Crop Design 4 (2025) 100084

Contents lists available at ScienceDirect

Crop Design

journal homepage: www.journals.elsevier.com/crop-design

ELSEVIER

Genetic dissection and genomic prediction of drought indices in bread R)
wheat (Triticum aestivum L.) genotypes i

Zakaria El Gataa® ", Alemu Admas”, Samira El Hanafi ¢, Zakaria Kehel?,
Fatima Ezzahra Rachdad ?, Wuletaw Tadesse *
2 The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco

Y Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422, Lomma, Sweden
¢ Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany

ARTICLE INFO ABSTRACT

Keywords: Drought constitutes the main obstacle to agricultural productivity in the Central and West Asia and North Africa
Abiotic stress (CWANA) region, notably leading to substantial reduction in wheat yields due to terminal water stress. The
GWAS adoption of drought-resistant wheat varieties appears to be a vital strategy to maintain wheat production in the
S\Iel?ee:t face of climatic challenges. In this context, a study was conducted utilizing a set of 198 elite bread wheat ge-

notypes developed at the International Center for Agricultural Research in the Dry Areas (ICARDA). This set of
elite genotypes was evaluated at the Sidi Al-Aidi station in Morocco over two years (2021-2022), under rain-fed
and irrigated conditions. Phenotypic assessments for grain yield and drought indices were performed, alongside
genotyping the population using 15k SNP markers. These preparatory steps facilitated a genome-wide association
study (GWAS) and genomic prediction, leveraging the Mixed Linear Model (MLM) to pinpoint marker-trait as-
sociations (MTAs) and candidate genes pertinent to grain yield and drought indices. The results manifested
substantial variations in both grain yield and drought indices among the genotypes tested. Grain yield perfor-
mance ranged from 0.34 to 2.57 t/ha under rain-fed conditions and 1.12 to 4.57 t/ha under irrigated scenarios.
The comprehensive analysis identified 39 significant MTAs (p < 0.001) and 14 putative genes associated with
drought indices and grain yield. Noteworthy is the marker “wsnp Ex c12127.19394952” on chromosome 5B,
which displayed a significant correlation with grain yield in rain-fed environments. Furthermore, the most
prominent marker linked to tolerance index (TOL) was “BobWhite_c42349 99", situated on chromosome 5A and
associated with the TraesCS5A02G498000 gene. This gene plays a critical role, encoding for catalase protein
crucial for response to hydrogen peroxide. These markers could be used for marker-assisted selection in wheat
breeding programs targeting drought tolerance.

1. Introduction

Bread wheat holds a pivotal role as a staple food in both the Central
and West Asia and North Africa (CWANA) and Sub-Saharan Africa (SSA)
regions. However, the combination of limited water availability due to
drought and the intensifying terminal heat stress take a toll on wheat,
hindering their growth, development, and, ultimately, their ability to
produce an optimal yield [1]. Over recent decades, the CWANA and SSA
regions have experienced recurrent episodes of drought and heatwaves,
which have constrained wheat production and underscored the urgent
need for adaptive strategies [2]. Morocco harvested 5.06 million tons of
bread wheat in season 2021-2022 on 3.2 million hectares, averaging 1.5
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tons per hectare [3].

Drought tolerance indices are crucial tools in wheat breeding to
identify and develop cultivars resistant to drought stress. These mathe-
matically developed indicators consider several factors, including yield
stability, biomass retention, and physiological traits such as stomatal
conductance and root depth. Researchers and breeders may develop
wheat varieties that can withstand arid and semi-arid environments by
identifying genotypes that perform better under drought conditions by
analyzing these parameters [4]. The use of drought tolerance indices also
enables a more nuanced comprehension of how plants react to drought at
various developmental stages, shedding light on the intricate interaction
between genetic and environmental variables that determine drought
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tolerance. As a result, these indices continue to serve as the cornerstone
of efforts to increase the drought resistance of wheat crops, opening the
path for sustainable agriculture in the face of climate change [5].

Drought stress orchestrates a complex interplay of mechanisms that
are influenced by numerous factors, including the species of crops, the
severity and duration of the drought, and the specific growth stages of the
plant in question. Understanding these dynamics is pivotal in the
development of varieties that are tolerant to water deficiencies. Plants
have adapted to employ a variety of strategies to survive in water-scarce
environments, generally leveraging one or more of three fundamental
phenomena: escape, tolerance, and resistance mechanisms [6]. Escape
mechanisms enable plants to finish their life cycle before drought sets in,
successfully escaping unfavourable conditions. On the other side, toler-
ance mechanisms include physiological changes that allow the plant to
deal with drought situations, such as stomatal closure to lower transpi-
ration rates [7]. Finally, drought stress resistance mechanisms enable
plants to actively combat its effects by increasing photosynthetic
pigmentation and boosting the root-to-shoot ratio for effective assimilate
partitioning. We may pave the way for the growth of crop types that
remain strong in the face of drought stress by learning more about these
systems and the traits shown by plants in water-deficient conditions [8].

Drought stress tolerance is a complex trait, governed by polygenic
controls that exhibit low heritability and are significantly influenced by
genotype x environment interactions. This complexity is further exac-
erbated when drought conditions coincide with other biotic and abiotic
stresses, creating a multifaceted challenge for plant resilience and agri-
cultural sustainability [9]. In this demanding context, the exploitation of
advanced genomic tools appears to be a powerful strategy to promote the
resilience of bread wheat to drought. Genome-wide association studies
(GWAS) are at the forefront of this effort, providing a powerful approach
to identifying genetic markers associated with drought tolerance. By
dissecting the complex genetic architecture underlying drought toler-
ance, GWAS facilitates the identification of markers trait association
(MTAs) and quantitative trait loci (QTLs), as well as candidate genes that
could be exploited to develop drought-tolerant wheat varieties [3,10].
Identifying genomic regions associated with drought tolerance through
GWAS and QTL mapping has become a key strategy in developing
drought-resilient wheat varieties [11,12]. These methods allow for the
identification of markers and QTLs that can be used in marker-assisted
breeding programs to improve both yield and stress-related traits [13].
Several studies have mapped QTLs associated with important agronomic
traits, including grain yield and drought susceptibility indices, under
stress conditions. For example, Tahmasebi et al. [14] and Sobhanian et al.
[15] identified QTLs for yield components and physiological traits in
wheat populations exposed to terminal drought and heat stress, high-
lighting the genetic complexity of drought tolerance mechanisms. Simi-
larly, Salarpour et al. [16] mapped QTLs for drought tolerance indices in
doubled haploid wheat lines, providing critical insights into breeding
values under varying environmental conditions.

Genomic prediction, which utilizes the information of genome-wide
markers to predict the phenotypic performance of untested genotypes,
offers a promising pathway to accelerate the breeding of drought-
resistant wheat varieties. This approach not only expedites the
breeding process but also enhances the precision in selecting genotypes
with superior drought tolerance attributes [17].

In line with fundamental mechanisms of drought adaptation, our
study aims to identify genotypes that exhibit enhanced drought tolerance
by investigating grain yield performance and drought tolerance indices
under both rain-fed and irrigated conditions. By evaluating elite bread
wheat genotypes through GWAS and genomic prediction, we seek to
pinpoint specific markers associated with drought tolerance. The insights
into the plant’s mechanisms for adapting to drought provide a framework
for interpreting the observed variations in drought indices and grain
yield, aligning with our objective to advance the development of
drought-tolerant wheat varieties. The overall aim of this study was to
identify the most reliable proxy for both drought tolerance and grain
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yield. In particular, the current study was carried out to 1) Evaluate the
phenotypic variability of 198 elite bread wheat genotypes sourced from
the International Center for Agricultural Research in the Dry Areas for
drought stress tolerance under both irrigated and rain-fed conditions. 2)
Employ GWAS to identify significant MTAs for grain yield and seven
drought indices. 3) Estimate the prediction accuracy of the assessed
indices using the genomic best linear unbiased prediction (gBLUP)
model.

2. Material and methods
2.1. Plant material and experimental design

For this study, a total of 198 bread wheat genotypes (Supplementary
Table 1). The genotypes used in this study were a collection of drought-
tolerant bread wheat lines developed by the International Center for
Agricultural Research in the Dry Areas (ICARDA). These lines were
specifically bred for their resilience to drought and other environmental
stresses, making them ideal candidates for evaluating grain yield and
drought tolerance indices under both irrigated and rain-fed conditions.
The lines were selected based on their genetic diversity and potential for
improving drought tolerance in wheat breeding programs. These
breeding lines were tested over two crop seasons (2021 and 2022) at the
Sidi Al-Aidi station in Morocco (located at 33°07'27.600“ N,
7°37'43.800” W, at an altitude of 406 m above sea level). The study was
conducted both under rain-fed and irrigated conditions, with an average
precipitation of about 150 mm over the two years in the Sidi Al-Aidi
region. For the rain-fed trials, no supplemental irrigation was provided,
and the crops were watered solely by natural precipitation. In contrast,
the irrigated trials received regular watering twice per week, whenever
soil moisture levels dropped below field capacity, ensuring optimal
growth conditions. The genotypes were planted across three m? plots
following the alpha lattice design, with two replications. The soil at the
Sidi Al-Aidi station is of the vertisol type, and the area has a moderate
humidity atmosphere with temperatures ranging annually from 10 to 40
°C. Planting was carried out in the first week of December at a rate of 100
kg per hectare.

2.2. Drought indices analysis

The grain yield (GY) performance of genotypes was evaluated under
both irrigated and rain-fed conditions. Initially measured in kilograms,
the yields were subsequently converted to tons per hectare (t/ha) for
standardized reporting. Various indices were determined to evaluate the
performance of the genotypes under drought conditions; these included
the stress tolerance index (STI), drought susceptibility index (DSI),
tolerance index (TOL), yield stability index (YSI), mean productivity
(MP), and geometric mean productivity (GMP). To derive these indices,

Table 1
Formulas (equation) of drought indices.
Drought indices Equation References
Stress Tolerance Index (STI) STI = (Yp x Ys) [18]
(Yp?)
Drought Susceptibility Index (DSI) 1 (E) [19]
DSI = ;p
1- js)
Yp
Tolerance Index (TOL) TOL =Yp— Ys [20]
Yield Stability Index (YSI) YSI — Ys [21]
=%
Mean Productivity (MP) MP — (Yp+Ys) [18]
=
Geometric Mean Productivity (GMP) GMP = /Yp X Ys [18]

Yp: the yield under irrigated conditions, Ys: the yield under drought conditions,
Yp: the mean yield under irrigated conditions, Ys: the mean yield under stress
(drought) conditions.
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the grain yield data from both irrigated and rain-fed conditions were
utilized for each plot. These indices were calculated from the grain yield
performance of genotypes evaluated under the two growth conditions
(Table 1).

2.3. Genotyping

The wheat samples were genotyped using the Wheat Illumina iSelect
15K single nucleotide polymorphism (SNP) array at the SGS Institut
Fresenius GmbH TraitGenetics Section located in Gatersleben, Germany.
Samples were collected from the flag leaves of the individual genotypes,
placed in plates, and then sent to the institute for DNA extraction and
genotyping. In total, 198 bread wheat genotypes were analyzed using
15K SNP markers. Following the data collection, the genotypic data
underwent a filtering process to retain only the most reliable data for
analysis. Specifically, SNPs with a minor allele frequency (MAF) below 5
% and heterozygosity exceeding 10 % were excluded. After this filtration
process, 13,151 SNPs remained, forming the basis for subsequent GWAS
and genomic prediction analyses.

2.4. Statistical analyses, linkage disequilibrium and population structure

Statistical analysis of the phenotypic data was conducted across
schemes and years following linear mixed model:

yi=p+Gi+E +GE; + &

Where y; denotes the observed phenotypic value of the i-th genotypes in
the j-th environemet, y is the common intercept, G; represents the effect
of the i-the genotype, ; is the effect of the j-th environment, GEj; captures
the interaction effect between the i-th genotype and the j-th environ-
ment, and &ij accounts for the residual error in the model for the observed
phenotypic value. Except for y, all effects were treated as random to es-
timate the variance components and broad sense heritability. While ge-
notypes were considered fixed effects to derive the Best Linear Unbiased
Estimations (BLUES).

The descriptive statistics including the mean, maximum, minimum,
standard deviation, and coefficient of variation were computed using the
“RemdrMisc” package in R. Linkage disequilibrium (LD) was assessed
using the Tassel software, wherein the LD values for the 198 bread wheat
genotypes were analyzed based on the SNP markers distributed across
the wheat genomes. The methodology for the LD decay investigation was
derived from a protocol established by Remington and colleagues [22].
Additionally, a principal component analysis (PCA) was employed to
elucidate the population structure.

2.5. Genome-Wide Association study and genes annotation

A genome-wide association study (GWAS) focusing on grain yield and
drought indices was executed utilizing the Genomic Association and
Prediction Integrated Tool version 3 (GAPIT 3) in R language, as docu-
mented by Ref. [23]. Within this study, we adopted the mixed linear
model (MLM), incorporating principal components (PCs) and a kinship K
matrix in the formula: phenotype = marker + PCs + kinship + error.
Significant markers were visually represented through Manhattan plots,
identifying markers with a -Log10(p) value exceeding 3.0 as substantial
marker-trait associations (MTAs) dispersed across all 21 chromosomes.
To control for false positives in our GWAS analysis, we applied the False
Discovery Rate (FDR) correction across the identified markers, adjusting
the p-values to account for multiple testing. We used a -logl0(p)
threshold of 3 for significance, which is consistent with similar studies.
However, we acknowledge that this threshold may be considered rela-
tively low given the marker density. The CMplot package in the R envi-
ronment facilitated the depiction of markers on Manhattan and QQ plots,
adhering to a threshold of -LoglO(p) > 3, following guidance by
Ref. [24]. Subsequently, genes associated with the significant markers
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were pinpointed utilizing the EnsemblPlants platform, leveraging the
Variant Effect Predictor function to spotlight functional genes. In the
gene annotation process of our study, the reference genome used was the
IWGSC RefSeq v1.0. This genome served as the basis for all genomic
alignments and annotations. Marker-gene associations were determined
based on proximity within the genome, with significant markers identi-
fied through GWAS being aligned to the nearest gene loci within a pre-
defined window. This approach allowed for the identification of
candidate genes potentially associated with the traits under investiga-
tion. Specific parameters, including the maximum allowable distance
from the marker to the gene and the annotation pipeline details, were
employed as per standard practices in genomic studies of Triticum aes-
tivum, ensuring accurate and relevant gene annotations. Further analysis
was conducted on the UniProt platform to delineate the proteins encoded
by these genes, elaborating on the molecular functions and biological
processes spearheaded by these proteins. The SNPs epistatic interactions
were analyzed based on the effects of significant markers, utilizing the
following formulas:

e The multiplicative combined effect:

Effectcompined_multipticative = Effectsnpy < Effectsyp, (€D)]

e The interaction strength for the multiplicative model

Interaction Strength

. = Ef f ect.,, r:
— ( Effectsyp1 + Effectsyps) (@)
The Circos representation of SNP epistasis was generated using ClicO

FS software [25], where only SNPs demonstrating high synergy were
tracked and displayed.

2.6. Genomic prediction

To conduct genomic prediction (GP) of all the drought indices and
grain yield, we employed the genomic best linear unbiased prediction
(gBLUP) model using TASSEL version 5.2.70, as cited by Ref. [26]. Where
50 genotypes were used as breeding population and 148 genotypes were
used as training population. The accuracy of the genomic prediction was
evaluated through a five-fold cross-validation implemented over 20 it-
erations within the gBLUP model-based TASSEL framework.

3. Results
3.1. Descriptive statistics and lattice ANOVA

Fig. 1 shows the unimodal distribution of grain yields under both
irrigated and rain-fed conditions, as well as the unimodal distribution of
all drought indices, across the set of 198 bread wheat genotypes. The
statistical analyses of the drought indices for 198 bread wheat genotypes
are detailed in Table 2. Grain yield under irrigated conditions fluctuated
between 1.12 and 4.83 t/ha, with a mean value of 2.87 t/ha and a co-
efficient of variance (CV) of 23.25 %. In comparison, the yield under rain-
fed conditions ranged from 0.34 to 2.57 t/ha, averaging 1.22 t/ha with a
CV of 35.4 %. The STI index showed a promising sign of good drought
tolerance with values stretching from 0.06 to 1.17 and a mean of 0.44.
Meanwhile, the DSI index indicated better drought tolerance with figures
extending from —0.69 to 0.58 and a central tendency of 0.14. The TOL
index demonstrated the most considerable variation with a CV of 45.21
%, harboring a mean of 1.63 within a scope of —0.41 to 3.81. In contrast,
the MP index depicted the lowest fluctuation, characterized by a mean of
2.01 within a 0.93 to 3.12 range and a minimal CV of 22.2 %. Other
indices such as the YSI and GMP indexes bore mean values of 0.44 and
1.8 with CVs of 43.1 % and 24.2 %, respectively. Generally, the geno-
types manifested considerable drought tolerance, with genotypes G82
(HUBARA-13//ACHTAR/INRA 1764) and G150 (TEMPORALERA M



Z. El Gataa et al.

Histogram of GY IR Histogram of GY RF

Density

2 3
GY IR

1.0 15

GY RF

2.0

Histogram of TOL Histogram of YSI

0.6

Density

ToL

Density

Crop Design 4 (2025) 100084

Histogram of STI

Histogram of DSI

Density

0.6
STl

0.8 1.0 12 -06 -04 -02

DsI
Histogram of GMP

0.4 0.0 0.2

Histogram of MP

Density

2.0
MP

15

20
GMP

Fig. 1. Distribution of genotypes performance for grain and drought indices of 198 bread wheat genotypes at Sidi Al-Aidi station.

Table 2
Statistical description of 198 bread wheat genotypes for grain yield and drought
indices.

Mean  Min Max  Sd Se CV (%)  H?
GY IR (t/ha) 2.87 1.12 483 067 005 23 0.73
GYRF (t/ha)  1.42 0.95 257 033 002 232 0.53
STI 0.51 0.29 1.17 016  0.01  32.37 0.57
DSI 0.14 -069 058 020 001 - 0.60
TOL 1.81 1.01 3.04 051 004 28 0.60
YSI 0.50 0.30 126 017 001  34.64 0.59
MP 2.01 0.93 312 045  0.03 2222 0.63
GMP 1.80 0.71 301 043 003 2420 0.56

SD: standard deviation; SE: standard error; H% heritability; CV: coefficient of
variation; GY_IRR: grain yield under irrigated conditions; GY_RF: grain yield
under rain-fed conditions; STI: Stress Tolerance Index, DSI: Drought Suscepti-
bility Index; TOL: Tolerance Index; YSI: Yield Stability Index; MP: Mean Pro-
ductivity; GMP: Geometric Mean Productivity.

87%2/KONK//FAYEQ-1) recording the pinnacle of grain yield under
rain-fed conditions, documenting yields of 4.83 and 4.72 t/ha, respec-
tively. Furthermore, G160 recorded a notable STI index of 1.17, with G59
not far behind with an STI value of 1.04.

The lattice ANOVA result (Table 3) presents the analysis of variance
for grain yield (GY) and various drought indices across 198 bread wheat
genotypes. The variation is divided into three main factors: Genotype,
Replication, and Block. For each source of variation, the p values are
provided for grain yield under irrigated (GY IR) and rainfed (GY RF) as
well as drought tolerance indices. The Genotype effect shows significant
p-values for most traits, suggesting a strong genetic influence on these
traits. Low p-values recorded for GY RF under the Genotype category

highlight low genetic variability among the genotypes for these traits.
Most of the indices showed significant variances with genotype as a
factor. In contrast, the Replication and Block effects show generally lower
mean square values, indicating the consistency of the genotypes' per-
formance across replications and blocks. The presence of significant
values in the Replication and Block rows, like for GY IR and TOL under
Replication and Block, suggests some environmental or experimental
variation. In the lattice ANOVA table (Table 3), the source labeled 'Block'
refers to the blocking factor used in our experimental design. Blocking
was implemented to control for variability due to environmental gradi-
ents across the experimental field. Specifically, the experiment was
divided into 26 blocks, each containing a representation of all treatments.
This design allows us to minimize the impact of soil, microclimate, and
other local variations, thus providing a more reliable assessment of the
effects due to genotypes and replication. The p-values listed under 'Block'
indicate the statistical significance of block effects for each trait
measured, helping to discern the intrinsic genetic differences from those
influenced by environmental variations.

3.2. Principal component analyses (PCA) and correlation

The current panel showed three clearly clustered groups (Fig. 2A).
The third group comprised the highest number, with 93 genotypes
included, followed by group 2 with 63 and the remaining 44 genotypes
clustered in group 1. The biplot analysis with the first two PCs elucidates
the association between grain yield and various drought indices (Fig. 2B).
The first and second principal components accounted for 52.6 % and
41.7 % of the total phenotypic variation recorded from grain yield and
drought indices, respectively. The PCA biplot illustrates the relationships

Table 3

Lattice analysis of variance (ANOVA) of grain yield under both irrigated and drought conditions, as well as for drought tolerance indices, using mean square values.
Sources of variance Df GY IR GY RF STI DSI TOL YSI MP GMP
Genotype 197 0.86 *** 0.36 0.07 ** 0.07 ** 1.04 *** 0.07 ** 0.35 *** 0.37 **
Replication 1 1.78 * 0.009 0.05 0.07 2.05* 0.07 0.38 0.05
Block 26 0.39 0.47 0.07 0.08 0.82 * 0.08 * 0.22 0.37

*, **, *** significant at 0.05, 0.01 and 0.001 levels, respectively.
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Fig. 2. The cluster dendrogram (A) illustrates the relationships among 198 bread wheat genotypes; PCA (B) visually represents the principal component analysis
results; and the correlation graph (C) demonstrates the relationships between grain yield and drought indices across the 198 bread wheat genotypes.

between the traits by showing the angles between their vectors. Traits
with smaller angles between their vectors are more positively correlated,
while traits with larger angles, closer to 180°, indicate negative corre-
lations. For instance, the vectors for GY_IR and GMP form a small angle,
suggesting a strong positive correlation between these traits. In contrast,
DSI forms a larger angle with YSI, indicating a negative correlation,
which is expected since higher drought susceptibility would result in
lower yield stability. Fig. 2C shows the correlations among drought
indices. STI and GMP exhibited a highly significant positive correlation
(R = 0.98) followed by STI and MP (R = 0.88). GMP also held a signif-
icant positive correlation with MP (R = 0.87) and with GY-RF and GY-IR,
with correlation coefficients of 0.85 and 0.62, respectively. Conversely,
YSI had a significant negative correlation with DSI, TOL, and GY-IR,
correlation coefficients —0.98, —0.79, and —0.45, respectively. Addi-
tionally, grain yield under rain-fed conditions was negatively correlated
with DSI and TOL with-0.72 and —0.42, respectively.

3.3. Linkage disequilibrium (LD) and neighbor-joining (NJ) tree

The Linkage Disequilibrium (LD) decay exhibited distinct patterns
across the A, B, and D genomes. For genome A, a total of 294,726 SNP
marker pairs were evaluated. The average R2 was 0.17, and the LD
decayed at a distance of 3.34 Mbp (Fig. 3A). A total of 348,876 pairs of
SNP marker comparison was done for genome B, and the average R2
value was 0.18 while LD decayed at 4.52 Mbp (Fig. 3B). A relatively few

SNP markers were identified from the D genome, resulting in only
135,176 pair-wise SNP markers comparison, and the mean LD value (R2)
was 0.15, and LD decayed at 3.88 Mbp (Fig. 3C). Fig. 3D showcases the
Neighbor-Joining (NJ) tree constructed from the genotypic data of 198
bread wheat genotypes. This NJ tree delineates three distinct groups,
each highlighted in a different color.

3.4. Genome wide association study and candidate genes

In this study, we identified a total of 39 significant markers (p <
0.001) and 23 QTLs associated with several variables, including grain
yield under both irrigated and rain-fed conditions, along with DSI, GMP,
MP, STI, TOL, and YSI indices. These findings, documented at the Sidi Al-
Aidi station, are detailed in Tables 3 and 4, and illustrated in Figs. 4 and
5. Fig. 6 shows SNPs density on each wheat chromosome of 198 bread
wheat, genotypes (see Tables 4 and 5).

Table 3 delineates that Marker Trait Associations (MTAs) correlated
with Quantitative Trait Loci (QTLs) of various indices and grain yield
under different conditions.

Assessing the grain yield under irrigated (GY.IR) conditions revealed
2 salient MTAs and 2 QTLs dispersed across chromosomes 2A and 5A.
The marker “BobWhite c42349 99” recorded a -log10(p) score of 3.31,
localized on chromosome 5A at the 665.47 Mbp position, this marker is
linked to the QTL “QTLISBW. GY.1”. Furthermore, the marker
“wsnp_Ex_c11827 18986376 was recorded for GY.IR. This marker was
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Fig. 3. Illustration of the linkage disequilibrium decay in genome A (A), genome B (B), and genome D (C), alongside the Neighbor-Joining (NJ) tree (D) constructed
from the genotypic data of 198 bread wheat genotypes.

Table 4
List of the significant markers and QTLs associated with GY.IR, GY.RF, DSI, and GMP indices and grain yield under irrigated and rain-fed conditions from GWAS of 198
bread wheat genotypes at Sidi Al-Aidi station.

Trait Marker QTL Chro Pos Effect -Log10(p)
GY.IR BobWhite_c42349_99 QTL_ISBW.GY.1 5A 665471358 —0.42 3.31
wsnp_Ex_c11827.18986376 QTL_ISBW.GY.2 2A 733922181 —-0.37 3.15
GY.RF wsnp_Ex_rep_c66358 64543089 - UN 300833704 0.23 3.20
wsnp_Ex_c12127 19394952 - 5B 418010902 0.92 3.14
Kukrirep_c104611.210 QTL ISBW_GY.3 2A 709850045 —-0.23 3.07
wsnp_Ra_c10658.17500498 QTL ISBW.GY.4 2B 689871439 0.23 3.03
Kukri c51101_351 QTLISBW.GY.5 7B 630107823 0.90 3.03
DSI BS00049927 51 - 1B 108837029 -0.31 3.66
wsnp_Ex_c214 421541 - 5B 42947782 —-0.21 3.58
AX-94951542 - 5B 42393918 —-0.12 3.10
CAP11_.c1087.327 QTL_ISBW.DSI.1 6B 3883815 0.15 3.42
wsnp_Ex_c31672.40435001 - 5A 631668358 —-0.29 3.39
wsnp_Ex_c3834.6971470 - 5B 536516528 —-0.39 3.34
BS00050522_51 QTL_ISBW_DSI.2 1B 1433694 -0.57 3.21
BobWhite_c42349_99 QTL_ISBW.DSIL.3 5A 665471358 -0.12 3.18
GMP Kukri ¢51101_351 QTL_ISBW.GMP.1 7B 630107823 0.92 3.43
AX-94430599 QTL_ISBW.GMP.2 2D 601601896 0.25 3.26
wsnp_Ex_c12127 19394952 - 5B 418010902 0.64 3.24
wsnp_Ra_rep_c69620_67130107 QTL_ISBW.GMP.3 7A 85612705 0.55 3.06
AX-94533562 QTL_ISBW.GMP.3 7A 85912049 0.27 3.03

QTL: Quantitative Trait Loci; Chro: Chromosome; Pos: Position.
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Fig. 4. Manhattan and QQ plots for 198 bread wheat genotypes evaluating grain yield under both irrigated (A) and rain-fed (B) conditions, as well as DSI (C), and

GMP (D) indices, as recorded at the Sidi Al-Aidi station.
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Fig. 5. Manhattan and QQ plots for 198 bread wheat genotypes evaluating STI (A), TOL (B), YSI (C), MP (D) indices, as recorded at the Sidi Al-Aidi station.



Z. El Gataa et al.

Crop Design 4 (2025) 100084

The number of SNPs within 1Mb window size

OMb 92Mb 184Mb 276Mb 368Mb 460Mb 552Mb 644Mb 736Mb 828Mb
chrta IR TN 11T [HT IT T IUAE O OO NI AR
cnrtes NIRRT R RTRCAOTIONTO O TR 00 O Y T A
coero ([N 11 T I TOPNC T 00T
SN |1 TN TN 1 AR A NARATARTAE TR WAINRTRITR LTS

Sl [ LT D TR | —
izl T (000 T
I 1111 [ R A 1
crrss | INRHN I OTVIOO O OO LA 0 TRIET T
sl 111

cnran IUNIMC N1 1100 | -

ATV 11
(I CEREEEE LTI 0

{1 IO O AT AR
AN 0T T O

(1ML 1T 0PN 0 TR T O T
(LA DA T

I TR

S 111 LT TN A QRO o
creao ([ TITIHTTICICN I I i
crsa JINIL [ TEMEIT 0T 10 T T M 0 AR 0 O 6
cnrss | [IMOANNE TU0 000000 T 1RO O AT 0 N AR AT 8
creso WETTHNE T WTEIE 1010 T T 0TI WO 1w 10
cnven JINTE WOMIEN REE 0V TORIE T T 0TI NAE 10T N 12
cnres |RTIMON AN UMY TR ORI OO0 NURA T W N A 14
Sl 111 1 11 A 16
cnr7A ML NN AR (XL (IO O L O 18

Sl 11111 NI R IT —
coero (NIETIEIOOCICE T T Ty | I
SN0 I

(110 AT O R OO AT O AT
R RIRRN A

20
22
| 24

Fig. 6. SNPs density on each wheat chromosome of 198 bread wheat genotypes.

Table 5
List of the significant marker and QTLs associated with STI, TOL and YSI indices from GWAS of 198 bread wheat genotypes at Sidi Al-Aidi station.

Trait Marker QTL Chro Pos Effect -Log10(p)

STI Kukri c51101_351 QTL_ISBW STIL.1 7B 630107823 0.51 4.56
AX-94381659 QTL_ISBW STIL.2 2A 29871296 0.16 3.32
AX-94533562 QTL_ISBW.STIL.3 7A 85912049 0.11 3.30
AX-94467830 - 1B 323618700 0.13 3.22
wsnp_Ex_c57450.59156677 QTL_ISBW STIL.4 3B 24944078 0.34 3.11
AX-94430599 QTL_ISBW_STL5 2D 601601896 0.11 3.08

TOL BobWhite_c42349 99 QTL_ISBW_TOL.1 5A 665471358 —0.52 4.07
AX-95009146 - 2B 315664134 -0.71 3.44
BS00078784 51 QTL_ISBW.TOL.2 5B 668198232 —-1.43 3.06

YSI Ra c455.283 - 1B 117180060 0.09 3.00
BS00049927 51 - 1B 108837029 0.30 4.04
BobWhite_c42349 99 QTL_ISBW_YSL1 5A 665471358 0.13 4.01
wsnp_Ex_c3834.6971470 - 5B 536516528 0.37 3.68
wsnp_Ex_c31672_40435001 - 5A 631668358 0.28 3.47
BS00023006_51 - UN 6017714 0.15 3.31
BS00084305_51 QTL_ISBW_ YSL2 1B 90992756 0.19 3.21
CAP11_c1087 327 QTL_ISBW_YSL3 6B 3883815 -0.14 3.19
BS00050522_51 QTL_ISBW_YSL4 1B 1433694 0.55 3.19
wsnp_Ex_c214. 421541 - 5B 42947782 0.19 3.13

QTL: Quantitative Trait Loci; Chro: Chromosome; Pos: Position.

located on chromosome 2A at position 733.92 Mbp. Grain yield under
rain-fed conditions recorded 5 MTAs and 3 QTLs, predominantly on
chromosomes 2A, 2B, 5B, and 7B. The highest marker here was
“wsnp_Ex_rep_c66358 64543089, recorded a highest -log10(p) figure of
3.20 on unknown chromosome at position 300.83Mbp, followed by
“wsnp_Ex_c12127 19394952” with a -loglO(p) = 3.14 positioned on
chromosome 5B at the position 418.01 Mbp.

The Drought Susceptibility Index (DSI) recorded 8 significant MTAs
and 3 QTLs, with the marker “BS00049927 51” was the most significant
at -logl0(p) = 3.66; it is situated on chromosome 1B at a position of
108.83 Mbp. Furthermore, markers “wsnp Ex c214 421541¢, “AX-
94951542 and “wsnp_Ex_c3834.6971470”, found on chromosome 5B,
had respective -log10(p) values of 3.58 and 3.10, and 3.34 and were
located at positions 42.94 Mbp, 42.39 Mbp, and 536.51 Mbp. The Geo-
metric Mean Productivity (GMP) index highlighted 5 significant MTAs
and 4 QTLs; the highest was the “Kukri c51101_351” marker with a
-log10(p) value of 3.43, identified on chromosome 7B at position 630.10

Mbp and incorporated within the “QTL ISBW GMP.1” QTL, followed by
the “AX-94430599” marker which holds a -log10(p) value of 3.26 located
on chromosome 2D at position 601.60 Mbp. Another notable marker in
this context was “AX-94533562,” which was aligned with the GMP index
and recorded the lowest 1og10(p) value of 3.03, located on chromosome
7A at position 85.9 Mbp.

Table 4 shows the significant MTAs correlated with QTLs of STI, TOL
and YSI indices. The STI index recorded 6 significant MTAs and 5 QTLs,
with the marker “Kukri c51101_351” recorded as the most significant
marker at -log10(p) = 4.56; it is situated on chromosome 7B at a position
of 630.10 Mbp. Furthermore, markers “AX-94381659“and “AX-
94533562 “found on chromosome 2A and 7A, respectively, had respec-
tive -log10(p) values of 3.32 and 3.30 and were located at positions 29.87
Mbp, 85.91 Mbp. The TOL index recorded 3 significant MTAs and 2 QTLs,
the highest marker “BobWhite_c42349_99” recorded a -log10(p) value of
4.07, identified on chromosome 5A at position 665.47 Mbp, this marker
was alongside with the marker “AX-95009146” located on chromosome
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2B at position 315.66 Mbp. The marker “BS00078784 51" on QTL
“QTL_ISBW_TOL.2” recorded the lowest -log10(p) = 3.06 located on the
chromosome 5B at position 668.19 Mbp. The Mean YSI index recorded
10 significant MTAs and 4 QTLs, the marker “BS00049927 51 recorded
the highest -log10(p) = 4.04 located on the chromosome 1B at position
108.83 Mbp, whereas the marker “Ra c455283” recorded the lowest
-log10(p) = 3 located on chromosome 1B at position 117.18 Mbp.

Fig. 7 illustrates the SNPs characterized by the highest degrees of
synergy epistasis. In particular, the SNPs “BobWhite_rep_c66990_ 294 and
“RAC875.c583.391” showcase the pinnacle of synergy interaction,
registering the most substantial strength of the multiplicative interaction
effect at 2.239. This is closely trailed by the synergy between markers
“wsnp_BE498786B_Ta 2.1 and “RAC875_c583_391,” which exhibits a
strength of multiplicative interaction effect amounting to 2.155.
Contrarily, the least synergic interaction was noted between the markers
“Excalibur. rep_c107577 250" and “BS00062731_51,” reflecting a minimal
strength of multiplicative interaction effect of 0.00012. Notably, the pair
consisting of markers “BS00070104.51” and “RAC875.c583 391
demonstrated the highest antagonistic SNP epistasis, with a strength of
multiplicative interaction effect at —1.087.
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3.5. Gene annotation

In this study, 14 candidate genes were identified and correlated with
grain yield under both irrigated and rain-fed conditions alongside various
drought indices (Table 6). The table provided appears to be an excerpt
from a gene annotation report associated with the GWAS analyses. The
table lists various SNP markers and associates them with specific genes,
their protein products, molecular functions, and biological processes. For
instance, the marker BS00050522.51 1is linked to the gene
TraesCS1B02G001800, which encodes for the protein Phospholipid-
transporting ATPase. This protein is involved in ATPase-coupled intra-
membrane lipid transporter activity, playing a role in the biological
process of phospholipid translocation. Similarly, AX-94381659 is asso-
ciated with the 40S ribosomal protein S6, which is essential for protein
synthesis as part of the ribosomal structure and function in the process of
translation. The marker “wsnp_Ex_c57450.59156677" was linked to the
gene TraesCS3B02G049100 which encodes for Protein kinase domain-
containing protein involved in protein kinase activity and phophor-
ylation. The genes that we found in this study encode for Metal tolerance
protein 1-like, RRM domain-containing protein, Catalase, NusG-like N-
terminal domain-containing protein, and Thioredoxin domain-
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Fig. 7. SNPs are characterized by the highest degrees of synergy epistasis.
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Table 6
List of putative genes associated with significant markers.

Marker Gene Protein Molecular function Biological prosess Reference

BS00050522 51 TraesCS1B02G001800  Phospholipid-transporting ATPase-coupled intramembrane Phospholipid translocation [27]
ATPase lipid transporter activity

BS00084305_51 TraesCS1B02G090400  Metal tolerance protein 1-like Zinc ion transmembrane transporter  Zinc ion transmembrane [28]

activity transport

AX-94381659 TraesCS2A02G066100 408 ribosomal protein S6 Structural constituent of ribosome Translation [29]

Kukrirep ¢c104611.210 TraesCS2A02G464300  RRM domain-containing RNA binding - [30]
protein

wsnp_Ex_c11827 18986376 TraesCS2A02G505800  NADPH-cytochrome P450 NADPH-hemoprotein reductase - [31]
reductase activity

wsnp_Ra_c10658 17500498 TraesCS2B02G491600 DUF4220 domain-containing - - [32]
protein

AX-94430599 TraesCS2D02G508800 STAS domain-containing Monoatomic anion transmembrane — [30]
protein transporter activity

wsnp_Ex_c57450.59156677 TraesCS3B02G049100 Protein kinase domain- Protein kinase activity Phosphorylation [33]
containing protein

BobWhite_c42349_99 TraesCS5A02G498000  Catalase Catalase activity Response to hydrogen peroxide  [34]

BS00078784 51 TraesCS5B02G500900  NusG-like N-terminal domain- - Transcription elongation- [35]
containing protein coupled chromatin remodeling

CAP11.c1087 327 TraesCS6B02G005100 Thioredoxin domain- Protein disulfide isomerase activity Protein folding [36]
containing protein

wsnp_Ra rep_c69620_67130107 TraesCS7A02G133400 Transmembrane protein - - [37]

AX-94533562 TraesCS7A02G134100 Galactinol-sucrose - Carbohydrate metabolic [38]
galactosyltransferase process

Kukri c51101_351 TraesCS7B02G366200  Nudix hydrolase domain- ADP-glucose pyrophosphohydrolase Nucleoside phosphate [39]

containing protein

activity metabolic process

containing protein; these proteins involved in zinc ion transmembrane
transporter activity, catalase activity, response to hydrogen peroxide, and
transcription elongation-coupled chromatin remodeling, respectively.
Each entry in the table provides a detailed view of the potential function
of the gene product and its role in the cell, allowing researchers to un-
derstand better the genetic basis of certain traits or conditions. This in-
formation is crucial for advancing our understanding of the biology of
wheat under drought conditions.

3.6. Genomic prediction

The fivefold cross-validated predictions using the gBLUP model
showed an average prediction accuracy between 0.31 and 0.50 for all
drought indices and grain yield (Fig. 8). The analysis revealed that pre-
diction accuracy was highest for the TOL index, where the highest value
was 0.50. This was closely followed by the yield under irrigated condi-
tions, with the highest value of accuracy was 0.43, and the DSI index,
which had a score of 0.31. In a detailed breakdown of the drought
indices, GMP recorded an accuracy of 0.34. MP and GMP have values of
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Fig. 8. Genomic prediction of grain yield under rain-fed and irrigated condi-
tions, as well as drought indices.
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0.33 and 0.34, respectively. Other indices recorded moderate accuracy
levels; STI showcased a score of 0.38, while YSI and GY.RF recorded
values of 0.41 and 0.40, respectively.

4. Discussion
4.1. Phenotypic variability for grain yield and drought indices

Bread wheat (Triticum aestivum L.) occupies a central position as a
primary food source in the Central and West Asia and North Africa
(CWANA) and Sub-Saharan Africa (SSA) regions. These areas are
consistently challenged by an array of abiotic and biotic stressors,
notably drought, which emerges as the most significant. The CWANA
region, in particular, experiences chronic and severe drought stress,
markedly impairing wheat productivity and presenting a substantial
constraint. In light of these exigent circumstances, it is imperative/urgan
to develop the novel drought tolerance genotyes and cultivals used for
the sustained cultivation of wheat in these regions [1]. The objective of
ICARDA's breeding initiative for bread wheat is to explore genotypes that
exhibit not only desirable end-use qualities but also resilience to both
biotic and abiotic stressors. Grain yield is a complex trait underpinned by
a multitude of genetic factors and profoundly influenced by the dynamic
interplay between genotypic attributes and environmental variables
[40]. In this investigation, we cultivated 198 distinct bread wheat ge-
notypes developed by ICARDA under two disparate conditions: irrigated
and rain-fed. These genotypes underwent rigorous assessment for
drought tolerance, utilizing drought indices for each genotype as primary
evaluative measures. These indices subsequently informed Genome-Wide
Association Studies (GWAS) and genomic predictions, providing a
comprehensive data corpus for analytical and predictive modelling.
Contrary to prevailing assumptions that irrigation substantially enhances
yield, our findings indicate that grain yield under rain-fed conditions did
not significantly differ from that under irrigated scenarios. This obser-
vation challenges the conventional belief in the necessity of irrigation for
optimal yield, positing a formidable potential for successful wheat
cultivation in rain-fed contexts [41]. The approximate parity in yield
between the two environments underscores the effectiveness of recent
breeding strategies in augmenting drought tolerance, an advancement of
paramount importance considering the global trends of fluctuating
rainfall patterns and escalating water scarcity issues [42].
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In this study, considerable variation was observed for yield and
drought indices under rain-fed and irrigated schemes. We discovered
promising indicators of drought resistance in the bread wheat genotypes
we examined. Notably, the Stress Tolerance Index (STI) revealed a
commendable average of 0.44, surpassing the mean STI value of 0.53
noted in previous research by Poudel et al. [43]. A particularly notable
finding is the highest recorded STI value of 1.17 in one of our genotypes,
demonstrating its potential for excellent performance under both
stress-free and stressful conditions. Regarding the Drought Susceptibility
Index (DSI), a lower mean value is preferable. Our findings showed a
mean DSI of 0.14, suggesting enhanced drought tolerance. This is in
contrast to the findings of Negisho et al. [5], who reported a higher
average DSI, indicating potential advancements in drought resistance in
our studied genotypes. This discovery opens avenues for the develop-
ment of new wheat varieties with improved drought tolerance. Addi-
tionally, our Tolerance Index (TOL) recorded a mean of 1.63, which is on
the higher end, typically indicating a lower drought tolerance compared
to lower values. This result advises caution in relying solely on the TOL
index for assessing drought tolerance. Our study aligns with and builds
upon the groundwork laid by research such as that of Bennani et al. [44]
and Eid and Sabry [45], were explored drought indices in wheat exten-
sively. The indices we identified in our study paint a reassuring picture of
the drought tolerance in the evaluated genotypes. However, it is imper-
ative to conduct further investigations and validations across various
environmental conditions and genetic varieties to make definitive con-
clusions about their drought tolerance capabilities.

4.2. Genome-wide association study

GWAS have proven crucial in discovering MTAs and QTLs connected
to several drought-related traits in the effort to uncover the genetic basis
of drought tolerance in bread wheat. Our research marks a significant
advancement in this area, identifying 39 MTAs (p < 0.001) and 23 QTLs
associated with different traits, including grain yield under varying
irrigation regimes and diverse drought indices. A notable finding from
our study is the dominant presence of MTAs within the B genome, where
23 MTAs were identified, surpassing the A genome, which harboured 12
MTAs. This is a notable deviation from previous findings, where the A
genome was often reported to contain a higher number of MTAs, fol-
lowed by the B genome, as highlighted in studies by Tadesse et al. [10]
and El Gataa et al. [3]. The prominence of the B genome in our results
suggests a potentially underexplored source of genetic material that
could be crucial for breeding drought-resistant wheat varieties. Inter-
estingly, the D genome maintained its historically minor role, with only 2
MTAs identified, consistent with patterns observed in earlier studies. This
reinforces the understanding that the D genome plays a less significant
role in drought tolerance compared to the A and B genomes. However, it's
important to consider that the D genome, despite its smaller contribution,
should not be overlooked in future research. It may possess unique at-
tributes that are beneficial for improving drought tolerance, as suggested
by Elhadi et al. [46] and Devate et al. [47]. Our study contributes sub-
stantially to the existing literature on the genetic basis of drought toler-
ance in bread wheat, highlighting the importance of the B genome and
reinforcing the need for further exploration of all genomes, including the
less studied D genome, for comprehensive understanding and enhance-
ment of drought tolerance traits. Fig. 6 shows an uneven distribution of
markers across the wheat genome, which may affect the accuracy of MTA
detection in regions with low marker density. Although robust statistical
models were used to mitigate this limitation, we acknowledge that some
MTAs may have been missed in these sparsely covered regions. Future
studies will consider increasing marker coverage through more
comprehensive genotyping or targeted resequencing to improve the
resolution of MTA identification across the entire genome.

Our study draws significant parallels and distinctions from earlier
works on the genomic locations implicated in drought resilience,
underscoring the conserved as well as distinct genetic regions governing
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this critical trait in bread wheat. A pivotal discovery was the identifica-
tion of the highest marker (wsnp_Ex_c12127 19394952) associated with
grain yield under rain-fed conditions being located on chromosome 5B.
This finding resonates well with the documentation of Kumar et al. [48],
who identified the QTL “MQTL5B.5” correlating with bread-making
quality traits on the same chromosome. This reciprocal finding accen-
tuates the importance of chromosome 2D as a focal point in harbouring
pivotal genes regulating yield under drought conditions, suggesting the
avenue for further explorative studies to unravel potential genetic
markers in this chromosomal region that could be harnessed in breeding
programs. The previous study did not identify the same MTAs using the
same germplasm, which can be attributed to varying weather conditions
[3]. Further, our scrutiny of the Drought Susceptibility Index (DSI)
revealed 8 noteworthy MTAs dispersed across a diverse chromosomal
landscape encompassing 1B, 5A, 5B, and 6B. This finding stands in har-
mony with observations made by Ballesta et al. [49], further reinforcing
the critical role these chromosomal domains play in governing drought
susceptibility, and essentially echoing the consensus in the scientific
community on the relevance of these regions. This alignment in findings
bespeaks the conserved genetic architecture underlying the drought
susceptibility index, underscoring the need for a targeted investigation
into these regions for developing drought-resilient bread wheat varieties.
In the landscape of Stress Tolerance Index (STI), we identified 6 signifi-
cant MTAs, predominantly located on chromosomes 2A, 1B, 3B, 7B, 7A
and 2D. Here, we notice a divergence from the findings of Zhao et al.
[50], who associated the STI index with markers on an expanded set of
chromosomes, including 1B, beside the one we identified. This discrep-
ancy invites a deeper investigation to reconcile the differences and un-
cover potentially overlooked regions of interest. It may also hint at the
complex and multifaceted genetic basis of stress tolerance, where
different studies spotlight different sets of chromosomes, possibly owing
to variations in the environmental conditions and genetic materials
investigated. Furthermore, the sheer number of MTAs and QTLs identi-
fied speaks to the complex genetic architecture underlying drought
tolerance in bread wheat, illustrating a rich tapestry of genetic elements
that are interwoven to dictate the plant’s response to drought conditions.
As we forge ahead, it will be imperative to not only identify but also
functionally characterize these MTAs and QTLs to delineate their precise
role and exploit them in breeding programs aimed at enhancing drought
tolerance in bread wheat [9,51,52]. Leveraging these findings could
potentially steer us closer to realizing wheat varieties that can withstand
the adversities of drought while maintaining satisfactory yield levels, a
step pivotal in ensuring food security in the face of changing climatic
conditions. The 23 QTLs identified in this study were based on significant
MTAs detected through GWAS (p < 0.001). Some of these QTLs appear to
be novel and have not been previously reported, suggesting new insights
into the genetic basis of drought tolerance and grain yield in bread wheat
under the specific conditions of this study. The QTLs identified in our
study align with several previously reported genomic regions associated
with drought tolerance in wheat. For example, our findings are consistent
with the QTLs reported by Shariatipur et al. [11,12] for agronomic traits,
as well as those related to stress resilience reported by Tahmasebi et al.
[53] and Sobhanian et al. [15]. These studies emphasize the importance
of genomic regions related to drought response mechanisms, such as
those involved in root architecture, osmotic regulation, and stomatal
conductance, which may also be reflected in the QTLs identified in our
study.

In our study, several SNPs were significantly associated with grain
yield under both irrigated and rain-fed conditions. These findings align
with previous studies, such as Shariatipur et al. [11] and Salarpour et al.
[16], who identified SNPs linked to grain yield in wheat under drought
and heat stress conditions. For instance, the SNP
“wsnp_Ex_c12127_19394952” identified on chromosome 5B in our
analysis has been associated with grain yield in similar environments,
further supporting its role in drought tolerance and yield improvement.
Similarly, markers identified on chromosomes 2A and 7B in our study



Z. El Gataa et al.

correspond to regions previously reported by Tahmasebi et al. [53] and
Sobhanian et al. [15], who also found associations between these regions
and key agronomic traits. Additionally, markers such as Kuk-
ri_c51101_351 on chromosome 7B were identified in relation to STI and
grain yield under rain-fed conditions, highlighting its potential role in
drought tolerance across different environmental conditions. These
findings are consistent with previous studies, such as those by Shariatipur
et al. [11] and Tahmasebi et al. [53], who also reported SNPs linked to
grain yield and drought indices on these chromosomes. The consistency
of these SNPs across multiple studies underscores their importance in
marker-assisted breeding programs aimed at improving grain yield under
drought stress. Furthermore, the identification of novel SNPs in our
study, particularly in regions not previously reported, highlights new
potential targets for enhancing drought tolerance and yield stability in
bread wheat.

Epistatic interactions between markers play a critical role in deter-
mining the expression of complex traits, such as grain yield and drought
tolerance. In our study, we identified several significant epistatic in-
teractions between markers that were associated with yield-related traits.
These interactions suggest that the genetic control of yield is not solely
dependent on individual markers but also on the interactions between
them. For example, the interaction between markers “Bob-
White_rep_c66990_294” and “RAC875_c583_391” exhibited a strong
multiplicative interaction effect, which was closely linked to improved
yield performance under drought conditions. This suggests that these
interacting loci may act synergistically to enhance the plant’s resilience
to water scarcity. Similarly, we observed interactions between markers
on chromosome 5B and 7A that were significantly associated with both
drought susceptibility and yield stability indices (YSI). These interactions
likely contribute to the plant's ability to maintain stable yields under
fluctuating environmental conditions, further supporting the importance
of epistatic regulation in complex traits like drought tolerance. The
identification of these epistatic interactions provides valuable insights
into the multifactorial nature of yield determination in wheat. By
uncovering how these genetic interactions influence traits, we can better
understand the underlying mechanisms that allow certain genotypes to
perform well under stress. Future breeding programs may benefit from
targeting such interactions to develop varieties that exhibit enhanced
yield stability in water-limited environments [54,55].

Several candidate genes identified in our study have been reported in
previous research, reinforcing their relevance in drought tolerance and
yield improvement. For instance, the TraesCS5B02G500900 gene, asso-
ciated with drought tolerance in our study, was also identified by Shar-
iatipur et al. [11] as being linked to drought-related traits in wheat.
Similarly, the gene TraesCS2A02G066100, associated with grain yield in
our study, has been highlighted in previous studies, such as Sobhanian
et al. [15], for its role in yield stability under stress conditions. These
overlaps suggest that these candidate genes play a crucial role in both
drought response and yield maintenance, making them reliable targets
for breeders aiming to improve wheat performance in water-scarce en-
vironments. By validating these genes across multiple studies, breeders
can prioritize these genomic regions for marker-assisted selection and
breeding programs.

An important factor influencing the accuracy of genomic prediction is
the size of the training population used to calibrate the prediction
models. In our study, a relatively small population was used, with 50
genotypes as the breeding population and 148 genotypes as the training
population. While the results obtained offer valuable insights, the smaller
population size likely imposed some limitations on the genomic predic-
tion accuracy. Previous studies have shown that larger populations tend
to enhance the precision of genomic predictions, as they capture more
genetic diversity and provide more reliable estimates of marker effects.
Given the relatively small size of our training population, the genomic
prediction accuracy values observed (ranging from 0.31 to 0.50) should
be interpreted with caution. These values may have been higher with a
larger training population. Nonetheless, the observed prediction
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accuracies, particularly for traits such as TOL (0.50) and GY under irri-
gated conditions (0.43), indicate that even with a smaller dataset,
meaningful and useful genomic predictions were obtained. Future studies
could benefit from expanding the training population size to improve
prediction accuracy and further validate the genetic markers identified.

5. Conclusion

This investigation has brought to light several genotypes exhibiting
promising performance in terms of drought indices and substantial grain
yields. These elite genotypes have rightfully earned a place in the global
nurseries facilitated by ICARDA, positioning them as pivotal assets for
our national partners in the CWANA and SSA regions. They are primed
for both releases to foster enhanced agricultural outcomes and potential
incorporation as foundational elements in the breeding programs,
thereby steering forward the vital mission of augmenting drought resil-
ience in bread wheat. Within the scope of our study, utilizing a robust
pool of 198 spring bread wheat genotypes enabled us to pinpoint 39
MTAs and isolate 14 genes intimately associated with grain yield in both
irrigated and rain-fed environments, as well as in the diverse panorama
of drought indices. This rich harvest of genetic insights lays a substantial
groundwork for the next strides in bread wheat research and
development.
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