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Abstract 

Objective and reliable post-mortem meat inspection is a key factor in ensuring 
adequate assessment and quality control of meat intended for human consumption. 
Early identification of issues that may impact public health and animal health 
and welfare, such as the presence of chemical contaminants in meat, is critical. In this 
study, we propose a novel method to modernize meat inspection using an electronic 
nose combined with machine learning (ML), with focus on pig meat as a case study. 
We explored its potential as a complementary tool to traditional sensory evaluation 
and analytical methods, aiming to enhance the efficiency and effectiveness of current 
inspections. We employed a metal-oxide based gas sensor array of commercially 
available chemoresistive sensors, functioning as an electronic nose, to differentiate 
between various categories of 100 pig meat samples collected at a slaughterhouse 
based on their odor characteristics, including a urine-like smell and post-mortem 
aging. Using the Optimizable Ensemble model, we achieved a sensitivity of 96.5% 
and specificity of 95.3% in categorizing fresh and urine-contaminated meat samples. 
The model demonstrated robust predictive performance with a Kappa value 
of approximately 0.926, indicating near-perfect agreement between the predictions 
and actual classifications. Furthermore, our developed ML model demonstrated 
the ability to distinguish between nominally fresh pig meat and meat aged for one 
to two additional days with an accuracy of 93.5% and can also correctly identify meat 
aged 3–31 days or 17–31 days. Based on the consensus of preliminary decisions 
from each individual sensor element, the algorithm effectively determined the final 
status of the meat. This research lays the groundwork for practical applications 
within the meat inspection process in slaughterhouses and as quality assurance 
throughout the meat supply chain. As we continue to refine and validate this method, 
its potential for real-world implementation becomes increasingly evident.

Keywords:  Gas sensors, Machine learning, Volatile organic compounds, Odor 
detection, Meat chain waste, Meat quality assurance, Food safety measures, Chemical 
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Introduction
Chemical contaminants in meat are classified by the European Food Safety Authority 
as a public health hazard that can impact both human and animal health and welfare 
[1]. The unpleasant odor of pork, which can arise from various factors such as the 
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animal’s sex, diet, genetics, pre-slaughter stress, living conditions, and storage methods, 
and is perceived as a combination of sweat, urine, and faeces scents [2], has long been 
recognized as a significant issue for meat quality. This issue leads to financial losses for 
both meat producers and sellers [3, 4]. For the former, this means that carcasses with 
detected organoleptic changes are considered unfit for human consumption and must 
be disposed of, as required by Article 45 of Commission Implementing Regulation (EU) 
2019/627 [5]. Furthermore, the costs associated with pig farming are not recovered 
and become an economic burden for the entire meat chain, from the primary producer 
to the processing industry. For the latter, the poor quality of meat, if somehow still 
on supermarket shelves, disappoints customers, increases distrust in meat sellers, 
and reduces overall purchases [6]. Reliable and fast tools for increased efficiency and 
effectiveness of inspections are therefore needed for prevention or early detection of 
public health hazards such as chemical contamination.

The unpleasant odor, exemplified by boar taint [2], is primarily associated with andros-
tenone [7] and skatole [8]; however, its overall profile is more complex and sensitive to 
external factors and meat storage time [9–12]. Therefore, the strategy to detect it cannot 
rely solely on the identification of skatole and androstenone in pig carcasses. It should 
be consistent across all classes of pigs and adapted for rapid and reliable detection of 
the odor itself, regardless of the specific volatile compounds (volatolome) that contrib-
ute to the smell. This is crucial, as the meat odor profile changes significantly over time 
[13], influenced by natural hormonal processes, intestinal bacterial metabolism, feed 
type, race, age, sex status, environment, and meat aging/decomposition. Thus, develop-
ing detection methods that capture these dynamic odor profile changes is essential. This 
strategy would enable fast identification of problematic batches, allowing timely inter-
ventions to prevent health hazards and reduce financial losses. Additionally, it would 
help ensure meat quality, thereby bolstering consumer confidence. Central to this is ana-
lyzing the general aroma profile of meat samples and identifying the presence or absence 
of specific set of volatile organic compounds (VOCs) associated with off-odors using 
pattern recognition algorithms, rather than detecting individual VOCs as would be done 
with gas chromatography.

The current methods to evaluate the unpleasant odor, including sensory assessment 
by trained panels [14], mass spectrometry coupled with gas chromatography (GC–MS) 
[15–17], surface-enhanced Raman scattering (SERS) [18], enzyme immunoassay (EIA) 
[19, 20], fluoroimmunoassay (FIA) [21, 22], and colorimetric assay [23] are often time-
consuming and expensive, making it difficult to perform rapid, cost-efficient, and objec-
tive carcass classification on the slaughter line. Emerging methodologies and new digital 
technologies have the potential to enable rapid and efficient sample analysis, assessment, 
and management. One promising approach is the use of a gas sensor array, or electronic 
nose (e-nose), that is an electronic device intended to detect odors. However, e-noses 
themselves are non-specific. Integrating this technology with sophisticated ML mod-
els represents a powerful approach to address diverse problems [24–29], particularly in 
food quality assessment and safety monitoring [30–35]. For instance, Surjith et al. [30] 
proposed a hybrid model based on an integration of Random Forest (RF), Convolutional 
Neural Network (CNN), and Gated Recurrent Unit (GRU) that achieved a remarkable 
accuracy of 99.8% in distinguishing fresh beef from spoiled beef by leveraging data from 
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e-nose sensor composed of 11 elements. Zhan et  al. [31] introduced a low-cost col-
orimetric sensor array based on metal–organic framework (MOF) Fabry–Pérot films, 
which, when analyzed with standard k-nearest neighbour (kNN), demonstrated high 
classification accuracy (96.7%) for detecting VOCs related to beef spoilage. In a similar 
vein, Wijaya et al. [32] explored a combination of e-nose with 11 sensor elements with 
filter-based feature selection algorithms and ensemble learning techniques, such as Ran-
dom Forest and Adaboost, for beef quality assessment. High-performance results of the 
classification task, including 99.9% accuracy, were achieved. Furthermore, research on 
the detection of meat adulteration has also advanced. Han et al. [33] developed a low-
cost e-nose using colorimetric sensors to detect pork adulteration in beef, with the 
extreme learning machine (ELM) model outperforming traditional methods (91.3% 
and 87.5% in the training and test sets). Additionally, Huang and Gu [34] introduced a 
combined one-dimensional convolutional neural network (1DCNN) and a random for-
est regressor (RFR) framework for quantitative detection of beef adulterated with pork 
using 10 different MOS sensors as e-nose. The coefficient of determination (R2) for this 
model was estimated to be 99.7%. Similarly, Jia et al. [35] utilized a fusion of near-infra-
red spectroscopy and e-nose data with an F1-score-based model reliability estimation 
(MRE) method to detect pork adulteration in lamb meat with high accuracy (98.6%). 
These approaches highlight the effectiveness of combining multiple data sources and ML 
techniques to improve detection capabilities. These advancements collectively illustrate 
the growing synergy between e-nose technologies and ML methods. The integration of 
these tools not only enhances the precision and accuracy of meat quality assessment but 
also provides practical and cost-effective solutions for enhancing food safety measures. 
Regarding the issue of pork quality, the combination of e-nose technology and ML began 
to be explored in the early 1990s. Research primarily focused on classifying pig meat 
based on skatole and androstenone levels [36–38]. Annor-Frempong et al. [36] achieved 
84.2% accuracy in differentiating boar taint intensities using a 12-conducting-polymer 
sensor array with a discriminant function algorithm. Their samples were categorized as: 
(i) normal (skatole < 0.2 μg/g, androstenone < 0.5 μg/g), (ii) doubtful (skatole < 0.2 μg/g, 
androstenone < 1.0 μg/g), and (iii) abnormal (skatole > 0.2 μg/g, androstenone > 1.0 μg/g). 
Other studies [37, 38] focused on distinguishing between low and high levels, achieving 
a classification rate of 85.0%. Despite these advances, effectively discriminating between 
fresh pork and samples exhibiting urine-like odors remains a challenge that has not yet 
been thoroughly studied.

The meat industry faces a persistent problem that goes beyond traditional concerns 
about boar taint: the occurrence of urine-like odors in pig carcasses, including those of 
castrated males and females. This issue, highlighted by meat producers and confirmed by 
the Swedish Food Agency, underscores a critical need for innovative detection methods. 
Assessment of carcass odor is currently performed by official veterinarians and official 
auxiliaries and is therefore highly subjective. An e-nose would provide a more objec-
tive sensor-based safety and quality assurance than a subjective organoleptic one. Our 
study addresses this real-world problem by developing a novel approach that harnesses 
the power of e-nose technology coupled with advanced ML algorithms. Using sen-
sor technology for objective meat inspection is a new research area that offers unprec-
edented opportunities to modernize official food control. Digital technologies enable 
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significant improvements in data acquisition, recording, analysis, evaluation, and report-
ing as well as process automation and remote control. However, the use of new technol-
ogy, including sensors and artificial intelligence (AI), is currently hindered by various 
EU regulations (AI-Act, Data Governance Act, Data Act, and General Data Protection 
Regulation), which limit its application in real-world settings. Compared to other sen-
sor technologies, such as hyperspectral imaging for meat quality evaluation or drones 
to collect visual data, our proposed solution is potentially cheaper, faster, and easier to 
implement from a regulatory perspective. Furthermore, e-noses allow integration into 
compact, lightweight, and easy-to-use and maintain devices that do not require specific 
training, specialized operators, or expensive maintenance. We aim at the creation of a 
uniform legal framework in the EU to regulate the development, use, and application 
of sensor- and AI-based new technology, where e-noses integrated with AI/ML can be 
used together with other sensor technologies to modernize meat inspection.

Our goal is to demonstrate a reliable, accurate, and non-invasive method for rapid 
detection of chemical contaminants in meat. As an initial case study, our objective is 
to distinguish between fresh pig meat and samples exhibiting urine-like odors, using 
urine as the chemical contaminant. This approach aims to enhance quality assessment 
and control measures in meat production, contributing to increase public health, ani-
mal health and welfare, and potentially reducing economic losses and improving con-
sumer satisfaction. Furthermore, we extend our methodology to tackle another crucial 
aspect of meat quality: freshness assessment. By classifying meat samples according 
to their aging period, ranging from 1 to 31 days, we provide a comprehensive tool for 
monitoring meat quality. This dual-purpose approach not only addresses the immedi-
ate concern of urine odor detection but also offers a broader application in assessing 
meat freshness, thereby contributing to food safety and quality management in the meat 
industry. Through this research, we aim to demonstrate the versatility and effectiveness 
of combining e-nose technology with ML in solving complex, real-world challenges in 
meat production and quality assurance, with focus on pig meat.

Material and methods
Sample collection and preparation

We analyzed 100 pig meat samples from Gotland, Sweden, weighing approximately 1.5 g 
each. Samples were aseptically taken from the diaphragm of pigs slaughtered the day 
before the start of measurements and shipped in refrigerated bags to preserve fresh-
ness. All pigs belonged to the same breed and were housed and managed under the same 
conditions in intensive production systems. They were slaughtered when they reached 
a weight of approximately 100 kg. This uniformity in breed, age, and management prac-
tices helps ensure that potential variations in results are not due to these factors. The use 
of samples with known information about their origin, slaughter conditions, and fresh-
ness was essential to validate the accuracy and reliability of our proposed method. The 
delivered samples were stored in a refrigerator at + 5  °C ± 1  °C to ensure their preser-
vation and freshness, and to inhibit bacterial proliferation. The investigation was con-
ducted on samples from both castrated males and intact females aged 6 months within 
the designated pig population. Meat samples were sent in standard tubes, each capable 
of holding a maximum of 15  ml. Fifty samples were sent fresh, and other 50 samples 
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were sent immersed in urine. The urine used for marinating was taken directly from the 
pig’s bladder at the time of slaughter. Each meat sample was marinated in the urine of 
the same pig from which the meat was taken, maintaining its biological consistency. The 
marinating process lasted approximately 24 h before the first measurement (day 1). The 
24-h marination period was chosen to allow sufficient time for urine-derived volatile 
compounds to diffuse and equilibrate within the meat sample. Upon visual inspection, 
the fresh and “contaminated” samples appeared clearly different in color, demonstrat-
ing the marinating effect had taken place (see Supplemental Picture S1). To design our 
experiments, we followed recommendations received from the Swedish Food Agency. 
These recommendations included the use of urine-contaminated samples, to simulate 
chemical contamination in an easy and controllable way, and fresh (uncontaminated) 
samples, as a control group, for comparison. The 24-h time interval before the first 
measurement corresponding to shipping time is in line with typical meat processing 
times in industrial settings, where carcasses might be stored for up to 24 h before further 
processing or inspection [39] and with protocols used in meat quality and safety studies. 
For instance, Kebede and Getu [40] employed a 24-h incubation period in their bacterio-
logical quality assessment of raw meat, while Feng et al. [41] evaluated quality parame-
ters within a 24-h window post-treatment. These studies demonstrate that a 24-h period 
is relevant for observing significant changes in meat samples, whether due to bacterial 
growth or other quality alterations. In our case, this duration allows for the establish-
ment of a stable urine-related VOC profile, mimicking potential real-world scenarios 
of chemical contamination during processing and storage. It is important to note that 
consistently applying this marination time across all samples allows the e-nose to detect 
characteristic changes induced by urine exposure, regardless of the absolute intensity of 
the odor. We would like to point out that our study aims to demonstrate the ability of 
our ML model to discriminate among different classes, classified as “good” or “bad”. To 
this end, our study does not aim to specifically detect androstenone and/or skatole as 
odor-defining compounds. The reasons for our choice to go beyond the issue of boar 
taint are multiple: we worked with castrated males and intact females, which cannot be 
associated with boar taint linked to these two molecules; marination in urine was con-
venient due to the lack of naturally occurring urine-odor samples, since collecting such 
samples in a single location and during a limited period of time is statistically difficult, 
labour-intensive, and subjective; unpleasant odors in pork are not limited to the well-
known issue of boar taint associated with androstenone and skatole but can also arise 
from other factors, such as urine contamination on the carcass. Indeed, urine can be 
regarded as an ideal non-invasive source of VOCs responsible for unpleasant odors [19, 
42]. According to control data from the Swedish Food Agency the most common non-
compliant carcass odor is urine-odor. In most cases the carcass has a primary pathologi-
cal process that makes giving this non-compliance unfit for human consumption. In line 
with this, our goal was to mimic as closely as possible a real-life scenario of non-compli-
ant carcasses with a urine-like odor.

Experimental procedure and measurement protocol

We implemented a custom metal-oxide-based 32-element e-nose, hosted at Sensor and 
Actuator Systems (SAS) research division of Linköping University, to measure VOC 
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emissions from fresh and contaminated meat samples using urine, for a total of 100 sam-
ples and 900 measurements. Due to proprietary restrictions imposed by the developer, 
we cannot provide specific information on the types of sensors incorporated into the 
device. Each sensor measures the temporal evolution of the voltage in response to the 
VOCs released from the samples. The voltage changes as various VOCs interact with 
the sensor material, generating a unique response profile for each sensor. This type of 
sensor is commonly referred to as a metal-oxide semiconductor (MOS) sensor. To dif-
ferentiate between fresh and spoiled meat we measured the e-nose response to the total 
VOC emissions from samples belonging to different categories. We then applied pat-
tern recognition algorithms to differentiate between them. Since the e-nose responses 
consistently varied between meat samples of different categories, we can conclude that 
the chemical composition of the odor differs between these two conditions without the 
need to identify specific chemicals. Please note that “day 0” used to indicate initial meas-
urements refers to samples measured 24 h after slaughter, corresponding to the delivery 
time from Gotland to Linköping. Following initial measurements (“day 0”), analogous 
measurements of all samples were conducted over the next 2 days (“day 1” and “day 2”). 
Three consecutive measurements were performed for each sample to test experimen-
tal settings and repeatability of sensor readings. Subsequent experiments to study the 
VOC emissions produced by the decomposition process of spoiled meat over a month 
were carried out only with samples of non-contaminated meat. Since urine decom-
poses rapidly, soon producing a distinctly pungent odor, we considered further meas-
urements of urine-contaminated meat samples to be scientifically irrelevant given the 
scope of this research. Output signals were collected from meat samples aged for 3, 10, 
17, 24, and 31 days, with a gap of 1 week between each series of measurements. These 
time points were selected to capture the progression of the e-nose signals, which are 
expected to correlate with changes in the meat’s VOC profile as it transitions from fresh 
to near spoilage. The selection of these specific time points allows us to track changes 
in the VOC profile at different stages: early changes (1, 2 days), mid-term changes (3, 
10 days) and late changes (17, 24, 31 days). This range of time points enables our model 
to learn and distinguish between changes due to normal aging/decomposition processes. 
The aging process was not controlled to create dry-aged meat. Samples were allowed to 
decompose naturally under constant refrigerated conditions (+ 5 °C ± 1 °C) to simulate 
real-world scenarios of prolonged storage or forgotten meat products. All samples were 
measured at an ambient temperature of + 21  °C ± 1  °C. Consistent application of stor-
age, environmental, and measurement conditions to all samples minimized the impact 
of thermal effects and external factors on the results.

We note that we operated the e-nose in blind conditions, which means that the ML 
algorithm analyzed the samples without prior knowledge of their status. We therefore 
compared the e-nose outputs against the known information provided by the veterinar-
ian at the slaughterhouse, which served as reference method to validate the results.

Data processing, feature extraction and dataset formation

The raw signals were initially normalized using Z-score approach, followed by smooth-
ing via the Savitzky–Golay filter employing a polynomial order of two. It should be 
noted that the weight of the samples fluctuated within a narrow range, typically within 
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a few tenths of a gram. For the fresh samples, the range from minimum to maximum 
weight was 0.75 g to 1.82 g (mean 1.37 g ± 0.25 g). Similarly, for the urine-contaminated 
samples, the range spanned from 0.93 g to 1.78 g (mean 1.39 g ± 0.27 g). To eliminate the 
influence of variations in sample weight on the sensor readings, the signal was normal-
ized by the sample mass. We extracted 15 features from the raw sensor signals. These 
features include parameters such as root-mean-square value (RMS), standard devia-
tion (STD), average value (mean), minimum (min), maximum (max), area, shape fac-
tor, slope, zero-cross-rate, skewness, kurtosis, range, and Hjorth parameters (activity, 
mobility, complexity). An additional 15 features were extracted from the smoothed and 
normalized signals, using the same set of parameters mentioned above. To account for 
variations in sample weight, each of the 30 features (15 from raw and 15 from smoothed-
normalized signals) was normalized by the corresponding sample weight. This normali-
zation step resulted in a total of 60 distinct features. The features were extracted from 
the data collected by the e-nose, which included 32 sensors. Each sensor contributed 
to the overall dataset, providing the raw signals from which the features were derived. 
The dataset was divided into training and test sets using MATLAB’s cvpartition func-
tion, which performs stratified random partitioning. This method ensures that both the 
training set and the test set maintain approximately the same class proportions as the 
entire dataset. Therefore, the scenario where the test dataset might disproportionately 
consist of samples from one condition is not possible due to this stratification process. 
This dataset was then utilized to train a ML model aimed at classifying signals origi-
nating from fresh and urine-contaminated meat. The input to the model consisted of 
the 60 features extracted from the sensor data. The features of each sample were organ-
ized into a feature vector, where each vector represented the features of a single sample. 
The output of the model during training was the classification label for each sample. The 
samples were categorized into two classes based on their condition: “fresh” or “urine-
contaminated”. The model was trained to predict these class labels based on the entered 
feature vectors. During training, the model learned to associate the input feature vectors 
with their corresponding class labels. The training process involved adjusting the model 
parameters to minimize classification errors and improve prediction accuracy. The mod-
el’s performance was evaluated using the test set to ensure that it could accurately clas-
sify new, unseen samples based on the learned features.

Classifier training and model evaluation

Signal processing, feature extraction, and dataset formation were conducted within the 
MATLAB environment. The Classification Learner App in MATLAB was subsequently 
employed to train models for data classification utilizing various supervised ML 
approaches (classifiers). The performance of each classifier was assessed using the 
confusion matrix and receiver operating characteristic (ROC) curve. The examination 
of the confusion matrix, specifically identifying true positives (TP), true negatives (TN), 
false positives (FP), and false negatives (FN), allowed for the calculation of several crucial 
performance metrics. These metrics include accuracy, precision, sensitivity, specificity, 
and the F-measure score. After training and validation, the ML model was tested using 
a separate test dataset to evaluate its performance. Following successful testing, the 
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trained model was employed for inference, where it was applied to classify additional 
data beyond the test dataset (Table 1).

Results and discussion
Odor profiling: distinguishing fresh from urine‑contaminated meat

To begin our investigation, we analyzed the response of selected sensing elements of 
our e-nose to meat samples with and without marination in urine. Figure 1 illustrates 
the smoothed and normalized signals from a randomly chosen sample on “day 0”. Our 

Table 1  Summary of feature descriptions for voltage–time signal analysis

Feature Meaning Formula

Root-mean-square Measure of the effective or average power 
of the signal

xRMS =

√

1
N

∑N
n=1 |xn|

2

Standard deviation Measure of the dispersion or spread of the 
signal values around the mean

S =

√

1
N−1

∑N
i=1 |xi − µ|2

Mean Arithmetic average of the signal values µ = 1
N

∑N
i=1 xi

Minimum Smallest value observed in the signal Min(x) function

Maximum Largest value observed in the signal Max(x) function

Area Cumulative sum of the absolute values of 
the signal over time

Numerical integration via the trapezoidal 
method

Shape factor Ratio of the RMS value to the mean value of 
the signal

xSF =
xRMS

1
N

∑N
i=1 |xi |

Slope Rate of change of the signal over time Fit a first-degree polynomial to the data

Zero-crossing rate Rate at which the signal crosses the zero 
axis

ZCR = 1
2WL

∑WL
n=1

|sgn[xi(n)]− sgn[xi(n)− 1]|

Skewness Measure of the asymmetry of the distribu‑
tion of signal values xskew =

1
N

∑N
i=1 |xi−x|3

[

1
N

∑N
i=1 |xi−x|2

]3/2

Kurtosis Measure of the “tailedness” or peakedness of 
the distribution of signal values xkurt =

1
N

∑N
i=1 |xi−x|4

[

1
N

∑N
i=1 |xi−x|2

]2

Range Difference between the maximum and 
minimum values of the signal

Range = max(x)−min(x)

Activity Measure of the overall variance of the signal var(x) = 1
N−1

∑N
i=1 |xi − µ|2

Mobility Measure of the rapidity of changes in the 
signal

Mobility =
√

var(ẋ(t))
var(x(t))

Complexity Measure of the waveform complexity 
or irregularity of the signal, relative to its 
mobility

Complexity =

√

var(ẍ(t))
var(ẋ(t))

Mobility

Fig. 1  Comparative analysis of voltage–time curves measured by our e-nose in the presence of fresh and 
urine-contaminated meat samples. Separate responses from four selected sensing elements of e-nose are 
shown
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findings suggest that marination in urine can significantly alter the odor profile of fresh 
meat samples, as evidenced by distinctive responses across the e-nose sensing elements. 
We observed variations in signal amplitude and shape, potentially indicating urine-
related changes in the concentration and composition of emitted VOCs. However, 
despite these observable differences, our preliminary analysis using principal component 
analysis (PCA) did not yield clear separation between the two classes (fresh and urine-
contaminated meat). This lack of distinct clustering in principle component space 
indicates that the differences, while present, are not as clear-cut or easy to spot as initially 
expected. In many cases, the signals from the two classes showed subtle differences, such 
as small shifts in peak voltage timing or minor amplitude fluctuations. These nuanced 
variations, while not always resulting in well-separated clusters in principal component 
space, can be interpreted as meaningful patterns when consistently present. The subtlety 
of these differences justifies the need for more sophisticated ML techniques to capture 
and interpret the complex patterns in our data. While Fig.  1 provides an example of 
sensor signals with noticeable differences between fresh and urine-contaminated pig 
meat, we could have equally presented signals with minimal visible distinctions. This 
variability in signal differences underscores the challenge and necessity of advanced ML 
methods in distinguishing between the “good” and “bad” conditions. These observations 
create a foundation for developing an ML model capable of distinguishing between the 
two classes, even when the differences are not immediately apparent through traditional 
analytical methods. Our approach aims to leverage these subtle but consistent patterns 
to create a robust classification system for meat freshness and urine contamination 
detection. This approach should be capable of differentiating samples with varying 
degrees of urine contamination, including those with low-intensity odor differences. It 
is important to note that our dataset encompasses a wide range of samples, from those 
with minimal differences in sensor responses compared to fresh meat, to those with 
well-perceptible and even strong differences. This variability indicates that the effect of 
urine marination varies from sample to sample.

We trained all 43 ML models available in MATLAB’s Classification Learner. Nota-
bly, seven models achieved an accuracy above 91%, underscoring the robustness of our 
methodology. The consistency across multiple models reinforces the reliability of our 
approach. The performance of the remaining models was significantly lower, and there-
fore, they were not mentioned here. For a more detailed overview of their performance, 
please refer to Supplemental Table  S1. Table  2 presents the performance metrics of 
seven best-performing ML models for classifying meat samples into the fresh or urine-
contaminated category. Such a binary information (“fresh” vs. “contaminated”) is suffi-
cient for sanitary inspection and consumer purposes [43].

The models assessed included Narrow Neural Network (NN), Bilayered NN, 
Medium NN, Wide NN, Optimizable SVM, Optimizable NN, and Optimizable 
Ensemble. A notable observation is that five out of the seven top-performing models 
are neural networks, highlighting the effectiveness of this approach for our specific 
classification task. This predominance of neural network-based models suggests that the 
complex patterns in our dataset are particularly well-captured by these architectures. 
Performance metrics such as validation and test accuracies, precision, sensitivity, 
specificity, and F-measure were used to assess the models’ effectiveness in classification. 
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It is important to highlight that the results for all models were obtained using a 
consistent methodological approach. This approach involved utilizing 60 features and 
implementing a tenfold cross-validation (CV) scheme with a 90%/10% Train/Test Split. 
Our results demonstrate that the Optimizable Ensemble model outperformed all other 
models across all performance metrics. The Optimizable Ensemble method used in this 
study is a ML approach that automatically searches for the best combination of ensemble 
method (among AdaBoost, RUSBoost, LogitBoost, GentleBoost, and Bag), number 
of decision tree splits, number of learners, learning rate, and number of predictors to 
sample, optimizing these hyperparameters within predefined ranges to create a high-
performing predictive model. This optimization process results in a high-performing 
predictive model tailored to the specific characteristics of our data. The core principle 
underlying the Optimizable Ensemble model hinges on the concept of ensemble 
learning, wherein a multitude of models undergo independent training, and their 
interim predictions are combined to formulate a final prediction. The effectiveness of 
the Optimizable Ensemble model is further exemplified by the specific hyperparameters 
identified as optimal for our classification task. Through its comprehensive search 
process, the model converged on a set of parameters that maximized performance 
for our particular dataset. Specifically, the optimized configuration employed the 
GentleBoost ensemble method, known for its robustness and ability to handle complex 
data relationships. This method was coupled with a substantial ensemble of 486 learners, 
allowing for a diverse and comprehensive model capable of capturing intricate patterns 
in the data. The learning rate was finely tuned to 0.00115, striking a balance between 
model convergence and generalization ability. Additionally, the maximum number of 
splits in the decision trees was set to 27, providing sufficient depth for complex decision 
boundaries while mitigating overfitting.

In our evaluation, the model demonstrated remarkable proficiency in classifying meat 
samples, with results that substantiate its effectiveness for this particular application. 
Specifically, it achieved an impressive accuracy of 95.9% on the validation set, with an 
even higher test data accuracy of 96.3%, indicating excellent generalization to unseen 
data. The model’s precision of 95.1% underscores its reliability in identifying positive 
cases, while its high sensitivity of 96.5% showcases its ability to correctly identify a large 
proportion of fresh meat samples. Moreover, the specificity of 95.3% indicates strong 
performance in correctly identifying urine-contaminated samples. The F-measure of 

Table 2  Performance of classifier models for distinguishing “day 0” fresh and urine-contaminated 
meat samples

Classifier Validation 
accuracy, 
%

Precision, % Sensitivity,% Specificity, % F-measure, % Test 
accuracy, 
%

Narrow NN 91.0 91.1 91.2 91.4 91.1 89.8

Bilayered NN 91.9 92.2 91.2 92.4 91.7 89.9

Medium NN 92.5 92.4 92.3 92.7 92.4 90.8

Wide NN 92.5 92.1 92.5 92.5 92.3 91.9

Optimizable SVM 92.7 92.1 92.9 925 92.5 92.2

Optimizable NN 94.2 94.2 93.9 94.4 94.1 94.0

Optimizable Ensemble 95.9 95.1 96.5 95.3 95.8 96.3
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95.8%, being a harmonic mean of precision and sensitivity, further confirms the model’s 
balanced and robust performance across different aspects of classification. In addition, 
we calculated the kappa value, diagnostic sensitivity and diagnostic specificity using the 
test data. The kappa value, a statistical measure assessing agreement between two sets 
of categorical data [44], demonstrated strong agreement between the model’s predic-
tions and actual classifications (Kappa ≈ 0.926 that approaches 1 reflecting near-perfect 
agreement), indicating robust predictive performance. Moreover, the high sensitivity of 
97.1% underscores the model’s accurate identification of fresh meat samples, while the 
high specificity of 95.4% highlights its effectiveness in identifying urine-contaminated 
meat samples. These findings, based on the test data, affirm the model’s reliability in 
real-world scenarios, extending its utility beyond the training phase.

To optimize our model’s performance and ensure robust evaluation, we explored 
various cross-validation and train/test split scenarios. Figure 2 shows the performance 
comparison of our best model, the Optimizable Ensemble classifier, across these 
scenarios. The chart clearly illustrates that the tenfold Cross-Validation with 90/10 
Train/Test Split (represented by the outer green line) consistently outperforms the other 
scenarios across all metrics. It yields the highest accuracy in both validation (95.9%) 
and test (96.3%) phases. This scenario demonstrated the most balanced and impressive 
performance, with a test confusion matrix showing 95.9% true positive rate and 97.6% 
true negative rate. The chart’s symmetry and outward expansion for this scenario 
indicate balanced and superior performance across all evaluated aspects.

92.5

93.3

94.2

95.1

95.9

Validation Accuracy

Precision

Sensitivity

Specificity

F-measure

Test Accuracy

5-fold CV 90/10 5-fold CV 75/25 10-fold CV 90/10 10-fold CV 75/25

Fig. 2  A spider chart comparing the performance metrics of four different cross-validation scenarios for the 
Optimizable Ensemble classifier
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The choice of tenfold cross-validation is particularly suitable for our moderate-sized 
dataset. It strikes an optimal balance between bias and variance, providing more training 
data per fold compared to fivefold cross-validation, while still maintaining a sufficient 
number of test samples. The 90%/10% split further maximizes the training data, allowing 
the model to learn from a broader range of examples without compromising the integrity 
of the test set.

Notably, this configuration outperformed other scenarios:

	 i.	 Fivefold CV (90%/10%): 93.4% validation accuracy, 93.9% test accuracy
	 ii.	 Fivefold CV (75%/25%): 92.5% validation accuracy, 93.5% test accuracy
	iii.	 Tenfold CV (75%/25%): 94.6% validation accuracy, 94.8% test accuracy

The tenfold CV with 90%/10% split not only achieved higher accuracies but also dem-
onstrated superior generalization, as evidenced by the closer alignment between valida-
tion (95.9%) and test (96.3%) accuracies. This consistency suggests a robust model that 
is less prone to overfitting, making it ideal for real-world applications in distinguishing 
between fresh and urine-contaminated meat samples.

In showcasing the excellence of the Optimizable Ensemble classifier, confusion 
matrices (Fig. 3a, b) and ROC curves (Fig. 3c, d) of the training dataset and of the test 
dataset were introduced to elucidate its performance. Firstly, the row-normalized 

Fig. 3  Validation and test confusion matrices (a and b) and ROC curves (c and d) for the Optimizable 
Ensemble classifier, demonstrating its performance in distinguishing “day 0” fresh from urine-contaminated 
meat samples. For confusion matrices a row normalization was utilized to visualize the percentage of correct 
predictions for each class
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validation (test) confusion matrix provides a comprehensive view of the classifier’s 
effectiveness in distinguishing between classes.

In this representation, the true positives for the “fresh meat” class stand impres-
sively at 95.1% (95.2%), indicating the model’s ability to accurately identify fresh meat 
instances. Meanwhile, the false positives are notably low at 4.9% (4.8%), underscoring 
the classifier’s precision in minimizing misclassifications of urine-contaminated meat 
as fresh. Although a few instances of fresh meat were erroneously classified as urine-
contaminated meat, the false negatives remain relatively low at 3.3% (2.7%), indicating 
the classifier’s robustness in capturing the majority of fresh meat instances. Equally sig-
nificant is the high true negative percentage of 96.7% (97.3%), highlighting the classifier’s 
proficiency in correctly identifying urine-contaminated meat samples. Secondly, the 
validation ROC curves provide a graphical representation of the classifier’s performance 
across different discrimination thresholds. The AUC of ~ 0.99 for the ROC curves signi-
fies exceptional discriminatory power, implying that the classifier effectively separates 
fresh meat from urine-contaminated meat with minimal overlap. The coordinates of the 
Model Operating Point (MOP) for the current classifier, marked at (0.03, 0.95) for first 
class and (0.05, 0.97) for second class, reflect a desirable balance between the classifier’s 
performance on both classes. Specifically, the low x-coordinate indicates the classifier’s 
ability to minimize misclassifications of urine-contaminated meat as fresh, while the 
high y-coordinate underscores its efficacy in correctly identifying fresh meat samples. 
Additionally, the test ROC curves indicates that the model performs very well, further 
confirming its efficacy in distinguishing between fresh and urine-contaminated meat. 
In the literature, there is a notable absence of methods specifically developed for dis-
criminating fresh meat from meat intentionally contaminated with urine, as most stud-
ies focus on the detection of boar taint. Consequently, it is challenging to make a direct 
comparison between our model and other existing methods. However, since andros-
tenone is known to contribute to a urine-like odor, we chose to compare our results with 
those reported in boar taint detection studies. Comparatively, previous studies in the 
field of meat classification, such as Annor-Frempong et  al. [36], reported an accuracy 
of 84.2% in differentiating boar taint intensities using a 12-conducting-polymer sensor 
array coupled with a discriminant function algorithm. Their categorization of samples 
into normal, doubtful, and abnormal based on skatole and androstenone concentrations 
provided a useful but less precise framework for meat classification. Similarly, Bourrou-
net et al. [37] and Trout et al. [38] achieved an 85.0% classification rate when distinguish-
ing between low and high levels of boar taint. These earlier studies, although significant 
in their contributions, demonstrated lower accuracy rates compared to our model, 
which achieved superior performance in identifying fresh meat. Our model’s enhanced 
accuracy can be attributed to several factors, including a large number of sensors used 
that generate large datasets, advanced ML algorithms, improved feature selection, and a 
more refined dataset that likely provided better generalization capabilities.

Next, we developed a user-friendly algorithm for quickly determining the type of meat 
(Fig.  4) with the final output displayed on the device screen. This algorithm assumes 
automatic reading of an input file with a *.lvm extension containing raw measurement 
data of an unknown meat sample (voltage–time curves) for each sensor element, 
followed by feature extraction. Then, the trained ML model classifies the meat type in 
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such a way that intermediate decisions made by each sensor are displayed first, and at 
the end, a final decision is made based on the majority of intermediate decisions.

This approach helps avoiding the problem where individual sensors may misclassify 
the meat type. However, since the Optimizable Ensemble classifier already has high 
accuracy in determining the meat status, we can expect almost unanimous decisions 
from all sensors, with very rare exceptions. This is precisely illustrated in Fig. 4. Among 
all sensing elements, only one misclassifies a fresh meat sample as urine-contaminated 
meat, while the entire set confirms the status of a randomly selected urine-contaminated 
meat sample.

Age identification challenges: electronic nose and machine learning integration

We then pondered: can we accurately identify the age of meat using integrated e-nose 
and ML? To answer this question, we first extracted features from the “day 1” and “day 
2” data for both fresh and urine-contaminated meat samples, employing the same pro-
cedure as previously, and subsequently compiled a new dataset to train the ML model. 
This timeframe is relatively short to anticipate significant changes in the odor profile of 
the meat. However, considering that the meat spoilage process is inevitable and complex 
(involving the time evolution of bacterial proliferation, microflora, yeast, and mold), it 
would be reasonable to expect an increase in the concentration of some volatile spoil-
age markers of pork, such as selected alcohols and aldehydes, even by the second day 
of meat storage, as demonstrated in the case of atmosphere-packaged minced raw pork 
[45]. Nevertheless, it was found that Optimizable Ensemble classifier, similar to other 
classifiers, struggles to differentiate between “day 0” meat and “day 1” and “day 2” meat 
samples in this three-class problem. The accuracy of such predictive models was below 
50%. One of the most likely reasons for this is that the concentrations of targeted VOCs 
are below the detection limit of the sensor elements in the e-nose, and therefore, minor 
changes in the concentration of these substances cannot be detected by default.

Interestingly, merging the data from “day 1” and “day 2” meat samples into a single 
class named “days 1–2” and simplifying the problem to a binary classification problem 
is advantageous for fresh meat, but not for urine-contaminated meat. This finding is 
particularly relevant because distinguishing between fresh meat and meat that is 1 to 

Fig. 4  Flowchart of the user-friendly algorithm for rapid meat type classification using sensor feedback and 
majority voting strategy
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2  days old has practical significance in food safety. Many guidelines and regulations 
focus on this crucial distinction between fresh meat (day 0) and meat that has begun 
to age (days 1–2), rather than precise aging durations within the first few days. Further-
more, consumers often categorize meat as either “fresh” or “not fresh”, with less empha-
sis on the specific number of days since processing. This binary classification (fresh vs. 
slightly aged) proves more robust and practically applicable, especially given the subtle 
differences between day 1 and day 2 samples. Moreover, if we aim to develop an algo-
rithm based on ML models capable of not only correctly classifying pork samples for 
the presence or absence of urine-related VOCs but also determining the approximate 
age of the meat, it is very important to combine data obtained at different times. The 
updated classifier achieves an accuracy of 93.5%, allowing for a fairly accurate distinc-
tion between fresh and non-fresh meat (further discussed below). Similarly, Chen et al. 
[46] used a 10-element e-nose to classify pork freshness, achieving 89.5% accuracy. Their 
classification categorized samples stored for 1–2  days as fresh, 3–4  days as sub-fresh, 
and 5–7 days as putrid. These results underscore the effectiveness of our model, which 
outperforms the accuracy reported by Chen et al. in classifying meat freshness.

The ability to differentiate “day 0” fresh meat samples from those aged 1–2  days 
indicates the potential to expand the initial “day 0” dataset to include “days 0–2” data. The 
larger and more diverse dataset enhances the model’s robustness, enabling it to perform 
well on unknown test data. Furthermore, this expansion enables the development of an 
algorithm based on multiple ML models. The proposed algorithm would first detect the 
presence or absence of urine-related VOCs and subsequently determine the age of the 
fresh meat. This was indeed done in the context of this work. Despite the accuracy of the 
extended model being somewhat reduced compared to its initial counterpart (Fig. 5), the 
expansion of the dataset from “day 0” to “day 0–2” allows the model to learn how odor 
profiles evolve over time, thereby capturing more odor patterns.

Leveraging the enriched dataset and the corresponding trained ML models, we aimed 
to accurately classify meat samples based on both their type (presence of urine or not) 
and age (Fig.  6). The algorithm started with the collection of data through an e-nose 
across consecutive days (day 0, day 1, and day 2) for both fresh and urine-contaminated 
meat samples. Following data acquisition, a robust feature extraction process was 
conducted to distil relevant information from the raw sensor data. This step aimed to 

Fig. 5  Comparison of performance metrics between two models, “day 0”-Optimizable Ensemble and “day 
0–2”-Optimizable Ensemble
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extract discriminative features that could effectively characterize the VOCs emitted 
from meat samples, thus enabling accurate classification. Subsequently, a ML model, 
leveraging the Optimizable Ensemble technique, was trained. This model, designated 
as Classifier A1, was engineered to discern the presence or absence of urine based on 
the extracted features. Upon evaluation, if Classifier A1 yielded a negative inference, 
indicating the absence of urine, the analysis progressed to Classifier A2. Classifier 
A2, tailored exclusively on the dataset encompassing “day 0” to “day 1–2” untreated 
meat samples, was specifically designed to discern the age of the meat. It distinguished 
between fresh meat samples (day 0) and meat aged for 1 to 2 days (days 1–2), thereby 
facilitating precise categorization. Conversely, if Classifier A1 ascertained the presence 
of urine, the analytical pathway deviated towards Classifier A3. Although Classifier A3 
was trained to ascertain the age of urine-contaminated meat samples, it was deemed 
necessary to streamline the decision-making process, due to its unsatisfactory accuracy. 
Consequently, the final determination was confined to discerning the status of the 
meat—whether it was urine-contaminated or not.

As meat ages, it undergoes decay, leading to a noticeable rise in the levels of 
alcohols and aldehydes, as well as the release of ketones-related VOCs [45]. This 
makes it more likely to accurately identify the aging status of meat, although it is 
important to note that the identification will be more about defining a general time 
frame rather than pinpointing an exact day. In line with this objective, as outlined in 
“Material and methods” section, we allowed fresh meat samples to naturally decay 
over the course of a month. In light of this, an additional approach was developed 
for determining the age of meat, involving the use of three classifiers (Fig.  7). 
Initially, all data were divided into two groups: fresh meat (day 0) and non-fresh 
meat (days 1–31). Classifier B1 makes the initial decision regarding the freshness 
of the meat. The ML model behind Classifier B1 achieved an overall accuracy of 
85.7% at the signal level, with a strong ability to correctly identify non-fresh meat 

Fig. 6  Flowchart illustrating the algorithm for classifying meat samples based on type (presence of urine or 
not) and age, utilizing a combination of data collection, feature extraction, and ML classifiers (Classifier A1, 
Classifier A2, and Classifier A3)
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(97.8% accuracy). After applying the majority voting algorithm at the sample level, 
Classifier B1 correctly identified 112 out of 113 fresh samples and 364 out of 365 
non-fresh samples. If the sample was classified as fresh, the algorithm concluded with 
this decision. Otherwise, if the sample was deemed non-fresh, the process continued 
to Classifier B2. Classifier B2 determined whether the sample belonged to Class 1 
(meat aged 1–2 days) or Class 2 (meat aged 3–31 days). At the signal level, the ML 
model behind Classifier B2 achieved 94.1% accuracy in identifying 1–2-day-old meat 
but had a lower accuracy of 59.8% for 3–31-day-old meat, leading to misclassification 
of some fresher samples as older (40.2%). At the sample level, after majority voting, 
Classifier B2 correctly classified 253 out of 254 samples for 1–2-day-old meat, and 83 
out of 111 samples for 3–31-day-old meat. If the sample was classified as belonging to 
Class 1, the process ended with this decision. However, if the sample was assigned to 
Class 2, the classification process proceeded to Classifier B3.

Classifier B3 refined the aging classification by distinguishing between 3–10 days 
and 17–31 days. At the sample level, the ML model behind Classifier B3 struggled 
with meat aged 3–10 days, correctly classifying only 21 out of 34 samples. However, 
it showed 100% accuracy (77 out of 77 samples) in identifying meat aged 17–31 days. 
Of course, such a grouping is somewhat arbitrary, and other options are also possible, 
like a greater number of classes. However, our choice was based on reflecting three 
distinct categories of meat aging: (i) early aging, (ii) mid-aging, and (iii) advanced 
decomposition. The model accurately classify meat aged 17–31 days in 85.2% of cases 
and meat aged 3–10  days in 84.4% of cases, despite presenting some difficulties in 
separating the two categories. Although the accuracy of the last two classifiers is 
lower than the first classifier, we nevertheless consider them to offer reasonably reli-
able classification. This is mainly due to the fact that all final and intermediate deci-
sions are made based on the majority of intermediate decisions. Consequently, this 
model has the potential to be used for rapid and real-time determination of meat 

Fig. 7  Flowchart illustrating the algorithm for classifying meat freshness and aging based on a multi-class 
approach using three classifiers (Classifier B1, Classifier B2, and Classifier B3). The algorithm categorizes 
meat samples into distinct aging stages: early aging, mid-aging, and advanced decomposition, facilitating 
rapid and real-time determination of meat freshness. Note that n1,2 represents the total number of samples in 
each class being analyzed, while m1,2 denotes the number of correctly classified samples for each class
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age as an indicator of the meat freshness. While the typical refrigerated shelf life of 
meat is 5–7 days, our study extended well beyond this to explore the full trajectory 
of meat aging and decomposition. The investigation extended to 17–31  days, while 
going beyond typical consumption times, offers valuable insights into advanced stages 
of meat degradation and broadens understanding of the complexity of odor detection 
and analysis.

Conclusions
We integrated a metal-oxide gas sensor-based e-nose with Optimizable Ensemble ML 
models, utilizing a rich set of 60 features, to classify pig meat samples with different odor 
profiles. The e-nose’s high sensitivity to VOCs, combined with the high predictive capa-
bility of the developed ML models and consensus-based decision algorithms, enabled 
not only a precise classification of urine-contaminated meat with validation accuracy of 
95.9% and test accuracy of 96.3%, but also accurate determination of its freshness level. 
The model demonstrated the ability to distinguish between fresh pig meat and meat 
aged for 1 to 2  days with an accuracy of 93.5%, and to identify meat aged 3–31  days 
and 17–31  days. The results presented show the beneficial use of digital technologies 
to modernize the agritech sector and pave the way for the development of new, rapid, 
and reliable methods to enhance inspections, slaughter line efficiency, and health and 
safety measures demonstrating proof of concept at technology readiness level (TRL) 4. It 
is worth thinking about the settings and context in which our approach should be used. 
In terms of screening, standardized protocols and procedures should be available to dis-
tinguish between true and false positives, while for qualitative information and identi-
fication of suspected cases we believe that the presented method is already useful for 
reaching evidence-based decisions. Our study fits into ongoing international research 
on modernizing meat inspection and quality control, although the current EU legisla-
tion does not allow new technology including AI/ML and sensor technology to replace 
the official control personnel. Our system is currently intended for research and not to 
be implemented on an industrial scale for which it would require substantial develop-
ment, large investments, and corporate management. Before being used on an industrial 
level, further validation and testing are necessary, in the laboratory as well as in slaugh-
terhouses and food factories. We foresee that sensor-based technology integrated with 
AI/ML will allow for more affordable, accurate, and reliable safety and quality assurance.

In conclusion, we believe that with adequate calibration, testing, validation, and care-
ful consideration of all experimental conditions the developed system and proposed 
methodological approach could be extended to other meat industries, contributing to 
the development of more objective and automated quality assessment methods.

Abbreviations
ML	� Machine learning
GC–MS	� Mass spectrometry coupled with gas chromatography
VOCs	� Volatile organic compounds
ROC	� Receiver operating characteristic
AUC​	� Area under curve
CV	� Cross-validation
NN	� Neural network
MOP	� Model operating point
MOS	� Metal-oxide semiconductor



Page 19 of 21Shtepliuk et al. Journal of Big Data           (2025) 12:96 	

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s40537-​025-​01151-4.

Supplementary Material 1.

Supplementary Material 2.

Acknowledgements
The authors would like to thank Sagar Ravishankar Maleyur and Lingyin Meng for their invaluable help with the 
measurements.

Author contributions
I.S. developed the methodology, performed the investigation, software implementation, data analysis, prepared the visu‑
alizations and wrote  the original draft. V.A., J.E., G.D-G., I.V., A.H.K., S.B., and D.P. conceptualized the study. J.E., G.D-G., and 
D.P. contributed to methodology development and validation. D.P. supervised the project and managed its administra‑
tion. J.E., A.H.K., S.B., and D.P. acquired funding for the research. All authors reviewed and edited the manuscript.

Funding
Open access funding provided by Linköping University. This work was supported by the Swedish Food Agency, Dnr 
2021/00918, Vetenskaprådet (VR), grant No. 2023-07219, VINNOVA Strategic Innovation Program, grant No. 2022-03464, 
and the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101015825. 
The computations and data handling were enabled by resources provided by the National Academic Infrastructure for 
Supercomputing in Sweden (NAISS), partially funded by the Swedish Research Council through grant agreement no. 
2022-06725.

Availability of data and materials
The data supporting the findings of this study are available from the corresponding authors upon reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
The authors give the Publisher permission to publish the work.

Competing interests
The authors declare no competing interests.

Received: 20 November 2024   Accepted: 6 April 2025

References
	1.	 Meat inspection. https://​www.​efsa.​europa.​eu/​en/​topics/​topic/​meat-​inspe​ction. Accessed 7 Feb 2025.
	2.	 Lundström K, Matthews KR, Haugen J-E. Pig meat quality from entire males. Animal. 2009;3(11):1497–507. https://​

doi.​org/​10.​1017/​S1751​73110​99906​93.
	3.	 Kress K, Verhaagh M. The economic impact of German pig carcass pricing systems and risk scenarios for boar taint 

on the profitability of pork production with immunocastrates and boars. Agriculture. 2019;9:204. https://​doi.​org/​10.​
3390/​agric​ultur​e9090​204.

	4.	 Karwowska M, Łaba S, Szczepański K. Food loss and waste in meat sector—why the consumption stage generates 
the most losses? Sustainability. 2021;13:6227. https://​doi.​org/​10.​3390/​su131​16227.

	5.	 Commission Implementing Regulation (EU); 2019. http://​data.​europa.​eu/​eli/​reg_​impl/​2019/​627/​oj. Accessed 27 
May 2024.

	6.	 Grunert KG. Future trends and consumer lifestyles with regard to meat consumption. Meat Sci. 2006;74(1):149–60. 
https://​doi.​org/​10.​1016/j.​meats​ci.​2006.​04.​016.

	7.	 Brooks RI, Pearson AM. Steroid hormone pathways in the pig, with special emphasis on boar odour: a review. J Anim 
Sci. 1986;62:632–45. https://​doi.​org/​10.​2527/​jas19​86.​62363​2x.

	8.	 Claus R, Raab S. Influences on skatole formation from tryptophan in the pig colon. In: Huether G, Kochen W, Simat 
TJ, Steinhart H, editors. Tryptophan, serotonin, and melatonin. Springer; 1999. p. 87–99. https://​doi.​org/​10.​1007/​978-
1-​4615-​4709-9_​87.

	9.	 Zamaratskaia G, Squires EJ. Biochemical, nutritional and genetic effects on boar taint in entire male pigs. Animal. 
2009;3(11):1508–21. https://​doi.​org/​10.​1017/​S1751​73110​80036​74.

	10.	 Andresen Ø. Boar taint related compounds: androstenone/skatole/other substances. Acta Vet Scand. 2006. https://​
doi.​org/​10.​1186/​1751-​0147-​48-​S1-​S5.

	11.	 Burgeon C, Debliquy M, Lahem D, Rodriguez J, Ly A, Fauconnier M-L. Past, present, and future trends in boar taint 
detection. Trends Food Sci Technol. 2021;112:283–97. https://​doi.​org/​10.​1016/j.​tifs.​2021.​04.​007.

https://doi.org/10.1186/s40537-025-01151-4
https://www.efsa.europa.eu/en/topics/topic/meat-inspection
https://doi.org/10.1017/S1751731109990693
https://doi.org/10.1017/S1751731109990693
https://doi.org/10.3390/agriculture9090204
https://doi.org/10.3390/agriculture9090204
https://doi.org/10.3390/su13116227
http://data.europa.eu/eli/reg_impl/2019/627/oj
https://doi.org/10.1016/j.meatsci.2006.04.016
https://doi.org/10.2527/jas1986.623632x
https://doi.org/10.1007/978-1-4615-4709-9_87
https://doi.org/10.1007/978-1-4615-4709-9_87
https://doi.org/10.1017/S1751731108003674
https://doi.org/10.1186/1751-0147-48-S1-S5
https://doi.org/10.1186/1751-0147-48-S1-S5
https://doi.org/10.1016/j.tifs.2021.04.007


Page 20 of 21Shtepliuk et al. Journal of Big Data           (2025) 12:96 

	12.	 Botelho-Fontela S, Ferreira S, Paixão G, Pereira-Pinto R, Vaz-Velho M, Pires MDA, Silva JA. Seasonal variations on 
testicular morphology, boar taint, and meat quality traits in traditional outdoor pig farming. Animals. 2024;14:102. 
https://​doi.​org/​10.​3390/​ani14​010102.

	13.	 Bleicher J, Ebner EE, Bak KH. Formation and analysis of volatile and odour compounds in meat—a review. Molecules. 
2022;27:6703. https://​doi.​org/​10.​3390/​molec​ules2​71967​03.

	14.	 Garrido MD, Egea M, Linares MB, Martínez B, Viera C, Rubio B, Borrisser-Pairó F. A procedure for sensory detection 
of androstenone in meat and meat products from entire male pigs: development of a panel training. Meat Sci. 
2016;122:60–7. https://​doi.​org/​10.​1016/j.​meats​ci.​2016.​07.​019.

	15.	 Burgeon C, Markey A, Debliquy M, Lahem D, Rodriguez J, Ly A, Fauconnier M-L. Comprehensive SPME-GC-MS 
analysis of VOC profiles obtained following high-temperature heating of pork back fat with varying boar taint 
intensities. Foods. 2021;10(6):1311. https://​doi.​org/​10.​3390/​foods​10061​311.

	16.	 Font-i-Furnols M, Martín-Bernal R, Aluwé M, Bonneau M, Haugen J-E, Mörlein D, Škrlep M. Feasibility of on/at line 
methods to determine boar taint and boar taint compounds: an overview. Animals. 2020;10(10):1886. https://​
doi.​org/​10.​3390/​ani10​101886.

	17.	 Wauters J, Vanden Bussche J, Verplanken K, Bekaert KM, Aluwé M, Van den Broeke A, Vanhaecke L. Development 
of a quantitative method for the simultaneous analysis of the boar taint compounds androstenone, skatole and 
indole in porcine serum and plasma by means of ultra-high performance liquid chromatography coupled to 
high resolution mass spectrometry. Food Chem. 2015;187:120–9. https://​doi.​org/​10.​1016/j.​foodc​hem.​2015.​04.​
066.

	18.	 Sørensen KM, Westley C, Goodacre R, Engelsen SB. Simultaneous quantification of the boar-taint compounds 
skatole and androstenone by surface-enhanced Raman scattering (SERS) and multivariate data analysis. Anal 
Bioanal Chem. 2021. https://​doi.​org/​10.​1007/​s00216-​015-​8945-2.

	19.	 Kumar V, Umapathy G. Development of an enzyme immunoassay to measure urinary and faecal 5α-androst-16-
en-3-one in pigs. MethodsX. 2023;10: 102178. https://​doi.​org/​10.​1016/j.​mex.​2023.​102178.

	20.	 Leivo J, Mäkelä J, Rosenberg J, Lamminmäki U. Development of recombinant antibody-based enzyme-linked 
immunosorbent assay (ELISA) for the detection of skatole. Anal Biochem. 2016;492:27–9. https://​doi.​org/​10.​
1016/j.​ab.​2015.​09.​014.

	21.	 Aguilar-Caballos MP, Härmä H, Tuomola M, Lövgren T, Gómez-Hens A. Homogeneous stopped-flow 
fluoroimmunoassay using europium as label. Anal Chim Acta. 2002;460(2):271–7. https://​doi.​org/​10.​1016/​S0003-​
2670(02)​00253-2.

	22.	 Tuomola M, Harpio R, Knuuttila P, Mikola H, Lövgren T. Time-resolved fluoroimmunoassay for the measurement 
of androstenone in porcine serum and fat samples. J Agric Food Chem. 1997;45(9):3529–34. https://​doi.​org/​10.​
1021/​jf970​2398.

	23.	 Fazarinc G, Batorek-Lukač N, Škrlep M, Poklukar K, Van den Broeke A, Kress K, Čandek-Potokar M. Male 
reproductive organ weight: Criteria for detection of androstenone-positive carcasses in immunocastrated and 
entire male pigs. Animals. 2023;13:2042. https://​doi.​org/​10.​3390/​ani13​122042.

	24.	 Ye Y, Liu Y, Li Q. Recent progress in smart electronic nose technologies enabled with machine learning methods. 
Sensors. 2021;21(22):7620. https://​doi.​org/​10.​3390/​s2122​7620.

	25.	 Domènech-Gil G, Puglisi D. A virtual electronic nose for the efficient classification and quantification of volatile 
organic compounds. Sensors. 2022;22(19):7340. https://​doi.​org/​10.​3390/​s2219​7340.

	26.	 Domènech-Gil G, Duc NT, Wikner JJ, Eriksson J, Påledal SN, Puglisi D, et al. Electronic nose for improved 
environmental methane monitoring. Environ Sci Technol. 2024;58(1):352–61. https://​doi.​org/​10.​1021/​acs.​est.​
3c069​45.

	27.	 Eriksson J, Puglisi D, Borgfeldt C. Electronic nose for early diagnosis of ovarian cancer. Proceedings. 
2024;97(1):145. https://​doi.​org/​10.​3390/​proce​eding​s2024​097145.

	28.	 Bastos ML, Benevides CA, Zanchettin C, et al. Breaking barriers in Candida spp. detection with electronic noses 
and artificial intelligence. Sci Rep. 2024;14:956. https://​doi.​org/​10.​1038/​s41598-​023-​50332-9.

	29.	 Anwar H, Anwar T, Murtaza S. Review on food quality assessment using machine learning and electronic nose 
system. Biosens Bioelectron: X. 2023;14: 100365. https://​doi.​org/​10.​1016/j.​biosx.​2023.​100365.

	30.	 Surjith S, Gayathri R, Alex Raj SM. Integrated RF-CNN-GRU ensemble for enhanced beef quality classification: a 
multi-modal approach. J Food Compos Anal. 2024;134: 106503. https://​doi.​org/​10.​1016/j.​jfca.​2024.​106503.

	31.	 Zhan K, Jiang Y, Qin P, Chen Y, Heinke L. A colorimetric label-free sensor array of metal–organic-framework-
based Fabry-Pérot films for detecting volatile organic compounds and food spoilage. Adv Mater Interfaces. 
2023;10:2300329. https://​doi.​org/​10.​1002/​admi.​20230​0329.

	32.	 Wijaya DR, Afianti F, Arifianto A, Rahmawati D, Kodogiannis VS. Ensemble machine learning approach for 
electronic nose signal processing. Sens Bio-Sens Res. 2022;36: 100495. https://​doi.​org/​10.​1016/j.​sbsr.​2022.​
100495.

	33.	 Han F, Huang X, Aheto JH, Zhang D, Feng F. Detection of beef adulterated with pork using a low-cost electronic 
nose based on colorimetric sensors. Foods. 2020;9(2):193. https://​doi.​org/​10.​3390/​foods​90201​93.

	34.	 Huang C, Gu Y. A machine learning method for the quantitative detection of adulterated meat using a MOS-
based e-nose. Foods. 2022;11(4):602. https://​doi.​org/​10.​3390/​foods​11040​602.

	35.	 Jia W, Qin Y, Zhao C. Rapid detection of adulterated lamb meat using near infrared and electronic nose: A 
F1-score-MRE data fusion approach. Food Chem. 2024;439: 138123. https://​doi.​org/​10.​1016/j.​foodc​hem.​2023.​
138123.

	36.	 Annor-Frempong E, Nute GR, Wood JD, Whittington FW, West A. The measurement of the responses to different 
odour intensities of ‘boar taint’ using a sensory panel and an electronic nose. Meat Sci. 1998;50(2):139–51. https://​
doi.​org/​10.​1016/​S0309-​1740(98)​00001-1.

	37.	 Bourrounet B, Talou T, Gaset A. Application of a multi-gas-sensor device in the meat industry for boar-taint 
detection. Sens Actuators B. 1995;26–27:250–4. https://​doi.​org/​10.​1016/​0925-​4005(94)​01596-A.

	38.	 Trout GR, Salvatore L, McCauley I. Use of an electronic nose to determine boar taint level in pork fat: the effect of 
relative humidity. In: Proceedings of the ISOEN 1999; 1999. p. 321–2.

https://doi.org/10.3390/ani14010102
https://doi.org/10.3390/molecules27196703
https://doi.org/10.1016/j.meatsci.2016.07.019
https://doi.org/10.3390/foods10061311
https://doi.org/10.3390/ani10101886
https://doi.org/10.3390/ani10101886
https://doi.org/10.1016/j.foodchem.2015.04.066
https://doi.org/10.1016/j.foodchem.2015.04.066
https://doi.org/10.1007/s00216-015-8945-2
https://doi.org/10.1016/j.mex.2023.102178
https://doi.org/10.1016/j.ab.2015.09.014
https://doi.org/10.1016/j.ab.2015.09.014
https://doi.org/10.1016/S0003-2670(02)00253-2
https://doi.org/10.1016/S0003-2670(02)00253-2
https://doi.org/10.1021/jf9702398
https://doi.org/10.1021/jf9702398
https://doi.org/10.3390/ani13122042
https://doi.org/10.3390/s21227620
https://doi.org/10.3390/s22197340
https://doi.org/10.1021/acs.est.3c06945
https://doi.org/10.1021/acs.est.3c06945
https://doi.org/10.3390/proceedings2024097145
https://doi.org/10.1038/s41598-023-50332-9
https://doi.org/10.1016/j.biosx.2023.100365
https://doi.org/10.1016/j.jfca.2024.106503
https://doi.org/10.1002/admi.202300329
https://doi.org/10.1016/j.sbsr.2022.100495
https://doi.org/10.1016/j.sbsr.2022.100495
https://doi.org/10.3390/foods9020193
https://doi.org/10.3390/foods11040602
https://doi.org/10.1016/j.foodchem.2023.138123
https://doi.org/10.1016/j.foodchem.2023.138123
https://doi.org/10.1016/S0309-1740(98)00001-1
https://doi.org/10.1016/S0309-1740(98)00001-1
https://doi.org/10.1016/0925-4005(94)01596-A


Page 21 of 21Shtepliuk et al. Journal of Big Data           (2025) 12:96 	

	39.	 Troy DJ, Kerry JP. Consumer perception and the role of science in the meat industry. Meat Sci. 2010;86(1):214–26. 
https://​doi.​org/​10.​1016/j.​meats​ci.​2009.​07.​017.

	40.	 Kebede MT, Getu AA. Assessment of bacteriological quality and safety of raw meat at slaughterhouse and butchers’ 
shop (retail outlets) in Assosa Town, Beneshangul Gumuz Regional State. Western Ethiopia BMC Microbiol. 
2023;23:403. https://​doi.​org/​10.​1186/​s12866-​023-​03106-2.

	41.	 Feng X, Jo C, Nam KC, Ahn DU. Impact of electron-beam irradiation on the quality characteristics of raw ground 
beef. Innov Food Sci Emerg Technol. 2019;54:87–92. https://​doi.​org/​10.​1016/j.​ifset.​2019.​03.​010.

	42.	 Jacob CC, Dervilly-Pinel G, Deceuninck Y, Gicquiau A, Chevillon P, Bonneau M, et al. Urinary signature of pig 
carcasses with boar taint by liquid chromatography-high-resolution mass spectrometry. Food Addit Contam Part A. 
2017;34(2):218–27. https://​doi.​org/​10.​1080/​19440​049.​2016.​12651​52.

	43.	 Wojnowski W, Majchrzak T, Dymerski T, Gębicki J, Namieśnik J. Electronic noses: powerful tools in meat quality 
assessment. Meat Sci. 2017;131:119–31. https://​doi.​org/​10.​1016/j.​meats​ci.​2017.​04.​240.

	44.	 Ben-David A. Comparison of classification accuracy using Cohen’s Weighted Kappa. Expert Syst Appl. 
2008;34(2):825–32. https://​doi.​org/​10.​1016/j.​eswa.​2006.​10.​022.

	45.	 Zareian M, Böhner N, Loos HM, Silcock P, Bremer P. Evaluation of volatile organic compound release in modified 
atmosphere-packaged minced raw pork in relation to shelf-life. Food Packag Shelf Life. 2018;18:51–61. https://​doi.​
org/​10.​1016/j.​fpsl.​2018.​08.​001.

	46.	 Chen J, Gu J, Zhang R, Mao Y, Tian S. Freshness evaluation of three kinds of meats based on the electronic nose. 
Sensors. 2019;19(3):605. https://​doi.​org/​10.​3390/​s1903​0605.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.meatsci.2009.07.017
https://doi.org/10.1186/s12866-023-03106-2
https://doi.org/10.1016/j.ifset.2019.03.010
https://doi.org/10.1080/19440049.2016.1265152
https://doi.org/10.1016/j.meatsci.2017.04.240
https://doi.org/10.1016/j.eswa.2006.10.022
https://doi.org/10.1016/j.fpsl.2018.08.001
https://doi.org/10.1016/j.fpsl.2018.08.001
https://doi.org/10.3390/s19030605

	Electronic nose and machine learning for modern meat inspection
	Abstract 
	Introduction
	Material and methods
	Sample collection and preparation
	Experimental procedure and measurement protocol
	Data processing, feature extraction and dataset formation
	Classifier training and model evaluation

	Results and discussion
	Odor profiling: distinguishing fresh from urine-contaminated meat
	Age identification challenges: electronic nose and machine learning integration

	Conclusions
	Acknowledgements
	References


