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Abstract
Methyl 2,3-di-O-benzyl-α-d-(4-2H)-glucopyranoside, C21H25DO6, is an intermediate used in synthesis of oligosaccharides. 
The hexopyranose ring has the 4C1 chair conformation in the crystal structure. The exocyclic groups of the hexose sugar 
show for the glycosidic torsion angle ϕ =−52.8° and for the hydroxymethyl group the gauche-gauche conformation with 
ω = −64.7°, one of the two main orientations of the latter group in hexopyranose sugars that have the gluco-configuration, 
i.e., with an equatorial hydroxyl group at C4. The benzene rings of the benzyl groups are arranged with an angle of 56.9° 
to each other within the molecule and show intramolecular as well as intermolecular C-H···π interactions. A chain of 
intermolecular hydrogen bonds exists along the b-axis involving O4 and O6 atoms. The experimentally observed peak in 
the infrared spectrum at 2159 cm− 1 was ascribed to the stretching of the C4–D4 bond based on DFT calculations.

Graphical Abstract
In the structure of the monosaccharide methyl 2,3-di-O-benzyl-α-d-(4-2H)-glucopyranoside, C21H25DO6, the two hydroxyl 
groups HO4 and HO6 act as both donors and acceptors resulting in an intermolecular hydrogen bond chain along the b-axis 
direction.
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Introduction

Carbohydrates play many important roles in biological sys-
tems [1] and synthesis of oligosaccharides and glycocon-
jugates facilitates the investigation of structure in relation 
to function. Synthesized oligosaccharides with well-defined 
structures, i.e., without heterogeneity that may be present 
in samples of biological origin, are essential in studies of 
carbohydrate-protein interactions [2, 3], for carbohydrate-
based vaccines [4–6] and in glycan microarray applications 
[7, 8].

The all-hydrogen isotopologue of the title compound 
has been used in synthesis of oligosaccharides [9–14].The 
monodeuterated isotopologue of the title compound (Fig. 1) 
was used in the synthesis of a site-specifically deuterium-
substituted cellobiose derivative [15], since this facilitated 
a detailed conformational analysis to be carried out on the 
disaccharide [16].

Experimental

Synthesis and Crystallization

Methyl 2,3-di-O-benzyl-α-D-(4-2H)-glucopyranoside was 
synthesized according to a literature procedure [15, 17]. The 
obtained colorless syrup was dissolved in a minimal amount 
of 2-propanol and an excess of n-pentane was added. The 
solution was left at 4 °C overnight to obtain the product as a 
tuft of colorless needles.

Single Crystal Diffraction

The crystals of the title compound where mounted with 
epoxy glue on a thin glass fiber and mounted on a Bruker 
platform equipped with an APEX-II detector. Several ω 
scans were done at different φ in order to collect reflections 
inside the Ewald sphere. The crystal to detector distance was 
40 mm. Data reduction was done with the APEX-II software 
package (Bruker AXS Inc., Madison, Wisconsin, USA). A 
summary of the crystallographic data is found in Table 1.

Structure Solution and Refinement

The structure was solved by direct methods using SHELXS 
[18] and refined using full matrix least square calculations 
using SHELXL-2019/3 [19] with anisotropic displacement 
parameter on all non-hydrogen atoms. Most of the non-
hydrogen atoms were located in the initial electron density 
map and the rest of them in subsequent difference Fourier 
maps. All hydrogen atoms were geometrically placed and 
allowed to ride on the carbon or oxygen atom to which they 
were connected and refined with a riding model available in 
SHELXL. The hydroxyl hydrogens were allowed to rotate 

Table 1  Crystal data for methyl 2,3-di-O-benzyl-α-d-(4-2H)-
glucopyranoside (I)
Sum formula C21 H25 D O6
Formula Weight / g·mol− 1 375.42
CCDC-code 2,417,798
Temperature / K 296(2)
Wavelength / Å 0.71073 (MoKα)
Crystal size / mm 0.24 × 0.20 × 0.08
Crystal habit plate
Crystal system monoclinic
Space group P21 (nr. 4)
Unit cell dimensions a = 8.8884(8) Å

b = 6.0907(5) Å
c = 19.1722(17) Å
β = 101.0830(10) °

Volume 1018.56(15) Å3

Z 2
Density, ρcalc 1.224
Linear absorption coefficient 0.089 mm− 1

F(000) 400
Radiation source Sealed tube
Measurement device Bruker D8 Quest 

ECO
Θmin, Θmax 2.75, 25.7
Index ranges, −10 ≤ h ≤ 10, 

− 7 ≤ k ≤ 7, − 23 ≤ l ≤ 23
Reflections collected 10,694
Unique reflections 3824
Observed reflections (I ≥ 2σ(I)) 3080
Rint 0.0211
Parameters 248
R1a (obs data), R1 (all data) 0.0388, 0.0529
wR2b (obs data), wR2 (all data) 0.0961, 0.1044
GOOF 1.02
Residual densities (min, max, rms) −0.122, 0.191, 0.026
aR1 = ∑ (││Fo│−│Fc││)/∑(│Fo│), bwR2 = (∑ w(Fo

2−Fc
2)2/∑Fo

2)1/2

Fig. 1  Schematic representation of methyl 2,3-di-O-benzyl-α-d-(4-
2H)-glucopyranoside (I)
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around the corresponding cone in the direction of the C-O 
bond. The Flack parameter [20] was inconclusive but the 
absolute configuration could be assigned by reference to 
invariance of the configuration of the chiral center.

Infrared Spectroscopy

The infrared (IR) spectrum of the title compound (I) was 
acquired with a Perkin-Elmer Spectrum 100 instrument. 
The sample was diluted by dry KBr and pressed into a tab-
let. The measurements were carried out in the interval 400–
4000 cm− 1 in transmission mode.

Computational Chemistry

Geometry optimization and calculated IR spectra were 
obtained by DFT methods using 6-31G*/B3LYP level of 
theory with the software NWChem [21]. Potential energy 
curves were computed at the same level of theory with the 
torsion angles τ and/or χ constrained, whereas all other 
degrees of freedom were free to be optimized. The geometry 
optimizations and IR frequency calculations for the two iso-
topologues of the title compound I were done using single 
isolated molecules.

Results and Discussion

In the title monosaccharide (I) the glycosidic torsion angle 
ϕ has the exo-anomeric conformation and the exocyclic 
hydroxymethyl group has the gauche-gauche conformation, 
relating O5 to O6 and C4 to O6 (Fig. 2; Table 2). Both of 
these exocyclic groups populate anticipated conformational 
states [22]. The pyranoid ring form having six heavy atoms 
can be characterized by puckering parameters [23], O5 
→ C5, as a 4C1 chair with Q = 0.543(3) Å, θ = 7.8(3)° and 
φ = 356(2)°. The benzyl substituents at O2 and O3 show syn-
periplanar relationships for both θC2 and θC3, a finding also 
observed in a 4-O-benzyl-substituted rhamnose derivative 
[24]. Whereas the intramolecular dihedral angle between 
planes defined by the two benzene rings is 62.8(2)°, the 
intermolecular dihedral angle between planes defined by the 
two benzene rings is 56.9(2)°. An intermolecular hydrogen 
bond network is observed with O4···H6-O6 and O6···H4-
O4 (Table 3; Fig. 3). Furthermore, the hydrophobic packing 
around z = 0 in the ab-plane is dominated by π−π stacking 
(Fig. 4). The two benzyloxy groups show different geomet-
rical orientations to the central sugar ring as shown by the 
dihedral angle between the plane C2-O2-C21 and the ben-
zene ring defined by C22 up to C27, that is 83.5(2)°, while 
the dihedral angle between the plane defined by C3-O3-C31 
and the benzene group defined by C32 up to C37 is 15.7(3)°.

At the benzyl group substituting position O3 of the sugar 
the torsion angle at the benzene group has an s-trans confor-
mation, τ3 = − 166.1°, only slightly deviating from a canoni-
cal s-trans conformation (Table 2). In contrast, τ2 = + 100.8° 
having a +anticlinal conformation with O2-C21 and C22-
C23 almost at a right angle to each other. In a 4-O-benzyl-
substituted rhamnose derivative [24] the corresponding 
torsion angle was − 124.9° whereas in a 4-O-benzoyl-sub-
stituted rhamnose derivative [25] the torsion angle at the 
benzene group was + 174.1°, i.e., in the latter case hardly 
deviation from an ideal s-trans conformation. The observa-
tion that the torsion angle τ of the benzyl group may devi-
ate to a large degree from an s-trans conformation whereas 

Table 2  Selected torsion angles in monosaccharide I. Standard uncer-
tainties are not given for those containing calculated positions of 
hydrogen atoms
Torsion angle Defined by atoms X-ray value (°) DFT value (°)
ϕ H1-C1-O1-C7 −52.8 −46.8
ω O5-C5-C6-O6 −64.7(3) −61.6
θ2 H2-C2-O2-C21 −4.9 25.3
θ3 H3-C3-O3-C31 −2.7 −24.9
χ2 C2-O2-C21-C22 170.4(3) −173.5
χ3 C3-O3-C31-C32 178.7(3) −177.6
τ2 O2-C21-C22-C23 100.8(5) 20.9
τ3 O3-C31-C32-C33 −166.1(3) −149.1

Fig. 2  Methyl 2,3-di-O-benzyl-α-d-(4-2H)-glucopyranoside (I) with 
atomic labels. Anisotropic displacement ellipsoids drawn at 50% prob-
ability level
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that of a benzoyl group does so only to a smaller extent or 
hardly at all in these crystal structures was further investi-
gated by computation of the torsion angle potential of these 
two functional groups, an ether vs. and ester, specifically 
benzyl methyl ether vs. methyl benzoate. DFT calculations 
at the 6-31G*/B3LYP level of theory revealed that the tor-
sional barrier at the torsion angle τ was only 2.1 kJ⋅mol− 1 in 
benzyl methyl ether whereas for methyl benzoate the barrier 
for τ was 31.7 kJ⋅mol− 1, i.e., a difference of one order of 
magnitude (Fig.  5). The torsional barrier of the former is 
even lower than that of ethane being ~ 12 kJ⋅mol− 1 [26] and 
one may conclude that deviations from an s-trans confor-
mation for τ torsion angles in the solid state are the effect of 
intermolecular forces (crystal packing) leading to changes 
in conformation. For the single molecule I geometry opti-
mized in vacuo the torsion angles θ2 and θ3, and τ2 deviated 
the most to the solid-state structure (Table 2). In the DFT 
calculations on the model substances the torsional energy 
landscape corresponding to the τ torsion did show that the 
rotational barrier in the ether was indeed very small, thus 
explaining that different values of τ torsions easily can be 
obtained in the crystal structure.

As the title compound I is an isotopologue of the natu-
ral abundance compound methyl 2,3-di-O-benzyl-α-d-
glucopyranoside one can anticipate that the vibrational 
frequency of the C4-D4 bond is lower than that of the 
C4-H4 bond, which is anticipated to have a band due to a 
bond stretch at ~ 3000 cm− 1. The experimental IR spectrum 
revealed a small peak at 2159 cm− 1 (Fig. 6) and the com-
puted IR frequency from the geometry optimized structure 
I confirmed a band in this spectral region, computed to be 
resonating at 2256 cm− 1 for the C4-D4 bond, whereas for 
the isotopologue containing the C4-H4 bond the computed 
frequency was at 2961 cm− 1.
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Fig. 4  Packing view along the 
b-axis for the crystal structure of 
monosaccharide I. Intermolecular 
hydrogen bond interactions at 
c = 0.5 along the b direction and 
hydrophobic interactions between 
benzene rings, at c = 0 in the 
ab-plane

 

Fig. 3  Intermolecular hydrogen 
bonding scheme in monosaccha-
ride (I) along the b-axis direction 
with codes for the symmetry 
equivalent units marked. Only 
a small part of each molecule is 
shown for clarity
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Fig. 6  IR spectra of title compound (I) obtained by measurement (a), 
while (b) and (c) were calculated using DFT with deuterium at D4 
position in (b) and hydrogen at H4 position in (c). For clarity the spec-
trum in (c) has been mirrored. The observed peak for the deuterated 
compound at 2159 cm− 1 can be ascribed to the stretch of C4-D4, while 

the corresponding computed C4-H4 stretch occurs at 2961, cm− 1. The 
two computed spectra, (b) and (c) have been shifted by 97 cm− 1 to 
lower frequency to fit the position of the C4-D4 stretch in the observed 
spectrum

 

Fig. 5  Potential energy (kJ⋅mol− 1) relative to the energy minimum of 
the DFT geometry optimized structure vs. the τ torsional angle (Cortho-
Cipso-C-O) constrained whereas the χ torsion angle (Cipso-C-O-CMe) 
and other degrees of freedom were free to be optimized; (a) benzyl 
methyl ether and (b) methyl benzoate. Note that the energy scale of the 
vertical axes differs by one order of magnitude
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