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Global change threatens a vast number of species with severe population declines or 
even extinction. The threat status of an organism is often designated based on geo-
graphic range, population size, or declines in either. However, invertebrates, which 
comprise the bulk of animal diversity, are conspicuously absent from global frame-
works that assess extinction risk. Many invertebrates are hard to study, and it has been 
questioned whether current risk assessments are appropriate for the majority of these 
organisms. As the majority of invertebrates are rare, we contend that the lack of data 
for these organisms makes current criteria hard to apply. Using empirical evidence 
from one of the largest terrestrial arthropod surveys to date, consisting of over 33  000 
species collected from over a million hours of survey effort, we demonstrate that esti-
mates of trends based on low sample sizes are associated with major uncertainty and a 
risk of misclassification under criteria defined by the IUCN. We argue that even the 
most ambitious monitoring efforts are unlikely to produce enough observations to reli-
ably estimate population sizes and ranges for more than a fraction of species, and there 
is likely to be substantial uncertainty in assessing risk for the majority of global biodi-
versity using species-level trends. In response, we discuss the need to focus on metrics 
we can currently measure when conducting risk assessments for these organisms. We 
highlight modern statistical methods that allow quantification of metrics that could 
incorporate observations of rare invertebrates into global conservation frameworks, 
and suggest how current criteria might be adapted to meet the needs of the majority 
of global biodiversity.
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Figure 1. Taxonomic bias in IUCN red list coverage. (A) Shows the number of described and assessed species in the groups with major 
representation (over 1000 assessments), on the IUCN red list. Red bars represent the total number of described species, and grey bars the 
number of species assessed by the IUCN. The numbers next to each bar represent the proportion of each group assessed. The proportion of 
assessments in each group that fall under the ‘Extinct’ or ‘Extinct in the wild’ category (‘E’ – dark red bars), ‘Critically Endangered’ (‘CE’ 
– red bars) , ‘Endangered’ (‘EN’ – orange bars), ‘Vulnerable’ (‘VU’ – yellow bars) , and ‘Data deficient’ (‘DD’ – grey bars). The remainder 
of assessments in each group consist of organisms classified as ‘Near threatened’, ‘Lower risk’, or ‘Least concern’. (B) shows the imbalance 
in assessment categories, with invertebrate species having considerably larger numbers of Data deficient species than other animal groups.

The underrepresentation of invertebrates

Rapid rates of environmental degradation threaten biodiver-
sity worldwide (Garcia et al. 2014) and concerted conserva-
tion efforts are required to mitigate the impacts of global 
change (Synes et al. 2020, Williams et al. 2021). Invertebrates 
are at the forefront of this crisis, comprising the majority of 
species, as well as some of the organisms most vulnerable to 
environmental pressure. Recent research has provided evi-
dence for declines in global invertebrate populations (van 
Klink et al. 2020, Wagner et al. 2021) and high sensitivities 
to global change (Millard et al. 2021, Outhwaite et al. 2022). 
However, representation of these organisms in monitoring 
programs and global conservation efforts is notoriously poor.

A glaring example of the neglect of invertebrates in assess-
ments of nature is their poor representation on the IUCN 
red list, which is a central pillar of global biodiversity conser-
vation. Assessments provided by the red list often underpin  
the allocation of funding to large numbers of conserva-
tion projects and have demonstrable success in protecting 
threatened species (Rodrigues et al. 2006, Bland et al. 2019, 
Betts  et  al. 2020). Under this framework the majority of  
vertebrates have received an assessment, and notably all 
11,188 bird species have received multiple assessments each 
(IUCN 2022). Yet, of the one million described species of 
insects, only 1.2% (~12  000) have received an assessment 
(IUCN 2022, Fig. 1A), and a considerably higher proportion 
of invertebrate (compared to vertebrate) species are listed as 
data deficient (Fig. 1B).

The current status quo is alarming. There is strong evidence 
to suggest that major components of global biodiversity are 
threatened by global change, whilst our current perspec-
tive of which organisms are threatened relies on selective 
information (Cardoso et al. 2011a, 2012, Eisenhauer et al. 

2019), invertebrate populations are suffering widespread 
and rapid changes world-wide, and our monitoring efforts 
are often limited in their ability to detect the full scope of 
these changes (Forister et al. 2023). Meanwhile, our conser-
vation frameworks and policy instruments fail to sufficiently 
represent the majority of global biodiversity and the risk that 
they face.

Impediments to invertebrate monitoring 
and conservation

Invertebrates are notoriously difficult to identify and study, 
and these issues produce several fundamental impediments 
to invertebrate conservation (Cardoso et al. 2011a,  2011b). 
These include their relative unpopularity with the public, 
policy makers, and scientists, their overwhelming under-
description compared to their diversity, and dwindling 
taxonomic expertise (Hochkirch et al. 2022). It is generally 
accepted that these impediments not only limit our under-
standing of invertebrate communities, but also prevent the 
widespread assessment of invertebrate extinction risk under 
global conservation frameworks. Previous debates have also 
focused on whether risk assessment criteria themselves (such 
as those used by the IUCN red list – Supporting informa-
tion) are applicable to many invertebrate taxa, since data 
might be hard to acquire or the standard thresholds might 
provide inappropriate measures of relative risk for small 
organisms with high reproductive rates (Tscharntke  et  al. 
2007, Cardoso et al. 2011b, 2012, Collen and Böhm 2012, 
Eisenhauer  et  al. 2019, Fox  et  al. 2019, Akçakaya  et  al. 
2021). For example, estimating total population sizes for 
insects is often extremely difficult, which might explain why 
only 0.0016% of total insect assessments are completed 
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Figure 2. Abundance / incidence distributions illustrating the pervasiveness of rare invertebrates. (A) displays abundance frequencies of 
species caught from a single location in Rothamsted (UK) between 1933–1936 (from Fisher et al. 1943), whereas (B) represents data from 
the high-intensity molecular survey effort in Sweden in 2019 (Box 1). (C–D) display the log10 abundance distributions from all organisms 
in three high profile data sets used in scientific research; (C) Biotime (Dornelas et al. 2018), (D) GBIF (2000–2024; www.GBIF.org), and 
(E) the Predicts database (Hudson et al 2017).

under the IUCN criteria that designates risk due to absolute 
population size (criteria C). The well-established impedi-
ments to invertebrate conservation, and the potentially poor 
fit of some assessment criteria for a hyper-diverse group of 
organisms, result in a reduced set of tools by which we can 
provide an assessment, and limit the rate of invertebrate 
threat assessments.

The rarity of invertebrates

Despite the applicability of some criteria being questioned, 
assessments based on abundance and range size trends are 
fundamentally useful measures of the threat faced by an 
organism, and the majority of invertebrate assessments are 
performed using these metrics. However, a consistent feature 
of invertebrate communities is that the majority of organ-
isms are extremely rare. This pattern was documented in a 
seminal paper in 1943 (Fig. 2A), using data from a five-year 
Lepidoptera survey in Rothamsted UK. In this study approx-
imately 14% of species were observed only once. After 80 
years of empirical work, the same pattern remains. In studies 
of invertebrate fauna; most are only encountered in low num-
bers or at single sites (Morse et al. 1988, Basset and Kitching 
1991, Novotný and Basset 2000, Coddington  et  al. 2009, 

Hudson et al. 2017, Dornelas et al. 2018, Srivathsan et al. 
2022). Figure 2C–D illustrates the persistence of this pat-
tern – across high profile datasets and biodiversity data 
bases, invertebrate communities are still dominated by rare 
organisms.

Modern sampling techniques, using high throughput 
DNA sequencing and molecular taxonomy provide a route to 
rapid identification of invertebrates, and a key tool in improv-
ing our understanding of their diversity and ecology. In 2019 
we conducted an intensive and systematic molecular survey 
of terrestrial arthropods in Sweden (Box 1) (Miraldo  et  al. 
2024), this survey represents one of the largest and most 
sophisticated arthropod surveys to date. In total we collected 
over 4700 weekly samples of arthropod communities from 
198 sites, representing over 1.5 million hours of survey effort. 
Despite the enormous sampling effort, and state of the art 
molecular identification (Iwaszkiewicz-Eggebrecht  et  al. 
2023) (Supporting information), most of the organisms we 
surveyed were still rarely observed, with 13% of species found 
at only a single site (1% of total sites). Over 40% of organ-
isms occupied five or fewer sites (2.5% of total sites), and less 
than 1% occupied more than half of the sites (Fig. 2B). Our 
findings compound the evidence for a long-standing pattern 
in ecology – an abundance of rarity is an inherent feature of 
invertebrate communities. 
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Assessing trends and distributions

Unfortunately, the reality of this consistent pattern in inver-
tebrate community data is that, for the majority of species, 
we are unable to reliably estimate the changes in their popu-
lation sizes or ranges due to a lack of sufficient data. Due 
to the inherent statistical relationship between sample size 
and uncertainty, low abundances or occurrences are intrinsi-
cally linked to low statistical power, and any estimands are 
therefore difficult to quantify without considerable degrees 
of uncertainty (van Proosdij et al. 2016, Jeliazkov et al. 2022, 
Yoccoz 2022, Erickson and Smith 2023). To illustrate how 

classification using quantitative criteria may produce uncer-
tain estimates we use the empirical incidence and abundance 
distributions revealed by the data described in Box 1 to dem-
onstrate the uncertainty in classification of risks.

We simulate decreases in occurrence and an index of 
population size (Box 2) using the empirically derived mea-
sures from our data (Box 1). We focus on trends, as being 
able to reliably detect changes in range or population size is 
a pre-requisite for evaluating whether species are in decline, 
but also whether any interventions are effective conservation 
measures. We use criteria defined by the IUCN red list, as 
it is the most well-known conservation framework to assess 

Box 1. A spatially and taxonomically extensive national survey of Swedish arthropods.

To pinpoint the challenges associated with the application of trend-based criteria to invertebrates, we examined the data 
produced by a systematic effort to characterise the current distribution and diversity of the Swedish arthropod fauna. 
This survey consisted of 198 malaise traps across Sweden, which were sampled weekly to produce 4748 community-level 
samples, comprising 26 kg of invertebrate biomass and an estimated 3.3 million individuals. Using a high-throughput 
molecular pipeline (Iwaszkiewicz-Eggebrecht et al. 2023) we matched over 13  000 with a species-level reference and 
identified over 33  000 unique OTUs. This dataset (with details given in the Supporting information) is one of the most 
comprehensive systematic surveys of arthropod diversity, in terms of spatiotemporal scale and taxonomic coverage. These 
data produced represent the gold-standard in terms of national-scale arthropod biodiversity monitoring and are derived 
from one of the best known faunas in the world (Ronquist et al. 2020). 

Figure B1. (A) The spatial layout of trap locations within Sweden, with the map illustrating elevation and major bodies of water. Traps 
were emptied weekly between April and October, and monthly in the remainder of the year. (B) An illustration of the diversity of 
organisms detected in the survey. The survey detected over 13  144 annotated species across 556 arthropod families. The tree is an 
arthropod taxonomy where the terminal nodes represent the 253 families containing over five species-level operational taxonomic 
units (OTUs). Major arthropod clades are highlighted by the external bars and shaded regions across sections of the taxonomy. The 
outer ring of the heatmap illustrates the number of species level OTUs found in each family, and the inner ring illustrates the number 
of reads in each family.
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extinction risk. Although we only directly apply the thresh-
olds for criteria A, it should be noted that reliable detection 
of trends are also requirements for criteria C and criteria 
B. Estimated trends in occurrence and abundance for rare 
species is associated with a high percentage error (Fig. 3), 
when applying IUCN thresholds to determine a Red list 
category this resulted in high levels of misclassification for 
both Vulnerable (Fig. 3A, D), and Endangered (Fig. 3B, E) 
organisms.

In the light of the consistent pattern of rarity in inverte-
brates, it is extremely difficult to reliably quantify changes to 
most populations – even with the best available data. For rare 
species, there is a high degree of uncertainty when estimat-
ing trends in occurrence or abundance, and using established 

criteria to evaluate risks results in high degrees of misclas-
sification. This uncertainty and the inherent dangers will be 
even worse for lower sampling intensities (Supporting infor-
mation) which are more reflective of long-term monitoring 
efforts (Hallmann et al. 2017, Crossley et al. 2020). We show 
that smaller changes in abundance are harder to estimate 
accurately, especially with low sample sizes. Yet, as rare species 
are particularly at risk of being threatened (Purvis and Hector 
2000, Purvis  et  al. 2000, Jetz and Freckleton 2015), high 
uncertainty in range or population size trends will constrain 
our decision making for those organisms most urgently need-
ing an assessment. Similarly, more severe trends are easier to 
detect, but the most severely declining species will also be the 
hardest to protect. The accurate designation of less severe risk 

Figure 3. The percentage error in occurrence (a:c) and abundance (d:f ) trends recovered by methods outlined in Box 2. Ψ^−Ψ represents 
the estimated occurrence – simulated occurrence, and γ^−γ represents estimated abundance – simulated abundance. Occurrence trends are 
displayed versus the original occurrence frequency for organisms, and abundance trends versus original read count as a proxy for abundance 
Each organism was simulated to experience the minimum trends classifying them as ‘Vulnerable (−30%)’ , ‘Endangered (−50%)’, or ‘criti-
cally endangered (−80%)’ according to IUCN red-list criteria A. Each individual point represents the difference between the simulated 
trend and the lower confidence interval around the point estimate of the trend for a single species detected in our data. The colour of each 
point highlights the category to which the species would be classified based on the estimated trend in population size and horizontal dashed 
lines border outcomes with a correct classification. Near threatened (NT) and least concern (LC) categories have been merged to a single 
category (‘Lower risk’). Both axes have been truncated to allow easier visualization of the distribution. Insets illustrate the proportion of all 
species that were classified as each of these categories.
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categories is therefore critical to planning effective conserva-
tion action, as this is the stage when it may be easier and more 
cost-effective to reverse the changes.

Since overall data on arthropod abundances and distri-
butions are scarce, the application of current criteria will 
call for a heavy reliance on expert opinion for most taxa. 

In the absence of adequate data to estimate population 
and range size trends, the process is reliant on taxonomic 
expertise. However, the supply of such experts is limited 
(Hochkirch  et  al. 2022) and, critically, for the majority of 
species (i.e. those that have yet to be described taxonomi-
cally and ecologically), this expertise has yet to be established. 

Table 1. Summary of criteria A of the IUCN red list for vulnerable (VU), endangered (EN) and critically endangered organisms (CR).

Criteria ​ Based on: VU EN CR

A1 Causes are reversible AND have ceased 1.  Direct observation (except A3)
2.  An index of abundance
3. � A decline in geographic range (Area 

of occupancy/Extent of occurrence)
4. � Actual or potential levels of 

exploitation
5. � Effects of introduced taxa, 

hybridization, pathogens, pollutants, 
competitors, or parasites

≥ 50% ≥ 70% ≥ 90%
A2 Causes are irreversible OR have  

not ceased
≥ 30% ≥ 50% ≥ 80%

A3 Reduction projected/inferred/suspected  
in the future (up to 100 years)

≥ 30% ≥ 50% ≥ 80%

A4 Reduction projected/inferred/suspected, 
causes have not ceased OR  
understood OR irreversible

≥ 30% ≥ 50% ≥ 80%

Box 2. Simulating declines in abundance and occurrence of Swedish arthropods.

To highlight the problems when classifying infrequently observed species based on trends in range or population size, we 
simulated the minimum trends from criteria A of the IUCN red list (Table 1). More specifically, we focus on criteria A2b 
and A2c, which refer to reductions in an index of population size, and trends in geographic range (IUCN 2022). For 
these criteria, Vulnerable (VU), Endangered (EN), and Critically Endangered (CR) categories are defined by observing 
at least 30%, 50%, or 80% declines in abundance or geographic range over a 10-year period. We simulated the corre-
sponding declines using observered incidences frequencies from the data in Box 1, and then estimated the trends from 
the simulated data by fitting statistical models. We then calculated the error between simulated (i.e. real) and estimated 
trends to illustrate the issues in retrieving real trends from rarely occurring organisms. For each trend category, we simu-
lated the occurrences or abundances from either a generalised linear model, or a zero-inflated mixture model respectively. 
We then fitted the same model to the simulated data, retrieved the estimated parameters, and calculated the error in the 
simulated and estimated trend (Fig. 3), and the rate of misclassification into IUCN categories. Details of the simulation 
exercises can be found in the Supporting information.

Figure B2. Illustration of calculating estimation error for simulated trends in occurrence probability (A), and read count (B). For each 
species detected in the survey we simulated IUCN specified trends (yellow lines) in occurrence probability (ψ or read count as a proxy 
for relative abundance (γ). From these simulated trends we draw observations (light blue points) from a binomial distribution for 
occurrence and a zero-inflated Poisson distribution for abundance. The changes at year 10, i.e. the simulated trends in occurrence or 
read count (ΔΨsim, Δγsim respectively), are indicated by the points labelled 1. The appropriate model was then fitted and the trend 
estimated (blue line) from the sets of simulated data. The estimated trends at year 10 (ΔΨest, Δγest) in each model are indicated by 
points labelled 2. The error (red dashed lines) is calculated by subtracting estimated trends from simulated trends.
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This leaves practitioners with a difficult decision during the 
assessment process for rarely observed organisms – classify 
species in the absence of adequate quantitative data and high 
uncertainty, relying on potentially subjective viewpoints from 
taxon experts. Or, resign to the fact that an organism cannot 
be assessed and must be categorized as ‘Data deficient’. This, 
we argue, renders the process difficult to replicate, and will 
limit the representation of invertebrates in our global conser-
vation efforts.

Avenues for increasing invertebrate 
representation in conservation efforts

Due to the fact that most invertebrate species have yet to be 
described (Stork 2018), it is highly likely that dominance of 
rare species will remain into the foreseeable future. To provide 
protection for the planets most diverse organisms we must 

rapidly extend our assessment of nature from a taxonomically 
biased subset of species to a broader and more representative 
sample of biodiversity (Fraixedas  et  al. 2022). For inverte-
brates, we must move away from a reliance on information 
that is currently unobtainable even with the most advanced 
methods. We argue that using species-level trends under cur-
rent frameworks (IUCN 2022) in conjunction with the best 
possible data, will result in one of two outcomes: a failure to 
provide risk assessment for the majority of earths organisms, 
or potentially inaccurate classification of threat categories for 
many organisms.

Importantly, the extensive data generated by our study 
(Box 1) are an exception, as most monitoring efforts con-
tain fewer sites, and are often restricted to protected areas 
(Forister  et  al. 2023). For conservation efforts to succeed 
they must be based on quantitative evidence, as such we 
suggest three possible routes towards better risk assessment 
for invertebrates (Fig. 4), all of which rely on information 

Figure 4. A conceptual overview of three proposed approaches to improved threat assessment for rare invertebrates, focusing on improved 
inference at the levels of (A) single species; (B) species groups and (C) bio regions. For improved species level inference, we propose using 
hierarchical models (A1), which can improve the estimates of responses (β) to environmental covariates (X), through ‘borrowing of strength’ 
for data poor species, for example through phylogenetic relationships (V) with more common species. This can improve inference for spe-
cies level distributions and trends (ψ/λ) (A2) – which are directly compatible with the IUCN Red List of threatened species (A3). For 
improved group-level inference, we envisage the clustering of species by phylogeny, shared traits, or environmental responses (B1), which 
can then be used to quantify group and species level distributions and trends (B2). Quantification of these metrics are not directly compat-
ible with any existing framework, but the Red List of threatened species may provide a useful guide to develop new group-level assessment 
criteria (B3). For improved inference at the level of bioregions, we highlight statistical methods that quantify the occurrence probabilities 
of different communities across regions, to designate ‘regions of common profile’ (RCP’s) or statistical bioregions (C1). Monitoring the 
distributions of bio-regions or RCP’s can then be used to assess the vulnerability of spatially associated species through assessing distribu-
tional extents or trends (C2). Bio-regional criteria do not complement any existing framework but the Red List of Threatened Ecosystems 
may guide development of new bio-regional criteria (C3).
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that is currently measurable from standard and molecular 
surveys. We highlight statistical approaches that can reliably 
quantify metrics of changes to invertebrate communities 
that incorporate information for rarely observed organ-
isms. We also outline existing frameworks that can be used 
to guide the development of new criteria to classify risk to 
these organisms.

Improving single species inference

Although for many species data are limited, practitioners 
should initially try to understand risks to individual organ-
isms, as a classification into a risk or red list category is a 
useful tool for conservation, public engagement, and pol-
icy making (Rodrigues  et  al. 2006, Bennun  et  al. 2018, 
Bachman et al. 2019, Bland et al. 2019, Betts et al. 2020). 
The first approach is, therefore, to improve the species-level 
inference and assessment by employing statistical techniques 
that leverage the structure of community data (Fig. 4A). 
There is a growing appreciation of the importance and 
dominance of rare species in the ecological monitoring lit-
erature (Jeliazkov et al. 2022, Yoccoz 2022), and numerous 
techniques have been suggested to improve species-level 
inference for rare organisms. Despite the lack of data for 
individual organisms, community-level datasets often con-
tain large numbers of observations across many thousands 
of species with shared evolutionary histories, spatiotempo-
ral distributions and ecological traits. This structure within 
community data can be used to allow data poor species to 
borrow strength from closely related or ecologically similar 
organisms. Inferring similarities among species based on 
these features is now common practice among quantita-
tive ecologists, allowing more robust estimates to be made 
for organisms with sparse records (Ovaskainen et al. 2017, 
Norberg  et  al. 2019, Jeliazkov  et  al. 2022). As the appre-
ciation for the importance and dominance of rare species 
has grown, more sophisticated methods have emerged. For 
example, Ovaskainen  et  al. (2024) demonstrate a transfer 
learning approach to improve species level inference for hun-
dreds of thousands of species, most of which only provide a 
handful of observations. The benefit of a combining the sin-
gle-species approach with information obtainable from the 
community level is that it offers tangible assessments linked 
to individual species for practitioners, the public and poli-
cymakers. These statistical techniques can be directly incor-
porated into current risk assessment practice, such as the 
IUCN red listing process, since they can be used to derive 
the single-species metrics on which current assessments 
are focused. A relatively simple improvement would be to 
update IUCN guidelines to include advice on how ranges 
and population trends can be estimated using hierarchical 
modelling. Collaboration with quantitative ecologists on the 
best practices when these techniques, and how to use them 
with current data will be necessary to help improve single 
species inference. However, it is important that any changes 
made to advice should attempt to retain the flexibility of the 
original assessment process.

Improving group-level inference

Despite growing appreciation of the issue of rare species 
and advances in statistical methodology, alternatives to the 
single-species focus of current frameworks might be prudent 
to allow including species with too few observations even 
for more sophisticated statistical techniques. A group-level 
approach could provide a tractable way of using currently 
available data to inform conservation decisions for multiple 
species simultaneously. As many rare organisms often come 
from similar taxonomic groups, share traits, or display simi-
lar ecological responses or distributions, the second option 
is to assess trends across groups of organisms. Similar to our 
first approach (Improving single species inference), inte-
grated models can be used to improve inference for commu-
nity level metrics using the structure within community data 
or integrating data from different sources (Miller et al. 2019, 
Simmonds et al. 2020, Zulian et al. 2021, Doser et al. 2022, 
Lauret et al. 2023, Zipkin et al. 2023). This approach can 
then be used to quantify changes in community-level diver-
sity metrics that might indicate risks. Approaches that pool 
observations across taxonomic groups can also be used to 
improve species level inference, whilst simultaneously mod-
elling group-level responses (Adjei et al. 2024). We envision 
a potential approach where data-poor species are pooled into 
higher taxonomic levels (e.g. a genus), and abundance or dis-
tributional trends evaluated as a part of this cluster. Many of 
the statistical techniques that can be used to improve single-
species approaches may also guide group-level assessment of 
trends. Estimates are often derived hierarchically for both 
the group and its members, and where estimates at the level 
of species prove too uncertain, estimates at the group level 
may provide a less specific, but useful measure of risk. For 
example, tropical endemic groups with limited distributions 
but too few observations for single species assessments would 
make good candidates for group level metric estimation. 
Another useful approach is to group species based on sensi-
tivities to change, something that would naturally reflect a 
measure of extinction risk with regards to a changing envi-
ronment. Species archetype models (Dunstan  et  al. 2011, 
Hui et al. 2013, Rognstad et al. 2021, Yu et al. 2022) can 
achieve this by clustering organisms by their environmen-
tal responses and assigning an ‘archetype’ defining how dif-
ferent groups respond to different environmental variables. 
The distributions and trends of groups (as well as individual 
species) can then be estimated over time, and used to assess 
risks of co-localised groups of organisms. Estimating and 
clustering organisms based on their sensitivities to environ-
mental change synergises well with the capacity of the cur-
rent red list criteria that allow for risk designation based on 
projected trends. For example, if group-level sensitivities to 
habitat cover covariates predict distributional or abundance 
declines, then current IUCN criteria can be adapted to clas-
sify these risks.

Importantly, group-level metric estimation should only 
be considered for organisms for which individual assess-
ments are unobtainable, and the conservation requirements 
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of organisms should be considered before group-level assess-
ment. An essential criterion for group-level assessment is spa-
tial association – sensu sharing the same habitat and resource 
use, and showing largely overlapping distributions. Firstly, 
this acts as a safeguard against potentially inappropriate 
groupings, organisms with wildly different distributions (e.g. 
localised in completely different habitats or regions), should 
clearly not be included in a group trend estimate. Second, 
it allows targeted conservation efforts to particular regions, 
with the same goal, e.g. habitat preservation or restoration.

A major benefit of these methods is that ecological record-
ing schemes often already collect information at the group-
level (O’Connor et al. 2019, Breeze et al. 2021), and these 
methods can take advantage of pre-existing data from stan-
dardised and citizen science recording programs. However, 
the metrics produced by these methods do not immediately 
complement existing risk assessment criteria, and new crite-
ria must be developed to categorise threat levels from these 
metrics. Identification of appropriate taxonomic levels at 
which to assess organisms will require specific knowledge of 
the group or community of organisms, and the criteria must 
appropriately convey the threat posed to one or more species. 
However, a multi-taxon approach could increase the uptake 
of assessments and representation of invertebrates in global 
conservation assessments.

Improving bio-regional inference

An alternative approach is to incorporate observations of 
rare species into models that allow estimation of ecological 
or biological regions. Assessment would involve the monitor-
ing of changes in the distribution and community composi-
tion of distinct ‘bio-regions’ quantified by a statistical model. 
Typically, statistical methods of this type define regions of 
geographical or environmental space that display similar 
community compositions (Fig. 4C). Numerous quantita-
tive methods have been developed to cluster regions in this 
manner (Hill et al. 2020, Woolley et al. 2020). Methods are 
generally divided up into those that cluster regions first then 
estimate distributions, and those that estimate species distri-
butions first and cluster after. The most rigorous and robust 
however are those that conduct this analysis simultaneously 
(Foster et al. 2013, Vanhatalo et al. 2021) and we therefore 
recommend these methods wherever possible. Some of the 
most well defined of these methods are those that designate 
‘regions of common profile’ (RCP’s) (Foster  et  al. 2013). 
These approaches define regions via a community ‘profile’, 
i.e. a common occurrence pattern of organisms displayed 
across its extent, which is governed by environmental vari-
ables. Changes in ranges of RCP’s can then be quantified reli-
ably with respect to changes in their community profiles, or 
due to changing environmental variables. A key strength of 
this approach is that statistical techniques to estimate biore-
gions are diverse and therefore flexible – methods are capable 
of using often a variety of input data, ranging from individual 
measures of occurrence to measures of community turnover 
(Leaper et al. 2011, Stephenson et al. 2018).

Another major benefit of this approach is that from a 
management perspective, regional level management is much 
more tractable than managing thousands of species individu-
ally. If there is one truism in conservation it is that manage-
ment of habitats rather than species has almost always proven 
a cost-effective and implementable process for species con-
servation (Fahrig 1997, Lawton 1999, Mantyka-pringle et al. 
2012, Segan  et  al. 2016). Identifying communities with a 
high number of endemic species with relatively small ranges, 
or negative trends in the extent of the modelled bio-region 
would provide quantifiable metrics on which to assess risk. 
Although no current frameworks exist specifically for bio-
regional assessment, the IUCN red list of threatened eco-
systems (RLE) (Rodríguez  et  al. 2011, Bland  et  al. 2019) 
provides a useful framework to guide development of regional 
level risk assessment criteria. From a practical standpoint, the 
RLE has directly adopted many of the risk thresholds (e.g. 
30, 50 and 80% range size decreases for RLE criteria A from 
the Red-list of threatened species. Conceptually these same 
thresholds could then be applied to bioregional distribu-
tion changes, with the added benefit that species occurrences 
would be directly tied to the quantification of changes.

A basis in adequate monitoring

All of our suggestions, as well as continued effective use of 
current criteria, are contingent on the establishment of suit-
able monitoring programs. Urgent investment in compre-
hensive and well-designed monitoring schemes is required 
if we wish to accurately detect the ranges, abundances, 
and temporal and spatial trends of invertebrates as major 
components of global biodiversity (Jeliazkov  et  al. 2022). 
Fortunately, the techniques for doing so at scale are becom-
ing more available, making this a more achievable goal in the 
near-term (van Klink et al. 2024). Applying these methods  
to identify groups and ecosystems that contain large numbers 
of endemic or threatened invertebrates, and then monitor 
these communities is essential to assess the effectiveness of 
conservation efforts. This, we feel, will lay the groundwork 
for providing better protection of threatened organisms for 
which we struggle to obtain sufficient data.
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