table S1). Depicted are the P values of the models and the coefficients of
determination (multiple and adjusted R2). For the models with interactions, the P values of the interactions are given. All models were calculated based on site-level data for all sites with data on soil clay
content (N = 55). The independent variables (X) were centered and APB was log-transformed (natural logarithm).
MAPmeanannual precipitation,MATMeanannual temperature,TDrymean temperatureof driest quarter of the year,Clay soil clay content,Nsoil total nitrogencontent,ShaShannon indexof plantdiversity,
NDep atmospheric nitrogen deposition.
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betweenMAP and APB (Fig. 4A), as hypothesized. Themodel indicates that
APB is decreased at siteswith veryhighMAPcompared to siteswithmedium
MAP ifMAT is low, but not ifMAT is high (Fig. 4A). However, when acting
in concert with other environmental factors, the relationship between APB
and the interaction of MAP and MAT was not significant (Fig. 5), which is
relevant for our fourth research question. It shows that single variables or
interactions (of variables) that are significantly related with the dependent
variable when considered in isolation might not be significantly related with
the dependent variable in a more complex model. This is because the
variability of the dependent variable can be captured to a large extent by other
variables in models with multiple independent variables.

Biomass as a function of nitrogen
The relationship between APB and soil total nitrogen followed a quadratic
function (Fig. 2B, Table 1), showing that beyond 5.96 g nitrogen kg−1 soil,

APB was negatively related with nitrogen. Of the five sites with the highest
soil total nitrogen content, one had medium MAP (943mm), while the
other four sites received high to very highMAP (1354, 1522, 1623, and 1877
mm). These five sites, located in the US, UK, and South Africa also had a
high soil organic carbon content, suggesting that high MAP resulted in
elevated soil organic matter (i.e., organic carbon and nitrogen) contents.
This is supported by the fact that soil nitrogen and carbon stocks are
positively correlated with MAP globally39,40. The nitrogen availability at the
five sites with very high soil total nitrogen contents was likely not very
different from the average nitrogen availability across all 55 sites, as indi-
cated by the similar soil carbon-to-nitrogen ratios41. The soil carbon-to-
nitrogen ratio at these sites ranged between 10.3 and 18.8 (median = 14.2),
while the median soil carbon-to-nitrogen ratio across all 55 sites was 13.3.
Thus, these findings indicate that low APB at the sites with very high soil
nitrogen is not driven by nitrogen availability but mainly by the very high

Fig. 4 | Aboveground plant biomass (APB) as a function four pairs of predictors.
The plane presents APB that is predicted by a function containing one quadratic
term. The models presented in panels A, C, and D contain a multiplicative inter-
action among the two predictors. The model in panel B does not contain an

interaction. For model summaries see Table 2, and for model comparison see
Supplementary Table S1. MAP: Mean annual precipitation, MAT: Mean annual
temperature, Clay: soil clay content, Nitrogen: soil total nitrogen content, NDep:
atmospheric nitrogen deposition.
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MAP at these sites, which causes low APB (as discussed in the previous
section).

Soil nitrogen and MAP strongly covary (Fig. 3). Thus, to understand
the relationship between APB and both MAP and soil nitrogen, and to
address the fourth research question, we set up a SEM. The SEMshows that
the direct effect of MAP on APB follows a quadratic function (see black
asterisks and letters next to the quadratic relationship in Fig. 5), whileMAP
affects APB also indirectly through its linear effect on soil nitrogen (Fig. 5).
Furthermore, the SEM indicates that APB is generally more strongly
affected by soil nitrogen than byMAP (see thickness of the arrows depicting
the path coefficients in Fig. 5). The reason for this is likely that soil nitrogen
depends partly onMAP39,40 and therefore captures a share of the variability
of MAP, and additionally, nitrogen directly affects APB positively as a
macronutrient. The latter is supported by a study on a subset of the grass-
lands studied here reporting that APB increased in response to nitrogen
addition at most sites6.

APB was not only significantly related to soil nitrogen but also to
atmospheric nitrogen deposition (Tables 1 and 2, Fig. 4D). For the rela-
tionship between APB and atmospheric nitrogen deposition we found not
only a quadratic but also a positive linear model (Table 1), indicating that
atmospheric nitrogen deposition had an overall positive effect onAPB. This
is likely because atmospheric nitrogen deposition is beneficial for plant
growth as a nitrogen source, although not at all levels of plant diversity
(see below).

Interactions of diversity and nitrogen
In accordance with our third hypothesis, the interaction of plant diversity
and soil nitrogenwas significantly related toAPB,while plantdiversity alone
was not significantly related to APB (Table 2, Fig. 4, and Supplementary
Table S1). The latter is in agreement with previous studies that explored a
subset of the grassland sites investigated here and reported no significant
linear relationship between plant diversity and APB8,42. Our results
demonstrate that nitrogen modulates the relationship between APB and

plant diversity. APB was highest at low plant diversity and medium soil
nitrogen content. Furthermore, APB was positively related with plant
diversity at low levels of soil nitrogen, andnegatively atmedium levels of soil
nitrogen (Fig. 4C). Similarly, APB increased strongly with atmospheric
nitrogen deposition at low levels of plant diversity, and less so at very high
levels of plant diversity (Fig. 4D). Our results are in accordance with several
experimental studies showing that elevated nitrogen availability reduces the
positive relationship between plant diversity and biomass in grasslands31–33.

Several explanations for the observed relationships between plant
diversity, nitrogen, and APB are not mutually exclusive. It could be that
species with a high nitrogen-use efficiency are very productive at elevated
levels of nitrogen and out-compete other species, leading to a highAPB and
low diversity43–46. It might also be that under low nitrogen availability, no
plant species has enough nitrogen to outcompete others, leading to a high
plant diversity at sites with low nitrogen availability and consequently low
APB47. In addition, it could be that a very diverse plant community is
beneficial for APB at low nitrogen availability since a high diversity of
functional traits leads to complementarity in the use of resources (for
instance, in the use of different chemical nitrogen forms)30. In general, our
findings are in agreement with many studies about grassland ecosystems
reporting a relationship between plant diversity and biomass in
grassland7,9,29,48, yet these studies did not explore the interaction between
plant diversity and nitrogen. Our results show that nitrogen modulates the
relationship between diversity and biomass, and that plant diversity and
APB are negatively related at relatively elevated soil nitrogen contents. The
findings indicate that the reason why several studies found no significant
relationship between plant diversity and biomass28 might be that they dis-
regarded the interaction of plant diversity and soil nitrogen.

Unimodal relationships and interactions
Taken together, we found some support for the first hypothesis since
quadratic, unimodal functions could better describe the relationships
betweenAPBandMAP,APBandAI,APBand elevation, aswell asAPBand
soil nitrogen than linear,monotonic functions (Table 1).Our results suggest
that APB has an optimum at the medium range of these variables.
According to Shelford’s theory (or law) of tolerance49, the relationship
between biomass of a species and an abiotic ecosystem property follows a
unimodal function since biomass decreases with the extent to which the
abiotic conditions diverge from the optimum condition of the species.
Shelford formulated the law of tolerance49 for species, and it might seem
questionable whether this theory holds true for communities because of
differences in optimum conditions among species. However, our results
indicate that plant community biomass decreases towards the outer ranges
of some environmental variables, such as MAP, AI, elevation, and soil
nitrogen. The reason for this seems to be that very high MAP and very
humid conditions have negative effects onmost plant species in grasslands.

Against our first hypothesis, for some variables we found no unimodal
relationship with APB. For example, we found no quadratic, unimodal
function describing the relationship between soil APB and pH (Table 1),
indicating that the outer pH ranges (pH 4.0 and 8.3) were not extreme
enough to cause decreased APB50. Furthermore, for APB as a function of
clay, we found both a significant linear and a quadratic model, indicating
that clay hadmainly a positive effect onAPB (Table 1, Fig. 4B). This is likely
because clay is the most important source of all nutrients, except for
nitrogen, as indicated also by the positive correlations of clay content and
plant-available soil potassium and calcium (Fig. 3) as well as the positive
relationship between plant-available calcium and APB (Table 1). Soil clay
content was not significantly correlated with MAP, but it was positively
correlated with MAT (Figs. 5 and 3), suggesting a positive influence of
temperature on the formation of clay-sized minerals, as described in pre-
vious studies51.

Our study demonstrates important interactions between abiotic and
biotic variables in global grasslands. Specifically, our results demonstrate
that plant species diversity and nitrogen interact significantly in their rela-
tionships with APB (Table 2 and Fig. 4). Furthermore, the study shows that

MAP
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**(-)

***(+) **(+)
q 

**N
***N2
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MAT

Sha

Fisher‘s C = 10.91, P = 0.537, df = 12
χ2 = 4.019, P = 0.674, df = 6

R2=0.38R2=0.16
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Ln (APB)
MAP × MAT Sha × N

R2=0.70
q q

*MAP2
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Fig. 5 | Piecewise structural equation model (SEM) of log-transformed above-
ground plant biomass (Ln(APB)). The model includes quadratic functions (indi-
cated by a red q) for the relationships between APB and nitrogen as well as APB and
MAP. The model includes two multiplicative interactions of MAP andMAT as well
as of the Shannon index and nitrogen in their relationships with APB, which are
shown in gray boxes. Blue arrows indicate non-significant functions. Black arrows
indicate significant functions. The thickness of the black arrows indicates the
magnitude of the standardized path coefficients. Asterisks indicate the level of sig-
nificance (*P < 0.05, **P < 0.01, ***P < 0.001), and (+) and (−) indicate whether
the slope of the linear functions is positive or negative. For the significant quadratic
functions it is depicted which part of the function is significant, and the level of
significance. The green boxes display the coefficient of determination (R2) for the
endogeneous variables. The orange box displays the Fisher’s C statistic, and the Chi-
squared (χ2). The models were calculated based on centered data from the sites
(centered site-level data), for all sites for which data on clay content is available
(N = 55).MAP:Mean annual precipitation,MAT:Mean annual temperature, NDep:
atmospheric nitrogen deposition, Clay: soil clay content, N: soil total nitrogen
content, Sha: Shannon index of plant diversity, Ca: plant available soil calcium.
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APB is not significantly relatedwithMAT(Table 1), butwith the interaction
of MAT and MAP (Table 2). Our results highlight the importance to
account for the interactive and unimodal relationships between plant bio-
mass and several environmental variables when analyzing and modeling
plant biomass at the global scale. Including interactive and unimodal rela-
tionships in global vegetation and carbon models likely improves their
ability to predict primary production at the global scale.

Conclusions
We found that APB was related through unimodal functions with several
environmental factors that interacted with other ecosystem characteristics
in their relationships with APB. Specifically, we observed that APB was
related toMAP through a quadratic functionwith amaximumat 1138mm.
This is likely because very high MAP has adverse effects on APB since it
causes a low soil pH and leaching of mobile nutrients, such as potassium,
from soil. Furthermore, APB was related with soil nitrogen through a
unimodal function, and nitrogen and plant diversity interacted in their
relationships with APB. Plant diversity and biomass were positively related
at low levels of nitrogen and negatively at medium levels of soil nitrogen.
Our study has important implications as it suggests that models assuming a
linear positive relationship between plant biomass and MAP at the global
scale will likely overestimate biomass in grasslands with high precipitation.
Furthermore, our results show that models of APB should include an
interaction of plant diversity and nitrogen since nitrogen can reverse the
relationship between plant biomass and plant diversity. This is important
for the inclusion of plant biomass in global vegetation and carbon models.

Methods
Study sites
All 116 grassland sites studied here are natural or semi-natural grasslands
that are part of the Nutrient Network Global Research Cooperative52

(https://nutnet.org). MAP at the sites varies between 192 and 1877 mm,
while MAT varies between −6.6 and 27.3 °C, soil clay content varies
between 0.8 and 44.6%, and soil pH varies between pH 4.0 and 8.3. For this
study we chose data that were collected the year before any experimental
treatment started,meaning siteswerenot experimentallymanipulatedat the
time of data collection.

Sampling, measurements, and climate data
All sites followed the same sampling protocol, and the data were collected
between 2007 and 2020. At each site, on average about 30 plots were
established (10 to 60 plots per site) that have a size of 5 × 5m. In total, there
were 3380 plots distributed across 116 sites.

Plant species composition was determined in a randomly designated
1 × 1m subplot within each 5 × 5m plot at peak biomass. In the same
1 × 1m subplot, cover was estimated visually to the nearest 1% for every
species overhanging the subplot.

Live vascular plant aboveground biomass (hereafter aboveground
plant biomass or APB) was measured at peak biomass (i.e., at the specific
time of the yearwhen abovegroundplant biomass is highest). Thiswas done
destructively by clipping all aboveground biomass at ground level of plants
rooted within two 1 × 0.1 m strips (for a total of 0.2 m2) adjacent to the
1 × 1m subplot where plant species composition was determined. All bio-
mass was dried at 60 °C to constant mass before weighing to the nearest
0.01 g. Data on aboveground plant biomass and plant species composition
were collected at all 116 sites.

Soil samples were collected in the 5 × 5m plots by taking three soil
cores (2.5 cm diameter) at a depth of 0–10 cm. The three cores were pooled
to make one sample per plot. Root fragments were removed, and the soils
were air-dried and sieved ( < 2.0mm) prior to any analysis. The samples
were analyzed for total organic carbon and total nitrogen using an elemental
analyzer (Costech ECS 4010 CHNSO Analyzer). Plant-available soil phos-
phorus (P), potassium (K), and calcium (Ca) were extracted from soil
according to the Mehlich-3 protocol53 and quantified using Inductively
Coupled Plasma Mass Spectrometry. Soil pH was measured in a 1:1 soil:

water (v/v) suspension. Soil texture, i.e., clay, silt and sand, was measured
using the Bouyoucos method. All soil samples were analyzed in the same
laboratory (Waypoint Analytical Laboratory, Memphis, Tennessee, USA).
Data on soil chemistry and clay contentwere collected for 55 of the 116 sites.

We obtained data on precipitation and temperature from Worldclim
2.054. Specifically, we extracted data on mean annual precipitation (MAP),
mean annual temperature (MAT),mean precipitation of thewettest quarter
of the year (PWet), mean temperature of the driest quarter of the year
(TDry), mean temperature of warmest quarter of the year (TWarm), and
maximum temperature of warmest month (TMax). Data on potential
evapotranspiration (PET) was obtained from the Consultative Group for
International Agricultural Research (CGIAR), and data on atmospheric
nitrogen deposition from Ackerman et al.55 for all sites. We calculate the
aridity index (AI) by dividing MAP by PET.

Calculations and data analyses
We calculated two indices of plant species diversity, the Shannon-Wiener
diversity index (called Shannon index hereafter) and the Simpson index as
well as species richness and evenness from the plant species composition
data collected at the plot scale, using the R package vegan (version 2.6-4)56.
We choose the Shannon and the Simpson indices as two contrasting
measures of diversity. Thefirst ismore sensitive to differences in rare species
abundance, while the latter is more sensitive to differences in the most
abundant species57.

We calculated arithmetic means of plant biomass, plant diversity,
species richness and evenness aswell as soil properties across all plots of each
site (called site-level data or site means in the following). This is common
practice in global studies in ecology8.We aggregated the data at the site-level
because the climate variables vary among the sites butnot among theplots of
one site. In addition, different plots of one site are not independent of each
other (which is a pre-requisite for regression analysis). The aim of our study
is to understand how plant biomass is related to abiotic variables and plant
diversity in grasslands spanning a wide range of climate conditions. Thus,
the scale of inference of our study is the global scale, andnot the local scale of
a single site. Our approach is based on the common understanding that
variability at different spatial scales is caused by different drivers58, which
implies that the analysis of small-scale variability has very limited value for
understanding variability occurring at the large scale.

A correlation matrix was calculated and visualized using the R
package corrplot (version 0.92). All variables were mean centered before
models were calculated to avoid covariance of the quadratic and non-
quadratic term in the quadratic models59. In addition, we created scatter-
plots for regressions that show the fitted values of the model vs. the resi-
duals of those fitted values to evaluate heteroscedasticity. APB was
transformed by calculating its natural logarithm. This was done because
the residuals of the regression models were not normally distributed prior
to the log-transformation and because of heteroscedasticity.We calculated
the following models of APB and compared them based on the Akaike
Information Criterion (AIC), and considered models with a smaller AIC
(ΔAIC < 2) to fit the data better60.

Linear model with one predictor: Y ~ X

Y ¼ β0 þ β1X þ ε ð1Þ

Model with one predictor and one quadratic term: Y ~ X+X2

Y ¼ β0 þ β1X þ β2X
2 þ ε ð2Þ

Subsequently, models with two predictors and one or two quadratic
terms were calculated, according to our hypotheses and the results of the
previous regression analyses. We calculated these models with and without
multiplicative interaction of the two predictors. This was done only for pairs
of predictors that were not significantly (P > 0.05) correlated61.Wefitted the
following models (shown below in the shorter R notation and in mathe-
matical notation) to our data and compared the fit based on the AIC.
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Model with one quadratic term and no interaction: Y ~ X1+X1
2+X2

Y ¼ β0 þ β1X1 þ β2X2 þ β3X
2
1 þ ε ð3Þ

Model with one quadratic term and multiplicative interactions:
Y ~ X1*X2+X1

2*X2

Y ¼ β0 þ β1X1 þ β2X2 þ β3X
2
1 þ β4X1X2 þ β5X

2
1X2 þ ε ð4Þ

Model with two quadratic terms and no interaction:
Y ~ X1+X1

2+X2+X2
2

Y ¼ β0 þ β1X1 þ β2X2 þ β3X
2
1 þ β4X

2
2 þ ε ð5Þ

Model with two quadratic terms and multiplicative interactions:
Y ~ X1*X2+X1

2*X2+X1*X2
2

Y ¼ β0 þ β1X1 þ β2X2 þ β3X
2
1 þ β4X

2
2 þ β5X1X2þβ6X

2
1X2

þ β7X1X
2
2 þ ε

ð6Þ

For models for which we found a significant interaction based on the
log-transformedAPBdata, we calculated the samemodel alsowith the non-
transformed data, in order to exclude that the interaction is a result of the
log-transformation61. We visualized the best models with two predictors in
3-dimensional plots using theRpackage lattice (version0.22-5) basedon the
non-transformed site-level data.

Piecewise structural equation modeling
In order to better understand how different ecosystem properties act in
concert and to evaluate direct and indirect effects of MAP, we conducted
piecewise structural equation (SEM) modeling, using the R package piece-
wiseSEM(version 2.3.0)62.We choose piecewise SEMbecause it allows us to
include interactions among variables (in contrast to other path modeling
approaches). All variables were mean centered before the models were
fitted60. In addition, APB was transformed by calculating its natural loga-
rithm.Thiswasdonebecause the residuals of the regressionmodelswerenot
normally distributedprior to the log-transformation.All SEMswerefitted to
the site level-data for all complete sites (i.e., sites for which data on clay
contentwasavailable).Weevaluated thefit of different versionsof themodel
to our data using the Akaike Information Criterion (AIC).

According to our hypotheses and the results of the previous
regression analyses, we set up a piecewise SEM of APB as a function of
MAT,MAP, the Shannon index, soil clay and nitrogen contents as well as
atmospheric nitrogen deposition. We included MAT and MAP, but not
AI in this model because AI is calculated based on MAP and evapo-
transpiration, and the latter is related to MAT. We calculated this model
with linear and quadratic functions for the relationships of MAP and
APB as well as soil nitrogen and APB, and we selected the model version
with the lowest AIC. We included interactions of MAT and MAP as well
as Shannon index and soil nitrogen in the SEM since we had observed
interactions of these variables in the previous regression analyses. We
further optimized the model by including either plant available soil P, K,
or Ca, or all three nutrients as additional predictors of APB, and we
selected the best-fitting version of these four models based on the lowest
AIC. In addition, we tested a version of this model in which soil nitrogen
and clay are not only affected by MAP and MAT (without interaction)
but also by the interaction of the two variables. However, this model had
a higher AIC (ΔAIC > 2) than the model in which soil nitrogen and clay
are affected by MAP and MAT without interaction. All data analyses
were conducted in R (version 4.2.1)63.

Statistics and Reproducibility
The116grassland sites studiedhere are located on six continents.At all sites,
data were collected according to the same protocol52 in 10–60 plots of a size
of 5 × 5m. In total, there were 3380 plots distributed across 116 sites. We

calculated arithmetic means of abiotic and biotic variables across all plots of
each site, and all statistical analyses were conducted based on these means.
We calculated regressionmodels in R (version 4.2.1)63, andwe evaluated the
fit of different models to our data using the AIC. All data and the R code to
reproduce the results are publically available64.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data are available at this repository. https://doi.org/10.5281/zenodo.
14509903.

Code availability
All R code for reproducing the results is available at this repository. https://
doi.org/10.5281/zenodo.14509903.
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