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A B S T R A C T

Despite the ecological and economic value of the Norway lobster (Nephrops norvegicus), its gut microbiota re
mains largely understudied. The aim of the present study was to investigate the gut bacterial microbiota in three 
geographically separated N. norvegicus populations from the Mediterranean and the North Seas and detect any 
potential sex-related microbiota differences, by high-throughput sequencing of the V3-V4 16S rRNA gene di
versity of the gut tissue. Egg-bearing females from the Greek population, were also included in this analysis. A 
total of 2385 operational taxonomic units (OTUs) were identified and between 417 and 1290 OTUs were present 
in each population/sex group. The dominant OTUs belonged to the Fusobacteriia and Bacteroidia (Sweden), 
Bacilli and Gammaproteobacteria (Italy) and Spirochaetia and Bacilli (Greece) bacterial classes. In the eggs, the 
Actinobacteria, Alphaproteobacteria and Gammproteobacteria prevailed. Four OTUs related to the Ocean
ispirochaeta, Kordiimonas, Desulfovibrio, Carboxylicivirga genera and one unafilliated OTU were positively corre
lated (p values between 0.001 and 0.04) with body size, indicating their potential role in the nutrition and 
growth of N. norvegicus. No statistically significant differences were found between males and females in any of 
the three populations. However, statistically significant differences between populations for each sex, were found 
for all females (p values between 0.008 and 0.032) and for the males between the most distant populations, i.e. 
Italy-Sweden (p = 0.021) and Greece-Sweden (p = 0.015). The egg microbiota was statistically significant 
different from both the adult female (p = 0.027) and male (p = 0.046) gut microbiota. Overall, this study 
revealed that the N. norvegicus gut microbiota is differentiated between geographically distant populations and 
that sex-related differences are not significant.

1. Introduction

The hologenome and holobiont concepts (Zilber-Rosenberg and 
Rosenberg, 2008) have opened a new way to view animal life (Theis 
et al., 2016; Webster, 2017) in terms of their ontogeny and function 
(Stencel and Wloch-Salamon, 2022; Troussellier et al., 2017). Thus, 
during the last few years, the scientific interest in holobiont research has 
increased for animals. However, there are still animal species from 
various habitats, whose microbiomes remain largely unknown, despite 
their ecological and/or economic importance and the ongoing rapid 

technological advancements in DNA/RNA technologies.
One such species is the Norway lobster Nephrops norvegicus (Lin

naeus, 1758) a decapod crustacean, langoustine or scampi, which is a 
typical clawed lobster with a slender body, long claws and large dark 
eyes. Nephrops norvegicus is considered one of the most important species 
for fisheries and is considered a particularly valuable commercial crus
tacean species in Europe. It is a benthic crustacean that is dependent on 
muddy-type sediments suitable for the construction of burrows. It is 
widely distributed across the continental shelves of the northeast 
Atlantic Ocean and the Mediterranean Sea, from Iceland and Norway in 
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the north, to Morocco and the Adriatic seas in the south (Bell et al., 
2013). Populations dwelling in colder waters around Iceland and the 
Faroe Islands have a biennial breeding cycle whereas those in the 
Mediterranean region follow an annual breeding cycle (Bell et al., 2013). 
N. norvegicus are opportunistic predators that consume a wide variety of 
prey species including crustaceans, polychaetes, molluscs and echino
derms (Bell et al., 2013). N. norvegicus population genetics within the 
Mediterranean Sea was analysed using multiple methods, which 
revealed low or moderate genetic differentiation between geographical 
regions (Atlantic vs. Mediterranean) but no geographical pattern of 
genetic differentiation, thus genetic variability seems to be randomly 
distributed among populations (Maltagliati et al., 1998; Passamonti 
et al., 1997). Nevertheless, various aspects of the different populations 
were strongly related to the spatial and environmental features of the 
Mediterranean (Commission et al., 2022).

The animal gut microbiome, i.e., the collective genetic material of all 
microbes found in the gut, is considered a central biological feature for 
the reproduction, development, nutrition, growth, and health/immunity 
of the host (Diwan et al., 2023; Singh et al., 2025) and is even considered 
in wildlife conservation (Kanika et al., 2025; West et al., 2019). The 
microbiome concept is so established that the microbiome has been 
proposed as a means and a target of manipulation for improving farmed 
animal production (Luna et al., 2022). The gut microbiome is also useful 
for assessing the impact of environmentally induced stress in animals 
(Evariste et al., 2019) and for identifying responses to such disturbances 
(See et al., 2025). Although the microbiome of decapods have attracted 
some scientific interest (Foysal, 2023), even to date N. norvegicus, a 
holobiont, has been sporadically studied. The bacterial microbiota of 
N. norvegicus has been investigated both in natural and experimentally 
reared populations (Meziti and Kormas, 2013; Meziti et al., 2012, 2010) 
and pathogens such as the dinoflagellate Hematodinium (Small et al., 
2006) have also been studied. Thus, the microbiome of this species is 
largely unknown, especially in the context of the most recently devel
oped and high-throughput sequencing technologies. For these reasons, 
the aim of the present study was to (a) investigate the gut bacterial 
microbiota in three geographically separated N. norvegicus populations 
from the Mediterranean and the North Seas, (b) detect any potential 
sex-related microbiota differences and (c) suggest potential core bacte
rial taxa for the species populations. It is hypothesized that the animal’s 
gut bacterial communities are highly similar because the animals live in 
habitats with rather low seasonal variations and very similar environ
mental conditions and because there is little, if any, genetic differenti
ation between the populations.

2. Materials and methods

2.1. Sample collection

In the European Union, decapods are not classified as experimental 
animals under legislation (Directive 2010/63/EU and SFS 2019:66), 
therefore no animal ethical permits for their collection are required. In 
Sweden the samples for this study were collected during the ordinary 
International Bottom Trawl Survey, performed under the EU Data 
Collection Framework. In Italy the samples for this study were part of 
the daily landings of standard commercial fishing vessel operating in the 
Strait of Sicily therefore these samples are subject to IACUC regulations. 
In Greece the samples were acquired during onboard fishing operations 
with commercial bottom trawler in the frame of the National Data 
Collection Framework Program; by the time of capture all samples were 
already dead. All sampling efforts was limited to minimize large-scale 
impacts on the populations and is conducted using methodologies to 
ensure animal welfare and all speciments didn’t go through any exper
imental procedure.

Samples from the North Aegean Sea were collected southwest off 
Thasos Island (Greece, 40.46◦N 24.6◦E) between 190 and 435 m depth 
on 31 October 2023 by a bottom otter trawl boat. The Italian samples 

were collected in the Strait of Sicily (37◦ 16’ N, 13◦ 02’W, at 350–400 m 
depth) on 13 September 2023 by a commercial bottom trawler. Samples 
from the Kattegat, eastern North Sea (56.22◦N 12.16◦E, at 33 m depth), 
were collected by a research vessel equipped with a bottom trawling 
fishing net on 28 August 2023. In all cases, fishing took place around 
dawn and early hours of morning hours. From each sampling site, a total 
of seven male and seven females were collected for further analysis 
(Table S1, Figure S1).

2.2. Sample processing and microbiota analysis

For each individual and while on board the fishing vessel, the ani
mals were placed on ice immediately and the abdomen was severed from 
the cepaholothorax immediately after collection of the animals. The 
estimated time between fishing and sampling did not exceed four hours. 
The entire gut tissue was then carefully extracted by holding the 
abdomen with one hand and gently pulling the telson with the other on a 
pre-sterilised plastic board for each sample and wearing gloves which 
were replaced with new ones for each sampling. The collected gut tissue 
samples were stored immediately in DNA/RNA shield (Zymo Research, 
USA) and stored at − 800C after a few days. All gut samples contained no 
digesta. Gut bacterial communities composition of the gut tissue was 
determined after bulk DNA was extracted from approximately 0.25 mg 
of whole gut tissue (or eggs in the case for specimens from Greece) with 
the DNeasy PowerSoil Pro Kit (Qiagen, Germany) with no modifications 
from the suggested protocol. The eggs were carefully removed from the 
female individuals with presterilsed spatula and placed immediately in 
particle-free sterile sea water and rinsed three times; after the final rinse 
the eggs were placed in DNA/RNA shield and stored at − 800C. The 
V3–V4 regions of the bacterial 16S rRNA genes were amplified from the 
extracted DNA with the primer pair S-D-Bact-0341-b-S-17 and S-D-Bact- 
115 0785-a-A-21 (Klindworth et al., 2012). Sequencing of the amplicons 
was performed on a MiSeq Illumina instrument (2 ×300 bp) at the 
MRDNA Ltd. (Shallowater, TX, USA) sequencing facilities. The raw DNA 
sequences from this study have been submitted to the Sequence Read 
Archive (https://www.ncbi.nlm.nih.gov/sra/) in the BioProject 
PRJNA1070646 (BioSample SAMN39675726). The standard operating 
procedure of MOTHUR software (v.1.48.0) (Schloss et al., 2011; Schloss 
et al., 2009) was used for processing all the raw 16S rRNA sequence 
reads. Sequences assigned to mitochondria and chloroplasts, and single 
singletons were excluded from further analyses. The operational taxo
nomic units (OTUs) were determined at 97 % cutoff similarity level and 
were classified with the SILVA database release 138.1 (Quast et al., 
2013; Yilmaz et al., 2014). The final OTUs table was normalized to 33, 
164 sequence reads. Rarefaction curves (Figure S2) reached the plateau 
phase for the number of sequence reads we used for our analysis. The 
Nucleotide BLAST (http://blast.ncbi.nlm.nih.gov) tool was used for 
identifying the closest relatives of the resulting OTUs.

Testing of the differences across all samples were implemented in the 
PAleontological STudies (PAST) software (Hammer et al., 2001) by 
applying non-metric multidimensional scaling (nMDS) based on the 
unweighted pair group method with the arithmetic mean Bray–Curtis 
similarity. In addition, Bary-Curtis similarity permutational multivariate 
analysis of variance (PERMANOVA) with 9999 permutations, between 
the three geographical locations and sex of the N. norvegicus gut 
microbiota and eggs, was applied.

3. Results

The three investigated populations had specimens of different sizes, 
based on their carapace length and body weight (Table S1). The smallest 
animals were caught in Italy and the largest in Greece. Statistically 
significant differences between females-males, based on PERMANOVA, 
occurred only for the animals from Sweden (p = 0.027, F=19.810). 
Among animals of the same sex, the male specimens from Italy differed 
significantly from those from Sweden (p = 0.011, F=125.100) while the 
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females from Italy were different from those from Greece (p = 0.015, 
F=32.600) and Sweden (p = 0.014, F=277.100). The three populations 
were clearly separated with their male and female specimens over
lapping in terms of their gut microbiota structure (Fig. 1). The relative 
contributions of bacteria at the class-level were also similar between 
females and males in each of the three populations, with Fusobacteriia 
and Bacteroidia prevailing in the Swedish specimens, Bacilli and Gam
maproteobacteria prevailing in the Italian specimens, and Spirochaetia 
along with Bacilli prevailing in the female Greece gut samples while the 

male samples were very diverse. In the eggs samples from the specimens 
from Greece, the Actinobacteria, Alphaproteobacteria and Gammpro
teobacteria prevailed (Fig. 2).

A total of 2385 bacterial OTUs were identified across all samples. 
Females had between 417 (Greece) and 931 (Sweden) OTUs while the 
respective range for males was between 489 (Italy) and 1290 (Greece), 
while 180 OTUs were found in eggs from Greece (Table 1). The structure 
of the eggs bacterial communities was statistically different from both 
the gut microbiota of both females and males (Table 2). Moreover, there 
was no overlap between the dominant (relative abundance ≥80 %) 
OTUs in these samples (Table S2). Females had higher number of shared 
OTUs with the eggs bacterial microbiota (24.9 %) compared to males 
(10.6 %) (Figure S3). For each population, no significant differences 
were observed between females and males, but statistically significant 
differences occurred for each sex between all populations except be
tween males from Greece and Italy (Table 2).

The populations from Italy and Sweden were highly dominated by 
the same OTU for both females and males, a Photobacterium-related 
(OTU-0002) and a Psychrilyobacter-related (OTU-0001), respectively 
(Table 1). The females of the Greek population were dominated (17.8 %) 
by the Spirochaetia-related OTU-0004 while the dominant 
Cyanobiaceae-related OTU-0018 for males prevailed with 8.4 % relative 
abundance (Table S2).

In each population, a different set of OTUs were found to occur in 
abundances ≥ 1 % concomitantly in both the females and males, i.e. 
denoted as “most important OTUs” in the study, in each population 
(Fig. 3, Table 3). Three of these, 17 in total, most important OTUs, 
namely OTU-0001, − 0003 and − 0013, were found in all three 

Fig. 1. Non-metric multidimensional scaling (nMDS) of male (♂ ) and female 
(♀) individuals of Nephrops norvegicus gut from Greece (GRE), Italy (ITA) and 
Sweden (SWE).

Fig. 2. Relative abundance of class-level operational taxonomic units in the female (F) and male (M) Nephrops norvegicus gut from Greece (GR), Italy (IT) and 
Sweden (SW).
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populations. The population from Sweden had 5/10 most important 
OTUs occurring exclusively in these samples, while the populations from 
Italy and Greece had only 2/8 and 1/9, respectively. Regression analysis 
of the most important OTUs abundances vs. their total body weight, 
showed two cases of statistically significant negative regressions (OTU- 
0002, − 0005) and five cases of positive regressions (OTU-0004, − 0010, 
− 0011, − 0013, − 0015) (Table 3). There were no “most important” 
OTUs between the eggs and females or males in the Greek population 
(Figure S4). In each population, the females:males ratios of abundant 
OTUs, i.e. relative abundance of ≥ 1 % in each population, which 
exhibited high (>10) or low (<0.1) values, revealed that various and no 
overlapping between females and males OTUs contributed differentially 
to these bacterial communities (Fig. 4). Each population had a different 
set of OTUs with 0.1 <ratio> 10 for all OTUs (Figure S5). The popula
tion from Italy had the lowest number of OTUs (8) with females:males 
ratio > 10 and the highest (74) in the population from Sweden. The 
population from Sweden showed the lowest numbers of OTUs (14) with 
ratios < 0.1 while the highest number of this ratio occurred in the 
population from Greece (Figure S5).

4. Discussion

In our study, the gut bacterial communities in three different 
N. norvegicus populations including both male and female samples, were 
analysed to detect potential differences between geographic regions and 
sexes. As the exact age/developmental stage of the collected animals is 
difficult to determine safely, we used the total body weight and carapace 
length as indicators of growth, which can be related to some of the 
occurred OTUs.

Minor differences were observed between male and female in
dividuals in the Swedish and Italian populations, while differences 
observed between male and female gut samples from Greece at both the 
class and OTU levels might be associated with females that were car
rying eggs and that thus were probably consuming different food sour
ces. In particular, the influence of available feed on the gut microbiota of 

N. norvegicus has been investigated and confirmed in previous studies 
(Meziti et al., 2012, 2010).

The overall dominant OTUs detected in this study suggest that more 
algae-related feeding resources exist for all populations apart from the 
Italian polulation. More specifically the genus Psychrilyobacter, which 
dominates the Swedish population, is a Fusobacteriota bacterium that is 
very commonly detected in association with marine animals such as 
oysters (Fernandez-Piquer et al., 2012), snails (Aronson et al., 2016), 
mussels (Santibáñez et al., 2022) and crabs (Zhang et al., 2017), while it 
also exhibits free-living lifestyles and is a part of the rare biosphere (Liu 
et al., 2023; Yadav et al., 2021). A recent study combining 
cultivation-dependent and cultivation-independent methods, revealed 
several functions of a Psychrilyobacter isolate abalone where this specific 
genus is thrived. Among others, the isolate could utilize mono
saccharides and disaccharides but not polysaccharides, implying that it 
is possibly involved in later fermentation steps but not in initial food 
degradation (Liu et al., 2023). The authors reported that Psychrilyobacter 
is a versatile fermenter that, in collaboration with other bacteria, is very 
important in the digestion of the algae consumed by the host. However, 
N. norvegicus does not feed on algae although remains of plants have 
been found in its stomach (Cristo and Cartes, 1998). Previous studies on 
seasonal changes in the N. norvegicus gut microbiome have suggested 
that temporal changes in the water column leading to increased algal 
material concentrations in sediment might increase the presence of 
alginolytic communities in the N. norvegicus gut microbiome (Meziti 
et al., 2010).

Populations from Greece are characterized by sexual variability, 
leading to the prevalence of a conspicuous Spirochaetaceae represen
tative in females. The genus Oceanispirochaeta, observed in this study, 
contains three fully described species that are obligately anaerobic 
sediment chemoorganotrophs and rely mainly on mono- and disaccha
ride fermentation (Dubinina et al., 2020; Subhash and Lee, 2017). 
Although the importance of Spirochaeta in the termite gut has been well 
studied (Breznak and Leadbetter, 2006), there is not much information 
regarding their contribution to marine animals. Recently, spirochaetes 

Table 1 
Midgut bacterial operational taxonomic units (OTUs) from three Nephrops norvegicus populations. Sequence reads= 33,164; N = 7 for male and female individuals, 
N = 5 for eggs.

Average carapace length (mm) 
(coefficient of variation)

Average total body weight (g) 
(coefficient of variation)

No. of OTUs (average, 
coefficient of variation)

No. of OTUs with ≥ 80 % 
relative abundance

Most dominant OTU (% 
relative abundance)

Greece Eggs - - 180 
(86, 4.2 %)

17 OTU− 0020 (18.5 %) 
Cutibacterium

​ Females 46.0 (11.6 %) 74.0 (30.9 %) 417 
(128, 24.1 %)

11 OTU− 0004 (17.8 %) 
Oceanispirochaeta

​ Males 46.7 (14.6 %) 77.0 (42.0 %) 1290 
(335, 64.2 %)

20 OTU− 0018 (8.4 %) 
Cyanobium

Italy Females 34.9 (4.5 %) 32.4 (10.3 %) 434 
(136, 24.0 %)

7 OTU− 0002 (20.2 %) 
Photobacterium

​ Males 36.9 (4.0 %) 36.3 (13.9 %) 489 
(153, 30,4 %)

10 OTU− 0002 (20.3 %) 
Photobacterium

Sweden Females 45.0 (0.0 %) 64.6 (2.5 %) 931 
(252, 63.0 %)

14 OTU− 0001 (24.5 %) 
Psychrilyobacter

​ Male 45.0 (0.0 %) 67.9 (1.6 %) 527 
(161, 36,7 %)

11 OTU− 0001 (25.5 %) 
Psychrilyobacter

Table 2 
Permutational analysis of variance (PERMANOVA) of eggs, male and female individuals of Nephrops norvegicus gut bacterial communities from Greece (GRE), Italy 
(ITA) and Sweden (SWE). * : p < 0.05, * *: p < 0.002, * ** : p < 0.01.

Eggs-Females Eggs-Males Female-Males Females Males

GRE p = 0.027 * 
F= 3.162

p = 0.046 * 
F= 2.190

p = 0.897 
F= 1.565

GRE-ITA p = 0.032 * 
F= 2.916

p = 0.580 
F= 1.579

ITA X X p = 1.000 
F= 0.616

ITA-SWE p = 0.027 * 
F= 2.981

p = 0.021 * 
F= 2.668

SWE X X p = 0.960 
F= 1.668

GRE-SWE p = 0.008 * ** 
F= 3.611

p = 0.015 * 
F= 3.438
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associated with a marine sponge were reported to mediate terpene 
production for possible protection of their host against oxidative stress 
(Waterworth et al., 2024) and were also speculated to be involved in 
nitrite metabolism and the degradation of complex sugars in the gut of 

the mudshrimp Gilvossius tyrrhenus (formerly Pestarella tyrrhena) (Demiri 
et al., 2009).

The genus Photobacterium is commonly detected in the gut micro
biomes of N. norvegicus and other crustaceans (Foysal, 2023; Jiang et al., 

Fig. 3. Most important (relative abundance ≥1 % in both male and female individuals) bacterial operational taxonomic units (OTUs) of the Nephrops norvegicus gut 
from Greece (GRE), Italy (ITA) and Sweden (SWE). Red dots: bacterial operational taxonomic units (OTUs); blue and pink dots: important OTUs, i.e. ≥ 1 % relative 
abundance in males and females only, respectively.
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2023; Meziti et al., 2012; Moi et al., 2017). This genus can produce 
several beneficial compounds such as polyunsaturated fatty acids, li
pases, esterases and antimicrobial compounds and is also a good 
candidate for probiotic use (Jiang et al., 2023; Le Doujet et al., 2019). In 
our study, this genus was dominant in the Italian population and 
important for both the Swedish and Italian populations. Its negative 
correlation with size may be related to its prevalence in younger pop
ulations. Notably, in an older study examining the N. norvegicus gut 
microbiota in reared populations receiving different feeds, Photo
bacterium was the most abundant genus in mussel-fed individuals and 
appeared to be a potential probiotic (Meziti et al., 2012).

Finally, the conspicuous Mycoplasmataceae (ca. Hepatoplasma) 
representatives were also prevalent in this study, similar to previous 

studies on N. norvegicus as well as other crustacean gut microbiomes 
(Meziti et al., 2012). These bacteria were initially, detected in the 
midgut glands (hepatopancreas) of the terrestrial isopod Porcellio scaber 
(Wang et al., 2004) and have been shown to benefit their hosts under 
low-nutrient conditions (Fraune and Zimmer, 2008). Today it seems that 
this bacterial taxon is frequently abundant in various decapods (Foysal, 
2023), such as in the hepatopancreas of the velvet crab Necora puber 
(Martin et al., 2024) and in the gut of deep-sea amphipods (Cheng et al., 
2019); it has also been identified in juvenile (Sun et al., 2020) and adult 
individuals (An et al., 2024) of the mitten crab Eriocher sinensis, juvenile 
Caribbean spiny lobsters Panulirus argus (Zamora-Briseño et al., 2020), 
the mud crab Scylla paramamosain (Jiang et al., 2023) and the vent 
shrimp Rimicaris exoculata (Aubé et al., 2022). Genome sequencing of ca. 
Hepatoplasma (Collingro et al., 2015) as well as Metagenome Assembled 
Genomes (MAGs) sequencing (Aubé et al., 2022), revealed that typical 
Mycoplasmataceae had a reduced genome size, with the majority of 
energy-producing pathways missing, with the exception of glycolysis. 
Similarly, the majority of nucleotide and amino acid biosynthesis 
pathways are not present in the genomes, suggesting that ca. Hep
atoplasma mainly relies mainly on its host or syntrophic bacteria for its 
growth (Aubé et al., 2022).

Overall, the majority of the dominant and ‘important’ OTUs in our 
dataset belonged to groups and genera that had been previously detec
ted in N. norvegicus or other crustaceans gut microbiome studies (Meziti 
et al., 2012; Meziti et al., 2010; Aubé et al., 2022; Jiang et al., 2023). 
Most importantly, the closest relatives detected, for the majority of the 
‘important OTUs’, were phylotypes from previous N. norvegicus gut 
microbiome studies mainly performed in Greece more than one decade 
ago implying the presence of a core gut N. norvegicus microbiome 
regardless of geographical boundaries. Similar findings were reported 
for the mud crab Scylla paramosain, where ca. Hepatoplasma, Vibrio, 
Photobacterium, Carboxylicivirga were identified as core gut microbiota 
genera from different coastal regions in southern China (Jiang et al., 
2023).

To date, no known interaction between the N. norvegicus sex and its 
gut microbiota exists. However, it is known that some vertebrate ste
roids (e.g. oestradiol, progesterone and testosterone) influence and are 
dependent on the developmental stage and reproduction of the 
H. americanus and N. norvegicus lobsters; these steroids are most likely 
species-specific (Burns et al., 1984; Chang, 1997; Fairs et al., 1989). 
Bacteria seem to play a role in regulating the levels of steroid hormone in 
mammals. For example, the activity of the β-glucuronidase produced by 
gut bacteria, such as Bacteroides and Clostridium, regulates the levels of 
active oestrogen by breaking glycosidic bonds between glucuronic acid 
and oestrogen (Cotton et al., 2023). β-glucuronidases are widespread 
among several bacterial taxa (Lombard et al., 2013; Wardman et al., 
2022), some of which are among the most abundant found in this study 
(e.g. Clostridia, Sphingomonadaceae, Spirochaetia). Bacteria also seem 
to be also involved in the degradation or the production/reactivation of 
testosterone since changes in the gut microbiota changes can be 
accompanied by changes in testosterone levels (Cotton et al., 2023). 
Other invertebrates, such as cephalopods, have an accessory nidamental 
gland that is known to harbour specific microbiota for assisting the 
defence of their females against pathogens and fouling organisms 
(Vijayan et al., 2024). In addition, our current dataset cannot provide 
any potential metabolic features of the investigated microbial commu
nities as several of the most important OTUs cannot be securely affiliated 
with any of the known bacterial taxa (see Table S2). These yet-to-be 
cultivated Bacteria, which hinder the full characterization of their 
ecological demands, may prevent us from having a more complete pic
ture of the life cycle of this animal as well as its commercial cultivation.

In conclusion, this study revealed that in three geographically distant 
populations of the Norway lobster N. norvegicus, from the Mediterranean 
and North Seas, the gut microbiota was similar between male and female 
individuals. Geographic location, however, seemed to distinguish the 
gut microbiota for each sex. In addition, the eggs had a very distinct 

Table 3 
Regression of the total body weight vs. the abundance of each of the most 
important operational taxonomic units (OTU) from three Nephrops norvegicus 
populations. N = 42; negative and positive regressions are in red and blue let
ters, respectively; * : p < 0.05; G: Greece, I: Italy, S: Sweden.

OTU Bacterial taxon Closest (≥98 %) relative 
in NCBI (GenBank 
accession no.)

p r

0001 
(G/ 
I/ 
S)

Psychrilyobacter Uncultured bacterium 
clone SS1_B_01_74 
(EU050918)

0.165 0.218

0002 
(I/ 
S)

Photobacterium Photobacterium 
phosphoreum 
(AB179540)

0.031 * − 0.333

0003 
(G/ 
I/ 
S)

Mycoplasmataceae 
(Ca. Hepatoplasma)

Uncult. bacterium from 
N. norvegicus gut 
(JN092163)

0.219 − 0.194

0004 
(G/ 
I)

Oceanispirochaeta ​ 0.001 * 0.487

0005 
(G/ 
I)

Mycoplasmataceae 
(Ca. Hepatoplasma)

Uncult. bacterium from 
N. norvegicus gut 
(JN092262)

0.016 * − 0.368

0006 
(S)

Ancyomarina Uncultured 
Bacteroidetes bacterium 
clone FII-OX025 
(JQ579674)

0.131 0.237

0008 
(I)

Mycoplasmataceae 
(Ca. Hepatoplasma)

Uncult. bacterium from 
N. norvegicus gut 
(JN092255)

0.089 − 0.266

0009 
(I)

Aliivibrio Aliivibrio wodanis 
(LR721750)

0.121 − 0.243

0010 
(G/ 
S)

Kordiimonas Uncult. 
Alphaproteobacteria 
from N. norvegicus gut 
(JN092256)

0.040 * 0.319

0011 
(G)

Desulfovibrio ​ 0.001 * 0.503

0012 
(S)

Desulfobacteraceae 
unclass.

Uncult. 
Desulfobacterales from 
N. norvegicus gut 
(GQ866071)

0.273 0.173

0013 
(G/ 
I/ 
S)

Carboxylicivirga Uncult. Bacteroidia from 
mud crab (Scylla 
paramamosain) 
gut (HE610318)

0.033 * 0.330

0015 
(G)

Bacteria ​ 0.015 * 0.373

0018 
(G)

Cyanobium Uncultured bacterium 
clone 2CE2-5m− 91 
(GU062169)

0.927 0.015

0021 
(S)

Vibrio Uncult. bacterium from 
N. norvegicus gut 
(JN092213)

0.125 0.240

0024 
(S)

Candidatus 
Absconditabacteriales

​ 0.470 0.115

0036 
(S)

Flavobacteriaceae 
unclass.

Uncultured bacterium 
clone EzyYyy31 
(KX172210)

0.464 0.116
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microbiota from the adult gut microbiota. Notably, among the dominant 
bacteria in the gut microbiota was a ca. Hepatoplasma representative, 
which has been reported in a previous N. norvegicus gut microbiome 
study from a different location. The metabolic repertoire of this likely 
lobster-specific microorganism along with those of other important ones 
identified in this study, can be a meaningful targets of future isolation 
efforts and/or meta’omics studies.
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Réveillac, E., Gestal, C., Spady, B.L., Li, D.H., Burford, B.P., Kerwin, A.H., Nyholm, S. 

V., 2024. Evolutionary history influences the microbiomes of a female symbiotic 
reproductive organ in cephalopods. Appl. Environ. Microbiol. 90 (3). https://doi. 
org/10.1128/aem.00990-23 e00990-00923. 

Wang, Y., Stingl, U., Anton-Erxleben, F., Zimmer, M., Brune, A., 2004. Candidatus 
Hepatincola porcellionum’ gen. nov., sp. nov., a new, stalk-forming lineage of 
Rickettsiales colonizing the midgut glands of a terrestrial isopod. Arch. Microbiol. 
181 (4), 299–304. https://doi.org/10.1007/s00203-004-0655-7.

Wardman, J.F., Bains, R.K., Rahfeld, P., Withers, S.G., 2022. Carbohydrate-active 
enzymes (CAZymes) in the gut microbiome. Nat. Rev. Microbiol. 20 (9), 542–556. 
https://doi.org/10.1038/s41579-022-00712-1.

Waterworth, S.C., Solomons, G.M., Kalinski, J.-C.J., Madonsela, L.S., Parker-Nance, S., 
Dorrington, R.A., 2024. The unique and enigmatic spirochete symbiont of 
latrunculid sponges. mSphere 9 (12), e00845–00824. https://doi.org/10.1128/ 
msphere.00845-24.

Webster, N.S., 2017. Conceptual and methodological advances for holobiont research. 
Environ. Microbiol. Rep. 9 (1), 30–32. https://doi.org/10.1111/1758-2229.12500.

West, A.G., Waite, D.W., Deines, P., Bourne, D.G., Digby, A., McKenzie, V.J., Taylor, M. 
W., 2019. The microbiome in threatened species conservation. Biol. Conserv. 229, 
85–98. https://doi.org/10.1016/j.biocon.2018.11.016.

Yadav, S., Koenen, M., Bale, N., Sinninghe Damsté, J.S., Villanueva, L., 2021. The 
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