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In the field of conservation physiology, there is often a trade off between conducting research in controlled laboratory settings
or in inherently variable field environments. However, this belief sets up a false dichotomy where laboratory experiments
are perceived as providing precise, mechanistic understanding with low variability at the cost of environmental realism
while field studies are ecologically relevant but criticized for generating inconsistent evidence that is difficult to interpret
and replicate. Despite the perceived binary view, these approaches are not in opposition to one another, but rather form a
continuum along increasing ecological complexity. Here, we argue that it is possible to mindfully and purposefully design
studies and develop integrative collaborations in conservation physiology that span the lab-field continuum to address
pressing environmentally-relevant questions that can be used to inform policy and practice. We first outline the advantages
and disadvantages of different approaches to knowledge generation. We then highlight ways to bridge the lab-field divide
though leveraging the advantages provided by different approaches to build a more comprehensive understanding of the
natural world, including how recent technological advances can help connect lab- and field-based research. Next, we discuss
the importance of partnership and collaboration across sectors for informing our understanding of ecological patterns and
physiological processes. Finally, we reflect on how to best translate physiological research into action and the reciprocal role
that environmental practitioners can have in driving research questions in conservation physiology.
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Lay Summary

Conservation physiology researchers typically use laboratory or field-based approaches, which are often seen as polar and
distinct. This binary view hampers action. We instead advocate for an integrative approach across the lab-field continuum,
including mindful integration of technology and co-production with non-academic partners to better inform conservation
policy and practice.
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Introduction

A common aim for experimental biologists working on free-
living macrorganisms is to better understand the principles
shaping the natural world (Weber, 2004; Stillman ez al.,
2011). In conservation physiology, this knowledge is often
reached through hypothesis-driven quantitative and quali-
tative research typically conducted in the laboratory (i.e.
purpose-built controlled settings designed for maximum con-
trol over environmental variables) and/or field (i.e. natural
settings with little or no control over environmental vari-
ables). Indeed, laboratory and field studies are often presented
as either-or approaches, each offering distinct advantages and
challenges for studying physiological and ecological processes
(Calisi and Bentley, 2009). The high degree of control pro-
vided by laboratory experiments facilitates measurement pre-
cision, promotes an understanding of causal relationships and
mechanisms and reduces the confounding effects of environ-
mental and/or individual variation (Diamond, 1986; Calisi
and Bentley, 2009). However, the resulting oversimplification
of biological processes raises questions about the environ-
mental relevance of findings and applicability to conservation
practice (Diamond, 1986; Cooke et al., 2017). Field studies,
on the other hand, align organismal responses with natu-
ral environmental fluctuations, often providing conservation
practitioners with more relevant information to base policies
and interventions (Cooke and O’Connor, 2010; Madliger
et al., 2021). Yet, the inherent unpredictability and variabil-
ity of these studies hampers replicability and, thus, an eas-
ily interpretable, mechanistic understanding of physiological
processes (Costa and Sinervo, 2004). Many factors may deter-
mine what approach is selected by a researcher for a given
study including issues of access, ethics, permits, financial costs
and safety, among others. Regardless of how decisions are
made, conservation physiologists may feel they must make a
dichotomous choice between the ecologically-artificial lab or
the fickle field knowing that either choice will result in intense
scrutiny from researchers firmly rooted in the other ‘camp’.

For decades, ecologists have recognized that laboratory
and field experiments form a continuum of approaches
depending on the degree to which the physical and/or
biotic environment is regulated and/or manipulated by the
researcher (Diamond, 1986; Sasaki et al., 2025). This flexi-
bility has allowed the tools and techniques used in ecological
research to evolve and expand across the years giving ecology
a central place in conservation research (Anderson er al.,
2021). As conservation physiology researchers, we also
advocate for a more integrative approach that positions
laboratory and field studies as existing along a continuum
of research practices across increasing ecological complexity
(Fig. 1). In this perspective article, we first explore the
strengths and limitations of laboratory and field approaches
that are traditionally used by conservation physiologists.
Next, we discuss how leveraging the advantages of these
different methods can help bridge the lab-field divide and
lead to a more holistic understanding of the natural world,
highlighting how recent technological advancements can
break down the boundaries between lab and field-based
research in our discipline. We then emphasize the importance
of cross-sector collaboration and partnerships in ensuring the
relevance of ecological patterns and physiological processes
under study recognizing that the way research is conducted
is as important as the findings. Finally, we reflect on how to
effectively translate experimental research along the lab-field
continuum into policy action and the reciprocal influence
that environmental practitioners can have in shaping research
questions in fundamental and applied animal physiology.

Selecting a research question is the first challenge in study
design, followed by understanding the appropriate tools to
answer the question (Diamond, 1986). Indeed, the conserva-
tion physiology ‘toolbox’ is diverse with some approaches

GZ0zZ Jaquieidag | uo Jasn saoualog |ednynouby Jo AJISIaAlUN ysIipams AQ G8Z9128/£904e09/L/€ L /a1one/sAyduoo/woo dnoolwspede//:sdpy woly papeojumoq



Conservation Physiology - Volume 13 2025

Review

Use of non-modew
‘(\\lllllmﬂ-' organisms < § i 27
-

Use of traditional lab
methods in the field

Whole-Body Physiology
and Behaviour

Use of environmental u

data to inform variable
treatments

Biochemical
Analyses

Molecular | \
Analyses \/ C

LN .) U}( ) ‘

&
Collection of samples { ¥ Control
from field

:‘ 2

test predictions of
hypotheses

Use of published datato
create mathematical models,
generate meta analyses and

Repeated measures

ot

%r-—

Mesocosms

Realism

g o7 w»ﬁs

‘“" 3 Use of technologyto
track animalsand

( measure physiological
.

Field Studies

metrics

S

Figure 1: An illustrative representation of the relationship between control and realism in conservation physiology. The outside circular arrow
indicates increasing control and internal circular arrow indicates increasing realism. Studies within the grey circle indicate where traditional
types of studies fall on this continuum. Outside of the circle are proposed ways of increasing control or realism across the continuum. Figure

artwork by A.M.

better suited for one set of study conditions than others
(Madliger et al., 2018). Here, we summarize some of the
common benefits and drawbacks of conducting research in
different environments with the goal of illustrating the util-
ity each approach can provide (Table 1). We also want to
emphasize that there is no ‘perfect’ approach. For example,
primatologists have long recognized that observer effects can
significantly impact primate behaviour in both lab and field
settings (Caine, 1990; Nowak et al., 2014; Piel et al., 2022).
However, careful and intentional consideration of experimen-
tal designs and data collection methods can reduce issues
impacting research outcomes.

In general, the laboratory environment is often most appro-
priate for questions involving ‘bench work’ techniques where
specialized equipment can be installed, often close to where
organisms are being held, and environmental conditions can
be more carefully controlled and monitored. The laboratory
environment can also be appropriate for questions aimed
at examining physiological processes and mechanisms at the
molecular, cellular and organismal levels (e.g. environmental
acclimation, toxicant exposure, whole-organism and cellu-
lar metabolism, maximum performance capacity; Calisi and

Bentley, 2009; Nelson, 2016). Laboratory studies can also
be used to pilot approaches before being applied to more
costly field settings. For example, measures of fish swimming
performance and behaviour derived from the lab have been
used to inform conservation strategies in the wild (Poletto
et al., 2015; Rodgers et al., 2017; Watson et al., 2018).
Further, although accessibility barriers exist in all research
settings, field work can present heightened risks and distinct
accessibility challenges which require additional efforts to
overcome (see Rudzki and Kohl, 2023).

Studies conducted in laboratory settings do have con-
straints, which can limit their real-world applicability
(Rose et al., 2020). They often occur over short time
durations, providing only a snap-shot in time, and involve
bringing live organisms into artificial settings, which can
fundamentally alter their physiology and behaviour (Turko
et al.,2023). Although there have been increasing attempts to
replicate environmental complexity in the lab in recent years
(Gerhard et al., 2023; Rodgers and Gomez Isaza, 2023; Orr
et al., 2024), these studies can rapidly become overwhelming
in size and have reduced statistical power to detect differences
among treatments (Table 1). Organismal size (e.g. difficult to
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Table 1: The advantages and disadvantages of laboratory and field-based approaches

Advantages Disadvantages
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Table 1: Continued

I S T S

bring a whale shark (Rhincodon typus), African elephant
(Loxodonta africana), or giant sequoia (Sequoiadendron
giganteum) into the lab) or the rarity/conservation status of
a given species may also limit the extent to which organisms
can be subject to experiments in a captive laboratory
environment. Also, laboratory experiments typically test
individuals in isolation regardless of the species’ natural social
context. In the case of animal research, testing animals in
isolation can produce different results than if animals were
tested in groups making some lab-generated results even
further removed from ecological reality (e.g. Burggren et al.,
2017; Overduin et al., 2025).

Field studies inherently integrate aspects of abiotic (e.g.
temperature, salinity, oxygen, humidity, pH, landscape
heterogeneity) and biotic (e.g. community composition,
species interactions, disease, life-history) variation, which
can be difficult or impossible to replicate in laboratory
settings (Table 1). Insights gained from field studies are
also crucial for parameterizing laboratory studies such that
experimental conditions replicated in the laboratory are
realistic. However, the availability of time, personnel and
funding may restrict the number of sampling locations or
duration of a field-based project, limiting its scope. While
technological advances have greatly improved researchers’
ability to record a diverse suite of physiological parameters
(Calisi and Bentley, 2009), access to experimental organisms
in the field can be challenging, particularly if there is interest
in repeated sampling over time. Individual histories are often
unknown, and field studies must contend with high levels
of inter-individual variation in traits, including condition,
health, nutritional status and performance (Simonis et al.,
2025). Although this heterogeneity represents real and
meaningful biological variation, too many unexplained and
unaccounted for differences among individuals may mask
relationships when comparing group means (Williams, 2008).

In both field and laboratory settings, researchers from
marginalized groups often face distinct and intersecting sys-
temic barriers to accessibility, safety, and inclusion (Clancy
et al., 2014; Viglione, 2020; Rudzki et al., 2022; Coon et al.,
2023; Rudzki and Kohl, 2023; Verble et al., 2023). Across
the continuum of research approaches, there is a continued
need for institutions, field stations and research teams to to
implement measures that actively dismantle systemic barriers

and ensure equitable and safe environments (Gin ef al., 2022;
Ramirez-Castanieda et al., 2022; Rudzki et al., 2022; Rudzki
and Kohl, 2023).

Bridging the lab-field divide

There is no one-size-fits-all approach to designing studies in
conservation physiology. Although mismatches between lab
and field studies can be helpful in understanding mechanistic
drivers of observed responses (Calisi and Bentley, 2009),
designing effective conservation strategies requires robust and
predictable outcomes. In most cases, integrating elements
across the laboratory-field continuum can foster a stronger
balance between controlled experiments and real-world envi-
ronmental considerations. For example, mesocosms, partly
enclosed indoor or outdoor experimental units, have been
used as a tool in ecological and environmental studies for
decades (Odum, 1984; Sasaki er al., 2025; Fig. 1). Such inte-
grative studies can offer broad and fundamental insights
into factors such as the interaction of multiple environ-
mental variables on physiological responses (e.g. generating
dose response curves, understanding cumulative effects), the
physiological changes associated with short- and long-term
acclimation to standardized conditions, the representativeness
of standard laboratory model species as stand-ins for their
wild counterparts, and paths towards scaling-up from indi-
vidual to community- and ecosystem-level impacts (Fig. 1;
Odum, 1984; Calisi and Bentley, 2009; Newman et al., 20135;
Bergman et al., 2019; Ames et al., 2020; Turko et al., 2023).
For instance, in studies of thermal tolerance in mangrove
crabs (Parasesarma guttatum, Tubuca urvillei), field obser-
vations helped frame and contextualize laboratory thermal
experiments (e.g. Fusi et al., 2014). Similarly, Marshall et al.
(2013) integrated behavioural field data with physiological
measurements to assess climate vulnerability in high-rocky-
shore snails (Echinolittorina malaccana).

One way to bridge the lab/field divide is to enhance
environmental relevance and complexity in controlled
laboratory settings. For example, incrementally introducing
environmental complexity into laboratory systems combined
with knowledge of physiological mechanisms has improved
the prediction of metal toxicity in aquatic organisms (e.g.
Hogstrand and Wood, 1998; Blewett et al., 2018; Mebane,
2023). Similarly, incorporating fluctuating exposures to
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environmental conditions that vary naturally in the field
have allowed researchers working in laboratory studies to
identify distinct physiological responses to constant, regular-
and/or irregular changes in the environments, providing better
insights into the likely outcomes of extreme environmental
variability in nature (Matsubara, 2018; Nancollas and
Todgham, 2022). While these studies often focus on localized
regions, the potential for collecting field data to inform
laboratory work is rapidly expanding due to advancements
in climate and environmental monitoring. High-resolution
datasets from urban observatories, such as the Newecastle
Urban Observatory (https:/newcastle.urbanobservatory.ac.uk),
now offer unprecedented access to fine-scale environmental
conditions. In parallel, large-scale coordinated initiatives like
Tara Oceans (https://fondationtaraocean.org/en/home/) have cre-
ated globally distributed field datasets encompassing environ-
mental, biological and genomic information. The Tara Oceans
project, in particular, has inspired a prolific body of peer-
reviewed literature (see Sunagawa et al., 2020). These datasets
have been pivotal for the development and testing of new
ecophysiological hypotheses in controlled laboratory settings.

Building on these principles, mesocosm studies can be
designed in terrestrial, aqauatic, or semi-aquatic systems
to allow some degree of control over biotic and/or abiotic
parameters of interest while allowing more realistic fluc-
tuations that better approximate natural environments (e.g.
Sharma et al., 2021; Nespolo et al., 2022, Brisson et al., 2024;
Fig. 1). Mesocosms can vary in size (e.g. several hectares,
Lin et al, 1999; thousands of litres, Ussery et al., 2024;
microcosms, Brisson et al., 2024). They can be monitored over
long (e.g. months-years, Pace et al., 2019) or short (e.g. days;
Orlikowska et al., 2015) timeframes. Increasingly, mesocosms
are instrumented with data logging devices permitting
real-time recordings of fluctuations, while also enhancing
experimental designs of in-lab mesocosm experiments (e.g.
Pansch and Hiebenthal, 2019). Although they often cannot
replicate the full complexity of natural ecosystems, they
nevertheless can help address some of the shortcomings of
more traditional lab approaches (Table 1).

Field studies take environmental realism one step further
than mesocosm studies. Yet, they may still benefit from the
integration of some traditionally lab-based approaches. In
the field, a key challenge is identifying the driving (causal)
factors of a given physiological response. Although difficult
to achieve, a growing group of researchers is attempting to
understand the physical, chemical and/or biological compo-
nents of the environment at the time the physiological param-
eter is measured to better understand the impacts of multiple
stressors on organisms (e.g. Todgham and Stillman, 2013).
Repeated measurements on the same individuals and/or in
the same locations over time facilitates the identification of
the environmental variables that most meaningfully induce
physiological or behavioural change (Williams, 2008; Roche
et al., 2016). For example, estimates of metabolic rates made
in the field helped to demonstrate that circadian rhythms
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play an important role in shaping responses of rainbow
trout (Oncorbynchus mykiss) to environmental temperature,
a relationship that would have been difficult to uncover if
similar measures had taken place solely in a laboratory setting
(Briggs and Post, 1997).

Another way to connect lab and field studies is through
the use of published data to inform mathematical mod-
elling. Empirical data, particularly data that can be used
to identify the mechanisms by which specific environmental
stressors affect specific a physiological pathway, allow for
the development of predictive models (Fig. 1). Such models
can be used to better understand and predict how environ-
mental variation and anthropogenic change will impact wild
populations (Glover, 2018). Modelling approaches can help
generate hypotheses, predict population and community level
responses to environmental change, assess risk of vulner-
able populations to stressors, forecast species distributions
and abundance and better understand disease dynamics and
bioenergetics (Rohr ez al., 2013; Evans et al., 2015). Previ-
ously published data, from both field and lab studies, can
also be used to test hypotheses across a range of species
and settings (e.g. Khaliq ez al., 2014). While most conser-
vation models still lack physiological information (Evans
etal.,2015; Urban et al., 2016), new approaches increasingly
allow the integration of ecophysiological traits into modelling
frameworks (e.g. Gamliel et al., 2020). In all cases, model
validation is critical to assess their appropriateness, relevance
and accuracy (Garman et al., 2020).

Despite their advantages, all models are only as useful as
the data they rely on; an over reliance on lab-based studies, for
example, without validation and integration with field-based
work can lead to predictions that have many of the same
drawbacks as a single lab-based study. Similarly, modelling
approaches rely on empiricists to continue generating robust
data on which to base and test their predictions. An over-
reliance on modelling approaches, which are often perceived
to be more cost-effective than empirical research, runs the
risk of disincentivizing researchers from collecting primary
data, which will ultimately limit the usefulness of predictive
models. The integration of modelling and field/lab-based tech-
niques is hampered by a lack of cross-disciplinary expertise:
conservation physiologists typically do not have expertise
in laboratory, field and quantitative modelling approaches.
These challenges can be overcome through cross-disciplinary
and multi-institutional collaborative research (Roche et al.,
2022; Nakagawa et al., 2025; see section: What can we gain
through partnership and collaboration?). Additionally, the
community would benefit from more open-source resources
and training opportunities to learn how to use physiology
data to inform conservation-focused models and vice-versa.

Leveraging technological advances can significantly improve
experimental design, measurement accuracy, the application
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of results to real-world scenarios and bring techniques that
were traditionally tied to the lab into the field (Fig. 1;
Fausch et al., 2002; Schwartz et al., 2004; Binning et al.,
2022). For example, uncrewed aerial vehicle (a.k.a. drones)
technology is increasingly used to monitor plant physiology
and health in both cultivated and uncultivated settings
(Gano et al., 2024). Similarly, advances in computer vision
approaches now enable the automatic tracking of animal
groups using drone footage, which can provide data on wild
animal behaviour that was previously only possible to obtain
via laboratory studies (Cooke, 2008; Koger et al., 2023).
Technological advances in biologging and telemetry are also
further expanding the size and types of animals that can
be studied and the speed and type of data gathered. These
advances expand the potential for field studies to examine
not only animal movement, but also energetics, kinematics,
health and behaviour through these techniques (e.g. Signer
et al., 2010; Kays et al., 2015; Beardsworth et al., 2022;
Binning et al., 2022). There are also now sensors that can
be incorporated into electronic tags to measure a range of
physiological health indicators (e.g. blood glucose, heart
rate, body temperature) and limb movements in free-living
animals (Neethirajan, 2017; Binning et al., 2022), which were
previously limited to lab-based studies. These technological
advances can also be used in all study settings as a way of
collecting behavioural and physiological data without the
confounding presence of human observers (e.g. Brown et al.,
2013; Piel et al., 2022). Looking forward, advances in human
physiology research have demonstrated that virtual reality
may be a useful tool that can also help bridge the gap between
environmental complexity and laboratory conditions (Weibel
et al., 2018; Halbig and Latoschik, 2021). These technologies
are increasingly being adapted to for use on non-human
species such as insects and fishes (e.g. Fry et al., 2008; Huang
etal.,2020; Vidal et al., 2023). The future development of this
technology across a broader swath of taxa in a field-based
context is a fascinating area of future development.

Laboratory-based projects can also be made more ecolog-
ically relevant with technology. Indeed, advances in material
science have improved the capacity of environmental sensors,
making it easier to retrieve environmental data at ecologically
relevant scales, which can then be used to inform lab-based
treatments (Giomi et al., 2023). Increasing automation of
experimental set-ups for collecting behavioural and physio-
logical data (e.g. Couzin and Heins, 2023; Ajuwon et al.,
2024; Ern and Jutfelt, 2024; Lucks et al., 2024) can also help
simplify logistics, which may facilitate increasingly complex
experimental designs to test the impact of more ecologically
relevant conditions. Similarly, virtual reality can be used to
study the impact of standardized stimuli on an organism
combining the precision of lab-based measures with more
ecologically relevant conditions (Vidal et al., 2023). Special
built technology may also help expand the use of mesocosms
in lab-based work. The SMART-BARN, for instance, is a large
arena containing a motion capture system, video cameras,
acoustic sensors and multiple remote-controlled interactive
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units allowing for the simultaneous recording of multiple data
streams for groups of animals from diverse taxa including
insects, birds and mammals (Nagy et al., 2023). Technology
also facilitates the development of ‘do it yourself’ tools allow-
ing researchers to develop tailor-made solutions for a diversity
of research settings. The Raspberry Pi, for example, has broad
capacities with a relatively small price tag making it ideal for
applications including nest-box recording, wildlife camera-
trapping, plant phenotyping, underwater video monitoring,
and closed-loop behavioural experiments (Jolles, 2021). 3D-
printers have also become cheaper and more accessible, allow-
ing researchers to custom-make tools for behaviour and phys-
iology research applicable to a diversity of settings (Behm
et al., 2018; Walker and Humphries, 2019).

While there is great potential for technological advances
to move research forward, it also introduces new challenges.
Many new technologies rely on high efficiency batteries,
which limit usability (Folea and Mois, 2020). The cost of
integrating new technologies into experimental design also
remains prohibitively high for many researchers, exacerbating
existing inequalities among research groups both within and
across geographic regions. Additionally, the unprecedented
level of data collection facilitated by technology poses a
challenge to the transmission, storage, use and analyses of
these data. Advances in computer technologies have stream-
lined this process and led to more open-source databases, but
ways to democratize data remains an on-going consideration
(Dessimoz and Thomas, 2024). Further, existing machine
learning models often rely on biased data representing specific
geographic regions and curating big data sets while ensuring
proper credit is attributed can be challenging (Tuia et al.,
2022). New quality control methods are also needed, as is a
careful consideration of the financial and environmental costs
of new technologies (Tuia ef al., 2022). Although different
strategies for effectively and ethically integrating new tech-
nologies into research programs exist (Marvin ef al., 2016),
even the most promising new technology cannot make up for
a poorly designed experiment. As such, researchers working
across all facets of conservation physiology must continue to
leverage the benefits of new technology while remembering
that the most powerful tool is an individual’s ability to
think critically about their research. Ultimately, no amount
of technology can fully replace traditional, observation-based
knowledge about ecosystems, and mindful integration of
these two approaches is likely to yield the most promising
outcomes (e.g. Finerty et al., 2024).

An iterative process that encourages collaboration across
researchers spanning the field-lab continuum ensures that,
when appropriate, laboratory-based research remains envi-
ronmentally relevant and applicable to more natural settings
(Cooke et al., 2014). Similarly, collaboration across these
research approaches can improve relevance of field research
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by bolstering conclusions with mechanistic data. This collab-
orative approach also facilitates the development of adap-
tive strategies for modelling, which is particularly useful of
informing conservation actions to adapt to climate change.
Large collective efforts are often needed to optimize the
exploration of multidimensional experimental space (Box 1).
While it may be unreasonable to expect individual researchers
or even solo-PI led teams to possess the means and expertise
to conduct research in both lab, field and i silica realms,
collaborative efforts among teams can also enhance research
impacts.

Box 1: Cross-disciplinary collaboration in Action: Scientific Com-
mittee on Oceanic Research

One successful example of large-scale interdisciplinary collabora-
tion is the international Scientific Committee on Oceanic Research
(SCOR, 2025), which was established to bring together teams of
researchers to answer large-scale questions related to ocean sciences.
SCOR supports international working groups to advance ocean
science by promoting international cooperation in planning and
conducting oceanographic research as well as addressing inter-
disciplinary and multidisciplinary ocean issues. For instance, the
Changing Ocean Biological Systems Working Group (COBS; WG
149), brought together research with a diverse range of expertise
in physiology, ecology and evolutionary biology to assess broad
questions about the impacts of climate change on ocean biota. The
goal of the COBS working group is to understand how marine
life responds to concurrent changes in oceanic conditions due
to climate change. These concurrent changes, known as multiple
environmental drivers, include factors such as temperature fluctua-
tions, ocean acidification, deoxygenation and nutrient shifts. COBS
aims to develop methodologies to assess the cumulative effects of
these drivers on marine organisms and ecosystem, thus moving
beyond single-factor studies to experiments that consider multiple
interacting environmental drivers. This approach seeks to provide a
more comprehensive understanding of how marine organisms and
ecosystems respond to the complex nature of climate change. The
group has created resources like the MEDDLE (Multiple Environ-
mental Driver Design Lab for Experiments) platform, which offers
guidance and tools for researchers designing multi-driver experi-
ments. This includes a three-step guide to help identify relevant
drivers, design experiments and finalize methodologies. COBS also
trains scientists in multi-driver research through various programs,
including PhD and MSc courses, summer schools, conferences and
online courses. This effort aims to equip the next generation of
marine scientists with the skills needed to conduct rigorous and
relevant research in the context of a changing ocean. Handbooks
supporting best practices for multiple-driver marine research, are
available to download as well as several peer-reviewed papers to
help unify methodology and experimental approaches in order to
reproduce environmentally relevant conditions in the laboratory
(Boyd et al., 2018). As a result of the collaborative network derived
from this initiative, researchers can pool resources and data from
multiple labs, increasing sample sizes and variability in experimental
conditions.
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An additional, and often overlooked, way to move sci-
entific knowledge into the action sphere and make research
more relevant to society is through collaborations with and
among non-academic partners. The most effective of these
collaborations embrace a co-production model where knowl-
edge generators, knowledge users and other actors work
together to develop research questions, secure funding, con-
duct the research and interpret findings while incorporating
diverse perspectives (Fig. 2; Beier et al., 2017; Norstrom et al.,
2020). Co-production requires high levels of trust among all
parties, mutual respect and time (which is inherently challeng-
ing for graduate students on a strict timeline). However, when
co-production is done well, it yields actionable knowledge
that is readily embraced by those involved ensuring research
is more broadly relevant to society (Beier et al., 2017; for a
review on co-production knowledge and practices please see
Cooke et al., 2025).

Most researchers working in the conservation physiology
space, regardless of their use of lab or field approaches,
are doing so given their desire to generate new knowledge
that can help to address the biodiversity crisis and inform
conservation decisions for the benefit of wildlife and people.
Given the urgency of many issues (e.g. reversing population
declines and extirpations, preventing/managing disease out-
breaks and spillovers, climate change adaptation strategies)
and limited resources to support such work, data generated
by conservation physiologists needs to have the potential
to inform action (e.g. policy development, decision making
about conservation interventions, regulatory decisions, etc.).
While here we have illustrated the benefits of working in
the liminal spaces between lab and field studies in producing
impactful research outcomes, merely bridging the lab/field
divide is insufficient for meaningful impacts on conservation.
In short, publishing research findings alone is not enough to
connect our science to policy and practice, as has been well
articulated in many studies of the knowledge-action gap (e.g.
Fausch et al., 2002; Cook et al., 2013).

So how do we move from data to action? Earlier in this
paper, we introduced the concept of co-production, which
has repeatedly been identified as the single most important
thing a researcher can do to generate more relevant and
actionable science (see Beier et al., 2017 for an excellent
guide). The dividends (personally, professionally, for nature
and for people) derived from such actions can be immense,
although the additional time investment is not insignificant
(see Madliger et al., 2020 for case studies of successes and
failures). Collaboration between researchers and managers
on projects can build trust and facilitate communication to
help ensure mutually beneficial outcomes (Fig. 2). Indeed,
collaborating wildlife managers can contribute to a study’s
questions and design to ensure that researchers understand
what information is needed to support their decisions. Man-
agers can also articulate their concerns around uncertainty
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Figure 2: |llustration of ways that the traditional academic work flow (top panel) can be expanded to integrate feedback from knowledge users
in a partner-integrated works flow (bottom panel)), including managers, community members, policy makers and others. Arrows in the bottom
panel indicate the flow of benefits (e.g. study design benefits from the input of knowledge users to make research more useful).

in collected data, which researchers may then be able to
address through modifications to an experimental design or
additional research. Similarly, managers who spend time in
the lab or field with the research team can gain a deeper
appreciation for how the research is conducted, including
its constraints and limits, which further builds trust and
understanding. Ideally, co-production allows science-based
knowledge to be incorporated into management decisions
before academic papers are published. Increasingly, individ-
uals trained in co-production and knowledge brokering (i.e.
knowledge brokers) have particular expertise in doing such
work, and funding opportunities now exist to include such
experts to aid researchers in moving from data to action
(Hering, 20165 Cvitanovic et al., 2025). Co-production is a
journey and, when entered into with good intention, humility
and a willingness to learn and share power (especially when
working with community members) on behalf of all actors, is
itself a success.

Conclusion

Laboratory and field-based research, as well approaches that
fall somewhere in between, are all essential elements of con-
servation physiology. Here, we have made a case for working
across the lab-field continuum as a means of developing con-
servation research that can better inform policy and practice
(Fig. 1). Although we have focused primarily on the two ends
of the spectrum (i.e. laboratory and field), we nonetheless
emphasize the importance of integrative approaches (e.g.
mesocosms) and technologies that provide a middle ground

and offer more control than field studies yet more realism
than laboratory studies. We also highlight the benefits that
can arise from combining laboratory and field methods in a
single study or project. Finally, we acknowledge that scientists
cannot achieve meaningful conservation outcomes alone. The
long-standing paradigm that ‘scientists know best’ has con-
tributed to the knowledge-action gap and resulted in research
that is ignored or dismissed by decision makers or other
‘end users’. The conservation physiology research enterprise is
being re-envisioned as it becomes increasing apparent that the
greatest success is achieved when collaborating with partners,
ideally using a co-production model. Doing so increases the
relevance of the research and increases the likelihood of gen-
erating new knowledge and understanding that is actionable.
Scientists, especially in applied domains such as conservation
physiology, are increasingly judged not by the impact factor of
their work, but rather by the impact of their work for society.
Integrating research along the entire lab-field continuum in
an engaged and respectful manner with partners will yield
science that can contribute towards reversing the biodiversity
crisis for the benefit of wildlife and people.
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