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Abstract—Spaceborne light detection and ranging (LiDAR)
provides a promising method for large-scale characterizing
leaf area index (LAI). However, the quality of point cloud
data from spaceborne LiDAR, especially Ice, Cloud, and land
Elevation Satellite-2 (ICESat-2), is susceptible to atmosphere
and background noise, introducing considerable uncertainty in
LAI retrieval. Thus, efficiently screening out the high-quality
point cloud is a significant guarantee for high-quality LAI
retrieval. In this study, we proposed a quality control (QC)
method that employed the number of 10-m windows without
ground points in the ICESat-2 100-m segment as the QC flag.
This method divided segments into 11 QC flags from 0 to 10
and was applied to LAI retrieval across Chinese forests from
2019 to 2020. The field measurements at locations identical to
ICESat-2 ground tracks were used to validate the ICESat-2 LAI
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at different QC flags. The results showed that the proposed
method effectively improved point cloud quality recognition and
LAI accuracy, with ICESat-2 LAI (QC <3) reducing root mean
square error (RMSE) by 26.36% compared with all ICESat-2
LAIs. It also showed good agreement with Moderate Resolution
Imaging Spectroradiometer (MODIS) and Global Land Surface
Satellite (GLASS) LAI and mitigated saturation issues in passive
optical imagery. The ICESat-2 LAI with QC <3 performed better
in deciduous broadleaved, evergreen needle-leaved, deciduous
needle-leaved, and mixed forests (MFs), but not in evergreen
broadleaved forests (EBFs). ICESat-2 LAI was particularly adept
at capturing high-LAI values, which had the highest proportion
of LAI values over 6.0 compared with MODIS and GLASS LAI.
The proposed method has the potential for large-scale and high-
quality LAI retrieval using ICESat-2 data on a global scale.

Index Terms—Clumping index (CI), forest leaf area index
(LAI), Ice, Cloud, and land elevation Satellite-2 (ICESat-2), large
scale, quality control (QC).

I. INTRODUCTION

FORESTS play a vital role in carbon sequestration, and
the 3-D structure of forests contributes significantly to the

biodiversity and functioning of terrestrial ecosystems [1], [2],
[3]. The horizontal and vertical distribution of forest canopy
directly affect radiation interception, the net carbon uptake,
and the ability of forests to sustain ecosystem services [4],
[5]. Therefore, accurate observations of variations in the spatial
structure of forest canopy provide essential baseline data for
forest management and carbon modeling.

Leaf area index (LAI) is commonly used to quantify forest
canopy structure, which represents one half of the total green
leaf area per unit ground surface area [6], [7]. Accurate
measurements of LAI on a large scale can provide essential
ecological parameters for global plant photosynthesis mod-
eling and carbon accounting [8], [9], [10]. Remote sensing
provides various methods for measuring the global LAI, and
several LAI products have been developed using passive
optical satellite data [11], [12], [13], [14], which have been
widely used to study spatiotemporal dynamics of vegetation
and greening trends [15], [16], [17], [18], [19]. However,
the accuracy of LAI derived from passive optical satellite
data is significantly impaired in regions with dense forest
canopies, where LAI is very high [20], [21]. Spaceborne light
detection and ranging (LiDAR) has the ability to acquire
information on both the vertical and horizontal forest canopy
information and has been shown to be effective in penetrating
the canopy [22], [23]. Therefore, spaceborne LiDAR presents
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a good opportunity to improve the accuracy of global forest
LAI estimation. Some studies have estimated the forest LAI
using the Ice, Cloud, and land Elevation Satellite-2 (ICESat-
2) [21], [24], [25], [26], [27], [28] and Global Ecosystem
Dynamics Investigation (GEDI) [29], [30], [31], [32], which
have made markable progress in using spaceborne LiDAR to
retrieve large scale LAI. Notably, ICESat and GEDI are full-
waveform LiDAR systems, and the diameter of their footprints
is 60 m [33] and 25 m [31], respectively, which are wider than
ICESat-2 (11 m) [34]. As the successor of ICESat, ICESat-
2 employs a novel photon-counting LiDAR system and can
acquire fine spatial resolution and continuous samples along
the flight track. Many studies have focused on improving the
accuracy of forest parameters estimation using ICESat-2, such
as canopy height [35], [36], aboveground biomass [37], [38],
[39], and canopy cover [34], [40]. However, there are few
studies focused on improving the accuracy of large-scale forest
LAI retrieval based on ICESat-2.

As spaceborne LiDAR systems continue to gather more
data in forest areas, the study of forest LAI has significantly
increased in recent years. Many studies utilized Beer’s law to
retrieve effective LAI without considering the foliage clump
ing effect in the canopy [24], [31], [41]. Effective LAI is
lower than actual LAI, and some studies demonstrated that
foliage aggregation could cause the bias of LAI up to 70%
due to the clumping effect [7], [42]. Several methods have
been proposed to correct the clumping effect and improve the
accuracy of LAI retrieval from spaceborne LiDAR through
passive optical satellite data to provide leaves clumping infor-
mation [21], [25], which would accumulate bias because of
different sensors. Jiang et al. [30] corrected the clumping
effect by GEDI based on virtual scenes, but the application
of this method in actual forest scenes is limited. In addition,
it is worth noting that these studies have primarily focused
on spaceborne full-waveform LiDAR, with less attention
given to clumping effect correction and improving the accu-
racy of LAI retrieval from photon-counting LiDAR such as
ICESat-2. Although Guo et al. [43] have successfully
employed a segment-based path length distribution method
to retrieve LAI using ICESat-2 on a regional scale, it
has not been tested for the inversion of LAI on a large
scale.

ICESat-2 is susceptible to solar background noise, and its
raw data contains a large amount of ambient noise [44], [45],
which has become an important issue affecting the accuracy
of large-scale LAI inversion by ICESat-2. Guo et al. [43]
found that the good quality of point clouds from ICESat-2
data could improve the accuracy of LAI retrieval. Although
the ICESat-2 science team has already done denoise and
height normalization (the process of converting the absolute
elevation of LiDAR points (i.e., height above sea level or the
ellipsoid) into relative height above the ground surface), there
are still some point clouds with poor quality that remain in
the processed data, including incomplete height normalization
and missing point cloud. These poor-quality point clouds
would cause a low amount of ground points and low gap
fraction (the ratio of ground points and total points in a certain
area) [23], [46], as a result of a large uncertainty of LAI
retrieval. Therefore, it is significant to effectively screen out

the good quality of point clouds when using ICESat-2 data to
retrieve LAI, especially on a large scale.

In this study, we proposed an efficient quality control (QC)
method for obtaining high-quality point clouds in order to
improve the accuracy of LAI retrieval on a large scale by
ICESat-2 data. Our main objectives were to: 1) propose a
QC method in recognizing QC flags of point cloud for LAI
retrieval by ICESat-2 data; 2) evaluate the feasible of the
QC method with ground measurements as reference data; and
3) invert forest LAI on a national scale based on the proposed
QC method. To accomplish these objectives, we first compared
the ICESat-2 LAI with ground measurements to evaluate the
reliability and effectiveness of the proposed QC method in
screening out high-quality point cloud data. We then employed
the segment-based path length distribution method to retrieve
forest LAI on a national scale, which allowed us to refine the
LAI estimates based on different levels of point cloud quality.

II. MATERIALS

A. ICESat-2 Data

The ICESat-2 Advanced Topographic Laser Altimeter Sys-
tem (ATLAS) was launched in September 2018, and unlike
ICESat and GEDI, ICESat-2 ATLAS utilizes photon-counting
technology [47]. In brief, ICESat-2 ATLAS continuously
samples transects of canopy structure along the flight
track, with approximately 11-m footprints illuminated by a
532-nm photon-counting LiDAR sensor [36]. The interval of
each shot is 70 cm along the track direction. ICESat-2 ATLAS
is equipped with three pairs of laser beams, with each pair
having an interval of 3.3 km in the across-track direction.
Each pair has a strong beam and a weak beam. Considering
the superior performance of the strong beam in detecting both
ground and canopy photons compared to the weak beam [47],
we have exclusively selected point cloud data from the strong
beam for the retrieval of LAI.

One of the objectives of the ICESat-2 mission is to measure
vegetation canopy height and ground elevation. The geolocated
photon data (ATL03) serves as the input data for higher
level products, including land and vegetation data (ATL08).
The ATL03 product provides the longitude, latitude, height,
along-track segment ID number (segment id) of each photon,
and the number of photons in a given along-track segment
(segment ph cnt). In addition, ATL03 classifies each photon
event as signal or background photon event and provides a con-
fidence assessment on these classifications. ATL03 provides
all other spacecraft or instrument information needed by the
higher level products. For example, the ATL03 product is used
to generate the land and vegetation height (ATL08), which is
processed to remove the noise photons and identify the canopy
and ground photons. The ATL08 product provides terrain and
canopy height along the flight track at a segment size of
100 × 11 m [40], [48]. In addition, it offers the longitude and
latitude of the central position of each segment, the height of
photons above the interpolated land surface, indices of photons
tracking back to ATL03, and the classification flag for each
photon as either noise, ground, canopy, or top of canopy [49].
According to the purpose of our study, we obtained ATL03
[49] and ATL08 [50] products of release 005 for the entire
area of China from the National Snow and Ice Data Center
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Fig. 1. (a) ICESat-2 spatial trajectories in 2019, (b) locations of the field plots, and (c) field measurements in the 100 × 11 m segment.

(https://nsidc.org) for the period April–October in the years
2019 and 2020.

The indices of photons tracking back to ATL03 were used to
trace back to the corresponding ATL03 data within the 100-m
segment in order to acquire the photons with relative height
(above the ground) and location information (longitude and
latitude). Each ATL08 segment was then generated based on
the central coordinates provided by ATL08 products. In addi-
tion, we applied a land-cover filtering process to select only
those ATL08 segments located within the forested ecozone.
Fig. 1(a) illustrates the spatial pattern of ATL08 segments in
Chinese forests in 2019, with the segments being represented
as points using the central coordinates.

B. Ground Plot Data

The ground measurements of LAI were conducted in the
northern region of China during the summer of 2021 and 2022.
We established 117 sample plots of 100 × 11 m with spatially
coincident ATL08 segments [see Fig. 1(b)]. We developed
a protocol to obtain ground LAI measurements along the
transect (∼100 m) at each site using digital cover photography
(DCP) according to the characteristics of ICESat-2 along-track
records. The cross interval of each transect was approximately
3 m [see Fig. 1(c)]. DCP is an emerging indirect method to
measure LAI, utilizing a narrow field of view at the zenith
to provide high-resolution images [51]. The camera used for
image acquisition had a field of view of 80◦ and a focal-
length lens (in 35-mm format) of 26 mm. For our study,
we adopted the path length distribution method proposed by
Hu et al. [42] to retrieve the LAI from DCP. With the gap
probability obtained from DCP, we used the sliding window
to invert the path length distribution from the measured gap
data [42].

C. Land-Cover Data

The global 30-m land-cover classification product
(GLC FCS30) from Zhang et al. [52] was acquired

from CASEarth (https://data.casearth.cn), which had a spatial
resolution of 30 m and a temporal resolution of five years.
The forest types of GLC FCS30 in China include evergreen
broadleaved forest (EBF), deciduous broadleaved forest
(DBF), evergreen needle-leaved forest (ENF), deciduous
needle-leaved forest (DNF), and mixed forest (MF). We
used the land-cover product of 2020 to select only forest
segments from ICESat-2 ATL08 data in China. A sequence
of operations, including mosaic, clipping, and reprojection,
were applied to the original GLC FCS30 dataset in order to
acquire the spatial distribution of forests in China. The land-
cover data were resampled to 1-km spatial resolution using the
nearest neighbor method to ensure consistency with the LAI
datasets [Moderate Resolution Imaging Spectroradiometer
(MODIS) and Global Land Surface Satellite (GLASS)] and
to facilitate intercomparisons at the 1-km spatial resolution.

D. LAI Products

The MODIS and GLASS LAI products were selected to
compare with our results from ICESat-2 in forest areas in
China. The MODIS Collection 6 LAI products (MOD15A2H)
spanning from 2019 to 2020 were sourced from the Google
Earth Engine Cloud Platform (https://earthengine.google.com),
which had a spatial resolution of 500 m and a temporal
resolution of 8 days. The GLASS LAI product [53] between
2019 and 2020 was downloaded from the National Earth
System Science Data Center, China (https://www.geodata.cn),
which had an 8-day interval and a spatial resolution of 500 m.
The MODIS LAI and GLASS LAI were processed through a
routine of mosaicking, resampling, reprojecting, and composit-
ing to acquire the data at 1-km spatial and 1-month temporal
resolution. This processed LAI dataset was then employed for
comparison with ICESat-2 LAI.

III. METHODS

A QC method was proposed to screen out the good-quality
photon distribution from ICESat-2 100-m segments, which
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Fig. 2. Flowchart of forest LAI retrieval using ICESat-2 data.

employed the number of 10-m windows without ground points
in the ICESat-2 100-m segment as the QC flag. Then, the
segment-based path length distribution method was used to
correct the clumping effect and retrieve the actual LAI. Finally,
the LAI with various QC flags was compared with the field
measurements to assess the performance of the QC method.
The workflow of LAI retrieval with QC flags is provided in
Fig. 2.

A. QC Method for LAI Retrieval Based on ICESat-2
Segments

The ICESat-2 segments with good-quality photon distri-
bution [see Fig. 3(a)] play an important role in determining
the reliability of LAI inversion [43]. The ICESat-2 raw data
inherently incorporate ambient noises stemming from the
concurrent capture of solar background photons and genuine
signal photons by the ATLAS sensor [44]. Although the
ATL08 product was generated by denoise and height nor-
malization from ATL03, the distribution of point cloud in
the ATL08 100-m segment may include issues of missing
point cloud [see Fig. 3(b) and (c)] and incomplete height
normalization [see Fig. 3(d) and (e)], which is not suitable
to invert LAI and causes large uncertainty. Guo et al. [43]
founded that the good quality of point cloud improves the
accuracy of LAI retrieval. Thus, we proposed a QC method for
efficiently screening high-quality point cloud data in segments
in order to improve the accuracy of large-scale LAI inversion
by ICESat-2 data. We assumed that the ICESat-2 laser beam
could penetrate the forest canopy in our study area, meaning

TABLE I
DEFINITION OF THE QC FLAG OF ICESAT-2 100-M SEGMENTS

that there should be some ground points even when the canopy
is dense. The proposed method for QC of ICESat-2 data
includes three steps:

1) Divide the ATL08 100-m segment into ten 10-m win-
dows.

2) Count the number of ground points in each 10-m win-
dow. The height threshold of 2 m was used to distinguish
the canopy and ground points.

3) Record the number of 10-m windows without ground
points in the 100-m segment, which was used as the
QC flag of the 100-m segment.

The definition of the QC flag for 100-m segments based on our
method is shown in Table I, while Fig. 4 illustrates examples
of segments with varying QC levels. The QC flag of the 100-m
segment was 0 when the 100-m segment had no 10-m window



GUO et al.: LARGE-SCALE RETRIEVAL AND QC OF LEAF AREA INDEX 4415311

Fig. 3. Distribution of point clouds in the ATL08 segment. (a) Good-quality point cloud, (b) and (c) point cloud missing, and (d) and (e) incomplete height
normalization.

Fig. 4. Different QC levels of 100-m segment.

without ground points. If only one 10-m window lacked a
ground point, the flag of QC was 1; if two 10-m windows
had no ground points, the flag of QC was 2, and so on. In
general, the ATL08 100-m segments were divided into 11
QC levels (from 0 to 10) based on our method, and the high
value of the QC flag meant that the inversion of LAI in the
100-m segment was less reliable. Specifically, we removed the
100-m segments that had a QC flag of 10 because there were
no ground points in the segment.

B. Clumping-Corrected LAI Retrieval

The clumping-corrected LAI was retrieved from ICESat-
2 data using the segment-based path length distribution
method [43]. The segment is defined as along-track span of
the photon from a single ground track. In this study, the

100-m segment of ATL08 was used to extract gap fraction and
path length distribution for clumping-corrected LAI retrieval
by the segment-based path length distribution method. The gap
fraction (P) can be derived from LiDAR metrics, which can
be calculated as the number-based ratio method [46]

P = Nground
ı

Nall (1)

where Nground represents the number of ground points and Nall
denotes the total number of points in the segment. The 2-m
height threshold was used to distinguish between canopy and
ground photons.

The path length distribution can be acquired from the statis-
tics of the top of canopy, and the top of canopy was obtained
by searching the maximum height using a 1-m moving window
in the 100-m segment. The path length distribution [plr(lr)]
within the segment is defined as follows:

plr (lr) =
p̂lr(lr)R 1

0 p̂lr(lr)d(lr)
(2)

lr = l/lmax (3)

where lr is the relative path length normalized to [0, 1], l
is the absolute path length at a location of a transect, and
lmax is the maximum path length along the transect. p̂lr(lr)
is the frequency of lr falling within the infinitesimal interval
[lr, lr + d(lr)].

The path length distribution and gap fraction of the 100-m
segment were input to the path length distribution model [7],



4415311 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

Fig. 5. Scatterplot showing the relationship between ground-measured LAI
and LAI retrievals for segments with different levels of QC. The dashed line
represents a 1:1 line.

[42] to model the clumping effect and retrieve the actual LAI

LAI =

Z 1

0
(FAVD · lmax) · lr · plr(lr)d(lr) (4)

where FAVD is the leaf area volume density. The intermediate
variables FAVD · lmax can be derived by solving

P =

Z 1

0
e−G·(FAVD·lmax)·lr · plr(lr)d(lr) (5)

where P is the gap fraction, G is the leaf projection coefficient,
and it is set as 0.5 for canopies with a spherical distribution
of leaf angles.

The clumping index (CI) was calculated according to [54]

CI = LAIe/LAI (6)

where LAIe is the effective LAI, which can be calculated by
Beer’s law.

Although the segment-based path length distribution method
has successfully been used to derive LAI using ICESat-2 data
on a regional scale, it has not been tested for the inversion
of LAI on a large scale. Therefore, we integrated ATL03
and ATL08 products to acquire the photon data with relative
height and positional information as the input data for this
method to estimate clumping-corrected LAI on a large scale
for forested sites in China (see Fig. 2). The ground-measured
LAI from the digital cover photograph, whose location was
identical to ICESat-2 ground tracks, was used to validate the
LAI retrievals.

IV. RESULTS

A. Comparison of ICESat-2-Derived LAI With Ground
Measurements

The ICESat-2 LAI for the 100 × 11 m segments was derived
from the path length distribution and assigned a QC level using
our proposed QC method. The ICESat-2 LAI was compared
with field-measured LAI to evaluate the effectiveness of the
QC method in improving the accuracy of ICESat-2 LAI

TABLE II
ERROR INDICATORS OF ICESAT-2 LAI WITH MODIS LAI AND GLASS

LAI BASED ON DIFFERENT QC FLAGS. QC < 1 MEANS THE VALUES
OF QC FLAGS OF 100-M SEGMENTS WERE LESS THAN 1 (QC = 0)

(Fig. 5). In the whole, the results showed a good agreement
between ICESat-2 LAI and ground-measured LAI, with a
Pearson correlation coefficient (R) of 0.49, a mean relative
error (MRE) of 0.52, and a root mean square error (RMSE)
of 1.10. Moreover, we analyzed the accuracy of ICESat-2
LAI with different QC flags based on ground measurements.
The results showed that ICESat-2 LAI with a QC flag of 0
performed better than other LAIs with a QC flag over 0, with
an RMSE of 0.77.

In addition, we found that the ICESat-2 LAI with the QC
flags of 0, 1, and 2 also performed well, and the error indi-
cators (R, MRE, and RMSE) were not significantly different
between the ICESat-2 with the QC flag of 0. The RMSE of
the LAI derived from the ICESat-2 good-quality (QC < 3)
segments decreased 26.36% relative to the LAI derived from
all segments, which indicated that the LAIs of QC flags less
than 3 (good-quality segments) were more reliable than others.

B. Comparison of ICESat-2 LAI, MODIS LAI, and GLASS
LAI Based on Different QC Flags

We aggregated 100-m segments of ICESat-2 data to 1-
km pixel of MODIS and GLASS data for comparison and
assessing the performance of the QC method in improving the
accuracy of ICESat-2 LAI. Specifically, the monthly averaged
values of ICESat-2 LAI, MODIS LAI, and GLASS LAI were
used to intercomparison, with the exclusion of cases that there
are less than five 100-m segments within a 1-km pixel. The
results showed that ICESat-2 segments with QC < 1 (QC = 0)
performed better than segments with other QC, which had the
highest correlation coefficient and lowest MRE and RMSE (see
Table II). Moreover, the ICESat-2 LAI with QC < 3 (QC =

0, 1, and 2) also had a good agreement with MODIS LAI and
GLASS LAI, respectively, and the error indicators (R, MRE,
and RMSE) were not significantly different from the ICESat-2
LAI with QC = 0, which indicated that the LAIs with QC <
3 had an acceptable accuracy. In addition, we also compared
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TABLE III
RMSE BETWEEN ICESAT-2 LAI WITH MODIS LAI AND GLASS LAI ACROSS FOREST TYPES BASED ON DIFFERENT QC FLAGS. QC < 1 MEANS

THE VALUES OF QC FLAGS OF 100-M SEGMENTS WERE LESS THAN 1 (QC = 0)

Fig. 6. Comparison of ICESat-2 LAI with (a) MODIS LAI and (b) GLASS
LAI in forest areas in China.

the ICESat-2 LAI with QC of 0, 1, and 2 with MODIS LAI
and GLASS LAI in order to explore whether ICESat-2 LAI
avoided the saturation phenomenon that happened to passive
optical data. The results (see Fig. 6) showed that ICESat-2
LAI had a larger LAI range than MODIS LAI and GLASS
LAI, and MODIS LAI and GLASS LAI showed saturation
when LAI over 6.5 and 6.0, respectively.

The comparison of ICESat-2 LAI with MODIS LAI and
GLASS LAI across forest types also showed that the segments
with a good quality of point cloud acquire relatively reliable
LAI retrieval. The statistics of RMSE (see Table III) showed
that ICESat-2 LAI with QC < 1 (QC = 0) had the best
performance (lowest RMSE) in DBFs, evergreen needle-leaved
forests, DNFs, and MFs, while it is an obvious difference
in EBFs. Moreover, we found that the ICESat-2 LAI with
QC < 3 (QC = 0, 1, and 2) also had a good agreement with
MODIS LAI and GLASS LAI across all forest types, and
there was no significant difference in RMSE between ICESat-
2 LAI with QC < 3 and QC < 1. In general, the LAIs derived
from ICESat-2 segments with QC flags of 0–2 were relatively

reliable in all forest types, which can be used to analyze the
spatial distribution of ICESat-2 LAI in forest areas in China.

C. Comparison of ICESat-2 LAI, MODIS LAI, and GLASS
LAI Based on Different Forest Growth Stages

We conducted a comparison of ICESat-2 LAI with QC
of 0–2 with MODIS LAI and GLASS LAI across the three
growth stages: the beginning of growing season (from April
to May), the middle of growing season (from June to August),
and the end of growing season (from September to October).
We divided LAI values into four ranges, including 0–2, 2–4,
4–6 and over 6 for comparison. The percentage of LAI values
ranging from 2 to 4, 4 to 6, and over 6 from three datasets
was the highest in the middle of growing season, followed by
the end of growing season, and the lowest in the beginning
of growing season (see Fig. 7). In the beginning of growing
season [see Fig. 7(a)], GLASS LAI had no values greater than
6, and the proportion of ICESat-2 and MODIS LAI values
greater than 6 accounted for 0.94% and 0.10%, respectively.
The ratio of MODIS LAI below 2 was the highest, accounting
for about 86% of the total values, and ICESat-2 LAI had the
least proportion of LAI below 2. In the middle of growing
season [see Fig. 7(b)], the amount of LAI values over 6 was
the most from ICESat-2 (1.34%), followed by MODIS (0.24%)
and GLASS (0.05%). The proportion of GLASS LAI values
ranged from 4 to 6 was most (45%), followed by MODIS
(19%) and ICESat-2 (15%). The GLASS LAI values less than
2 were the least (9.43%), and ICESat-2 and MODIS LAI had
approximately 37% and 33% values less than 2, respectively.
In the end of the growing season [see Fig. 7(c)], the proportion
of ICESat-2 LAI values over 6 was the highest (0.60%),
followed by MODIS (0.18%); the lowest was GLASS (0.02%).
The proportions of ICESat-2, MODIS and GLASS LAI values
ranging from 4 to 6 were 7%, 1.8%, and 2.5%, respectively.

Significantly, the MODIS LAI and GLASS LAI values
within 4–6 exhibited a decline of approximately 17% and 43%,
respectively, from the middle to the end of the growing season
because leaves of deciduous forests changed from green to
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Fig. 7. Comparison of ICESat-2 LAI, MODIS LAI, and GLASS LAI in different growth stages from (a) April to May, (b) June to August, and (c) September
to October.

Fig. 8. Spatial distribution of ICESat-2 LAI in Chinese forest areas from
June to August 2019. The dots represent the ICESat-2 100-m segment.

yellow, causing spectrum changes. In the middle of growing
season, the DBF accounted for 64.3% and 62.7% of the LAI
values ranging from 4 to 6 for MODIS LAI and GLASS LAI,
respectively (see Table S1). The DNF accounted for 17.8%
and 15.3% of the LAI values, ranging from 4 to 6 for MODIS
LAI and GLASS LAI, respectively. At the end of the growing
season, the contribution of DBF to the LAI values within 4–6
decreased to 23% and 8% for MODIS LAI and GLASS LAI,
respectively (see Table S2). The DNF accounted for 0.2% and
0% of the LAI values ranging from 4 to 6 for MODIS LAI and
GLASS LAI, respectively. In contrast, ICESat-2 LAI values
from both DBFs and DNFs showed only 2% changes from the
middle to the end of the growing season because ICESat-2 was
insensitive to spectral changes.

D. Characteristics of ICESat-2 LAI in the Forested Ecozone

LAI estimates were derived using the segment-based path
length distribution method to on-orbit ICESat-2 data. The
estimates were obtained for the entire Chinese forest biome
in 100 × 11 m segments from April to October 2019
and 2020, and Fig. 8 shows the spatial distribution of

ICESat-2 LAI in forest areas in China from June to August
2019. The retrieval process encompassed approximately 2.5
million segments during the study period.

Overall, the distribution of ICESat-2 LAI [see Fig. 9(a)]
across forest areas in China was largely skewed toward lower
LAI values. More than 55% of the segments exhibited LAI
values below 2.0, and the median and mean LAI values in
forested areas were 1.72 and 2.11, respectively. The ICESat-
2 LAI gathered by forest types [see Fig. 9(b)] showed that
ICESat-2 LAI had considerable variability within forested
ecozones during the period of 2019 and 2020. The average LAI
ranged from 1.93 in DNFs to 2.59 in MFs. DBFs accounted
for the greatest proportion of ICESat-2 segments, accounting
for approximately 50% of the total segments. EBF and MF
comprised the low proportion of ICESat-2 segments, with
percentages of 9% and 1%, respectively. The MF exhibited
the highest median LAI value at 2.30, and DNFs presented
the lowest median LAI value (1.54), followed by ENFs (1.90).
Notably, EBFs had relatively dense canopies, and the segments
with LAI greater than 6.0 accounted for 4.05%, followed by
MF (3.75%). DNFs displayed relatively sparse canopies, with
a significant proportion (59.12%) of segments having LAI
values below 2.0. In addition, CI across forest area was mainly
concentrated in the range of 0.7–0.9, accounting for about 69%
of the total segments [see Fig. 9(c)]. The CI was different in
various forest types. The average CI ranged from 0.75 in MFs
to 0.81 in ENF [see Fig. 9(d)].

V. DISCUSSION

A. ICESat-2 LAI Dynamics in Different Stages of Growing
Season

The comparison of ICESat-2 LAI with MODIS LAI and
GLASS LAI was conducted to evaluate the performance of
ICESat-2 LAI in different stages of growing season. We found
that the proportions of LAI over 2.0 from ICESat-2, MODIS,
and GLASS were the highest in the middle of growing season,
followed by the end of growing season, and the lowest in
the beginning of growing season (see Fig. 7). In different
stages of growing season, the proportion of LAI over 6.0
from ICESat-2 was highest among three LAI datasets, and
MODIS LAI and GLASS LAI exhibited a tendency to saturate
as LAI surpassed 6.5 and 6.0, respectively. This divergence
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Fig. 9. Distributions of ICESat-2 LAI and CI across forest areas in China
and different forest ecozones EBF, DBF, ENF, DNF, and MF: (a) histogram
of LAI for all forests; (b) LAI by forest type; (c) histogram of CI for all
forests; and (d) CI by forest type.

can primarily be attributed to the limited penetrability of
passive optical remote sensing data (MODIS and GLASS)
in dense forest canopies, leading to signal saturation [55].
ICESat-2 is active LiDAR with the capability to penetrate
dense canopies and capture intricate internal canopy infor-
mation, thus effectively mitigating the saturation phenomenon
[56], [57]. In addition, our results had a subtle difference
Zhang et al. [55] about when MODIS LAI is saturated, a
discrepancy that might arise from differing study areas. While
their results focused on LAI retrieval within a regional scope,
our study encompassed nationwide LAI estimation across
China.

Moreover, the significant decline of 17% and 43% in LAI
ranging from 4.0 to 6.0 from MODIS LAI and GLASS LAI
was found from the middle to end of growing season [see
Fig. 7(b) and (c)], which may be related to the sensitivity of
passive optical data to spectral changes caused by the variation
of chlorophyll in leaves [58]. The yellowing process of leaves
may be the main factor causing this apparent decline, which
usually happens in deciduous forests. In order to verify this
conjecture, we conducted a statistical analysis of three LAI
datasets according to different LAI ranges and growth stages
(see Tables S1 and S2). We found that the MODIS LAI
and GLASS LAI ranging from 4.0 to 6.0 had a decline of
approximately 42% and 55% in DBFs from the middle to end
of growing season and 18% and 15% in DNFs. In contrast, the
ICESat-2 LAI ranging from 4.0 to 6.0 only decreased about
2% from the middle to the end of growing season for DBFs
and DNFs, respectively, which indicated that ICESat-2 LAI
was insensitive to the pigment shifts in leaves.

B. Performance of ICESat-2 LAI at Pixel Scale
ICESat-2 LAI showed a good performance at segment scale

according to our results, but the feasibility of generating
gridded LAI at pixel scale is still unclear. The comparison
of ground measurements with ICESat-2 LAI, MODIS LAI,

Fig. 10. Comparison of ground observations with ICESat-2 LAI, MODIS
LAI, and GLASS LAI.

and GLASS LAI was conducted at a pixel resolution of
1 km to evaluate the potential of gridded LAI generation by
ICESat-2. Specifically, ICESat-2 LAIs with QC flags of 0–2
were selected for this comparison. We found that ICESat-2
LAI had a satisfactory performance (see Fig. 10), and the
scatter points corresponding to ICESat-2 LAI clustered closely
around the 1:1 reference line, whereas MODIS LAI and
GLASS LAI displayed some marked deviations, particularly
when LAI surpassed 2.5. Moreover, ICESat-2 LAI had a
stronger correlation with ground-measured LAI than MODIS
LAI and GLASS LAI, with a correlation coefficient of 0.53.
However, MODIS LAI had the lowest RMSE (0.66), followed
by ICESat-2 LAI (0.73), and the highest RMSE was GLASS
LAI (0.77). The reason may be that there are few segments
(like one or two) within a 1-km pixel, and this is insufficient
spatial representation. Moreover, the ground measurements
were primarily used to validate the LAI within a 100-m
segment, and it is unsuitable for comprehensive validation at
the 1-km pixel scale. Therefore, future studies should focus
on the spatial representativeness of ground sampling and try
to select as many 100-m segments as possible within the 1-km
pixel scale.

C. Limitations and Opportunities

ICESat-2 employs a unique photon counting sampling
method, which provides a potential possibility for clumping-
corrected LAI retrieval at a large scale [59], but the accuracy
of LAI retrieval still depends on the quality of normalized
point cloud data. The proposed QC method in this study
provides the possibility of quickly screening out high-quality
point cloud data, and combining it with the segment-based path
length distribution method could efficiently invert clumping-
corrected LAI at a large scale. Notably, the segment-based
path length distribution method relies solely on the 3-D
structural information from the LiDAR point cloud for LAI
retrieval, with no direct computation using land-cover data or
reliance on additional parameters, resulting in good method-
ological universality. However, we use land-cover data to filter
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ICESat-2 segments, retaining only forest-classified regions for
LAI calculation. Land-cover misclassification may introduce
uncertainties in two scenarios: 1) actual forest areas misla-
beled as nonforest will be excluded, leading to data gaps
but no direct bias in LAI estimates and 2) nonforest areas
misclassified as forest may yield unreliable LAI values. For
example, grasslands incorrectly labeled as forest typically
exhibit point cloud returns below 2 m in height, resulting in a
gap fraction near 1 and an LAI estimate approaching 0 due to
ICESat-2’s limited sensitivity to low vegetation. Conversely,
nonvegetated surfaces (e.g., buildings) misclassified as forest
may produce spurious LAI values if tall (>2 m) structures are
present, despite their true LAI being 0. While forest structural
distinctiveness generally ensures reliable identification in land-
cover products, ensuring spatiotemporal consistency between
ICESat-2 data and land-cover maps can mitigate errors from
land-cover changes or misregistration.

Nonetheless, LAI retrieval from spaceborne LiDAR is still
distributed along the flight trajectory, which severely limits
the study of spatiotemporal changes in forest structure. Many
studies conducted the fusion of ICESat-2 data and passive
optical imagery to map spatially continuous canopy height and
biomass at regional scale [38], [60], [61], [62], [63], which also
provide a reference for exploring the combination of ICESat-2
data with wall-to-wall imagery (passive optical or microwave)
to generate spatially continuous LAI.

VI. CONCLUSION

As ICESat-2 continues to sample forested ecozones, the
synoptic measurements of ICESat-2 will provide more dense
spatial coverage of canopy height and create an incredible
opportunity to enhance estimates of forest LAI on large scales.
This study proposed a QC method by the number of 10-m win-
dows without ground points in the ICESat-2 100-m segment
as the QC flag to improve the accuracy of LAI retrieval by
ICESat-2 data. Our results showed that the proposed method is
feasible to improve the accuracy of ICESat-2 LAI, and the LAI
derived from the ICESat-2 good-quality (QC < 3) segments
had good accuracy, whose RMSE decreased 26.36% relative
to all ICESat-2 LAIs. Moreover, ICESat-2 LAI with QC <
3 was reliable because it had good agreement with ground
measurements, MODIS LAI and GLASS LAI. ICESat-2 LAI
mitigated the saturation problem of passive optical remote
sensing when LAI was over 6.0. In general, our proposed
method efficiently improves the accuracy of LAI derived from
ICESat-2, and its application in forest areas in China highlights
its effectiveness in improving the accuracy of ICESat-2 LAI
at a large scale.
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