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No benefit in using rubber-coated wire to counter loss of voltage
due to tall grass in large carnivore deterring fences
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age of the rubber-coated wire during contact with soil, ground, and wet vegetation and
observed a voltage loss comparable to that of the standard metal fence wire. Our results
imply that the rubber-coated wire does not perform better than a conventional metal
a fence wire when in contact with growing grass and other elements that usually short

circuit an electric fence.
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Introduction

Wildlife populations and humans often cooccur in terrestrial ecosystems, leading to
both positive or negative interactions for humans (Curtin 2009, White et al. 2017,
Bhatia et al. 2020, Johansson et al. 2021, Flykt et al. 2022) and for the wild animals
(Prange et al. 2003, Szott et al. 2019, Tyagi et al. 2019). Mitigating negative impacts
from wildlife on human interests, such as predation on livestock, is a challenge to wild-
life management globally. Not least is this the case in situations when conservation of
threatened species relies on land sharing between humans and wildlife. Yet, for many
interventions intended to mitigate the negative impact from large carnivores, further
evidence of intervention effectiveness is still needed (Miller et al. 2016, Eklund et al.
2017, van Eeden et al. 2018, Oliviera et al. 2021).

Electric fences represent one intervention to mitigate the negative impact of large
carnivores (Eklund et al. 2017) and can be highly effective in protecting grazing live-
stock from carnivore attacks (van Eeden et al. 2018, Khorozyan and Waltert 2020,
Oliviera et al. 2021). However, to effectively deter carnivores, proper construction
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and regular maintenance are crucial (Nass and Theade 1988,
Frank and Eklund 2017, Khorozyan and Walterc 2020,
Oliveira et al. 2021, Schiitte 2021, Honda 2022).

The barrier function of an electric fence is psychological
rather than physical (Tolhurst et al. 2008, Phillips et al. 2012)
as the deterring effect relies on the anticipated pain and dis-
comfort caused by the electric shock (Fish and Geddes 2009)
that an animal experiences when it touches a live wire. To be
effective the fence should always be electrified, and the voltage
must be sufficiently high to induce vigilance towards the elec-
tric fence. The voltage required to induce vigilance may differ
between animal species (Honda 2021). The live wires must
also be tense, as animal fur is a good insulator against electric-
ity (Wooldridge 1983, Honda 2022) and high tension of the
live wires induces electrification over the fur (Honda 2022).

Well adapted interventions to protect livestock from
predation can facilitate animal owners' coping with large
carnivore presence (Eklund et al. 2020). However, if inter-
ventions recommended by authorities or wildlife managers
are inappropriate and ineffective, the consequence may rater
be reduced tolerance and diminished trust.

Carnivore deterring fences often encircle large grazing
areas, and to keep carnivores (e.g. wolves) from digging into
the enclosure the lowest wire must be close to the ground.
According to the recommendations for wolf and bear deter-
ring fences in Sweden, the lowest wire should be no more
than 30 centimetres above the ground (Fig. 1), and the volt-
age level in the wires no lower than 4500 volts (Frank and
Eklund 2017, Angsteg et al. 2021). Some experiments have
indicated that a lower wire placement of approximately 30 cm
and an upper wire at 70 cm were optimal for deterring bear
(Smith et al. 2018) and that the minimum voltage should be
5000 volts (Smith et al. 2018, Alaska Department of Fish and
Game 2023). An older study with polar bears also used the
30 cm distance for the lower wire while the voltage used was
8000 volts. These settings were effective for deterring polar
bear (Davies and Rockwell 1986).

Maintaining the function of electric fences thus requires
extensive effort clearing the wires from grass and other
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vegetation throughout the grazing season (Schiitte 2021)
since contact with vegetation, and in particular wet veg-
etation, causes short circuit and generally a significant loss
of voltage in electric fences. A regular fence wire often
requires farmers to cut grass under the fence several times
per year to maintain voltage. A fence wire consisting of
thin copper threads coated by electrically conductive rub-
ber has been developed in Denmark and according to the
supplier this wire will not short circuit when in contact
with e.g. vegetation, ground, and water. The rubber-coated
wire is claimed to maintain a stable voltage over long dis-
tances even if moist vegetation is in contact with the wire,
reducing the need to clear vegetation along the fence. Due
to this potential advantage, the rubber-coated wire has
received substantial interest from farmers and authorities
in Sweden to be used in the construction of large carnivore
deterring fences.

In this study, we test the performance of the rubber-coated
wire in conditions that normally cause short circuit and volt-
age drop in electric fences. Through experiments, we inves-
tigate how the voltage level is affected by contact with wet
vegetation, soil, and ground, and how the rubber-coated wire
performs in comparison to a standard fence metal wire.

Material and methods

We carried out four experimental trials (Fig. 2) in July 2021:

1. Control (free wire). The entire wire was mounted on fence
posts, >70 cm above the ground, free from any contact
with vegetation, soil, ground, water, or anything else.

2. Soil contact. The wire was mounted as in the control trial
except for 2 m that were led through an excavated soil
mound.

3. Ground contact. The entire wire was laid on the ground.

4. Wet vegetation. The wire was mounted on fence posts,
<40 cm above the ground in tall grass. With this setting
approximately 10-20% of the wire came into direct con-
tact with wet vegetation.

the wires

Well built corners that
<«— allow for high tension on

Figure 1. Schematic drawing of a high tensile wire fence to protect livestock against large carnivores (Frank and Eklund 2017).
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Figure 2. Photos illustrating settings of the different trials: (a) con-
trol (free wire), (b) soil contact, (c) ground contact, and (d) wet
vegetation. Photo (a) and (c) shows the rubber-coated wire, and (b)
and (d) the HT wire.

All experimental trials were completed both for the rub-
ber-coated wire and for a regular high tensile (HT) wire.

The wet vegetation experiment (trial 4) was carried out
during rainfall, whilst the other experiments were carried
out when the weather was sunny and the ground dry. In
each experiment 135 meters each of the rubber-coated wire
(PinaldoGuard Wire, PinaldoGuard, Denmark) and a galva-
nized steel high tensile wire with 2 mm diameter were used.
The wires were mounted on 30 fiberglass fence posts with
adjustable plastic insulators. An energizer (LME2304 fence
energizer manufactured by Granngiarden, Sweden, for 230
volts from the mains and with 3.8 joule charging energy) was
connected to the wires through a ten-meter-long Galagher
supply (lead out) cable. The grounding system consisted of
two galvanized steel earth rods placed 5 m apart and 0.8
m into the ground. The rods were interconnected with a
Galagher supply cable that extended to the earth inlet of the
energizer (Fig. 3).

In the control experiment (trial 1), the soil contact experi-
ment (trial 2), and the ground contact experiment (trial 3)
the fence posts were mounted in a line stretching over a lawn
and continuing along a forest path with sparse vegetation and
tree roots. The soil mound used in trial 2 was located halfway
along the wire. In the ground contact experiment, the wire
was placed on the ground about half a meter away from the
posts. In the wet vegetation experiment (trial 4), fence posts

lead out
cable

energizer

ground
system

B

Figure 3. Illustration of trials. Voltage measuring points at 1, 45, 90
and 134 m are indicated with voltmeter symbols.

were placed outside the lawn and forest path in tall grass. The
length and direction of the post line were identical to the
other experiments, but the fence posts were moved 0.5-2.0
m to one side. The wire was mounted <40 cm above the
ground to allow contact with the vegetation consisting of tall
grass, herbs, and smaller shrubs. During the wet vegetation
experiment special caution was taken not to trample down
the vegetation to keep the test conditions equal for both
wires. During the experiments the same post line was used in
turn for both wires, the HT wire being tested first.

Voltage was measured with a Galagher fence voltmeter at
four measuring points along the wires: the first at 1 meter,
the second at ~45 m, the third at ~90 m, and the fourth at
134 m (Fig. 3). An average value of voltage was calculated
from the values obtained at the four measuring points, for
each experiment and wire type. The average voltage obtained
in the control trial (free wire) was used as a reference value
indicative of the maximum voltage level. The average volt-
age level obtained in trial 2—4 were compared to the refer-
ence value of the corresponding wire type to assess voltage
loss. Percentage voltage loss was determined by calculating
the voltage as a percentage of the reference value and then
subtracting the result from 100.

Results

The rubber-coated wire lost voltage due to contact with solil,
ground and wet vegetation (Table 1). Moreover, the voltage
drop was in the same order of magnitude as for the HT wire
(Fig. 4). Hence, when exposed to different conditions, the
rubber-coated wire did not perform different than the HT
wire, i.e. it short circuited and lost voltage. Contact with wet
vegetation caused a voltage drop of approximately 70% in
both wires. The largest voltage drop occurred when the wires
were placed directly on the ground, both wires then lost >
90% of the voltage.

Within each experiment and for each wire, the voltage
measurements at the four measuring points were highly con-
sistent. We did not detect a gradient with decreasing voltage
further away from the energizer (Table 1).

Discussion

It is important for managing authorities to have access to
results from independent studies of effectiveness in order
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Table 1. Voltage measured for each wire and experimental trial, at four different measuring points, and on average. Measure 1, 2, 3 and 4
correspond to the voltage measured at 1, 45, 90 and 134 m from the wire’s starting point.

Measure 1 (kV) Measure 2 (kV) Measure 3 (kV) Measure 4 (kV) Average (kV)

Control (free wire)

HT wire 10 10 10 9.9 9.98

Rubber wire 9.4 9.5 9.6 9.4 9.48
Soil contact

HT wire 4.5 4.3 4.4 4.4 4.4

Rubber wire 3.9 3.8 3.8 3.8 3.83
Ground contact

HT wire 1.1 1 0.9 0.9 0.98

Rubber wire 0.8 0.8 0.8 0.7 0.78
Wet vegetation

HT wire 3.4 3.2 3.1 3.1 3.2

Rubber wire 29 2.8 2.7 2.9 2.83

to make informed decisions and recommendations to users.
Identifying an absence of effectiveness can also prevent
authorities and individuals from repeating the same mis-
takes over and over, resulting in waste of public and private
resources.

In our experiments the rubber-coated wire did not per-
form better than a standard metal fence wire in terms of volt-
age loss and short circuit during contact with wet vegetation,
soil and ground. The magnitude of lost voltage was similar
to that of a metal wire. Our results suggest that the rubber-
coated wire lose voltage when in contact with e.g. growing
grass. Using the rubber-coated wire is thus not likely to
reduce the effort needed to maintain voltage level and func-
tion of an electric fence throughout the grazing season.

A serious disadvantage with the rubber-coated wire is its
low tensile strength, 400 N compared to 1100-1300 N for
a standard HT wire. Animal fur is a good insulator against
electricity and animals can evade an electric shock if they
only touch the live wires with fur-covered parts of the body
(Honda 2022). However, Honda (2022) effectively induced
electrification over animals’ fur by increasing the tension of
the live wires. During a test of various electric fence types,
Svensson et al. (2001) also found that captive lynx had to
press the body hard against the wire to get a deterring shock
over the fur. Wires that withstand significant tension are

100%
90%
80%
70%
60%
50%
40%
30%
20%

Voltage loss

10%

0%

Soil contact Ground contact Wet vegetation

HT wire ®Rubber-coated wire

Figure 4. Voltage loss in HT wire and rubber-coated wire during
contact with soil, ground, and wet vegetation, given as percentage
of the voltage level measured in the control trial (free wire).
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likely a better option when electric fences are intended to
deter furred wildlife species. Another drawback with the rub-
ber-coated wire is the purchase price, which is more than ten
times higher per meter compared to a regular HT wire.

This study contains only one replicate for each treatment.
In practice, this means that we have not tested on several
different locations or weather types. The main factor deter-
mining the voltage loss is to what extent the wire is ground.
In the experiment we tested the effect of the most extreme
treatments as well as more moderate ones. We cannot see any
potential mechanism that would suggest that the function of
the wires should differ significantly from other factors than
degree of grounding.

High purchase cost, low tension strength, and no benefit
of reduced loss in voltage when the rubber-coated wire is in
contact with e.g. growing grass, means that we cannot recom-
mend the rubber-coated wire to be used in fences intended to
protect livestock from large carnivores.
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