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Highlights 
Characterizing the root microbiome 
in wild and domesticated plants and 
identifying beneficial bacteria and fungi 
that promote growth and confer resis-
tance to diseases, pests, and abiotic 
stresses offers a promising path for 
crop improvement. 

Key genes regulating the assembly 
and composition of the rhizosphere 
microbiome have been identified in 
plant genomes, influencing root 
morphology, metabolism, and exu-
dates, nutrient uptake, and immune 
responses. 
Climate change-induced stresses are perceived by plants at the root–soil 
interface, where they are alleviated through interactions between the host 
plant and the rhizosphere microbiome. The recruitment of specific 
microbiomes helps mitigate stress, increases resistance to pathogens, and 
promotes plant growth, development, and reproduction. The structure of the 
rhizosphere microbiome is shaped by crop domestication and variations in 
ploidy levels. Here we list key genes that regulate rhizosphere microbiomes 
and host genetic traits. We also discuss the prospects for rigorous analysis 
of symbiotic interactions, research needs, and strategies for systematically 
utilizing microbe–crop interactions to improve crop performance. Finally, we 
highlight challenges of maintaining live rhizosphere microbiome collections 
and mining heritable variability to enhance interactions between host plants 
and their rhizosphere microbiomes. 
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Allopolyploidization may have led to 
more diverse rhizosphere microbiomes 
and, hence, to a broader adaptation 
than the diploid progenitors. Synthetic 
allopolyploids can serve as a novel 
genetic resource for breeding. 

Conservation of wild and domesti-
cated plants and microbial genetic 
resources is required for the suc-
cessful development of more resilient 
cropping systems.
Rhizosphere microbiomes 
The concept of plant holobiont (see Glossary) has been around for decades, but has recently 
gained significance due to the strong interdependence between plants and their microbiomes. 
This plant–microbiome interaction presents a valuable opportunity for manipulating both plant 
and microbiome genomes to enhance plant growth, improve plant health, and reduce the envi-
ronmental impact of crops. Hence, harnessing the potential of the plant-associated microbiome 
brings us closer to achieving agricultural sustainability. While the phyllosphere (the aboveground 
plant parts) constitutes the largest microbial habitat on planet Earth, the microbiome it harbors is 
exposed to severe abiotic and biotic constraints, making it heterogeneous and unstable [1]. By 
contrast, the rhizosphere, a hotspot of microbial activity, offers a relatively stable environment 
with buffered fluctuations, thereby being the system of choice when attempting microbiome 
engineering. This zone harbors a rich range of diverse microorganisms, including bacteria, 
followed by fungi, viruses, and phages [2]. In this review, we have restricted ourselves to the 
two most dominant groups in the rhizosphere: bacteria and fungi. Extensive research has identi-
fied biotic and abiotic factors that shape the rhizospheric microbial communities. The tripartite 
interaction between the plant, the microbiome, and the environment determines the diversity of 
the rhizospheric microbiome [3,4]. Factors such as plant species, genotype, and rhizodeposition 
profile play a crucial role in recruiting specific rhizospheric microorganisms; in addition, the multi-
tude of interactions, including competition and symbiosis, among the microbial members 
impact the successful colonization of this zone [5]. Important drivers of rhizospheric microbial 
composition and diversity include edaphic factors, such as soil type, pH, and nutrient status, 
as well as climatic variables, such as temperature, light intensity, and precipitation (moisture 
content) [6,7]. Additionally, anthropogenic activities have resulted in major shifts in the plant 
microbiome, resulting in altered diversity and resilience [8]. These changes can ultimately result 
in disease outbreaks and adversely affect the overall functioning of ecosystems [9]. In fact,
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modern agriculture has been tagged as a prime cause for the deteriorating diversity of soil micro-
bial communities [10,11]. Notably, the relevance of these effectors varies spatiotemporally [12].

Domestication and ploidy impact the composition and diversity of rhizosphere 
microbiomes 
Domestication and polyploidization are two processes that have strongly affected plants, 
including their genetic diversity and cellular, biochemical, and physiological functions, from the 
level of the genome to the ecosystem. Changes in ploidy have occurred frequently throughout 
the millions of years of the evolutionary history of the plant kingdom [13]. By contrast, domestica-
tion is thought to have started only about 10 000–12 000 years ago [14]. Humans played a sig-
nificant role in the domestication process from its initial steps to the present, as they sought to 
adapt crops to variable environments, and evolving human needs over time [15,16]. Although 
both diploid and polyploid crops are successful, polyploidy is generally thought to provide signif-
icant evolutionary advantages and it is not surprising that polyploidization has also played a 
significant role in domestication. 

In a study of the interaction between an allotetraploid relative of soybean (Glycine dolichocarpa) 
and novel rhizobial symbionts (including NGR234), Powell and Doyle [17] concluded that the 
allotetraploid had an increased capacity for rhizobial interactions compared with its diploid ances-
tors, Glycine tomentella and Glycine syndetika, Furthermore, Powell and Doyle [18] observed that 
the allotetraploid had reduced stress-correlated transcription and enhanced transcription of 
hormonal signaling genes, which are important in nodulation. Rhizosphere microbiota of rape-
seed (Brassica napus, AC genome) had a higher diversity than those of its two diploid progenitors 
(Brassica rapa, A genome; Brassica oleracea, C genome). This suggests that synthetic rapeseed 
allopolyploids could be a potential source of additional genetic diversity for the improvement of 
domesticated allopolyploids because of additional microbiota [19]. The increased diversity 
observed in polyploids may explain their broader adaptability compared with their diploid 
relatives. By contrast, Wipf and Coleman-Derr [20] observed only minor differences in the corre-
sponding microbiomes between wild and domesticated wheat types across three ploidy levels. 

Studies on the effect of domestication on the rhizosphere microbiome have three specific 
emphases, which align with well-known domestication triangle concept, which includes plants, 
biotic and abiotic environments, and human agency [15,21]: 

(i) Differences between gene pools (wild ancestors, landraces, and modern cultivars): diploid to 
tetraploid to hexaploid wheat [22–24], barley [25], rice [26], common bean [27], soybean 
[28,29], and Lima bean [30]. 

(ii) Contrasting soil environments: sandy versus loamy soil in tetraploid wheat [23], nitrogen 
fertilization in Trifolium spp. [31], native inoculants in cowpea [32,33], and soil nutrient avail-
ability in potato [34]. 

(iii) Varying management by humans: native versus agricultural soil [35] and organic versus 
conventional cropping [36] in common bean, forest versus agricultural soil in soybean [28], and 
agricultural (maize) versus prairie (Andropogon gerardii), and wild (teosinte) soils in maize [37]. 

Overall, identifying generalizable evidence that explains changes in the rhizosphere microbiome 
attributable to domestication is difficult because there is considerable variation in the 
microbiome's composition. Other factors include the species, genotype within species, develop-
mental stage (vegetative vs. reproductive), plant compartment (e.g., rhizosphere and root), root 
exudates, soil type and microbial population, and crop management. Some form of experimen-
tal standardization in the experimental conditions is valuable to make results directly comparable.
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Glossary 
Anthropogenic: environmental change 
caused or influenced by people, either 
directly or indirectly. 
Chemostatic: microbes maintain a 
balanced response to the plant’s 
signals, possibly adjusting their growth, 
nutrient consumption, or metabolic 
activity according to the signalization 
received from the plant. 
Cry for help theory: plants under 
stress shift their exudation patterns to 
release specific chemicals that attract 
beneficial microbes capable of 
overcoming stress. 
Domestication: a coevolutionary 
process that arises from a specialized 
mutualism, in which one species 
(e.g., humans) controls the fitness of 
another (e.g., plants) to gain resources 
and/or services. 
Genome-wide association studies 
(GWAS): a research approach to 
Identify genomic variants significantly 
associated with trait expression 
based on existing, diverse populations 
with limited linkage disequilibrium 
compared with bi- or multi-parental 
populations. 
Genomic selection (GS): marker-
assisted selection using all SNPs 
covering the whole genome, facilitating 
rapid selection of superior genotypes 
and accelerating the breeding cycle. 
Glucosinolates: S- and N-containing 
compounds derived from glucose and 
various amino acids possessing a range 
of bioactivities in Brassica plant family. 
Heterosis: superior performance of F1 
hybrid over its parental lines. 
Holobiont: colonization of the 
rhizosphere environment of the host 
plant with bacteria, fungi, and viruses for 
mutualistic symbiosis. 
Immunity: innate or induced capacity 
of plants to eliminate pathogens. 
Inbreeding depression: inferior 
performance of an offspring as result of 
continuous breeding between closely 
related individuals of a species. 
Landraces: locally adapted traditional 
varieties of domesticated plants 
developed over time through natural 
selection. 
Metagenomics: a suite of genomic 
technologies and bioinformatics tools to 
directly access the genetic content of 
entire communities of organisms. 
Operational taxonomic unit (OTU): a 
group of organisms that are closely 
related and are grouped together based 
on the similarity of their DNA sequences.
Mining heritable variability for rhizosphere microbiome across germplasm and 
environments 
In both agricultural and natural environments, the symbiotic association between organisms of 
different kingdoms is well known. Almost all animals (including insects) have gut microbiomes 
that allow the host to metabolize and absorb a wide range of foods. Lichens necessarily involve 
symbiosis between a specific photosynthetic algae or cyanobacteria producing carbohydrates 
and a fungus [38]. For other plants, the rhizosphere, with interactions between plants and soil 
microorganisms influence nutrient uptake, abiotic and biotic stress resistance, and overall plant 
growth. There is increasing interest in understanding the nature and genetic basis of plant– 
microbiome associations, particularly the heritable variability within germplasms that can be 
harnessed to develop crops with optimized microbial communities for enhanced resilience and 
yield. 

The roots of almost all higher plants can have a close, symbiotic, relationship with arbuscular 
mycorrhizal fungi (AMF). Carbohydrates are supplied to the fungi from photosynthesis, while 
the fungi enhance the uptake of water and nutrients (in particular phosphates). AMF are obligate 
symbionts, but most host plants can live without the fungi. Marram grass (Ammophila spp.) 
typically growing on coastal sand dunes, with low nutrients, salt, waterlogging, or desiccation, 
are a good example where establishment is very poor in sterilized sand but mutualism between 
the plant and fungi allow establishment and contributes to ecological succession of species in 
this demanding ecosystem [39]. Rhizobia could be exploited to enhance agricultural production 
through yield increase in existing fields, although some areas (such as dunes) may be sites of 
biodiversity, environmental sensitivity, or provide ecosystem services such as flood protection, 
so may not be appropriate for food production. 

In legumes, nodulation of the roots is well known as a major symbiosis, with the plant gaining fixed 
nitrogen while the fungi gain fixed carbon to grow. As early as 206 BC–8 AD, Fan Shengzhi Shu 
recognized the value of crop rotation (http://en.chinaculture.org/library/2008-02/08/content_ 
22469.htm) where the inclusion of legumes gave substantial advantages to subsequent non-
nitrogen fixing crops. Today, legumes require little nitrogen fertilizer and following crops benefit 
from the residual nitrogen. Many trials have been carried out involving mixtures of legumes and, 
particularly, grasses including both cereals and forages, while a number of commercial inoculants 
of legume nodulation bacteria (rhizobia) have been marketed as cultures or seed treatments. Over 
decades, successful outcomes have been reported for yield and production cost, but none has 
been adopted widely. 

With the genomics revolution and opportunity to identify the genetic nature and variability of 
rhizosphere microbiomes, there are huge opportunities to identify plant genetic factors, fungal 
species and genotypes, and their interactions. Metagenomics of soils provides a comprehen-
sive view of microbial diversity, and transcriptomics can show how host genes influence microbial 
recruitment and function. Can genome-wide association studies (GWAS) link genetic loci in 
crop genotypes and specific microbial traits in the rhizosphere to crop performance? 

Field-scale experiments are needed to examine interactions of crop genotype, various soil 
microbiomes, and environmental variability. By conducting experiments across multiple environ-
ments, researchers can identify genotype-by-environment (G×E) interactions, with potential to 
identify appropriate crop genotype and microbial genotype pairs or groups with enhanced perfor-
mance. It is clear that plant traits such as root architecture, exudation profiles, and immune 
responses, are genotype-specific characters that influence rhizosphere assemblages through 
microbial recruitment and community structure. Breeding programs might target specific  traits
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Polyploidization: a condition where an 
organism has more than two complete 
sets of chromosomes. 
Recombinant inbred line (RILs): a 
powerful tool for genetic mapping 
originated from biparental or complex 
crosses by single seed descent method. 
Rhizosphere: the narrow region of soil 
surrounding plant roots where complex 
interactions between the plant, soil, and 
microorganisms occur. 
Rhizosphere microbiome: 
community of microorganisms 
surrounding plant roots. 
Root architecture: spatial 
configuration of a root system in the soil, 
including root distribution with depth, 
root topology, and root morphology. 
Root exudate: a complex mixture of 
organic compounds, including amino 
acids, organic acids, and simple sugars 
released by plant roots into the soil. 
Symbiosis: a close and prolonged 
mutualistic association between two or 
more different biological species. 
SynCom: a cutting-edge technology 
involving co-culturing multiple taxa under 
well-defined conditions to mimic the 
structure and function of a microbiome. 
Terroir: a set of growing conditions, 
including cultivation practices and 
environmental conditions, associated 
with a certain geographic location and its 
influence on the product’s  chemistry  .
Transcription factor (TF): a  protein  
that regulates the transcription of genes, 
or the process of copying DNA into 
RNA .
Volatile organic compounds (VOCs): 
small, gaseous molecules produced and 
released by microorganisms, such as 
bacteria and fungi, allowing microbes to 
interact with their environment, including 
plants. 
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that favor interactions with beneficial microbiomes. Thus, mining heritable variability for rhizo-
sphere microbiomes across germplasms and environments holds promise for improved agricul-
ture, integrating microbiome research with plant breeding [40].

Key genes regulating rhizosphere microbiomes and host-associated genetic 
variation 
Plant roots interact with various microbes in the rhizosphere [41] and many of these interactions 
affect plant growth and fitness [42,43]. The outcome of plant root–microbiome interactions is 
determined by multiple factors, including host genetics, climatic and edaphic factors, and rhizo-
sphere properties [44–47]. In recent years, studies have shown that host genetics, which regu-
lates root architecture, exudates, immune response, and nutrient uptake, influences the 
composition and structure of the rhizospheric microbiome [48,49]. For example, genes associ-
ated with root and root hair development in different plant species potentially shape the compo-
sition and activity of the microbial community by changing root exudate profiles. In Arabidopsis, 
AXR2 and RHD6 are key genes in root hair formation, increasing root surface area and altering 
root-mediated exudates that potentially structure the rhizosphere microbial community [50,51]. 
In addition, genes RTH6, LRT1, RUM1,  and  RTCs related to root development in maize also 
shift the structural composition of root-associated microbes [49,52]. 

Genes that regulate the uptake and transport of nutrients, such as ammonium or nitrates, NRT1.1 
[53], and PHT1 [54], also potentially alter root-associated microbiota by selectively recruiting 
nitrogen-fixing and phosphorus-solubilizing bacteria. Plant genes such as FNS and C2 that 
regulate the biosynthesis of secondary metabolites (e.g., flavonoids in maize) [55] and ABC trans-
porter genes [56,57], which transport endogenous secondary metabolites, significantly reshape 
the structure of microbial communities. 

The composition of the rhizosphere microbiome is also influenced by plant defense-related 
genes. Examples are the flagellin sensing gene2 (FLS2)  [58,59]  and  NLR [60,61], which act as 
decoys to recognize microbially derived molecules, substantially altering rhizosphere microbial 
diversity by modulating the plant immune response, which may affect the availability of nutrients 
and metabolites. Another example is the protein NPR1 governing defense response genes related 
to salicylic acid-mediated systemic acquired resistance (SAR) that alters the structure of the 
rhizospheric microbial community. Moreover, the compositional structure of these microbiomes 
is influenced by many plant transcription factors (TFs), such as MYB72 [62], WAK2 [63], and 
WRKY [64], which regulate the host immune system in response to pathogens or abiotic stress. 

Host-associated variations of plant genes play an important role in reshaping plant roots and 
associated microbes. In recent years, an increasing number of GWAS have identified loci and 
quantitative trait loci (QTL) associated with variation in microbial abundance and diversity in 
Arabidopsis [65], barley [60], foxtail millet [48], and sorghum [66]. For example, barley sibling 
lines with allelic variations on the QRMC-3HS chromosome recruit different microbial taxa [60]. 
Variation in the relative abundance of heritable taxa also represents, in part, a dimension of 
host-associated genetic variation [67]. 

Integrated breeding approaches involving host (plant) and rhizosphere microbiome 
genes to enhance food/nutritional security and environmental sustainability in 
global south 
Beneficial plant and microbiome traits lost through domestication and genetic improvement 
The genetic bottleneck of crop domestication is widely accepted: individual plants gain mutations 
for critical domestication characters (e.g., non-dehiscence of harvested seeds; gigantism of
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harvested part or change in harvest index; uniform germination, etc.), which then come together, 
often via hybridization involving only a small part of the genetic diversity that is represented in 
the whole species. Genomic analysis of the domesticate will often identify a domestication signa-
ture, a 'selective sweep' with reduced genetic variation around the chromosomal loci of the 
domestication genes [16,68]. This selection, whether ancient or modern, by farmers, breeders, 
or researchers, almost never considers the soil microbiome and will often be carried out at a single 
plot or soil type. Later, when a selection is grown in multiple locations [69], it will have various 
soil microbiomes without the benefit of systematic analysis of the performance with known 
microbiomes. 

Unlocking the crosstalk between plants and microorganisms in the rhizosphere 
The plant–microbial interactions in the rhizosphere are primarily driven by molecular signaling 
allowing the recruitment of specific microbiome [70]. This microbial recruitment is controlled by 
root exudation, releasing multiple classes of compounds and signaling molecules [71], involving 
a biochemical crosstalk between plants and microorganisms [72,73]. Roots release sugars and 
organic compounds that promote microbial enrichment in the rhizosphere [74]. Previous studies 
have identified distinct root exudates involved in plant–microbe crosstalk, such as flavonoids [75], 
alanine [76], chitinase [77], citric acid [78], and succinic acid [79]. Another important mechanism is 
the release of volatile organic compounds (VOCs) acting as signals in plant–microbe interac-
tions [80]. Interestingly, plants recruit their rhizosphere microbiome to help them in supporting 
against biotic and abiotic stressors. When under biotic and abiotic danger, the plants start the 
recruitment of a specific microbiome to protect them [7]. There is a phenomenon known as the 
‘cry for help’ theory [81] where plants signal a selective recruitment of protective microbes 
[82]. For example, roots release specific compounds such as coumarins and oxylipins to recruit 
microbiomes that act against pathogens in the rhizosphere [62,83]. 

Although the different root exudate mechanisms involving the crosstalk between plants (varieties, 
landraces, or in the wild) and microorganisms have been studied, there are several gaps, such as 
the variation and composition across domesticated, and improved genotypes, different stages of 
plant development, and different plant compartments or organs. These features are important for 
designing strategies to utilize plant signaling for recruiting specific microbiomes. Additionally, the 
microbiome recruited by the rhizosphere can be vertically transmitted [84]. Indeed, previous stud-
ies have found that vertical transmission from the rhizosphere to seeds and progeny varies from 
5% to 70% [85,86]. Therefore, understanding the potential of microbial vertical transmission 
associated with specific roles of molecular signaling in recruiting beneficial microbial communities 
in the rhizosphere can be useful for plant breeding [87]. 

Breeding environments influencing rhizosphere microbiomes 
Millions of years of coevolution shaped plant–microbe associations, which could have been lost 
due to domestication and genetic improvement. Assessment of root-associated microbiomes 
at the seedling stage in wheat revealed that microbial taxa were highest in landraces adapted 
in low-input systems, while these were lowest in ancestors evolved in native soils. The microbial 
communities of modern wheat were different from those of landraces and wild ancestors. Tradi-
tional cultivars were enriched with Acidobacteria and Actinobacteria, while modern wheat with 
Candidatus Saccharibacteria, Verrucomicrobia,  and  Firmicutes. Fusarium, Neoascochyta,  and  
Microdochium, among fungi, were enriched in modern cultivars, thereby suggesting that genetic 
improvement has significantly impacted root microbiota, both bacteria and fungi [88]. 

Organic and inorganic production systems also influence rhizosphere microbiome composition 
and diversity, which in turn affects plant response to growth and reproduction, stresses, and
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nutritional quality of edible products. A comparative assessment of snap bean (Phaseolus 
vulgaris) recombinant inbred lines (RILs) evaluated under an organic production system 
showed that breeding environment (organic vs. conventional production system) of crops signif-
icantly altered the microbiome community composition, while the fungal communities varied 
between breeding histories and parentage [36]. 

Soil microbiomes influencing flavor chemistry of fruits and seeds 
Cultivation practices and environmental conditions within a geographic location, often termed as 
terroir, may affect the chemistry of plants’ edible produce, necessitating the need to optimize 
farm conditions to harvest maximum quality. Analysis of ripe tomato fruits harvested from plants 
grown in soil and hydroponic environments revealed that fruits harvested from soil had signifi-
cantly higher sugar content. Hydroponically harvested fruits were superior in organic acids. The 
cultivation practices significantly shaped the bacterial community composition, with bacterial 
communities in hydroponic tomatoes more variable than soil-grown tomatoes. The bacterial spe-
cies in soil-grown tomatoes correlated with higher concentrations of ‘green’ or ‘pungent’ volatiles. 
The greatest sweetness of ‘Solarino’ tomatoes correlated with aroma-related volatiles, fructose, 
and glucose, indicating that microbiota-related accumulation of flavor and aroma compounds are 
strongly dependent on the cultivation substrate and approach [89]. 

The differences in rhizosphere microbiomes may impact seed glucosinolates in Brassica 
species. A greenhouse study involving mustard plants (Brassica juncea) and distinct soil microbial 
communities established the links between the rhizosphere microbial community composition 
and the concentration of the main glucosinolate, allyl, in seeds. Specific rhizosphere taxa predic-
tive of seed allyl concentration were detected. The bacterial functional genes associated with 
sulfur metabolism partly explained the observed associations between specific rhizosphere and 
seed allyl concentrations [90]. 

A consortium of microbes (Box 1) isolated from tea roots enhanced ammonia uptake to facilitate 
the synthesis of theanine, a key determinant of tea taste. A comparative assessment of root 
microbiomes involving high- and low-theanine tea accessions unfolded a specific  group  of
microbes that modulated N2-metabolism to influence theanine levels in tea. The application of 
synthetic communities (SynComs) mirroring the microbe population composition found in high 
theanine roots resulted in a significant increase in the theanine content of tea plants [91]. 

Root microbiome-based inbreeding depression and heterosis, genomic selection, and tradeoffs 
The host plant significantly influences its associated microbial community composition [60], which 
has been molded by both plant domestication and crop diversification. Similarly, soil microbiomes 
play a crucial role in shaping the characteristics of their host plants. Inbreeding depression can 
diminish individual fitness and understanding its impact on population growth and viability can be 
facilitated through the availability of genomic data [92]. Incorporating this information into a 
theory-based hierarchical framework could potentially predict emergent behaviors that stem 
from interactions between individual traits [93]. In this context, Yang et al.  [94]  employed  a
microbiome-informed genomic selection (GS) strategy for selecting nitrogen (N)-related traits 
in maize. Their findings indicate that this method outperforms traditional GEBV modeling that 
relies solely on crop data for assessing plant growth and N response traits, especially under 
low N. This suggests that beneficial microbes may enhance N nutrient uptake under stress.

Liu et al.  [95] recently highlighted the phenomenon of microbiome-induced heterosis by observ-
ing distinct and varied seed microbiomes in rice hybrids, which led to superior seed germination 
compared with their parents. Wagner et al.  [96] showed that heterosis for root biomass (among
6 Trends in Plant Science, Month 2025, Vol. xx, No. xx
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Box 1. Conservation and cataloguing strategies for maintaining a live collection of beneficial rhizosphere 
microbiomes and the challenges involved 

In addition to their crucial role in improving plant growth and overall health [115,116], these rhizospheric microbes also 
harbor novel metabolites and genes that have potential applications in the biotech industry and the environment 
[117,118]. However, the degradation of the agroecosystem due to various factors has led to a loss of microbial diversity 
in the rhizosphere and limited their utilization in agriculture and industry to meet human needs [119]. Hence, conservation 
and cataloguing of these microbes with their functional traits plays a crucial role in sustainable agriculture, promoting 
research and fostering innovation in the biotech industry [120,121]. 

Microbial culture collections and repositories were begun in Prague at the end of the 19th century [122] and, a few years 
later, the concept of culture collection was extended to other European countries. Currently, 789 culture collections from 
77 countries are registered with the World Federation of Culture Collections (WFCC, https://www.wfcc.info/) to protect the 
microbial diversity with an important role in agriculture, public health, and food supply [123,124]. In addition, there are 
international centers, including ICARDA (https://genebanks.cgiar.org/genebanks/icarda/) and ICRISAT (https://oar. 
icrisat.org/987), which deal with the culture collection and conservation of rhizobium strains isolated mainly from legume. 
Over the years, various ex situ preservation methods, including repeated sub-cultivation, agar beads [125], storage in 
sterile soil, spray-drying, storage in silica gel, cryopreservation, and lyophilization [126] have been developed to preserve 
microbial collections. However, each strategy has its own advantages and challenges, as the response to preservations 
varies between and within species [127]. In situ preservation is used to preserve entire microbial communities together with 
their habitat. Although this strategy effectively preserves the integrity of the microbial ecosystem, its applications are limited 
by capacity constraints [119,128]. 

Advanced genomic, metagenomics, and bioinformatic techniques are essential for the characterization and cataloguing of 
microbial strains for future use. However, the high costs associated with these techniques and the lack of a standardized 
cataloguing protocol hinder microbial cataloguing efforts and make it difficult to document microbial diversity across differ-
ent repositories [129–131]. In addition, biosafety concerns and the ethical dilemma associated with patenting microbial 
resources limit the efficiency of microbial cataloguing activities [132,133]. Therefore, improved culture collections and 
cataloguing strategies are critical to fully exploit the potential applications of these rhizospheric microbiomes in sustainable 
agriculture. 

 

other traits) in maize is contingent upon the surrounding underground microbial environment. 
Despite ongoing inquiries into the mechanisms behind this heterosis within the endophytic 
microbiome and the reasons for the hybrid microbiota's advantageous traits, evidence suggests 
that hybridization itself affects both the rhizosphere and seed endophytic microbiome composi-
tions. Furthermore, the resulting microbiome following hybridization appears to be transmissible 
from the initial stage to subsequent generations [97]. 

Immunity may have an adverse impact on plant growth and development as well on rhizosphere 
microbiomes. Autoimmunity in Arabidopsis phytosulfokine receptor1 (pskr1)  mutant  displays
stunted plant growth, reduced defense-related gene expression, and reduced rhizosphere 
bacterial growth in response to growth-promoting Pseudomonas fluorescens [98]. PSKR1 
regulates the growth-defense tradeoff during Pseudomonas colonization by upregulating plant 
photosynthesis and root growth, but suppressing salicylic-acid-mediated defenses. pskr1 
stunting and restoration of bacterial growth are salicylic acid dependent. Thus, Pseudomonas 
induces PSKR1 expression in roots mediating tradeoff by manipulating plant signaling to promote 
Pseudomonas colonization. 

Resistance breeding to soil-borne diseases impacts rhizosphere microbiome community 
Soil-borne diseases caused by various pathogens, mainly fungi, viruses, and nematodes, pose a 
significant challenge to agriculture. These pathogens use plants as hosts for their development 
and the soil as a suitable environment for both their spread and long-term survival [99]. To protect 
plants against these pathogens, breeders employ strategies to confer resistance in plants. These 
strategies generally involve crossing susceptible and resistant genotypes to obtain resistant 
sources [100] and identifying key genes involved in resistance mechanisms [101]. Both strategies 
lead to changes in the genetic makeup of plants, which can have consequences for the
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Outstanding questions 
What approach should one follow to 
integrate knowledge gained from host 
(plant) and rhizosphere microbiome 
genetics to harness mutualistic 
symbioses in plant breeding? 

Can genomics be applied, potentially 
with GWAS-type analysis of crop and 
rhizosphere, to identify favorable crop– 
microbiome interactions? 

What crop- and environment-specific 
synthetic communities (SynComs) are 
ideal to identify and harness mutualistic 
symbiosis to make food crops resilient 
to stress, maintain/increase productiv-
ity, and improve nutritional quality? 

What are the optimum conditions to 
maintain live collections of rhizosphere 
microbiomes in genebanks and could 
long-term conservation bring changes 
in their genetic makeup? 

What genomic studies of biodiversity in 
the rhizosphere of diverse crops, and 
natural species or communities from 
various environments, are required? 

Is there sufficient knowledge to quantify 
the effects of soil, environment, and 
crop management practices on the 
rhizosphere microbiome to develop an 
accurate and predictable model to 
regulate the rhizosphere microbiome 
mechanisms, enhancing agricultural 
production in harsh environments? 

What host (plant) traits favor 
mutualistic interaction with beneficial 
rhizosphere microbiomes? 

What is the potential of microbiome 
vertical transmission in recruiting 
beneficial microbial communities in 
the rhizosphere? 

What procedural assay (throughput 
screen for large-scale evaluation of 
breeding populations) and statistical 
protocol follow to initiate rhizosphere 
microbiome-assisted plant breeding, 
considering genotype × environment 
interactions? 

Are genomic selection and gene 
editing options to retrieve missing 
functional rhizosphere microbiomes in 
crop domesticates, or should these 
be integrated into new crops as a part 
of de novo domestication?
rhizosphere microbiome. Additionally, plant breeders often overlook the importance of root traits 
and the rhizosphere microbiome in breeding programs. However, some studies have observed 
modifications in root traits during plant breeding [102,103], particularly in relation to the quality 
and quantity of exudates, which affect the recruitment of microbial taxa in the rhizosphere 
[36,104]. This is important because previous studies have shown the crucial role of the rhizo-
sphere microbiome as the first line of defense for plants against pathogen invasion [105–107]. 
For instance, Mendes et al.  [105] assessed the effect of breeding common bean for resistance 
against Fusarium oxysporum. They observed that resistance breeding altered the rhizosphere 
microbiome and recruited specific beneficial bacterial genera that exhibit antifungal traits against 
F. oxysporum. Later, Lazcano et al.  [107] observed differences in the rhizosphere microbiome 
when comparing strawberry genotypes susceptible and resistant to Verticillium dahliae and 
Macrophomina phaseolina. The authors found higher abundances of known biocontrol micro-
organisms, such as Burkholderia and Pseudomonas, in the rhizosphere of the resistant geno-
type. Thus, available studies report significant changes in root traits during plant breeding 
for resistance, which stimulate plants to recruit specific microbial groups within the rhizosphere. 
These beneficial and specific microbes play crucial roles in helping plants defend against 
pathogens. 

Developing a genotype–phenotype map involving host and symbiotic extended phenotype 
The intricate relationships between plant hosts and their associated microbes are well-
documented, yet the mechanisms through which plants influence these relationships remain 
largely unknown [108]. Plant genotypes significantly impact the structure of soil microbial commu-
nities, consequently affecting soil carbon stock compositions [109]. Hence, the soil microbiome, 
encompassing the collective genomes of all microorganisms present, can be considered the 
‘extended phenotype’ of a specific plant host, potentially varying under selective pressures. This 
concept, termed the ‘extended phenotype’, was introduced by evolutionary biologist Dawkins 
[110] to describe all environmental impacts exerted by a gene, both within and beyond the 
organism’s body. Changes in chromosomal regions (including structural variations) during cultivar 
development could influence this extended microbiome phenotype. 

A GWAS utilizing metagenomic data to define and quantify operational taxonomic units 
(OTUs) offers a robust, unbiased method for identifying microbes sensitive to host genotype 
and linking them to genetic loci influencing their colonization [111]. For instance, research by 
Bergelson et al.  [112] identified potential genes involved in plant immunity that affect microbiome 
traits in Arabidopsis. They also suggested that root microbiomes might rely on genes governing 
root and root hair development. Similarly, GWAS has been instrumental in uncovering plant loci 
responsible for the heritability of the leaf microbiome in maize [113]  and  rice  [114], as well as 
the rhizosphere microbiome in sorghum [66]. Further bioinformatic analysis of metagenomic 
data aids in comprehending the variations in OTU richness associated with each genotype. 

Concluding remarks 
Recent studies in plant breeding have shown that both plant genotype and the associated 
microbiome are important to obtain superior crop cultivars. Indeed, an understanding of the 
concept of plant holobiont, which includes rhizosphere microbiomes, confirms that microbes 
contribute to plant growth and development, improve plant health, reduce environmental 
impacts, and enhance nutritional quality of food crops. Rhizosphere microbiomes provide stable 
environments with buffered fluctuations (i.e., functional traits involved in abiotic stress adaptation), 
and microbiome-induced variations are heritable across germplasms and environments. Hence, 
it is essential to exploit both host (plant) and microbiome genetics to achieve resource-use 
efficient, and productive and nutritious crops, through plant breeding (Figure 1).
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Where new approaches to exploit 
enhanced rhizospheres (composition 
and management) are effective, how 
will these be adopted by both small-
holder and commercial farmers? 

What agronomic approaches 
(e.g., inoculations) can further comple-
ment and enhance plant–rhizosphere 
interactions? 
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Future studies should focus on mapping rhizospheres from contrasting terroirs to identify charac-
teristic microbial signatures for developing biomarkers that uniquely define and characterize 
crop production habitats. Additionally, it is important to develop and catalogue rhizosphere 
microbiota-derived consortia for in situ conservation tailored to specific crops and environments. 
A quantitative assessment should be conducted to identify microorganisms from contrasting ge-
notypes and environments to develop crop- and environment-specific SynComs. A two-pronged 
strategy should be adopted for the precise management and exploitation of environment- and 
plant genetic-dominated rhizosphere microbiomes. We should also adapt a paradigm shift for 
more holistic microbiome research to harness heritable variations associated with host (plant) 
and rhizosphere microbiome genetics. We should develop a network of microbe conservation 
genebank for futuristic plant breeding strategies. It will also be important to promote collaboration 
among molecular biologists/plant breeders, industry researchers, farmers, and traders involved in 
the conservation, development, and marketing of rhizosphere microbiome-based products. 
Strengthening government policy support for researchers will help unlock plant–microbe
TrendsTrends inin PlantPlant ScienceScience 

Figure 1. Schematic representation of the rhizosphere microbiome's role in promoting plant growth and enhancing tolerance to various stress factors. 
Factors such as host genetics, edaphic conditions, plant developmental stages, and domestication processes influence the composition and diversity of these 
microorganisms in the rhizosphere. Microbial contributions to plants, including nutrient acquisition (e.g., nitrogen fixation and phosphorus solubilization) and induction 
of systemic resistance are indicated by black arrows (↑). By contrast, pathogen inhibition, salt reduction (Na+), and bioremediation of heavy metals (e.g., Cd and Pb) 
are shown with red blunt lines (⊣). This figure highlights the interplay between plant genetics and rhizosphere microbial communities (which may be chemostatic, top 
right) in influencing nutrient cycling, stress resilience, and pathogen suppression. Abbreviation: ISR, induced systemic resistance. Figure created using Biorender.com.
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interactions and encourage farmers to adopt eco-friendly agricultural practices to restore soil and 
plant health, plant nutrition, and ecosystem health. Finally, improving rhizosphere-crop associa-
tions with research-based approaches will play an important role in both mitigation (increasing 
the sustainability of farming and reduction of greenhouse gas emissions) and adaptation (to 
altered conditions) of agriculture under a changing climate (see Outstanding questions). 
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