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Introduction

Body growth is an individual-level trait that is relevant to ecol-
ogy across all levels of biological organisation (Peters 1983,
Barneche et al. 2019). In aquatic systems in particular, body
growth is sensitive to environmental conditions and is related
to individual fitness (Sibly et al. 2018). It determines spe-
cies interactions and dictates how much energy is transferred
between trophic levels (Lindeman 1942, Barneche and Allen
2018). It is also directly related to body size, a key ecological
trait (Peters 1983) that is correlated with diet, survival and
reproductive success (Barneche et al. 2018) and largely shapes
size-dependent species interactions (Ursin 1973, Werner and
Gilliam 1984).

In ectotherms such as fish, environmental temperature has
a large influence on body growth via the effects on metabolic
rate (Jobling 1997, Brown et al. 2004). For species living at
temperatures cooler than those maximizing growth, as com-
monly observed (Tewksbury et al. 2008, Lindmark et al.
2022), a slight increase in temperature is likely to be benefi-
cial to growth. Body growth or size-at-age of fish in natural
environments, is commonly observed to correlate positively
with temperature, especially for small or young fish (Atkinson
and Sibly 1997, Thresher et al. 2007, Baudron et al. 2014,
Huss et al. 2019, Oke et al. 2022, Lindmark et al. 2023).
The effects on old fish, however, are often smaller or nega-
tive (Atkinson and Sibly 1997, Morrongiello et al. 2014, van
Dorst et al. 2019, Ikpewe et al. 2020), although there are
exceptions (Lindmark et al. 2023) and responses can vary
within populations, e.g. with sex (van Dorst et al. 2024).
Experimental and modelling studies have pointed out that
size-dependent responses of growth and size could be due
to optimum growth temperatures being lower for larger
fish (Lindmark et al. 2022), or that warming is linked to
earlier maturation, after which energy is increasingly allo-
cated to reproduction over somatic growth (Wootton et al.
2022, Niu et al. 2023), or both (Audzijonyte et al. 2022). In
natural systems, other factors, such as competition and food
limitation, also influence growth directly (Cline et al. 2019,
Oke et al. 2020, Ohlberger et al. 2023), and indirectly by
reducing the optimal growth temperatures (Brett et al. 1969,
Brett 1971, Huey and Kingsolver 2019). To understand fish
responses to changing temperatures, it is therefore important
to evaluate growth—temperature relationships in natural sys-
tems and across gradients of environmental temperature.

The ability to quantify the impacts of temperature
change in natural systems on growth and size, or other eco-
logical traits, is often limited by relatively short time series
that contain small temperature contrasts (White 2019,
Freshwater et al. 2023). As an alternative, studies often use
space-for-time approaches (Morrongiello et al. 2014, van
Dorst et al. 2019, van Denderen et al. 2020) to estimate the
effects of temperature on growth. However, it is difficult to
know to what extent we can infer effects of warming in a
given location from the temperature effects estimated across
locations over a limited time (Perret et al. 2024). Both the
estimates (van Denderen et al. 2020) and the form of the

growth—temperature relationship may differ. For example,
responses to warming tend to be unimodal, whereas they
can be more linear or exponential across all populations of
a species (van Denderen et al. 2020). For projecting impacts
of warming at the species level, another missing piece is to
understand the extent of local adaptation to the experienced
thermal environments (Eliason et al. 2011). That is, to what
extent populations conform to a global, species-wide ther-
mal performance curve, versus having developed local ther-
mal response curves with local temperature optima in order
to have higher fitness in their local habitats. In other taxa,
such as kelp (Britton et al. 2024), corals (Howells et al.
2013), invertebrates (Sanford and Kelly 2011) and phyto-
plankton (Thomas et al. 2012), there is growing evidence
that local adaptation has led to populations exhibiting differ-
ent responses in growth (individual or population) to ocean
warming. However, studies on fishes are scarcer (Neuheimer
and Grenkjer 2012, Beaudry-Sylvestre et al. 2024). Testing
this requires time series with large temperature contrasts,
both within and between multiple populations in the wild.

Here, we seck to understand how climate warming has
affected the growth of fish across multiple populations,
using Perca fluviatilis (hereafter perch) as a case study. Perch
is a widely distributed freshwater fish, common along the
Swedish Baltic Sea coast, that is not commercially exploited
and has a fine-scale population structure (< 50 km), likely
due to reproductive homing behaviour and limited disper-
sal (Bergek and Bjorklund 2009, Hall et al. 2022). These
characteristics make it an ideal species for analyzing effects
of temperature change on growth across environmental gra-
dients. Specifically, we quantify growth—temperature rela-
tionships from 10 populations and evaluate whether there is
support for site-specific growth—temperature relationships,
and whether or not those are consistent with local adaptation
(with respect to optimum growth temperatures and growth
rate at reference temperature) (Fig. 1). To address this ques-
tion, we collated size-at-age data from back-calculated growth
trajectories for 23 605 individual fish over seven decades
spanning large temperature contrasts due to climate warm-
ing and artificial heating from nuclear power plants, and fic
statistical models relating cohort-specific growth estimates to
reconstructed temperatures.

Material and methods

Data

We compiled individual-level size-at-age data from perch and
sea surface temperature data from 10 sites along the Swedish
Baltic Sea coast. The longest time series started in 1953 and
the shortest in 1985, and the average time series length was
34 years, which can be compared to an average generation
time of approximately six years (Fig. 2; Froese and Pauly
2024). The temperature contrast in this data set is consider-
able both within each site and across sites (Fig. 3), due to long
time series and a large latitudinal gradient. Also contributing
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Figure 1. Three examples of hypothetical growth—temperature relationships across isolated populations along a temperature gradient. In all
cases, the average growth rate increases with temperature across populations based on metabolic theory. In the left column, there is no local
adaptation in optimum growth temperatures, such that growth in cooler (blue) populations increases with warming whereas warmer popu-
lations (yellow, red) are the first to show growth declines with warming. Hence, the effect of further warming depends on the population’s
distance from the global optimum. In the middle and right columns, there is local adaptation (with maximum growth rate increasing
(middle) or being constant (right) with temperature across populations), such that responses to warming are similar despite populations

experiencing different temperatures.

to the large temperature range is the inclusion of sites artifi-
cially heated by warm water discharge from nearby nuclear
power plants (sites (SI_HA and BT in Fig. 3). The size-at-age
data include information on age (at catch), total length (at
catch, in millimeters), sex and back-calculated length-at-age
(in millimeters). Back-calculated length-at-age was derived
from annuli rings on the operculum bones (part of the gill
lid), with control counts of age carried out on otoliths (ear
stones). This method is common in fisheries (Morrongiello
and Thresher 2015, Essington et al. 2022), and is based on
an assumed power-law relationship between the distance of
annuli rings and fish length (Thoresson 1996), which allows
reconstruction of the individual’s body length at each age
when annuli rings were formed. Individual-level data origi-
nate from different fish monitoring programs using gill-nets.
Individuals sampled for age and growth were selected from
the total catch from the gill net survey in each site using ran-
dom or length-stratified sub-sampling of the catch, but infor-
mation on the stratification method could not be retrieved
for all dara.

We reconstructed local temperatures at each fishing site
using three types of temperature data: automatic tempera-
ture loggers deployed near the fishing sites, manually mea-
sured temperatures at the time of fishing, and extended
reconstructed sea surface temperature, ERSST (Huang et al.
2017). We chose these three types because they are comple-
mentary. Logger data provide daily temperatures during the
ice-free season but do not go back as far in time as the growth
data. Temperatures at the fishing event give a snapshot of
temperature at the site, and go back as far in time as we have
fishing data. However, temperatures during fishing may not
be representative of the whole growth season, and since we
are working with back-calculated length-at-age, we also need
temperatures for years prior to fishing. Therefore, we also
used modelled temperature time series (ERSST), which both
provide good seasonal coverage and extend far back in time,
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but have a much coarser spatial resolution than the other
sources. These three temperature data sources overlap in time
(Supporting information), which allowed us to standardize
the data using a statistical model.

Statistical analyses

Individual-level growth models

To characterise individual growth rates, we fit von Bertalanfly
growth equations (von Bertalanffy 1938) — a special case of
a Piiccer model (Piicter 1920). The model describes growth
rate in weight w as the difference between the rates of energy
input (or anabolism) and energy expenditures (or catabolism)
(Eq. 1):

d—wzz‘lw” —kw”, (1)

dt

where A and «x are the coefhicients for anabolism and catab-
olism, respectively, and 7 is the size scaling of anabolism.
With the assumption that catabolism is proportional to w
(m=1) and that w=al?, where z is a condition factor and L
is length, it can be integrated to the following form (Eq. 2)
(Essington et al. 2001):

Lt — Loo (1 _ e—kxage )’ (2)

where L, is the size (mm) at age # (years), L, the asymptotic
size (mm), and £ is the growth rate coeflicient (year™). It is
however not a growth rate per se (which has unit size per
time), but is instead related to the time it takes to reach
the asymptotic size. Following Andersen (2019) and van
Denderen et al. (2020), we further assume that the condition
factor 4 is 0.01 such that we can acquire 4 from Eq. 1 and
2 as A=0.65kL_. A, in contrast to k, can be interpreted as a
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Figure 2. Map of sampling locations (A) and time series of the median von Bertalanfly growth coefficients A by cohort (B), where colours
are assigned based on the minimum temperature in the growth time series, ranging from blue (coldest) to red (warmest). Circle size corre-
sponds to the number of individuals in that cohort and site. The lines depict fits from generalized additive models (GAMs) with Gaussian
error and basis dimension k=5, to highlight trends. Asterisk indicates areas heated by warm water discharge.

size-corrected growth coefficient (Gallucci and Quinn 1979,
Charnov 2010). Henceforth we refer to A as the growth coef-
ficient, and 4 in Eq. 2 to simply 4.

We fit Eq. 2 to the multiple observations of back-calcu-
lated length-at-age for each individual using non-linear least
squares (7/s function in R ver. 4.3.2; www.r-project.org). We
only used length-at-age, meaning only length at a back-cal-
culated integer age (i.e. length at the formation of the age-
ring), because sampling has occurred in different times of
the year. We fit this model to every individual age five or

older to ensure enough data points per individual to reliably
fit the model. The filtering resulted in 142 023 data points
across 23 605 individuals. We then calculated the median A
by cohort and site across individuals (resulting in n=306 A
values) (Fig. 2).

Model-based standardization of local temperatures

In order to relate the site- and cohort-specific growth coef-
ficients to temperature over time, we reconstructed average
annual temperature sea surface temperature (sst, °C) for each
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Figure 3. Annual average sea surface temperature as predicted by the GAM model fitted to three temperature sources. Colour indicates
temperature. Areas SI_HA* and BT* have been heated by warm water discharge from nuclear power plants since 1972 and 1980,

respectively.

site using generalized linear mixed models assuming Student
— tdistributed residuals to account for extreme observations

(Eq. 3-4):
sst ~ Student — #(W;, 5, V), (3)
W =a; + f(day;) + source;, (4)

where p, is the mean sst, G is the scale and v is the degrees of
freedom parameter. v was not estimated within the model,
but found by iteratively testing different values and visually
inspecting Q—Q plots to see how well the model could cap-
ture the heavy tails in the data. We used two sets of values,
V=06 for sites BS (Brunskir), BT (Biotest), FB (Finbo), FM
(Forsmark), MU (Muskd), RA (Réneé) and SI_EK (Simpevark
Eko) and v=10 for HO (Holmén), JM (Kvidéfjirden) and
SI_HA (Simpevarp Hamnefjirden) (Supporting informa-
tion). The parameter o, is the mean sst of year # (included as
factor), flday) is a global smooth implemented as a penalized
cyclic spline (i.e. the ends match — in this case 31 December
and 1 January) for the effect of day-of-the-year, and source
is the mean temperature for each temperature source. We fit
the temperature models by site separately, because the pres-
ence of artificial heating from nuclear power plants warranted
complicated interactions between time, source and site in a
global model, and those models did not converge. We fit our
models in R using the package ‘sdmTMB’ ver. 0.6.0.9034
(Anderson et al. 2024), which uses ‘mgev’ (Wood 2017) to
implement penalized smooths as random effects, and “TMB’
(Kristensen et al. 2016) to estimate parameters via maximum
marginal likelihood and the Laplace approximation to inte-
grate over random effects.

We assessed convergence by confirming that the maxi-
mum absolute gradient with respect to all fixed effects was
< 0.001 and that the Hessian matrix was positive-definite.
We evaluated consistency of the model with the data by
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visually inspecting Q—Q plots of randomized quantile residu-
als (Dunn and Smyth 1996) with fixed effects held at their
maximum likelihood estimates and random effects sampled
via a single draw from Markov chain Monte Carlo (MCMC)
(Thygesen etal. 2017) using Stan (Carpenter et al. 2017, Stan
Development Team 2024a, 2024b) via ‘tmbstan’ (Monnahan
and Kristensen 2018).

Effects of temperature on growth coefficients

To estimate how von Bertalanfly growth parameters (growth
coefficient A4, k and L_) were related to temperature we fit
Bayesian generalized mixed models with site-varying and
correlated intercepts and slopes and Student — # distributed
residuals to account for extreme observations (Eq. 5-16):

i~ Student _f(Hi,G,V), (5)
Wy = Ogieefs+B1 sieef1 7 + B2,site[i]7:'29 6)
asite o
Bl,si[e ~ MVNormal Bl s S s (7)
BZ,sitc [32
Oq 0 0 (o 0
S=|0 o O [RIO o O |, (8)
0 0 o3) 0 0 o
o ~ Student —#(3,43.4,4.4), 9)
Bi ~ Normal(0,5), (10)
B2 ~ Normal(0,5), (11)
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v ~Gamma(2,0.1), (12)
6 ~ Student —£(3,0,4.4), (13)
G, ~ Student —£(3,0,4.4), (14)
6 ~ Student —#(3,0,4.4), (15)
R ~ LKJcorr(1), (16)

where y, represents the response variable, p is the mean, 6 is
the scale and v is the degrees of freedom parameter. We scaled
temperature, 7, by subtracting the mean and dividing by the
standard deviation before squaring to reduce the correlation
between the two variables (Schielzeth 2010). The intercept is
denoted a, and B, and B, are the coefficients for temperature
and temperature squared. The covariance matrix is denoted S,
with the correlation matrix, R, of site random effects and their
correlations, factored out. We used the default prior specifica-
tion for the overall intercept as implemented in the ‘brms’ R
package, and a Normal(0,5) for regression coefficients. The
o priors had a lower bound of 0. The prior for the correla-
tion matrix R is a LKJcorr(1), which is flac and puts simi-
lar probability on all possible correlation values (correlation
between random effects), p (McElreath 2016). We fit alterna-
tive models with other fixed and random effects (e.g. only
random intercepts and linear temperature effects only). A full
overview of the alternative models and their expected predic-
tive accuracy (expected log pointwise predictive density, elpd)
using Pareto smoothed importance sampling to approximate
leave-one-out cross-validation (Vehtari et al. 2017) can be
found in the Supporting information. The model presented
here (Eq. 5-16) was selected because it has a good fit to data,
and its elpd was not substantially different from the model
with the highest elpd, and is complex enough to allow site-
specific and non-linear temperature responses (Gelman et al.
2021). We fit the same model to von Bertalanfly growth
coefhicients 4 and L_, with the modification that the prior
for the intercept o was Student — #(3,0.2,2.5) and Student —
#(3,340.9,80), respectively.

We quantify the temperature sensitivity of A using Q,,,
which describes the relative increase in the rate of growth for
A210/ (1h-1)

Al
Here, A, and A, are the predicted global growth coefficients
from the model in Eqs 5-16, and 7} and 7, is temperature
in °C.

We fit the model using Stan (Carpenter et al. 2017, Stan
Development Team 2024a, 2024b) via the R package ‘brms’
ver. 2.20.4 (Biitkner 2017, 2018). We sampled from the
models with 4000 iterations each on four chains, discarding
the first 2000 as warmup. Model convergence and fit were
assessed by ensuring potential scale reduction factors were
smaller than 1.01, which suggests all four chains converged

each 10°C increase and is calculated as Q,, =

to a common distribution (Gelman et al. 2003), as well as
by visually inspecting posterior predictive checks (Supporting
information). Bayesian R* values were calculated using the R
package ‘performance’ (Lidecke et al. 2021), which imple-
ments the method described in Gelman et al. (2019). We
made conditional predictions and manipulated posterior
draws with the R package ‘tidybayes’ (Kay 2023).

Results

We find large inter-annual fluctuations in annual average
temperatures between sites, and increasing trends over time
in some sites (Fig. 3). Due to the spatial and temporal range
of data, and the artificial heating from nuclear power plant
water discharges (sites BT* and SI_HA*), we observe large
contrasts in average temperatures, which were not clearly
related to latitude (Fig. 2). Across all sites, mean annual aver-
age temperatures range from 3 to 17°C, and the largest range
within a site (over time) is 6-16°C (site BT). Individual
growth trajectories of fish showed large variation within and
across sites (Fig. 4). Site-specific growth coefficients (4) gen-
erally increased over time, but not always linearly and not
synchronously across all sites, indicating that local drivers
shape variation in growth between cohorts (Fig. 2).

Models relating the growth coeflicient A to temperature
that allowed for site-specific estimates (as temperature—site
interactions or site-varying parameters) were indistinguish-
able based on the leave-one-out cross-validation, as the
expected log predictive density (Aelpd) was less than four
(Supporting information; Sivula et al. 2023). We therefore
used the model with site-varying intercepts and site-varying
effects of temperature and allowed for non-linear tempera-
ture relationships by using linear and quadratic temperature
terms. The variance explained by the model (Bayesian con-
ditional R?) with fixed and random effects was 0.27 (95%
credible interval 0.20—0.34). The distribution of cohort and
site-specific growth coeflicients A was characterized by heavy
tails compared to a Gaussian distribution, and the v param-
eter (Eq. 5) was estimated to 5.9.

Predictions from the full model revealed that growth
coefficients increased with temperature initially in all sites.
We estimated Q,, of A to be 1.25 (95% credible interval
1.07-1.48), based on draws from the expectation of the pos-
terior predictive distribution of the global A predicted at 5
and 15°C. However, the growth coefficients in two of the
three warmest sites either plateaued or declined with warm-
ing at high temperatures (sites FM and SI_HA in Fig. 5).
Site-specific growth coeflicients (random intercepts) were
not significantly related to the average site temperature
(Fig. 6) (p=0.235). Taken together, these findings indi-
cate that population-specific growth—temperature curves
largely mapped onto a pooled ‘global’ growth—temperature
curve across all populations without clear evidence of local
adaptation in growth. This pattern was also found for the
von Bertalanfly growth parameters # and L_ (Supporting
information).
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Discussion

Our findings indicate a lack of local adaptation in growth to
local temperatures, despite differences in experienced envi-
ronmental temperatures and reproductive isolation among
populations. Populations are expected to grow similarly at the
average temperature irrespective of origin (Fig. 6), i.e. popu-
lations grow similarly where their experienced temperature
ranges overlap (at approximately 8°C) (Fig. 5). If populations
had adapted to local temperatures, we would expect similar
effects of warming across populations, assuming they occupy
temperatures slightly below the local optimum temperature
(Ohlberger 2013). Instead, we expect that populations in rel-
atively cold environments will benefit from climate warming
via increased body growth rates up to a certain ‘global’ tem-
perature optimum, whereas populations in relatively warm
environments will experience reduced growth due to the
negative effects of warming beyond their optimum growth
temperature.

In line with our results, Neuheimer et al. (2011) found that
for populations of banded morwong Cheilodactylus spectabilis,
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increasing temperatures were associated with reduced growth
rates for the population at the warm edge of the species dis-
tribution (New Zealand) but higher growth rates for popula-
tions at the colder edge of the range (Tasmania). Similarly,
Morrongiello and Thresher (2015) found that body growth of
tiger flathead in populations off southeast Australia increased
with temperature but not in the warmest area. In terms of
body size, Beaudry-Sylvestre et al. (2024) recently found that
the size of four-year-old Adlantic herring Clupea harengus in
the Northwest Atlantic followed a similar pattern — popula-
tions in warmer regions tended to have negative associations
with warming. Analogously, English et al. (2022) found that
groundfish species in the Northeast Pacific often responded
positively to warming if they were in cool locations, and
negatively if they were in warm locations (where both bio-
mass and temperature change were expressed as velocities).
Collectively, these and our findings are in contrast to the
common finding in invertebrate species that exhibit local
adaptation in growth to temperature, even over small spatial
scales (Sanford and Kelly 2011). These results illustrate the
importance of testing for population-specific temperature
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Figure 5. von Bertalanfly growth coefficients A as a function of temperature. Each point depicts the median growth coefficient for a cohort
and site, and the coloured lines depict the median of draws from the expectation of the posterior predictive distribution and ribbons the 90%
credible interval, from the generalized linear mixed effect model for each site. Asterisk indicates areas heated by warm water discharge.

sensitivities when studying species responses to warming, and
of accounting for both the rate of climate change and baseline
temperature conditions.

The ability to adapt to local environmental conditions
allows populations to expand their range and better cope
with spatially varying environmental conditions (Kirkpatrick
and Barton 1997). Changes in trait—temperature relation-
ships due to thermal adaptation in natural populations are
expected in response to climate warming (Angilletta 2009),
and previous studies have shown that local adaptation in
physiological traits can facilitate different thermal optima
among populations (e.g. Atlantic cod (Righton et al. 2010),
kelp (Britton et al. 2024), corals (Howells et al. 2013) and
invertebrates (Sanford and Kelly 2011)). However, adaptive
capacities and the pace of thermal adaptation differ among
species (Martin et al. 2023) and depend on life-history
trade-offs, underlying genetic variation, the potential for
gene flow (Kirkpatrick and Barton 1997) and environmen-
tal conditions. The apparent lack of contemporary ther-
mal adaptation in Baltic Sea perch, despite low gene flow
between populations due to reproductive homing behaviour
(Hall et al. 2022), limited dispersal and movement (Bergek
and Bjérklund 2009), indicates limitations in evolutionary
changes to local temperature. This suggests that similar fac-
tors may also limit future thermal adaptation that would
allow local populations to better withstand changing temper-
atures. A low adaptive capacity implies that body growth rates
in populations already experiencing temperatures around or
above their thermal optimum will decline with further warm-
ing. This will likely result in lower biomass production in

warm environments, as observed, for example, across spatial
temperature gradients (van Dorst et al. 2019).

Our study also illustrates the importance of account-
ing for unimodal temperature dependencies. Often simpler
models like the exponential Arrhenius equation are used to
model biological and ecological processes (Savage et al. 2004,
Vasseur and McCann 2005, Lindmark et al. 2018), under
the assumption that the ‘biologically relevant temperature
range’ which species occupy is below their optimum. Growth
rates are only exponentially related to temperature even fur-
ther from the optimum, i.e. below the inflection point of the
unimodal curve. We find this supra-linear temperature curve
in only two of the cooler sites. Across the full temperature
range, the temperature curves tend to flatten, even though a
true optimum curve is only found in one population (Fig. 5);
hence, temperatures close to or above the optimum are there-
fore biologically relevant, in which case models other than
the Arrhenius equation are more appropriate.

We find that our estimate of the sensitivity of growth
(Q,,=1.25) is lower than both predictions from the inter-
specific metabolic theory of ecology (MTE; Brown et al.
2004) and experimental data on growth from fish fed ad
libitum (Lindmark et al. 2022). The MTE assumes growth
scales with a Q) of 2.5, as does individual metabolism, and
our estimate of Q,, of specific growth rate (in unit % mass
day™) based on a re-analysis of Lindmark et al. (2022) is
even higher (Q,,=2.9) (see the Supporting information for
details). Instead, our results are in line with the findings of
van Denderen et al. (2020), who reported an average intra-
specific Q,, of 1.14 (1.05, 1.26) across fish species. These
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results suggest species do not fulfill the metabolic growth
potential, possibly due to constraints on food availability
(van Denderen et al. 2020).

There are a number of limitations to our analysis. For
instance, growth in temperate regions varies over the year and
no single temperature metric can fully reflect thermal condi-
tions that determine cohort-specific growth rates. Given that
growing season lengths differ in our data set due to differ-
ent light conditions, we opted to use a simple annual aver-
age (but note these are highly correlated with our predicted
summer temperatures; Supporting information). Degree days
(the integral of time above a certain temperature threshold)
is an often-recommended metric (Neuheimer and Gronkjer
2012), but there is some uncertainty in temperatures below
which growth does not occur, even for a well-studied spe-
cies like perch (Kars and Thoresson 1992), how starvation
during cold periods affects growth trajectories, and whether
that varies between sites. In our analysis of growth coefli-
cients over temperature, each data point represents a cohort’s
growth and temperature by site. Hence, the temperature con-
trast is due to both spatial and temporal variation, and we are
unable to isolate these two sources of variation. Lastly, it is
not straightforward to formally test for differences in thermal
optima between populations because populations generally
occupy temperatures below their optimum. In addition, the
warmer part of the temperature gradient is due to the inclu-
sion of sites impacted by warm-water pollution from power
plants. Future studies could test whether these results hold
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when comparing similar temperature gradients but from sites
across the entire biogeographic range of the species.

Conclusion

Our findings suggest that mean environmental temperatures
during warm years have reached or surpassed the optimum
growth temperature for two of the examined populations
(Fig. 5), but that most populations have a positive, linear
relationship with temperature. Our ability to detect this pat-
tern relies heavily on the length of the time series as well as
the unusually large temperature contrasts due to warm water
pollution from nuclear power plants, which highlights the
importance of long-term environmental monitoring across
environmental gradients. Considering the lack of evidence
for local adaptation to temperature, we expect that adverse
effects of continued warming on Baltic Sea perch will accu-
mulate and decrease individual growth rates in the warmest
populations. Similar constraints on adaptive capacities in
response to warming can be expected for other species of fish,
and ectotherms more generally (Pawar et al. 2024).
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