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Simple Summary

Today, obesity is a major health problem in pets and people. Although metabolic dys-
function is a common problem in obesity, some individuals remain metabolically healthy
and do not show typical signs of obesity-related disorders. The aim of this study was to
investigate overweight and obesity-related changes in the serum of metabolically healthy
normal-weight cats, metabolically healthy overweight cats, and metabolically unhealthy
overweight cats. Reduced glycine could be an early predictor of impaired glucose tolerance
and insulin resistance. The major metabolites contributing to obesity were lipid metabolites.
Disturbances in thyroid hormone synthesis were also identified. Many of the metabolites
found have been previously associated with impaired glucose and energy metabolism and
the potential development of insulin resistance. Therefore, it would be valuable to investi-
gate whether these altered metabolites play a role in the etiology of feline-obesity-related
metabolic diseases.

Abstract

Obesity is currently one of the major medical problems affecting humans and companion
animals, including cats; however, a detailed understanding of the metabolic processes
altered in feline obesity remains limited. This study aimed to investigate obesity-related
changes in the serum metabolome of three groups of cats, metabolically healthy normal-
weight (MHN) cats, metabolically healthy overweight (MHO) cats, and metabolically
unhealthy overweight (MUO) cats. Metabolome changes were assessed using LC-MS
(untargeted), LC-MS (targeted), and FIA-MS (targeted) methods. Untargeted analysis de-
tected 141 significant annotated features, while targeted approach identified 48 metabolites
significantly associated with obesity. Both untargeted and targeted analyses showed lower
kynurenine levels in the MUO group compared to the MHN group. Targeted LC-MS
analysis identified 11 significant metabolites, whereas the FIA-MS approach detected 37.
Four metabolites—glycine, citrulline, and two phosphatidylcholines—were found at lower
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levels in the MHO group compared to the MHN group. Arginine and proline metabolism,
along with methionine metabolism, were significantly altered pathways, while thyroid hor-
mone synthesis was independently altered with the highest enrichment ratio. The obtained
results suggest that cats with a healthy phenotype exhibit an intermediate-metabolic-risk
profile and provide new insights into the metabolic mechanisms and pathways underlying
feline obesity.

Keywords: metabolomics; feline; obesity; mass spectrometry

1. Introduction
Declared as an epidemic by the World Health Organization [1], obesity is today present

at pandemic levels in both humans and animals. As a complex disorder, this state is a result
of an imbalance between energy expenditure and caloric intake. Associated with increased
morbidity and mortality, obesity has been declared as a major threat to pet health by the
British Small Animal Veterinary Association [2]. It is estimated that 12–63% of cats that are
kept as pets are overweight [3].

Despite the increasing prevalence of overweight and obesity in cats, the metabolic
changes related to those conditions are not well understood. To date, the most metabolic
studies on the impact of obesity have been focused on humans, with relatively few address-
ing feline obesity. In a recent study, Pallotto et al. [4] applied a metabolomics approach
to examine the effects of weight loss and diet on the serum metabolome of cats, identify-
ing several biomarkers of weight loss. Ohlund et al. [5] concluded that detection of an
altered metabolome might identify cats at risk of developing diabetes. Reeve-Johnson [6]
investigated metabolic profiles associated with spontaneous obesity in senior cats and
identified specific alterations in lipid and amino acid profiles, as well as disturbances in
glycolic acid metabolism. Additionally, Gottlieb et al. [7] applied metabolomics to compare
plasma metabolites between diabetic cats in remission and healthy controls, finding broad
metabolic differences.

It has been shown that metabolically healthy obese humans are still at risk of devel-
oping metabolic abnormalities in the future; however, the specific metabolic mechanisms
and pathways involved, as well as the progression of changes, remain unclear [8]. To date,
metabolically healthy obesity in cats has not been characterized in terms of comprehensive
risk assessment or associated metabolite changes compared to normal-weight cats.

This preliminary study investigates feline obesity by evaluating metabolome changes
associated with excess weight using both targeted and untargeted metabolomics ap-
proaches. The primary aim was to identify specific metabolites altered in overweight cats
that may contribute to metabolic dysfunction. A secondary goal was to identify metabolic
signatures and potential biomarkers of so-called metabolically healthy obesity. Additionally,
this study aimed to uncover the metabolic pathways involved in these changes.

2. Materials and Methods
2.1. Study Design and Cohorts

A detailed history of all animals was obtained. Cats were with normal weight and
overweight or obese for at least 6 months, and considered clinically healthy at the time of
examination. Exclusion criteria were acute or chronic disease in the last 2 months, use of
medication or a dietary supplement, or a recent change in body weight. Neutered cats were
excluded from the study. The cats were crossbreeds, and all the animals were fed with a
commercial diet at home by the owners. A scale of 1–9 was used to estimate body condition
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score (BCS), where 5 indicates normal weight, 6 and 7 overweight, and 8 and 9 obesity [9].
Each animal was assigned a BCS by 2 veterinarians who independently estimated BCS, and
the average result was used. According to BCS and laboratory data, cats were divided into
3 groups—metabolically healthy normal-weight cats (MHNs, n = 10), metabolically healthy
overweight and obese cats (MHOs, n = 10) and metabolically unhealthy overweight and
obese cats (MUOs, n = 8 for targeted, or n = 7 for untargeted metabolomics).

2.2. Participants

A total of 28 cats of different breeds were included in the study: the MHN group
comprised 5 males and 5 females, aged 4–13 years, with body weights of 4.8–5.6 kg, BCSs of
5 for each animal; the MHO group comprised 5 males and 5 females, aged 5–12 years, with
body weights of 5.2–7.0 kg and BCSs of 6–9; and the MUO group comprised 4 males and
4 females, aged 5–10 years, with body weights of 5.5–7.5 kg and BCSs of 6–8 (Supplementary
Table S1).

2.3. Diagnoses and Classification

Hematological measurements were performed using an automatic analyzer, “Horiba
ABX cell counter” (Diagnostics, Montpellier, France). Biochemical analyses (urea, creati-
nine, total proteins, albumins, total bilirubin, glucose, aspartate aminotransferase, alanine
aminotransferase, alkaline phosphatase, triglycerides, cholesterol) were carried out with an
automatic analyzer Olympus AU600 (Olympus Corporation, Tokyo, Japan), using standard-
ized methods and original reagents from the manufacturer. Adiponectin was measured by
the ELISA test (Biotang, Source International, Camarillo, CA, USA).

Metabolically healthy obesity and metabolically unhealthy obesity represent two
distinct phenotypes within the obese population of cats, characterized by the presence
or absence of metabolic abnormalities. The hematological and biochemical parameters
of metabolically healthy cats in the MHN and MHO groups were all within the normal
range. To identify the metabolic disturbances connected with obesity, we used feline
metabolic syndrome diagnostic criteria proposed by Okada et al. [10]. The MUO group
included cats with a higher BCS, fasting glucose concentration (>6.7 mmol/L), triglycerides
(>1.86 mmol/L) or total cholesterol (>4.7 mmol/L), and lower adiponectin (3.0 < µg/mL).
The results are shown in Table 1.

Table 1. Biochemical characteristics and body condition score of the study population of cats.

MHN MHO MUO

Parameter Unit MEAN MIN MAX MEAN MIN MAX MEAN MIN MAX

BCS 5 5 5 7.0 6 9 7.0 6 8
BUN mmol/L 7.8 3.9 11 6.9 4.5 8.6 9.7 7.2 15
CRE µmol/L 97 74 142 100 62 188 98 72 153
PRO g/L 73 64 85 73 57 87 81 72 88
ALB g/L 27 23 30 27 24 30 28 25 31
BIL µmol/L 1.3 0.9 1.7 1.9 0.9 4.9 1.8 0.9 4.4
GLU mmol/L 5.3 4.2 6.6 4.8 1.9 6.4 13 7.7 25
AST IU/L, 37 ◦C 19 10 37 21 9.0 42 30 8.0 98
ALT IU/L, 37 ◦C 56 34 149 61 36 112 78 40 153
AP IU/L, 37 ◦C 65 24 135 48 20 104 42 22 60
TG mmol/L 0.6 0.2 1.1 0.6 0.2 1.2 1.9 0.6 5.4
CHOL mmol/L 2.9 2.0 4.0 3.0 2.2 3.8 5.9 4.8 8.8
ADP µg/mL 4.2 1.0 7.5 2.4 1.3 4.6 1.5 0.7 2.5

MHNs—metabolically healthy normal-weight cats, MHOs—metabolically healthy overweight and obese cats,
MUOs—metabolically unhealthy overweight and obese cats, BCS—body condition score, BUN—blood urea
nitrogen, CRE—creatinine, PRO—total protein, ALB—albumin, BIL—total bilirubin, GLU—glucose, AST—
aspartate aminotransferase, ALT—alanine aminotransferase, AP—alkaline phosphatase, TGs—triglycerides,
CHOL—cholesterol, ADP—adiponectin.
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2.4. Sample Collection

Blood was taken after 8 h of fasting, from the cephalic vein, in two tubes, one with
EDTA anticoagulant for hematological tests, and the other with a coagulation activator gel,
for biochemical tests. After the clotting process, the serum tube was centrifuged at 1200× g
for 10 min, after which a portion of the serum was separated for routine biochemical
analyses and a portion stored at −80 ◦C until spectroscopic measurements were performed.

2.5. Untargeted and Targeted Metabolomic Analyses
2.5.1. Untargeted Metabolomics

Metabolites for untargeted metabolomics analysis were extracted using a chloro-
form/methanol/water (1:3:1, v/v/v) mixture (chloroform, methanol (Honeywell, Char-
lotte, NC, USA), water (Merck, Darmstadt, Germany)) [11,12]. Serum samples (25 µL) were
mixed with extraction solvent on a 4 ◦C vortex mixer for 5 min. Pooled samples were
prepared using 10 µL from each serum. All samples were centrifuged at 13,000× g for 5 min
at 4 ◦C, and 200 µL of supernatant was stored at −80 ◦C for UHPLC-MS/MS analysis.

Serum extracts were analyzed using a Dionex UltiMate 3000 UHPLC system coupled
with a Thermo Orbitrap Q Exactive Plus MS (Thermo Fisher Scientific, Bremen, Germany).
Separation was performed on a ZIC-pHILIC column (150 × 4.6 mm, 5 µm, Merck Sequant,
Darmstadt, Germany) via HILIC at 25 ◦C. To prevent retention time shifts, all samples were
run in a single sequence. A linear gradient from 80% to 5% mobile phase B (acetonitrile)
over 15 min was used, followed by 2 min at 5% B, a return to 80% B in 1 min, and 6 min
equilibration. Mobile phase A was 20 mM ammonium carbonate in water. The flow rate
was 0.3 mL/min with 10 µL injections, and samples were kept at 5 ◦C in the autosampler.
MS was operated in positive and negative electrospray modes at 70,000 resolution, scanning
m/z 70–1050. The source voltage was ±3.8 kV, with sheath gas at 40, auxiliary gas at 5
(arbitrary units), and capillary temperature at 320 ◦C.

Metabolites were identified using a standard mix of ~150 reference compounds (from
Glasgow Polyomics, Glasgow, UK) dissolved in acetonitrile (90 µL acetonitrile + 10 µL
standard mix). Quality control samples, prepared from beer and human urine, were used
to check signal reproducibility and chromatography quality.

Data processing was performed using MSconvert (ProteoWizard Software Foundation,
San Diego, CA, USA) and the Polyomics integrated Metabolomics Pipeline (PiMP) at
http://polyomics.mvls.gla.ac.uk (accessed on 23 July 2025) [13]. Raw LC-MS data were
converted from RAW to mzXML format, centroided, and separated by polarity using
ProteoWizard software Version 3 [14]. Metabolites were identified in PiMP software
following MSI guidelines. Identification was based on mass and retention time matching
with authentic standards, while annotation relied on accurate mass searches in databases
such as HMDB (Human Metabolome Database) and KEGG, integrated within PiMP.

2.5.2. Targeted Metabolomics

Metabolite extraction for targeted metabolomics was performed using the Absolute
IDQ p400 kit (Biocrates Life Science AG, Innsbruck, Austria). This kit allows analysis
of up to 408 metabolites. It uses the liquid chromatography–mass spectrometry (LC-
MS/MS) to quantify amino acids and biogenic amines, and flow injection analysis–mass
spectrometry (FIA-MS/MS) to quantify acylcarnitines, glycerophospholipids, glycerides,
hexoses, cholesterol esters, and sphingolipids. Metabolite extraction was performed using
a 96-well plate system following the manufacturer’s instructions in three steps: protein
removal, internal standard normalization, and derivatization. Serum samples (10 µL),
calibration standards, zero standards (phosphate-buffered saline), and quality control
samples (QC 1–3, QC2 in five replicates) were added to the plate containing the internal

http://polyomics.mvls.gla.ac.uk
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standard mix. Samples were dried for 30 min using a vacuum manifold (Thermo Scientific,
Waltham, MA, USA), derivatized with 50 µL of 5% phenylisothiocyanate (PITC) solution
(Sigma-Aldrich, St. Louis, MO, USA) in water:ethanol:pyridine (1:1:1; water: Merck,
Darmstadt, Germany; ethanol: Honeywell, Charlotte, NC, USA; pyridine: BDH PROLABO,
Lutterworth, UK), and incubated for 20 min at room temperature. Plates were dried again
for 60 min using the same vacuum manifold. For FIA-MS/MS, metabolites were extracted
with 300 µL of 5 mM ammonium acetate (Sigma-Aldrich, St. Louis, MO, USA) in methanol
(Honeywell, Charlotte, NC, USA), and collected using the vacuum manifold (Thermo
Scientific, Waltham, MA, USA). For LC-MS/MS, 150 µL of extract from the capture plate
was transferred and mixed with 150 µL of LC-MS-grade water. Feline serum samples were
analyzed on a Dionex Ultimate 3000 UHPLC system (Thermo Fisher Scientific, Germering,
Germany) coupled with a Q Exactive Plus Orbitrap mass spectrometer (Thermo Fisher
Scientific, Bremen, Germany). Metabolites were separated on a Thermo p400 HR UHPLC
column (Biocrates) at 50 ◦C. Mobile phase A was 0.2% formic acid (Sigma-Aldrich, St. Louis,
MO, USA) in water (Merck, Darmstadt, Germany), and mobile phase B was 0.2% formic
acid in acetonitrile (Honeywell, Charlotte, NC, USA). A 5 µL injection was used, with a total
run time of 5.81 min and a gradient from 0% to 95% B over 4 min at 0.8 mL/min. For FIA-
MS/MS, the flow rate changed from 0.05 mL/min (0–1.6 min) to 0.2 mL/min (1.6–2.8 min),
and then back to 0.05 mL/min, using the FIA mobile phase. Analyses were performed
in both positive and negative electrospray modes according to Biocrates protocols. The
mass spectrometer operated in full-scan mode at 70,000 resolution, scanning m/z 100–800
(LC-MS/MS) and 100–1000 (FIA-MS/MS), with 1 microscan, AGC target of 1 × 106, and
250 ms maximum injection time. HESI source parameters were 3.0 kV source voltage,
300 ◦C capillary temperature, sheath gas 60, auxiliary gas 30, S-lens RF level 60 (LC1) and
90 (LC2), and aux gas heater at 550 ◦C for LC-MS/MS; and 2.5 kV source voltage, 300 ◦C
capillary temperature, sheath gas 15, auxiliary gas 5, S-lens RF level 60, and aux gas heater
at 120 ◦C for FIA-MS/MS.

The targeted data analysis was performed using the Biocrates MetIDQ software
(Biocrates Life Science AG, Innsbruck, Austria). LC-MS metabolite quantification was
performed via XCalibur Quan 4.1 software (Thermo Fisher Scientific, Waltham, MA, USA)
based on a 7-point calibration curve and isotope-labeled internal standards for the most
analytes. The FIA-MS/MS analysis used a single-point calibrator with representative
internal standards.

2.6. Statistical Analysis

Statistical analysis of the metabolomics data was performed using the online available
data processing platform MetaboAnalyst v.5.0 by means of univariate and multivariate
statistical approaches [15]. For untargeted metabolomics, statistical analyses were con-
ducted on the combined positive- and negative-ion datasets, exported from PiMP. We
used appropriate parameters for normalization to obtain a normal distribution (Gaussian
distribution). Missing values (0.6%) were replaced by 1/5 of the minimum positive value
for each variable. The untargeted data were normalized to a constant sum, log-transformed,
and Pareto-scaled. In the targeted metabolomics, missing values (4.5%) were replaced by
the estimated missing value using KNN (feature-wise). The targeted data were normal-
ized to sample median, log-transformed, and auto-scaled. The overall differences in the
metabolic profiles of the three groups of cats were analyzed by the one-way analysis of
variance (ANOVA) and Fisher’s least-significant difference (Fisher’s LSD) post hoc test,
partial least square–discriminant analysis (PLS-DA), and variable importance on projection
(VIP). Metabolites with a p-value of <0.05 were considered statistically significant. Correla-
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tion between selected markers and phenotype (body weight and BCS) were calculated by
Pearson’s rank correlation coefficient.

Metabolite set enrichment analysis was performed using the joint significant metabo-
lites identified by the untargeted and targeted metabolomics approaches using Metabo-
Analyst v.5.0. [15]. Metabolite sets (SMPDB; 99 metabolite sets based on normal human
metabolic pathways) were used as a metabolite set library in the enrichment analysis.

2.7. Ethical Approvals

With approval from the Ethics Committee of the Faculty of Veterinary Medicine,
University of Zagreb, systematic health examinations were conducted on pet cats. All
owners provided written informed consent before entering the study.

3. Results
3.1. Data Processing

Using a targeted metabolomics approach, we identified 48 significant metabolites
with differential abundance in three groups of cats. Among them, a total of 11 significant
metabolites were identified by LC-MS analysis (Table 2).

Table 2. List of identified and significantly changed metabolites with differential abundance between
MHOs, MUOs, and MHLs as determined by the targeted LC-MS and FIA-MS approach.

Metabolite p FDR Post Hoc
Significance

Kynurenine 2.90 × 10−6 0.000577 MHN/MUO MHO/MUO
Gly 9.84 × 10−6 0.000979 MHN/MHO MHN/MUO MHO/MUO
TG (52:6) 1.73 × 10−5 0.000985 MUO/MHN MUO/MHO MUO/MHO
SM (40:4) 2.34 × 10−5 0.000985 MHN/MUO MHO/MUO
TG (53:3) 2.48 × 10−5 0.000985 MUO/MHN MUO/MHO
PC (42:3) 5.10 × 10−5 0.001615 MHN/MUO MHO/MUO
Ser 5.68 × 10−5 0.001615 MHN/MUO MHO/MUO
TG (54:7) 0.000154 0.00384 MUO/MHN MUO/MHO
SM (31:1) 0.00021 0.00465 MHN/MUO MHO/MUO
TG (54:6) 0.00029 0.005767 MUO/MHN MUO/MHO
ADMA 0.000375 0.006493 MHN/MUO MHO/MUO
TG (52:4) 0.000392 0.006493 MUO/MHN MUO/MHO
TG (56:6) 0.000481 0.007365 MUO/MHN MUO/MHO
Tyr 0.00054 0.007673 MHN/MUO MHO/MUO
TG (51:3) 0.000602 0.007988 MUO/MHN MUO/MHO
TG (56:7) 0.000676 0.008048 MUO/MHN MUO/MHO
Pro 0.000687 0.008048 MHN/MUO MHO/MUO
PC (33:0) 0.000896 0.009132 MHN/MUO MHO/MUO
Cit 0.000913 0.009132 MHN/MHO MHN/MUO
PC (39:5) 0.000918 0.009132 MHN/MHO MHN/MUO MHO/MUO
TG (52:5) 0.001179 0.011175 MUO/MHN MUO/MHO
PC-O (40:7) 0.001288 0.011648 MHN/MUO MHO/MUO
PC (37:5) 0.001403 0.011905 MHN/MUO MHO/MUO
TG (54:5) 0.001472 0.011905 MUO/MHN MUO/MHO
LPC (18:1) 0.001496 0.011905 MHN/MUO MHO/MUO
TG (53:4) 0.002004 0.014842 MUO/MHN MUO/MHO
PC (34:5) 0.002032 0.014842 MHN/MUO MHO/MUO
Cer (34:0) 0.002088 0.014842 MHN/MUO MHO/MUO
TG (52:2) 0.002237 0.01535 MUO/MHN MUO/MHO
TG (50:4) 0.002529 0.016257 MUO/MHN MUO/MHO
PC (24:0) 0.002555 0.016257 MHN/MUO MHO/MUO
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Table 2. Cont.

Metabolite p FDR Post Hoc
Significance

TG (51:2) 0.002614 0.016257 MUO/MHN MUO/MHO
TG (52:3) 0.002812 0.016958 MUO/MHN MUO/MHO
Creatinine 0.003092 0.018095 MHN/MUO MHO/MUO
Trp 0.003213 0.018265 MHN/MUO MHO/MUO
LPC (18:2) 0.003337 0.018406 MHN/MUO MHO/MUO
SDMA 0.003509 0.018406 MHN/MUO MHO/MUO
PC-O (26:1) 0.003515 0.018406 MHN/MUO MHO/MUO
PC (37:7) 0.003745 0.018724 MHN/MUO MHO/MUO
PC (44:10) 0.003764 0.018724 MHN/MUO MHO/MUO
PC (36:5) 0.00447 0.021252 MHN/MUO MHO/MUO
Putrescine 0.004485 0.021252 MHN/MUO MHO/MUO
TG (54:4) 0.004875 0.022559 MUO/MHN MUO/MHO
TG (50:3) 0.005183 0.02344 MUO/MHN MUO/MHO
TG (56:8) 0.007278 0.032184 MUO/MHN MUO/MHO
PC (37:2) 0.008218 0.035549 MHN/MUO
PC (42:7) 0.009626 0.040756 MHN/MHO MHN/MUO
TG (54:3) 0.011436 0.047411 MUO/MHN MUO/MHO

MHNs—metabolically healthy normal-weight cats, MHOs—metabolically healthy overweight and obese
cats, MUOs—metabolically unhealthy overweight and obese cats. Gly—glycin, TGs—triglycerides, SMs—
sphingomyelins, PCs—phosphatidylcholines, SER—serine, ADMA—asimmetric dimethylarginine, TYR—
tyrosine, PRO—proline, CIT—citruline, LPCs—lysophosphatidylcholines, CER—ceramide, TRP—tryptophane,
SDMA—asimmetric dimethylarginine.

Using a targeted FIA-MS approach, we detected 37 significant metabolites divided into
groups of lysophosphatidylcholines (2) (LPCs), phosphatidylcholines (16) (PCs), triglyc-
erides (19) (TGs), sphingomyelins (2) (SMs), and ceramides (1) (CERs). Four metabolites,
glycine (GLY), citruline (CIT), PC (39:5), and PC (42:7), were significantly lower in the MHO
group compared with the MHN group. The majority of changes were observed in the MUO
group. When comparing the MUO group with the MHN group, 25 metabolite levels were
higher, and 19 were lower. All of the metabolites with higher levels were different TGs. All
of the measured subspecies of TGs were also higher in the MUO group compared to the
MHO group, while kynurenine (KYN), GLY, SM (40:4), PC (42:3), serine (SER), SM (31:1),
proline (PRO), PC (33:0), PC (40:7), PC (37:5), LPC (18:1), PC (34:5), CER (34:0), PC (24:0),
creatinine (CRE), tryptophane (TRY), LPC (18:2), simmetric dimethylarginine (SDMA),
PC-0 (26:1), PC (37:7), PC (44:10), PC (36:5), and putrescine (PUT) were significantly lower
(Table 2).

An untargeted metabolomics approach resulted in the detection of 141 significant
metabolic features (p-value of <0.05). Of these 141 features, only 1, KYN, was confidently
identified using retention time (RT) and an accurate mass-to-charge ratio (m/z), correspond-
ing to Level 1 identification based on the Metabolomics Standards Initiative (MSI) criteria.
The remaining features were annotated using m/z alone, categorized as Level 3 MSI. To
ensure the robustness and reliability of our findings, we focused exclusively on metabolites
identified at Level 1 MSI.

3.2. Discriminant Metabolite Identification

In order to allow visualization of the data based on disease classification between three
groups of cats, PLS-DA was performed. This analysis represented fairly clear intergroup
separation between the three experimental groups of cats investigated by targeted and
untargeted metabolomics (Figure 1).
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Figure 1. Partial least squares–discriminant analysis (PLS-DA) 3D score plot of serum samples
from three groups of cats (MHN (red); MHO (blue); MUO (green) performed by targeted (A) and
untargeted (B) metabolomics analysis, based on 199 identified metabolites (targeted) and 2907 de-
tected peaks (untargeted). MHNs—metabolically healthy normal-weight cats, MHOs—metabolically
healthy overweight and obese cats, MUOs—metabolically unhealthy overweight and obese cats.

The validity of the PLS-DA model was confirmed through cross-validation, which
identified the optimal model with four components for targeted metabolomics (R2 = 0.95,
Q2 = 0.56). However, permutation testing (p = 0.32, n = 1000) indicated that the classification
performance may not be statistically significant, warranting cautious interpretation of the
model’s discriminative ability. For untargeted metabolomics, the best classifier model
comprised one component (R2 = 0.63, Q2 = 0.43), indicating a good model fit and acceptable
predictive power. Meanwhile, the permutation test produced a p-value of 0.065—slightly
above the conventional significance threshold (p < 0.05)—suggesting that the model may
capture meaningful group separation, though the risk of overfitting cannot be entirely ex-
cluded. These findings support the use of the model for identifying potential discriminative
metabolites, but further validation is warranted.

The overall variable importance in projection (VIP) scores from the PLS-DA identified
the 15 most highlighted metabolites/features contributing to group separation (Figure 2).
For the targeted metabolomics analysis, the results showed that the highest VIP score
belonged to GLY. The most important metabolites identified by the targeted metabolomics
approach were serine, two TGs (TG (52:6) and (53:3)), and kynurenine. The TGs were higher
in the MUO group in comparison to the control, while the concentrations of GLY, SER,
and kynurenine were lower. In the untargeted metabolomics, the top five most influential
metabolic features obtained by VIP were features 506, 732, 708, 717, and 2732. Among
them, feature 506 had the highest VIP score. Feature 732 was higher in the MUO group
in comparison to the control group, while features 506, 708, 717, and 2732 were lower
(Figure 2).

Correlations between four selected markers (glycine, citrulline, LPC18:1, and LPC18:2)
and phenotype parameters such as weight and BCS are shown in Figure 3. A moderate asso-
ciation was found between citrulline concentration and the weight of cats (r = 0.41, p = 0.03),
and a strong negative association was found between LPC18:2 and weight (r = −0.64,
p < 0.001), as well as between LPC18:2 and BCS (r = −0.58, p = 0.001).
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Figure 2. Variable importance in projection (VIP) scores for the 15 most influential metabolites identi-
fied by PLS-DA analysis in targeted (A) and untargeted (B) metabolomics. The intensity of the colored
boxed on the right represents the relative concentrations or intensities of the corresponding metabo-
lite in three different groups of cats, with red corresponding to higher concentration/intensity, and
blue corresponding to lower concentration/intensity. MHNs—metabolically healthy normal-weight
cats, MHOs—metabolically healthy overweight and obese cats, MUOs—metabolically unhealthy
overweight and obese cats.

 
Figure 3. Correlation heatmap for four selected markers (glycine, citrulline, LPC18:1, and LPC18:2)
and phenotype parameters (weight and BCS). Correlations were calculated by Pearson’s rank correla-
tion coefficient.

3.3. Enrichment Analysis

For the enrichment analysis, joint significant metabolites (p-value < 0.05) identified
by untargeted and targeted metabolomics were used (peak intensities for metabolites
identified by untargeted metabolomics and concentrations for metabolites identified by
targeted metabolomics), resulting in 19 pathways which were designated as enriched,
as displayed in Figure 4. Arginine, proline metabolism, and methionine metabolism
were statistically significant. The most interconnected metabolic pathways were arginine
and proline metabolism, glutamate metabolism, and aspartate metabolism, while thyroid
hormone synthesis was independently altered. This analysis demonstrated key metabolites
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participating in arginine and proline metabolism, methionine metabolism, and thyroid
hormone synthesis (Figure 4).

Figure 4. Pathway enrichment displayed as a network view (A) and as a bar chart view (B) of the
significant metabolites identified by untargeted and targeted approaches derived from the metabolic
datasets for prediction of pathways associated with serum metabolite sets. Metabolite sets (SMPDB;
99 metabolite sets based on normal human metabolic pathways) were used as a metabolite set library
in the enrichment analysis. The colors and the bar length represent the metabolites with different
levels of significance according to enrichment analysis.

4. Discussion
Using comprehensive metabolic profiling, we detected 141 significant annotated

features with the untargeted approach and 48 metabolites with the targeted method. The
majority of metabolites identified in the targeted analysis distinguished the MUO group
from the MHN group. Four metabolites were significantly altered in the MHO group
compared to the MHN group.

A key finding of this study was the observed link between serum glycine (GLY) con-
centrations and obesity in both the MHO and MUO groups, where glycine levels were
lower compared to the MHN group. Additionally, serine (SER) and proline (PRO) concen-
trations were lower in the MUO group compared to the MHN group. These results align
with previous studies reporting altered circulating amino acid levels in obese animals and
humans. In a recent study examining the effects of weight loss on the feline metabolome,
glycine and serine levels were found to increase consistently during the weight loss pro-
cess [4]. Most studies investigating obesity-related metabolic changes have been conducted
in humans, where inverse correlations between plasma glycine concentrations and body
mass index (BMI) have been well established [16–20]. In addition to metabolically healthy
obesity, in metabolic disorders associated with obesity, lower GLY concentrations have also
been consistently observed [21–24]. Palmer et al. [24] emphasized that reduced plasma
GLY could be an early predictor of impaired glucose tolerance and insulin resistance. Al-
Aama et al. [21] proposed GLY and SER as predictors of early glucose metabolism disorder.
Diabetic rats also showed lower GLY and SER in comparison with normal rats [22]. The
authors concluded that the entry of SER to gluconeogenesis likely leads to decreased SER
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concentrations, suggesting that SER is one of the first amino acids affected by increased
gluconeogenic activity.

The results of targeted and untargeted approaches showed a lower concentration of
KYN in the MUO group compared to the MHN group. Analyzing the results of the targeted
approach, the concentrations of TRP and TYR were also lower in the MUO group. A few
studies have applied metabolomics approaches to investigate obesity-related metabolic
disturbances in feline models. In investigating the concentration of metabolites in over-
weight cats undergoing weight loss, Palotto et al. [4] similarly reported lower concentration
of KYN in cats with weight excess prior to weight normalization. The authors concluded
that decreased TRP and KYN may indicate that synthesis of serotonin or melatonin are
intensified. Hall et al. [25] investigated the metabolite profile of cats after allowing them
to self-select their macronutrient intake. Cats showed intensified TRP catabolism, with
higher serotonin concentrations at the expense of KYN. Also, since SER is a precursor for
TRP, the contributing factor to TRP decrease could be lower SER in MUOs compared with
MHNs. Contrary to our results, when investigating differences between lean and obese
senior cats using a metabolomic approach, Reeve-Johnson [6] found unaltered TYR and
TRP. In humans, both KYN and TRP were found to be positively associated with weight
excess [26–29]. Moreover, metabolic changes in visceral adipose tissue from obese subjects
were characterized by elevated levels of KYN in both metabolically healthy and unhealthy
subjects [30]. The results should be interpreted in light of previous studies and the working
hypotheses, addressing the broader implications of the findings and their significance.
Additionally, potential directions for future research may be highlighted.

Of the 48 metabolites that exhibited an alteration associated with excess weight, the
majority were related to lipid metabolism, including triglycerides, phosphatidylcholines,
lysophosphatidylcholines, and sphingomyelines. Among these, targeted metabolomics
identified that 13 PCs, 2 LPCs, and 2 SMs were lower in the MUO group compared to
the MHN group, while the concentrations of 19 TGs were higher. Two PCs, 39:5 and 42:7,
were also lower in the MHO group compared to the MHN group. Comparing results
across obesity studies is challenging due to differences in lipidomic methods, diverse
study designs, and the use of various data analysis tools. Nevertheless, some results are
consistent and offer at least a partial explanation of the metabolic disturbances characteristic
of both animal and human obesity, suggesting a shared underlying mechanism. The same
two LPCs which were found in lower concentrations in the MUO group compared to the
MHNs, LPC18:1 and LPC18:2, were lower in obese children and adults [31–33]. In an
assessment of the metabolomic changes in weight excess, using an LC-MS/MS targeted
metabolomic approach, Frigeiro et al. [16] found decreased LPCs and PCs. Moreover, LPC
18:2 is suggested to be one of the most interesting negative biomarkers of obesity in humans.
As a possible reason for the lower levels of LPCs and PCs in obesity, the author suggested
increased lipolytic degradation due to the upregulation of specific phospholipase D. A
significant negative correlation between LPC 18:2 and BCS and weight was also found
in our study. Obesity-related disturbances were previously connected with lower LPC
18:2 concentrations in obese individuals compared to normal-weight ones. Investigating
adiposomes, researchers found associations between LPC 18:2 and body mass index (BMI)
and fat percentage [34]. Linoleate-containing lipids were found to be negatively correlated
with waist circumference and body mass index in obese humans [35].

Higher TG concentration indicates increased hepatic production and secretion in
MUOs. According to a hypothesis posited by Rauschert et al. [36], when fat levels exceed
the storage capacity of adipocytes, fat may deposit in other tissues, where cells produce
bioactive lipids that impair insulin sensitivity, leading to insulin resistance and reduced
glucose uptake. Future research should investigate whether the described resistance mech-
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anism is present in obese cats as one of the causes of the elevated glucose concentration in
the MUO group. Several studies [37–39] have linked excess body weight, insulin resistance,
and dyslipidemia, supporting the existence of a feline form of metabolic syndrome [34].

Lower levels of CIT, ADMA, SDMA, and CRE were observed in MUO cats compared
to MHN cats. Of those four compounds, only CIT was found to be lower in the MHO
group compared to the MHN group. Some metabolomic findings from human studies have
demonstrated results similar to ours, reporting an inverse association of plasma CIT with
BMI [16,40]. Also, lower CIT concentrations were found in the skeletal muscles of obese
subjects compared with lean controls [41]. In addition, CIT was reduced in men with insulin
resistance and T2D compared to insulin-sensitive individuals [42]. The authors concluded
that CIT, as a marker of intestinal health, indicates alterations in the gut epithelium which
are probably associated with obesity. In addition, the plasma concentration of CIT is
considered a biomarker of enterocyte mass [42]. Lower CIT levels in both the MHO and
MUO groups support the hypothesis of decreased functional enterocyte mass. Interestingly,
decreased CIT was also observed in cats without metabolic alterations, raising the question
of whether gut epithelial disturbances occur early in weight excess, even during the
metabolically healthy stage. In our study, CIT was found to be positively correlated with
the weight of the cats, contradicting the established fact that this aminoacid is reduced in
obesity. This finding suggests that body weight may not be the best measure of adiposity
in cats due to breed-dependent variations.

The methylated form of ARG was decreased in the MUO group compared with MHO
and MHN cats. This finding is consistent with a previously reported study by Pyram
et al. [43], in which the concentration of SDMA was lower in cats with diabetes mellitus
than in controls. The authors suggested that this might be due to osmotic diuresis or hyper-
filtration. Hillaert et al. [44], investigating the relationship between body fat and SDMA in
dogs, also found a significant negative association. Since SDMA is primarily eliminated
through urine [39], and given that some human obesity studies suggest obesity may involve
a state of relative hyperfiltration [45–47], it is possible that a similar condition occurs in
feline obesity, contributing to increased SDMA elimination. Our previous investigation
of the impact of obesity in dogs also showed lower CRE concentrations compared to lean
dogs [48]. Similarly, cats undergoing weight loss showed an increase in creatinine levels [4].
In a recent targeted metabolomics study by Frigeiro et al. [16], involving over a thousand
overweight and obese subjects, CRE was negatively associated with BMI. Some of the
mechanisms involved in the decrease in CRE in MUO cats could be lower muscle mass
volume in relation to proliferated adipose tissue and/or a hyperfiltration state characteristic
of obesity. Additionally, reduced GLY, which is required for creatine synthesis, should also
be taken into account.

The highest enrichment ratio was found for thyroid hormone synthesis. Obesity, as
a chronic metabolic disease, implies a positive energy balance [49]. It is well known that
thyroid hormones play an important role in the regulation of energy expenditure and
ability to control weight. Hypothyroidism and obesity are disorders with interrelated
mechanisms—subclinical hypothyroidism can be a cause of obesity, but obesity can also
affect thyroid function [50]. To evaluate the link between overweight and the future
incidence of thyroid cancer in humans, some authors concluded that the rising prevalence
of excess weight may contribute to approximately 10,000 thyroid cancer cases over the next
decade [51].

Widely used in human medicine, metabolomics is also a valuable diagnostic tool
in veterinary medicine, where it can be employed for the purpose of early diagnosis of
metabolic disorders, the determination of differences in subtypes of various diseases, and as
monitoring the success of therapy. Metabolomic research can identify new biomarkers for
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detecting disorders in metabolism even before the appearance of clinical symptoms, which
enables early and more successful treatment of animals. Analyzing the complete metabolic
profile in animals can improve understanding of disease mechanisms and support the
development of new therapeutic strategies.

This work has two main limitations: 1. a small sample size, and 2. the use of BCS as
a measure of overweight. Better insight into the concept of metabolically healthy obesity
could be provided by future research on a larger number of animals with the use of a more
accurate method (dual-energy X-ray absorptiometry) for assessing body fat percentage.

5. Conclusions
In conclusion, this study offers comprehensive metabolomic profiles of feline weight

excess, identifying 48 significant metabolites through targeted metabolomics and 141
significant metabolic features through untargeted metabolomics associated with overweight
in MUO cats. The major metabolites contributing to obesity were lipid metabolites. Four
metabolites were also differentially abundant in the MHO group, supporting the hypothesis
that cats with a healthy phenotype exhibit an intermediate-stage metabolic risk profile.
These weight-related metabolite changes challenge the concept of metabolically healthy
overweight and obesity in cats. Many identified metabolites have been previously linked
to impaired glucose and energy metabolism and the potential development of insulin
resistance. Therefore, it would be valuable to investigate, in a larger cohort over a longer
period, whether these altered metabolites contribute to the development of feline-obesity-
related metabolic diseases. In summary, this study revealed the impact of feline weight
excess on the metabolome using targeted and untargeted metabolomics, advancing our
understanding of obesity-related metabolic disturbances and aiding in identifying cats at
higher risk of obesity-related diseases.
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