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According to Bergmann’s and Allen’s rules, climate change may drive morphological shifts in species, affecting body size and
appendage length. These rules predict that species in colder climates tend to be larger and have shorter appendages to improve
thermoregulation. Bats are thought to be sensitive to climate and are therefore expected to respond to climatic changes across
space and time. We conducted a phylogenetic meta-analysis on > 27 000 forearm length (FAL) and body mass (BM) mea-
surements from 20 sedentary European bat species to examine body size patterns. We assessed the relationships between body
size and environmental variables (winter and summer temperatures, and summer precipitation) across geographic locations,
and also analysed temporal trends in body size. We found sex-specific morphological shifts in the body size of European bats
in response to temperature and precipitation patterns across space, but no clear temporal changes due to high interspecific vari-
ability. Across Europe, male FAL decreased with increasing summer and winter temperatures, and BM increased with greater
precipitation. In contrast, both FAL and BM of female bats increased with summer precipitation and decreased with winter
temperatures. Our data can confirm Bergmann’s rule for both males and females, while females’ BM variations are also related
to summer precipitation, suggesting a potential link to resource availability. Allen’s rule is confirmed only in males in relation
to summer temperature, while in females FAL and BM decrease proportionally with increasing temperature, maintaining a
constant allometric relationship incompatible with Allen’s rule. This study provides new insights into sex and species-depen-
dent morphological changes in bat body size in response to temperature and precipitation patterns. It highlights how body
size variation reflects adaptations to temperature and precipitation patterns, thus providing insights into potential species-level
morphological responses to climate change across Europe.

Keywords: Allen’s rule, Bergmann’s rule, body size, Chiroptera, climate change, meta-analysis

Introduction

Global environmental change poses a significant threat to bio-
diversity, biological communities, and the ecosystem services
they provide (Weiskopf et al. 2020). Changes in temperature
regimes, patterns of rainfall and frequency and intensity of
extreme weather have resulted in a range of responses from
numerous species, from range shifts that track favourable cli-
mates to phenotypic and genetic adaptations to warming con-
ditions over time (Cushman et al. 1993, Hoffmann and Sgré
2011, Weiskopf et al. 2020). Change in body size is the most
common adaptive response to variations in temperature and

precipitation (Sheridan and Bickford 2011, Jiang et al. 2019,

Mundinger and Scheuerlein 2021), as observed in numer-
ous taxa, including mammals (Yom-Tov and Geffen 20006,
Clements et al. 2018), birds (Cousins 1989, Yom-Tov and
Geffen 20006, Tattersall et al. 2017), reptiles (Lindsey 1966,
Olalla-Térraga et al. 2006), amphibians (Lindsey 1966) and
invertebrates (Sheridan and Bickford 2011).

In this context, Bergmann’s rule (Bergmann 1848), and
Allen’s rule (Allen 1877) were postulated to explain patterns
of morphological variation in endotherms within and across
species in response to temperature gradients. Bergmann’s
rule predicts that colder regions are inhabited by larger-
sized endothermic species as a result of the lower surface-
to-volume ratio, allowing for a greater thermoregulatory
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ability (Bergmann 1848, Shelomi and Zeuss 2017). In turn,
Allen’s rule posits that endothermic species inhabiting colder
regions within their distribution range have reduced append-
age length relative to body size (Allen 1877), thus mitigating
thermoregulation costs due to the lower surface-to-volume
ratio. Several studies have provided supporting evidence for a
broad range of taxa (Bergmann’s rule: Blackburn and Gaston
1996, Ashton 2002, Meiri and Dayan 2003, Symonds and
Tattersall 2010, He et al. 2023, Henry et al. 2023; Allen’s
rule: Tilkens et al. 2007, Symonds and Tattersall 2010,
Jiang et al. 2019, Alhajeri et al. 2020), and have shown how
both mechanisms can operate simultaneously (Laiolo and
Rolando 2001, Baldwin et al. 2023, Tabh and Nord 2023).
Yet, multiple studies have highlighted deviations from Allen’s
(Stevenson 1986, Gutiérrez-Pinto et al. 2014, Probst et al.
2022) and Bergmann’s rules (Geist 1987, Ashton et al. 2000,
Mainwaring and Street 2021) in several taxa. The reasons for
these discrepancies are not yet fully understood, but they may
arise from methodological variations across studies (Salewski
and Watt 2017), differences in sample sizes or geographic
and/or thermal range coverage (Meiri et al. 2007, Henry et al.
2023), variation in natural history traits (Mainwaring and
Street 2021), disequilibrium conditions (e.g. recent coloniza-
tions; Kirchman and Schneider 2014), and the interacting
effect of additional drivers (e.g. predator—prey evolutionary
dynamics; Korpimiki and Norrdahl 1989).

Beyond the study of biogeographic patterns, these rules
hold interest in the context of climate change. An increas-
ing number of studies on various taxa, including bats, have
observed temporal trends in the body size and length of
appendages of different organisms, potentially linked to a
response to ongoing climate change (Bogdanowicz 1990,
Yom-Tov 2003, Yom-Tov and Geffen 2011, Gardner et al.
2014, Salinas-Ramos et al. 2020a, Moroz et al. 2021). Bats
are diverse, widespread mammals considered particularly
sensitive to the effects of climate change due to their high
surface-to-volume ratios, long lifespan, and low reproductive
rates, which may limit their ability to evolve at a sufficient
pace to cope with changing climatic conditions (Mundinger
and Scheuerlein 2021, Festa et al. 2023). Most temperate
zone bat species are heterotherms, i.e. they can adjust their
body temperature according to environmental conditions.
This ability allows bats to maintain plastic energetic require-
ments as their first-line defence against environmental chal-
lenges (Geiser and Turbill 2009). However, this does not
exclude other important adaptations. Bats could adapt to
altered temperature regimes through selection on their wing
morphology to optimise their flight performance, foraging
strategy, dispersal ability, thermoregulation, and evaporative
water loss rates (Varzinczak 2020). Female bats form mater-
nity colonies in spring and summer to cooperatively care for
their young, a strategy that helps mitigate challenges posed by
adverse environmental conditions (Kunz 1982).

Studies exploring changes in bat size in response to climate
change have observed variations in this adaptive strategy,
ranging from a decrease (Bogdanowicz 1990, Moroz et al.
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2021, Mundinger and Scheuerlein 2021) to an increase
(Jiang et al. 2019, Salinas-Ramos et al. 2020a, Russo et al.
2024a, 2024b) in body size. Yet, Bergmann’s and Allen’s rules
in bats have rarely been examined explicitly at an intraspe-
cific level (Rubalcaba et al. 2022). Examining whether bats
conform to these ecological rules can provide a useful frame-
work for predicting long-term climate-induced morphologi-
cal changes, which can inform vulnerability assessments and
guide effective conservation strategies, especially in areas
with rapid environmental changes. Besides ambient tempera-
ture, changes in precipitation levels can also affect bat body
size, with decreased rainfall and moisture levels correspond-
ing with a smaller body size in some species (Burnett 1983,
Bogdanowicz 1990, Yom-Tov and Geffen 2006). Indeed,
increased rainfall, particularly in seasonal Mediterranean
environments, can boost insect abundance, which in turn
promotes larger bat body size (Anthony and Kunz 1977,
Frick et al. 2010, Davy et al. 2022). Bats are important for
providing valuable ecosystem services that benefic human
well-being, such as pest suppression, seed dispersal, and pol-
lination (Deutsch et al. 2018, Tuneu-Corral et al. 2023). In
the context of climate change, it is essential to understand
their life history traits as a function of environmental condi-
tions to anticipate potential impacts on different species and
the broader ecosystems they inhabit.

Studies of changes in bat morphology to date mostly
focused either on single species or on multiple species in a
limited geographic context, often not showing a consistent
pattern (Burnete 1983, Almeida et al. 2014). Studies over
multiple species and across large geographic extents can shed
light on the drivers and commonalities in species’ responses
to climate change. While ecogeographic rules usually pertain
to spatial variation in traits, the study of species’ morphologi-
cal changes can also be approached from a temporal perspec-
tive. Intraspecific geographic patterns of trait variation may
result from local adaptations (Gaston et al. 2008), highlight-
ing a species’ potential to adapt to environmental changes
over time. Studies including both spatial and temporal scales
of analysis are rare, yet they may reveal interesting patterns.
Most studies of changes in bat morphology to date have
focused on cither spatial or temporal responses. For example,
Alston et al. (2023) studied intraspecific variation in body
size in 20 North American bat species, finding that they fol-
lowed Bergmann’s rule across space, whereby larger individ-
uals occurred in cooler areas. However, as this study lacks
longitudinal data (the temporal component), it is unknown
how changes in temperature over the past few decades have
affected variation in body size and therefore, whether bats
are responding to climate change through morphological
changes.

In this study, we test the applicability of Bergmann’s and
Allen’s rules by analysing how bat morphology varies spa-
tially and temporally across climatic gradients in Europe.
We examine trends in body size, specifically forearm length
(FAL) and body mass (BM), to determine if these rules act
simultaneously and whether, due to the progressive increase
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Table 1.

Overview of the variables, analyses, expected results, and datasets used to test each of the five hypotheses in this study. The first

column lists the five hypotheses. For each hypothesis, the second column specifies the environmental variables analysed (Tmax: maximum
summer temperature, Tmin: minimum winter temperature, and SP: summer precipitation for spatial analysis; Year for temporal analysis). The
third column indicates the analysis type (spatial or temporal) associated with each hypothesis. The ‘Expected results’ column outlines the
expected correlations between the variables and forearm length (FAL) or body mass (BM), where ‘1’ indicates a positive correlation, ‘" a
negative correlation. The final column specifies the dataset utilized for each analysis: the ‘FAL dataset’ includes all FAL measurements, while
the ‘Pairwise FAL-BM dataset’ includes both BM and corresponding FAL values for the same individuals to observe FAL variation relative to

BM.
Hypothesis Variable Analysis Expected results Dataset
1) Bergmann’s rule Tmax Spatial 1 FAL e FAL dataset
Tmin Temporal
Year
2) Allen’s rule Tmax Spatial Positive allometric relationship of FAL e Pairwise FAL-BM dataset
Tmin Temporal to BM (Supporting information)
Year
3) Precipitation SP Spatial 1 FAL e FAL dataset
t BM e Pairwise FAL-BM dataset
4) Body size influences Tmax Spatial | FAL e FAL dataset
adherence to Year Temporal 1 BM e Pairwise FAL-BM dataset
Bergmann’s rule Depending on the species’
body size
5) Sex-specific responses Tmax Spatial 1 FAL e FAL dataset
in body size changes Tmin | BM e Pairwise FAL-BM dataset
SP Mainly in males

in temperatures over the past 40 years in Europe, spatial
and temporal trends align. Since small mammals seem to
follow Bergmann’s rule more closely (Porter et al. 1994,
Steudel et al. 1994), though large mammals may also
show strong conformity to it (Freckleton et al. 2003), we
explore how bats’ body size influences their adherence to
Bergmann’s rule.
We hypothesise that:

1. European bats follow Bergmann’s rule; we predict a nega-
tive correlation between bat body size and temperature
both across space and over time, as temperatures have
increased across Europe.

2. European bats follow Allen’s rule; we predict a positive
relationship between forearm length and body mass driven
by temperature, both across spatial gradients and over
time (reflecting rising temperatures in recent decades).
This correlation suggests that as temperatures increase, the
relative size of appendages may increase more significantly
or decrease less significantly than body mass, reflecting an
adaptive response to warmer environments that enhances
thermoregulation (Supporting information).

3. European bats’ size depends on resource availability; we
predict that bat body size will be larger in areas with
higher levels of summer precipitation (used as a proxy for
insect abundance).

4. Adherence to Bergmann’s rule will depend on the species’
average body size. We aim to clarify how bats’ body size
influences their adherence to Bergmann’s rule.

5. Considering the clear sexual dimorphism in European
bats, we hypothesise that morphological responses in the
form of body size changes will be sex-specific. In particu-
lar, we predict that male bats are more sensitive to changes
in temperature than females (Table 1).

Material and methods

Data

We collected > 64 000 adult body size records of 39
European bat species (covering 83% of the European bat
community; Froidevaux et al. 2023) from bat researchers
and conservation organisations from 18 countries across
Europe and the Middle East (Israel), recorded between the
years 1900 and 2023, as part of the European Cooperation in
Science and Technology (COST) Action network on climate
change and bats (ClimBats-CA18107; https://climbats.eu)
(Supporting information). Forearm length (FAL) and body
mass (BM) are the most commonly used body size measure-
ments in bat studies (Jiang et al. 2019, Salinas-Ramos et al.
2020b, Wang et al. 2020, Yue et al. 2020). FAL correlates
with body size (Thiagavel et al. 2017, Salinas-Ramos et al.
2020a, Mundinger and Scheuerlein 2021) as well as wing
morphology (Thiagavel et al. 2017), whereby a longer fore-
arm length relates to a larger body and longer wings. While
BM is often used as a measure of body size (Almeida et al.
2014, Wang et al. 2020, Alston et al. 2023), it can fluctu-
ate seasonally due to reproductive changes and preparation
for hibernation, as well as daily with food intake (Neuweiler
2000, O’Mara et al. 2016, Kelling et al. 2024). Previous
studies showed that migratory species conform less to eco-
geographical rules than sedentary species (Mainwaring and
Street 2021, Henry et al. 2023). For this reason, we excluded
all migratory species (n=13; Supporting Information)
from the dataset (with migratory status defined based on
Huctterer et al. 2005). We also checked the reliability of
records by comparing them with the known species distribu-
tion and excluded six other species with dubious records, thus
leaving a total of 20 bat species (Supporting information).
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Finally, we combined data from different countries into a
single dataset including the following variables: bat species,
sex, spatial coordinates, forearm length (in mm), body mass
(in g), sample size, country, and year.

Analysis

We assessed support for Allen’s and Bergmann’s rules, as well
as the resource availability hypothesis, by evaluating whether
the 95% confidence intervals of species-level standardised
correlation coeflicients between FAL or BM and tempera-
ture or time (years) excluded zero and matched expectations
(i.e. positive slopes for Allen’s rule and negative slopes for
Bergmann’s). To test Bergmann’s rule, we used the full dataset
of > 27 000 FAL measurements across 20 species and tested
whether FAL correlates positively or negatively with tem-
perature (spatial analysis) or with years (temporal analysis)
(Supporting information). To test Allen’s rule, we generated a
subset dataset including only pairwise FAL and BM measure-
ments for the same individual (Pairwise FAL-BM dataset, ca
18 500 pairwise measurements). In this way we could inves-
tigate how temperature (spatial analysis) or years (temporal
analysis) affect the allometric relationship between append-
age size (FAL) and body size (BM) (Santoro and Calzada
2022). Given the hypotheses of our study, we conducted a
spatial and temporal analysis separately and performed sepa-
rate analyses for the two sexes only for spatial patterns, due
to insufficient sample sizes in the temporal data. In the spa-
tial analysis, besides verifying the generalizability of Allen’s
and Bergmann’s rules to European bats, we tested whether
bat body size also depends on precipitation. We tested this
hypothesis by including both the FAL dataset and the pair-
wise FAL-BM dataset to provide a broader perspective on
how different aspects of body size (FAL and BM) may vary
with precipitation. In the spatial analysis we considered three
environmental variables: 1) the mean daily maximum ambi-
ent temperature of the warmest month (Tmax, variable BIO5
from Chelsa; Karger et al. 2017), used to account for heat
dissipation; 2) the mean daily minimum ambient tempera-
ture of the coldest month (Tmin, variable BIOG6 from Chelsa;
Karger et al. 2017), to account for heat conservation; and
3) the mean monthly precipitation amount of the warmest
quarter (summer precipitation, variable BIO18 from Chelsa;
Karger et al. 2017), used as a proxy for resource availabil-
ity. In the temporal analysis, we assessed how bat body size
changes across different years for each species and location
to evaluate the validity of Bergmann’s and Allen’s rules over
time. Here we used years (time) as a proxy for increasing tem-
peratures, given the recorded rise in temperatures across all
locations over the past few decades (IPCC 2022).

For both spatial and temporal analyses, we grouped the
data by cells into a 10 X 10 km grid and extracted the cen-
troid coordinates to reduce the influence of environmental
variability across different geographic locations. We then fil-
tered the data. For the temporal analysis, we only retained
species that were measured over a period of at least 20 years in
the same grid cell. For the spatial analysis we retained records
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obtained from 2010 onwards, to avoid the effect of time
and the increase in temperatures in Europe over the past few
decades. Since we aim to examine the consistency of trends
in body size across multiple species in relation to environ-
mental gradients across Europe and over time, we focus on
species with sufficient coverage in terms of the number of
individuals per cell and the number of cells. To ensure ade-
quate sample size and environmental variation, we limited
the analysis to species sampled in more than five cells (spa-
tial analysis) or years per cell (temporal analysis), resulting
in a total of 19 species in the spatial analysis (14 843 body
size measurements) and 12 species in the temporal analysis
(4926 body size records) (Fig. 1). We calculated the weighted
average of FAL (WFAL) and BM (wBM) in each cell (spa-
tial analysis) and in each cell and year (temporal analysis)
based on the sample size for each species. Since we did not
expect the relationship between body size measurements and
environmental variables (in the spatial analysis) or time (in
the temporal analysis) to be linear, we used Spearman’s rank
correlation coefficients to analyse the relationships for each
species across cells or years (Santini et al. 2019, Henry et al.
2023). To account for the unequal sample sizes across cells,
we weighted the correlations using the log, -transformed
count of individuals within each cell, adding 1 to prevent
the weight from becoming zero when n=1 (Henry et al.
2023). Correlation coefficients were converted into Fisher’s

o ()
2

sponding sample size to determine the effect size for each

z-scores with the formula , using the corre-

species. We also calculated the sampling variances using the

formula Vz = , ensuring that species with larger sample

n—73
sizes (number of cells or years) were given more weight in the
analysis (Borenstein et al. 2021).

We conducted a phylogenetic meta-analysis to test the
consistency of the correlation between species body size (FAL
and BM) and the environmental variables (Tmax, Tmin, SP,
and Year) across multiple species (Hillebrand and Azovsky
2001, Weber et al. 2017, Henry et al. 2023 for similar meth-
odological approaches). We used z-scores and variances to
weight each correlation based on its statistical strength and
controlled for pseudoreplication at the species level and
their phylogenetic relatedness (Supporting information)
by including both phylogeny and species name as random
effects (Hadfield and Nakagawa 2010). The species name
accounts for similarities among individuals resulting from
shared ecology, while phylogeny accounts for the evolution-
ary history shared among species (Cinar et al. 2022). We
modelled phylogenetic similarity as a variance—covariance
matrix, using synthetic phylogenetic trees obtained from the
Open Tree of Life (Hinchliff et al. 2015). We pruned phylo-
genetic trees for our species list, dealt with single polytomies
via randomisation, and estimated branch lengths using the
Grafen method (Grafen 1989). Additionally, we analysed
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Figure 1. Distribution of the populations of bat species used in the (a) spatial and (b) temporal analysis. Each colour represents a different
species. The bar-plots illustrate how many 10 X 10 km cells (spatial analysis) or years (temporal analysis) each species is sampled in. The
maps display the geographical distribution of the bat species considered in both (c) spatial (n=19 species) and (d) temporal analysis (n=12

species), respectively.

the relationship between the Fisher’s z-scores (derived from
Spearman correlations between temperature or year and
body size records) of FAL and BM to explore the allom-
etry between FAL and BM in response to temperature, so
as to determine whether Bergmann’s and Allen’s rules act
simultaneously.

To assess how species size influences adherence to
Bergmann’s rule, we conducted a phylogenetic meta-regres-
sion analysis using Fisher’s z-scores and the mean body size of
each species (i.c. species-level forearm length and body mass;
see the Supporting information). This analysis examined how
morphological variations in relation to temperature and time
differ across species of varying body sizes.

Our results are presented by back-transforming Fisher’s
z-scores into Spearmans r for ease of interpretation, which
summarises the overall intraspecific patterns detected across
species. We also report confidence intervals and exact p-val-
ues, and we use the language of evidence to present our
results rather than depending on a fixed p-value threshold to

determine statistical significance. We categorize our findings
into the following levels of evidence: no (p > 0.1), weak (0.05
< p < 0.1), moderate (0.01 < p < 0.05), strong (0.001 < p
< 0.01), and very strong (p < 0.001) evidence for each find-
ing (Amrhein et al. 2019, Muff et al. 2022).

The data collection and analysis were completed using R ver.
4.3.2 and RStudio ver. 2023.12.1+402 (RStudio Team 2023,
www.r-project.org). For data processing we used R packages
‘stringt’ (Wickham 2023) and ‘dplyr’ (Wickham et al. 2023).
For raster operations we used ‘raster’ (Hijmans 2023), ‘sp’
(Pebesma and Bivand 2005, Bivand et al. 2013) and ‘rgdal’
(Bivand et al. 2013) R packages. Lastly, we used the package
‘metafor’ for the meta-analysis, meta-regressions, and z-score
transformations (Viechtbauer 2010), ‘ape’ for estimating
branch lengths and resolving polytomies (Paradis and Schliep
2019), ‘rotl’ for building the phylogenies for our species by
searching the open tree taxonomy (Michonneau et al. 2016,
Rees and Cranston 2017) and retrieving the phylogenetic
relationships from the open tree of life (Hinchliff et al. 2015),
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and ‘ggplot2’ (Wickham 2016) and ‘ggpubr’ (Kassambara
2023) for creating figures.

Results

The dataset used for the spatial analysis (Fig. 1a, ¢) included
14 843 body size measurements from a total of 19 spe-
cies distributed across 920 distinct cells and 17 countries.
The species with the highest number of observations were
Pipistrellus pipistrellus and Plecotus auritus, distributed in 329
and 218 cells, respectively. In the temporal analysis (Fig. 1b,
d) the dataset included a total of 4926 measurements from
12 distinct species distributed in 18 cells that were sampled
between 1905 and 2022. Eptesicus isabellinus had the highest
number of records, with 28 between 1983 and 2013.

Pairwise FAL-BM/Tmax Females n=566

(a) FAL Females n=740

(b)

Spatial trends in body size

In the phylogenetic meta-analysis based on Spearman’s
correlations (Fig. 2, Supporting information), for females
(Fig. 2a—c), we found no effect of maximum temperature on
body size (FAL, pairwiseFAL and pairwiseBM), but a strong
negative effect of minimum temperature, with FAL and BM
decreasing with increasing minimum temperature (FAL:

r, . =—0.167 (95CI: —0.266 to —0.069), p < 0.001;
pairwiseFAL: r, -, .. =—0.206 (95CI: —0.313 to —0.099),
p < 0.001; pairwiseBM: r,_. . =—0.194 (95CI: —0.291

to —0.098), p < 0.001) and a positive effect of summer
precipitation (FAL: 1, ,=0.123 (95CL: 0.024-0.219),
p=0.015; pairwiseFAL: r, o = 0.185 (95CI: 0.008-
0.351), p=0.041; pairwiseBM: r, ,=0.126 (95CI:
0.058-0.192), p < 0.001). For males (Fig. 2d—f), FAL and

(C) Pairwise FAL-BM/Tmin Females n=566
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Figure 2. (a), (d): Correlation coefficients between forearm length (FAL dataset) and the environmental factors considered, representing
ecological hypotheses of body size variation in relation to resource availability (S. Precipitation: summer precipitation), heat dissipation
(Tmax: maximum temperatures of the warmest month) and heat conservation (Tmin: minimum temperatures of the coldest month) for 19
European bat species. (b), (c), (e), (f): Relationship between the correlation coeflicients of forearm length and body mass (Pairwise FAL-
BM dataset) related with Tmax (b), (e) and Tmin (c), (f) to test their allometry. Points in the yellow panel represent species adhering to
Allen's rule, those in the blue panel follow Bergmann's rule, and points in the green panel represent species that align with both Allen's and
Bergmann's rules. (a)—(f): Size of the points indicates the weight of the correlation coefficient in the random-effect intercept-only phyloge-
netic meta-analysis, with the weight being the inverse of the sampling variance plus the between-species variance. Red points represent the
mean effect size estimates for the three environmental variables from the phylogenetic meta-analysis. Solid lines represent 95% CI. The level
of evidence is indicated by the following symbols: (***) very strong evidence for p < 0.001; (**) strong evidence for p < 0.01; (*) moderate
evidence for p < 0.05; (.) weak evidence for p < 0.1; and no symbol, denoting no evidence, for p > 0.1. FAL: forearm length (mm), BM:
body mass (g), n: number of population-level (10 X 10 km grid cell) average size measurements.
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Figure 3. Results of meta-regression models testing variations in correlation coefficients of FAL-Tmax (a), (b), (d), (¢) and BM—Tmax (c),
(f) across species with different body sizes, using mean species-level FAL and BM as a proxy for size. Shaded areas indicate 95% CI. Size of
the points indicates the weight of the correlation coeflicient in the phylogenetic meta-regressions, with the weight being the inverse of the
sampling variance plus the between-species variance. The level of evidence is indicated by the following symbols: (***) very strong evidence
for p < 0.001; (**) strong evidence for p < 0.01; (*) moderate evidence for p < 0.05; (.) weak evidence for p < 0.1; and no symbol, denoting
no evidence, for p > 0.1. FAL: forearm length (mm), BM: body mass (g).

BM decrease with increasing maximum temperature, with a
moderate negative effect of maximum temperature on body

size (FAL: 7. =-0.122 (95CL:=0.226 to —0.016),
p=0.025; pairwiseFAL: . =-0.152 (95CI: —0.268 to
—0.031), p=0.014; pairwiseBM: 7, . =-0.277 (95CI:

—0.482 to —0.043), p=0.021) and a respectively moderate,
weak and strong effect of minimum temperature on FAL,
pairwise FAL and pairwise BM (Fig. 2d—f). We did not find
a clear relationship between FAL and summer precipitation,
whereas the relationship between BM and summer pre-
cipitation was clearly positive (pairwiseBM: r,,. ,=0.212
(95CI: 0.108-0.312), p < 0.001). The relationship between
the z-scores of FAL-T and BM-T (Fig. 2b, ¢, ¢, f) showed
that both Tmax and Tmin cause a constant allometric dif-
ference in females (Fig. 2b—c), indicating that FAL and
BM decrease proportionally when temperatures increase.
In males, Tmax causes a positive allometric difference of
FAL to BM, reflecting the simultaneous action of both
Bergmann’s and Allen’s rules (Fig. 2e), while Tmin causes
a constant allometric difference, incompatible with Allen’s

rule but in line with Bergmann’s rule (Fig. 2f, Supporting
information).

The meta-regression analysis (Fig. 3, Supporting informa-
tion) revealed a weak positive relationship between the cor-
relation coeflicients (of FAL with Tmax) and the species-level
mean body size, but only in males (slope=1.377 (95% CI:
—0.004 to 2.758), p=0.051, Fig. 3d). This finding indicates
that smaller species have more negative correlation coef-
ficients than larger species. In the pairwise FAL-BM data-
base (Fig. 3b, ¢, ¢, f), for both sexes there was no evidence of
changes in correlation coefficients across the range of species’
mean body sizes.

Temporal trends in body size

There was no significant relationship between bat body size
(FAL, pairwise FAL, pairwise BM) and time (year), i.e. body
size in bats did not show a clear trend of increase or decrease
over the past few decades with increasing ambient tempera-
tures. Specifically, our analyses revealed the following results:
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Figure 4. Results of meta-regression models testing variations in Spearman’s r between FAL-Year (a), (b) and BM—Year (c) across species
with different body sizes, using mean species-level forearm length and body mass as a proxy for size. Shaded areas indicate 95% CI. Size of
the points indicates the weight of the correlation coefficient in the phylogenetic meta-regressions, with the weight being the inverse of the
sampling variance plus the between-species variance. The level of evidence is indicated by the following symbols: (***) very strong evidence
for p < 0.001; (**) strong evidence for p < 0.01; (*) moderate evidence for p < 0.05; (.) weak evidence for p < 0.1; and no symbol, denoting
no evidence, for p > 0.1. FAL: forearm length (mm), BM: body mass (g).

FAL: 7,_,..=0.009 (95CI: —0.193 to 0.211), p=0.928;
pairwise FAL: 7, . =-0.041 (95CI: —0.277 to 0.194),
p=0.731; pairwise BM: ... =—0.133 (95CI: —0.329 to

0.062), p=0.182 (Supporting information).

In the meta-regression analysis (Fig. 4, Supporting infor-
mation), the correlation coefficients between FAL and time
showed a moderate positive relationship with species-level
mean body size (slope=3.021 (95CL: —0.094 to 5.949),
p=0.043; Fig. 4a), consistent with the results of the spatial
analyses . In the Pairwise database (Fig. 4b—c) we found no
evidence of a relationship between the correlation coefficients
and the species’ mean body sizes.

Discussion

We performed a phylogenetic meta-analysis to assess the rela-
tionship between bat body size and climatic conditions across
geographic locations and to examine temporal changes in the
body size of European bat species. Moreover, we investigated
whether these size-climate and size-time correlations varied
among species with different body sizes. The results reveal
sex-specific morphological shifts in the body size of European
bats in response to temperature and rainfall patterns, but no
clear changes over time. Across Europe, the forearm length
of males tended to decrease with higher summer and winter
temperatures, and only body mass tended to increase with
greater rainfall. In contrast, the body size of female bats
was not affected by summer temperature, but both forearm
length and body mass increased with higher levels of summer
precipitation and decreased with higher winter temperatures.
Thus, based on our data, we can confirm Bergmann’s rule
for both males and females, while females’ body size varia-
tions are also linked to rainfall-driven resource availability.
The allometric relationship between FAL and BM showed
evidence supporting Allen’s rule only in males in relation to
summer temperacure.
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Sexual dimorphism in changes in body size in
response to temperature

Following Bergmann’s rule, males of our studied bat species
have larger body sizes in locations with cold winter tempera-
tures, and exhibit smaller body sizes in areas with warmer
summer temperatures. These thermoregulatory adaptations
facilitate heat conservation and dissipation, respectively
(Rick and Geiser 2013). This trend remained when using
both forearm length and body mass as a proxy of bodysize.
In females, body sizes (FAL and BM) are larger in locations
with cold winter temperatures, but there is no relationship
with summer temperatures, indicating a sex-specific adapta-
tion towards heat conservation, rather than dissipation. This
discrepancy underscores the complexity of sexual dimor-
phism and highlights the diverse physiological and behav-
ioural responses of bats to environmental variables. Previous
research has documented sexual dimorphism in body size
across various insectivorous bat species, with females often
being slightly larger than males (Myers 1978, Williams
and Findley 1979, Lis6n et al. 2014, Hurtado et al. 2015,
Vannatta and Carver 2022, Russo et al. 2024a). Males and
females are faced with distinct ecological and reproductive
challenges (Altringham 1996, Ortega et al. 2008, Alviz and
Pérez-Torres 2020), with body size playing a critical role in
influencing reproductive rates (Storz et al. 2001, Voigt et al.
2005). Moreover, female maternity colonies tend to be
located in higher-quality habitats at lower elevations than
male roosts (Barclay 1991, Linton and MacDonald 2019),
thus further decreasing the importance of body size for ther-
moregulation during summer in female bats.

The challenges posed by climatic conditions may be more
pronounced for females than males due to higher energy
investment and constraints during the reproductive season
(Ruedas et al. 1994, Cryan et al. 2000, Adams 2010). Female
bats experience higher energy demands during pregnancy
and lactation (Angell et al. 2013, Pfeiffer and Mayer 2013),
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and therefore may benefit from maintaining a larger body
size. Larger females can store more fat, access a greater array
of prey, and experience reduced energy costs associated with
reproduction (Williams and Findley 1979). Additionally,
the formation of maternity colonies during spring and sum-
mer, where they cooperatively care for their young through
shared roosting and protection (Williams and Brittingham
1997, Dekeukeleire and Janssen 2014, Ruzinskd and Katiuch
2021), is used as a strategy to mitigate the challenges posed
by adverse external conditions such as low temperatures and
humidity (Kunz 1982). These colonies create microenviron-
ments that can alleviate the costs for reproductive females,
contributing to maintaining homeothermy and energy-effi-
cient pregnancy and lactation (Williams and Findley 1979).
In contrast, males tend to roost alone or in small groups in
summer (Kunz 1982), rendering them more vulnerable to
changes in summer temperatures. This disparity in roost-
ing strategies during the summer and the use of behavioural
strategies of social thermoregulation may also explain the lack
of support for Allen’s rule in female bats. Despite this, due to
reproduction constraints, females are more likely to be nega-
tively affected by climate change than males due to thermo-
regulation challenges. This is especially true if temperature
increases to the point where bats must elevate their meta-
bolic rates and energy consumption to dissipate heat. This
issue will be particularly pronounced in the warmer parts of
species’ ranges, such as southern Europe, where females lack
the thermoregulatory advantages of males’ smaller body sizes.
However, if increases in temperature in the spring decrease
the cost of maintaining homeothermy, the impact on females
might be less severe.

Increase in size in response to increased
precipitation and associated greater resource
availability

Both males (for body mass only) and females (for both fore-
arm length and body mass) show an increase in body size
with increasing summer precipitation. As previous stud-
ies have linked summer precipitation with increased insect
abundance, the primary food source for European bats
(Nurul-Ain et al. 2017, Liu et al. 2020, Tsantalidou et al.
2023), this increase in body size may be related to resource
availability. Although many environmental factors contribute
to body size, food availability plays a crucial role in changes in
body size for many species (Ashton 2004, Meiri et al. 2004,
Yom-Tov and Geffen 2011), particularly during the growth
period (Henry and Ulijaszek 1996, Arnett and Gotelli
1999, Lindstrom 1999). Several studies have confirmed
that increases in mammalian body size can be attributed
to greater food availability (Yom-Tov 2003, Yom-Tov and
Yom-Tov 2005, Raia and Meiri 2006, Eastman et al. 2012,
Henry et al. 2023). Our findings indicate a stronger corre-
lation between body size and precipitation in females than
in males. This suggests that females may be more responsive
to changes in resource availability, particularly in areas with
higher food abundance. Indeed, females reach maximum

food consumption levels in July, coinciding with a peak in
young preweaning development (Kunz 1974). A greater food
intake allows females to sustain milk production levels dur-
ing this critical period. Hence, the availability of additional
resources can be advantageous for female bats during high
energy-demanding periods such as pregnancy and lacta-
tion. By using these additional resources, females can better
support their reproductive efforts and ensure the successful
development and care of their offspring.

Comparison between body mass and forearm length
trends in response to temperature and summer
precipitation

Both BM and FAL exhibited similar trends in response to
environmental variables, increasing with precipitation and
decreasing with high temperatures, suggesting general adher-
ence to Bergmann’s rule. In males, BM decreased more than
FAL in response to summer temperature, reflecting the
simultaneous action of both Bergmann’s and Allen’s rules.
However, it is important to acknowledge the reliability of
body mass records in bats. While FAL remains stable once
individuals have reached adult size, body mass fluctuates
dramatically both seasonally and daily in response to repro-
ductive condition and food consumption (Neuweiler 2000,
O’Mara et al. 2016, Kelling et al. 2024). This variability in
body mass underscores the limitations of using it as a proxy
for bats’ body size. Including variables such as wing surface
area and head-body length in future studies could provide
a more comprehensive understanding of how bat morphol-
ogy responds to environmental changes and clarify whether
Allen’s rule applies to European bats. In addition, it is impor-
tant to take into account that changes in size and appendage
length can have important consequences for bats’ flight abili-
ties, so there may be ecomorphological constraints counter-
ing the patterns expected based on ecogeographical rules.

Additionally, communities might be in a disequilibrium
state, lagging behind optimal adaptation to current con-
ditions (Hoffmann and Sgré 2011) because they are still
adapted to local conditions experienced before recent rapid
climatic changes. This could be especially true for long-lived
and slow reproducing species like bats, where adaptation to
environmental changes can be slow. For instance, Salinas-
Ramos et al. (2020a) found no changes in the body and skull
size of lesser horseshoe bats Rhinolophus hipposideros in Italy
over a period of 147 years, suggesting that these bats have
not fully adapted to the local environmental conditions.
However, they did observe an increase in body size from
south to north, consistent with Bergmann’s rule.

Temporal trends in bats body size

We did not find any clear trend in body size (either fore-
arm length or body mass) over time (1905-2022), despite
temperature increases in Europe over the past few decades.
Other studies that used time as a proxy for climate warming
have found species-level responses, but these were observed
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at much smaller geographic scales than the one considered
in the present study. In such cases, bats exhibited an increase
in body size over time, rather than a reduction. For instance,
a clear increase of body size over time with warming climate
was found for Bechstein’s bats Myotis bechsteinii in Germany
(Mundinger and Scheuerlein 2021, Mundinger et al. 2023a,
2023b). This was best explained, and experimentally dem-
onstrated, as a phenotypically plastic response to warmer
nursery roosts, where reproductive females can save energy
otherwise spent on thermoregulation and invest it in new-
born biomass (Mundinger et al. 2023a, 2023b). In Italy,
Daubenton’s bats Myotis daubentonii also showed simi-
lar trends on both local (Russo et al. 2024b) and national
(Russo et al. 20244a) scales.

However, temporal trends are not consistent across spe-
cies. For instance, in Italy, only three out of 15 species inves-
tigated showed an increase in body size over the last three
decades (Russo et al. 2024a). Among rhinolophids, greater
Rhinolophus  ferrumequinum, but not lesser Rhinolophus
hipposideros, horseshoe bats showed an increase in forearm
length over a century and a half (Salinas-Ramos et al. 2020a,
2021). The sensitivity of such responses to geographic scale is
so strong that an increase in body size recorded in Natterer’s
bat Myotis nattereri in Germany was only found in a north-
ern population, whereas a southern population exposed to a
warmer climate did not show this pattern (Stapelfeldr et al.
2023). Therefore, our findings exemplify the difficulty of
identifying at a continental scale a common trend in a process
highly sensitive to geographic scale and is most likely depen-
dent on the life history of the species considered, including
the type of maternity roost selected and the sensitivity of its
microclimate to changes in external temperatures.

Influence of species average body size on bats’
adherence to Bergmann’s rule

In both the spatial and temporal analysis, only small-sized
and medium-sized species showed adherence to Bergmann’s
rule, with large-sized species showing no significant change in
size with increasing temperatures. This pattern had support
only for males in the spatial analysis. Steudel et al. (1994)
found that larger mammals (up to 10 kg) typically respond
to temperature changes by adjusting their fur density rather
than their body size. Our dataset could not test whether
these dynamics apply to bat species across their body mass
range (4.5-23.5 g), which is considerably smaller than the
species included in Steudel et al.’s (1994) simulation study.
This would require further investigation. It is also important
to note that the two bat species with the largest body sizes
included in the temporal analysis, Epresicus isabellinus and
Rhinolophus mehelyi, are both restricted to southern Europe.
Previous local-scale studies showed that body size shifts with
increasing temperatures are only apparent in northern popu-
lations compared to southern populations of Natterer’s bats
(Stapelfeldrt et al. 2023). Hence, since the larger species are
confined to warmer southern regions, it may be difficult to
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disentangle the effect of larger body size from geographic
location in our study. Indeed, further investigation with more
comprehensive data spanning different regions would yield a
more comprehensive understanding of how the size of bats
influences their response to climate change.

Conclusions

We investigated how bats’ body size (forearm length and
body mass) changes in response to environmental factors,
such as summer and winter temperatures, and summer rain-
fall. Our findings revealed similar trends between forearm
length and body mass in bats in response to environmental
changes. Bats conformed to Bergmann’s rule by exhibiting
smaller body sizes in warmer local climates (only winter tem-
peratures for females), likely due to thermoregulatory adap-
tations. Only males conformed to Allen’s rule, specifically in
relation to summer temperature, exhibiting a positive allo-
metric relationship between the body mass and the forearm
length. Females also increased in size with higher precipita-
tion, suggesting the critical role of resource availability driven
by rainfall. We further found that smaller and medium-sized
species exhibit greater responsiveness to temperature changes
compared to larger species, suggesting that body size plays a
significant role in how species adapt to climatic variations.
These sex-specific and species-specific responses empha-
sise the complexity of bats’ morphological adaptations and
their ecological and evolutionary strategies. Our study pro-
vides novel insights into sex-specific morphological shifts in
body size in response to temperature and rainfall patterns,
emphasizing how these adaptations reflect varying ecological
pressures. While we were not able to identify overall tempo-
ral trends in response to climate change, our spatial trends
indicate a decrease in female bat sizes in areas predicted to
experience increased aridity under climate change, such as
the Mediterranean region. Impacts of these changes on bat
survival and reproductive success should be monitored. By
finding that smaller and medium-sized bat species are more
likely to adhere to Bergmann’s rule and showing a positive
correlation with precipitation, with these patterns differing
between sexes, we enhance our understanding of the mecha-
nisms driving bat species’ adaptations to environmental
changes across geographical distributions and based on sex.
These findings not only advance our understanding of eco-
geographical patterns but also underscore the importance of
targeted conservation strategies, as they indicate that resil-
ience to climate changes may significantly differ based on
body size and sex, necessitating targeted efforts for the most
vulnerable species and populations.
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