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Habitat heterogeneity and demographic processes create variability in the major 
taxonomic diversity trends: 1) biotic homogenization and 2) the emergence of novel 
community compositions. Nonetheless, little is known about how the imprints of 
environmental filtering and random demographic processes on community dissimi-
larity vary over 1) time or 2) space. Quantifying such variation is key to revealing 
temporal regime shifts, latitudinal trends, and site-level specificity in the drivers of 
community dissimilarity.
To characterise variation in drivers of community change, we introduce the concept of 
‘non-stationary community responses’. We then apply this concept to estimate tempo-
ral and spatial variability in the imprints of climate, land cover and random processes 
on spatial and temporal dissimilarity of community composition. As a model system, 
we use multidecadal monitoring data of bird (1147 monitoring sites; 49 years), but-
terfly (101 monitoring sites; 22 years), and moth (99 monitoring sites; 26 years) com-
munities across a 1200-km latitudinal gradient in Finland.
Regarding spatial dissimilarity, environmental filtering had a larger imprint than what 
random processes had. For butterflies and moths, environmental filtering shifted from 
being primarily associated with land cover to being primarily associated with climate 
indicating a likely regime shift along with warming climate. Regarding temporal dis-
similarity of bird and butterfly communities, the imprints of environmental filter-
ing and random processes varied between monitoring sites. A conventional stationary 
model was unable to track such site-specific processes. The imprints did not change 
linearly along a latitudinal gradient.
Our results demonstrate that accounting for non-stationarity in community dynamics 
is needed to pinpoint temporal shifts and spatial variability in the drivers of community 
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change. Should we assume that community change is driven by the same primary forces at all times and everywhere, then we 
will fail to detect the real local and contemporary drivers of change, and risk applying the wrong corrective measures.

Keywords: assembly processes, Bayesian inference, beta-diversity, climate change, community change, land cover

Introduction

Across the world, communities (here: the set of species recorded 
at a given locality during a given year) are rapidly changing 
due to intense land-use practices, shifting climate, invasive 
species and increasing direct exploitation (Newbold  et  al. 
2015, Jaureguiberry et al. 2022). As key outcomes of com-
munity change, we may expect biotic homogenization, i.e. a 
decrease in the spatial variability of communities’ composi-
tion (Ekroos et al. 2010, Magurran et al. 2015, Newbold et al. 
2018) and the emergence of novel local community composi-
tions, i.e. an increase in community dissimilarity over time 
(Ordonez et al. 2016, Ammar et al. 2021).

Biotic homogenization and novel communities have 
indeed been detected in large-scale analyses. Nonetheless, 
strong variability across time appears a general theme in 
biotic homogenization (Blowes et al. 2019, Daru et al. 2021, 
Blowes et al. 2022), and spatial variability a general pattern in 
the emergence of novel communities (Daskalova et al. 2020, 
Ammar et al. 2021). To understand such context-dependency 
in biodiversity trajectories in space (homogenization) and 
time (novel communities), we should resolve whether shifts 
in community composition are consistently driven by the 
same forces when multiple communities are compared over 
space in the same year, or the same community is followed 
over multiple years (Jarzyna et al. 2014). We argue that track-
ing the variability of the drivers of community dissimilarity 
over time and space is a key prerequisite for understanding 
the sensitivity of ecosystems to global change from national 
to continental scales.

Earlier studies have detected variation in the drivers of 
community dissimilarity. For spatial dissimilarity, the effects 
of individual drivers have been found to vary between time 
periods (Stegen  et  al. 2013, Datry  et  al. 2015, Rolls  et  al. 
2023), and for temporal dissimilarity, effects have been 
reported to differ between habitat patches (Stegen et al. 2013, 
Jarzyna et al. 2014, Datry et al. 2015, Rolls et al. 2023). Non-
stationary responses across time or space can result from non-
equilibrium populations dynamics (Nuvoloni  et  al. 2016), 
species tracking seasonally suitable habitats (Datry  et  al. 
2015), stochastic sampling effects (Stegen  et  al. 2013), 
demographic stochasticity (Engen  et  al. 2017) or environ-
mental stochasticity (Rolls  et  al. 2023) and heterogeneity 
(Jarzyna  et  al. 2014). However, we have so far lacked any 
general framework for parameterizing and estimating the 
dynamic imprints of assembly processes and environmen-
tal factors on community dissimilarity from empirical data 
(Ferrier et al. (2007) for adaptive responses and Jarzyna et al. 
(2014) for spatially varying responses).

A resolution of temporal and spatial shifts in the drivers of 
community dissimilarity is needed for a new understanding 

of community dynamics under heterogeneous change in mul-
tiple environmental properties. For example, understanding 
how the drivers of spatial dissimilarity of communities vary 
across years will inform us about the stability of and possible 
regime shifts in community dynamics (Pedersen et al. 2020). 
Analogously, pinpointing spatial variability in the drivers of 
temporal dissimilarity will inform us about latitudinal shifts 
and site-specificity in community processes (Soininen et al. 
2007, Qian  et  al. 2008). Moreover, spatial and temporal 
turnover can be driven by different processes (for example 
He et al. 2023 for spatial turnover and Daskalova et al. 2020 
for temporal turnover). Hence, resolving turnover along both 
the spatial and temporal dimensions can resolve different 
assembly processes and highlight differential levels of vari-
ability in space and time. Moreover, they can help us identify 
the current drivers of change and thus suggest what corrective 
measures are needed to mitigate local change.

To narrow the current knowledge gap, we introduce the 
concept of non-stationary community responses to assembly 
processes and environmental factors. With a non-stationary 
response, we refer to a model structure which allows the 
response to a covariate to vary between modeling units, such 
as time points (monitoring years) or study cells (monitoring 
sites), while assuming dependence between the temporal or 
spatial units through a covariance structure. This concept 
allows us to estimate the effects of assembly processes and 
environmental factors on community dissimilarity at the 
level of a single year or a locality, then scaling them up to 
the decadal or regional extent, respectively. This approach 
offers a largely untapped opportunity for community ecology 
(Declerck et al. 2011, Henriques-Silva et al. 2013, Jabot et al. 
2020), and provides an attractive analytical solution to 
exploring the drivers of diversity patterns across scales (called 
for already in McGill et al. (2015)).

In the current contribution, our objective is to test for the 
existence of non-stationary responses of spatial and temporal 
community dissimilarity. We apply them in assessing tempo-
ral regime shifts in spatial community dissimilarity and lati-
tudinal trends and site-specificity in the imprints of different 
forces on temporal community dissimilarity. To demonstrate 
differences in inference, we also compare the non-stationary 
responses resolved to the imprints inferred based on conven-
tional, stationary responses.

To resolve the relative imprints of different forces, we 
need a coherent framework for categorizing the processes 
driving dissimilarity in community composition. To this 
aim, we adopt the widely-used metacommunity framework 
(Leibold et al. 2004, Cottenie 2005, Myers et al. 2013). In 
this framework, assembly processes are grouped into four 
‘archetypes’ or ‘paradigms’: species sorting, neutral dynamics, 
patch dynamics and mass effects. Environmental filters reflect 
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the imprint of species sorting, as communities are assumed 
to be a product of species’ ecological niches. This paradigm 
postulates a decrease in the similarity of communities with 
increasing environmental distance between them (Cottenie 
2005, Leibold and Loeuille 2015). We further group neu-
tral and patch dynamics into the joint concept of ‘random 
processes’, as they will produce a decrease in the similarity 
of communities with increasing spatio-temporal distance 
between them, without any need for an external driver 
(Cottenie 2005, Gravel  et  al. 2010). To quantify the rela-
tive contributions of environmental filtering versus random 
processes, we characterize environmental filters by climate 
and land cover – as these factors have been found to be the 
most important systematic drivers of community composi-
tion in our study groups (Virkkala et al. 2004, Virkkala and 
Lehikoinen 2014 for birds; Kuussaari et al. 2007 for butter-
flies; Pöyry et al. 2011 for moths) – with added imprints of 
random processes. By applying non-stationary responses we 
ask how strong are the imprints of environmental filtering 
related to climate and land cover and of random processes on 
species communities in a boreal ecosystem. Hence, we test 
the community-level environmental relationships examined 
by (Virkkala et al. 2004, Kuussaari et al. 2007, Pöyry et al. 
2011, Virkkala and Lehikoinen 2014, Jaureguiberry  et  al. 
2022) and reveal the non-stationarity of such relationships.

At the focus of our analyses are multidecadal community 
responses among bird, butterfly, and moth communities in 
Finland. These data are massively replicated in space and 
time, and cover 340  000 km2, 11° of latitude and 22–42 
years of observations (depending on the species group; 
Fig. 1). We characterize community dissimilarity per spe-
cies group by computing pair-wise Bray–Curtis dissimilar-
ity, i.e. beta-diversity, between each monitoring site and year 
(Fig. 1B). We then relate community dissimilarity to differ-
ences in climate and land cover, as well as to spatial and tem-
poral distance between the communities with non-stationary 
responses (Fig. 1D). We estimate the associations between 
community and environmental change as spatially or tempo-
rally varying covariate effects and apply the varying coefficient 
methodologies from Jarzyna  et  al. (2014) and Doser  et  al. 
(2024a, 2024b). In our current approach, we focus purely on 
the factors creating cumulative dissimilarity in communities. 
For clarity, we note that we explicitly overlook other types 
of stochastic factors, such as demographic stochasticity, as 
they create non-directional variation in a community. Hence, 
throughout the text, we will explicitly refer to non-stationary 
responses – rather than to e.g. context-dependency, which is 
frequently used as a catch-all descriptor of ‘all sorts of factors 
shaping different communities in different directions’.

For each species group we ask:

1.	 What are the relative imprints of environmental filtering 
with climate and land cover as its major components and 
random processes on the community dynamics?

2.	 Do non-stationary responses resolve patterns in commu-
nity responses hidden by stationary models?

3.	 Do non-stationary responses reveal:

(a) � regarding spatial dissimilarity, regime shifts in time 
(i.e. a shift from the dominance of one driver to 
another)?

(b) � regarding temporal dissimilarity, regime shifts along a 
latitudinal gradient?

In assessing the patterns, we made two a priori predic-
tions: First, we expected higher non-stationarity in the drivers 
of temporal than spatial dissimilarity – since changes in local 
land cover over time can create strong dissimilarity in a com-
munity (as shown by Jarzyna et al. 2014) compared to the 
smoother imprints of gradual climate change (Rantanen et al. 
2022). Second, we expected spatial community dissimilar-
ity to be more strongly associated with environmental fil-
tering and temporal community dissimilarity with random 
processes. This is because climate gradients occurring over 
Finland are relatively long and steep compared to the tempo-
ral climate gradients over the monitoring period. However, 
we expected to see a gradually increasing imprint of climate 
on spatial community dissimilarity during the monitoring 
period, as a result of the intensification of climate warming 
(Rantanen et al. 2022). 

Material and methods

Species data
To compare drivers of community dissimilarity in space and 
time, we drew on long-term systematic monitoring data of 
birds, butterflies (day active Lepidoptera), and moths (night 
active Lepidoptera) sampled across Finland (60°N–70°N, 
19.4°E–31°E), covering four bioclimatic zones from south-
ern to northern boreal zone (Fig. 4). All species groups 
were surveyed following standardized monitoring protocols 
(Lehikoinen 2012, Virkkala and Lehikoinen 2014) for birds, 
(Kuussaari et al. 2007, Heliölä et al. 2022) for butterflies and 
(Leinonen  et  al. 2016, 2017) for moths. Birds were moni-
tored along 1147 three to six kilometer long line transects 
1978–2020, including 145 species recorded. Butterflies were 
monitored in 101 one to three kilometer long line transects 
1999–2020, including 92 species recorded. The lengths of 
the bird and butterfly transects varied randomly between sites 
and thus did not introduce bias in the model estimates. The 
butterfly transects cover 5–20 different habitats and thus the 
transects differ in terms of habitat heterogeneity. The number 
of surveys per butterfly transect and per year varied also. This 
systematic difference between transects has been accounted 
for in the analysis and explained in detail in the section on 
analysis and model fitting. Moths were monitored with sta-
tionary moth traps in 99 sites 1993–2018 including 908 spe-
cies recorded.

For butterflies and moths, the communities are monitored 
throughout the active period of the species (spring–autumn). 
Birds are monitored during a single visit per year during the 
peak of the singing season (June–July). The timing in rela-
tion to active flying and singing seasons ensures that most 
of the species present at the monitoring sites are recorded. 
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Community data were pooled per species group at the level 
of a year and a site, thus summing all recorded species abun-
dances within the samples of that year. Since the monitoring 
covers the phenological cycle and community turnover dur-
ing a year, the resulting year-level sums reflect the total abun-
dance of a species independent of their phenological cycles.

The sampling methods did not change during the moni-
toring period, but some of the monitoring sites changed 
when some were discarded and new ones adopted. However, 
the placement of monitoring sites was spatially balanced 
throughout the overall monitoring period (described by 
Kuussaari  et  al. 2007, Leinonen  et  al. 2017, Heliölä  et  al. 
2022 for butterflies and moths; Lehikoinen 2012 for birds). 

On average, sites were monitored for 3.14 years for birds, 9.97 
years for butterflies, and 12.8 years for moths. The monitor-
ing sites spanned a latitudinal gradient of 10.26° for birds, 
6.21° for butterflies, and 9.39° for moths. For full details on 
the taxon-specific data, see the Supporting information, and 
for the temporal and spatial distribution of monitoring sites 
see Fig. 4, Supporting information). Importantly, the sam-
pling effort is identical between years and sites within species 
groups. This ensures that the observed community turnover 
between the monitoring sites and years reflects the impact of 
environmental and stochastic drivers instead of the sampling 
effort. Thus, inference of community turnover provides unbi-
ased estimates of environmental and stochastic drivers.

Figure 1. A representation of the study design and the distribution of species and environmental data. (A) shows the concept of spatio-
temporally distributed community and environmental data. Here, a moth community has been monitored along with the environment in 
three study sites for 26 years. In (B), the monitoring program creates a time-series of community composition and environmental condi-
tions for each study site. We build pair-wise comparisons between survey sites and associate the Bray–Curtis dissimilarity of species com-
munities (Δ species group) to differences in spatial location (Δs), time (Δt) and environmental (Δx) variables. (C) shows our approach to 
studying spatio-temporal community dissimilarity and how we break it to purely spatial and temporal compartments. (D) illustrates the 
idea of non-stationary responses for spatial and temporal community dissimilarity. First, the importance of climate and land cover for spatial 
community dissimilarity is allowed to vary over the monitoring years. Second, the same is done for temporal community dissimilarity over 
the monitoring sites.
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Climate data
We characterized the climate of the monitoring sites through 
temperature, precipitation, and snow cover, all com-
monly pinpointed as key drivers of population and com-
munity dynamics in Northern Europe (for birds Virkkala 
and Lehikoinen 2014, Fraixedas et al. 2015, Hällfors et al. 
2020, Deshpande  et  al. 2022, Bosco  et  al. 2023, butter-
flies Luoto  et  al. 2006, Kuussaari  et  al. 2007 and moths 
Kuussaari et al. 2007, Pöyry et al. 2011). Thus, for each site 
and year, we calculated the heat and precipitation sums of the 
growing season, the number of freezing days, and the dura-
tion of snow cover in days. These environmental covariates 
were calculated per year, so that the heat and precipitation 
sums described the conditions of the sampling season, and 
the freezing days and snow cover duration described the pre-
vious winter. The variables were derived from daily records of 
mean temperature, the sum of precipitation, and the depth 
of snow cover provided at a resolution of 10 × 10 km by the 
Finnish Meteorological Institute (Aalto et al. 2016).

The temporal scale of the climatic variables has been set 
to match the annual resolution of the survey data. The cli-
matic variables reflect the conditions during both winter and 
the growing season. For variables reflecting the full growing 
season, such as the temperature sum accumulated, some early 
species will experience only part of the conditions. Still, as 
we pool the local data over the whole annual survey period, 
we cannot vary the seasonal coverage of the environmental 
variables for certain parts of the community. We expect this 
solution to create some uncertainty but no major bias in the 
estimates. In our final comparisons (i.e. those between envi-
ronmental filtering versus random processes, and between 
climate versus land cover) and conclusions, we account com-
prehensively for all inherent uncertainties.

Land cover data
Land cover data were derived from the Corine Land Cover 
of 2000, 2006, 2012 and 2018, which classifies land cover 
into 44 classes at a 25 × 25 m resolution across Europe (EEA 
2000, 2006, 2012, 2018). To characterize the land cover 
around the monitoring sites, we defined a 500-m buffer 
around the site for moths and butterflies and a 1-km buffer 
for birds (as reflecting the higher mobility of birds). The buf-
fers were chosen based on earlier studies applying a similar 
study setting or explicitly testing different buffer zones (for 
birds LeBrun et al. 2016, Veech et al. 2017, Santangeli et al. 
2023, Nereu  et  al. 2024; for butterflies and moths 
Archaux et al. 2018, Kasiske et al. 2023, Nereu et al. 2024). 
Here, the site coordinates were set to the center point of a 
monitoring transect for birds and butterflies and to the trap 
location for moths. Within the buffer, we characterized the 
land cover for all species groups as the proportions of broad 
leaf (class 311 in the Corine Land Cover data set), conifer-
ous (class 312), and mixed forests (class 313); pastures (231); 
patchy agricultural areas (243); grasslands (321); and patchy 
woodlands (324). We summed pastures and patchy agricul-
tural areas to reflect semi-open to open agricultural areas, 
and grasslands and patchy woodlands to reflect semi-open 

to open non-agricultural areas. This set of land cover vari-
ables is supported by earlier studies for the species groups (for 
birds Heikkinen et al. 2004, Virkkala et al. 2004, Luoto et al. 
2007; for butterflies Luoto et al. 2006, Kuussaari et al. 2007; 
for moths Kuussaari et al. 2007). As a measure of land cover 
variability, we used the concept of entropy – a measure com-
monly used in spatial statistics to quantify the general even-
ness of different land cover classes (Carranza et al. 2007). For 
all species groups, entropy was defined over all land cover 
classes inside a buffer:

H l p l p lj j
j

J

( ) ( )log( ( ))� �
�
�

1

	  (1)

where H is entropy, l is land cover, j is a subindex for a land 
cover class, J is the number of different land cover classes 
within a buffer and p(l) is the proportion of coverage of the 
land cover class within a buffer.

We acknowledge that the climate and land cover data 
came with different spatial resolutions. However, introduc-
ing covariates at different resolutions does not automatically 
create uncertainty – as long as the resolutions used reflect the 
distances at which the respective environmental factor varies 
in nature. From this perspective, a 10 × 10 km resolution 
for a climate layer appears relatively high when compared to 
the overall variation in macroclimate across the study region 
and is comparable to the resolution in climate layers from 
CHELSA (Karger et al. 2023) and WORLDCLIM (Fick and 
Hijmans 2017), which are commonly applied in ecological 
research. For the current analyses, we expect that the resolu-
tion of the climate data will suffice to capture the variation 
relevant to the species communities. Moreover, the buffering 
of land cover information (using a 0.5–1 km buffer; above) 
brought the realized resolution of land cover data closer to 
that of climate data.

Since species monitoring periods start before the first land 
cover survey, we assigned the value of NA to the land cover 
variables for all monitoring sites prior to 2000, while noting 
that this approach can increase uncertainty for the estimates 
of the land cover effects. From 2000 onward, we assigned a 
linearly interpolated value of the land cover values for each 
year that falls between the survey years (2000, 2006, 2012, 
and 2018). For linear interpolation, we used the values from 
the preceding and following surveys. For the years 2019 and 
2020 we fixed the values to those observed during the 2018 
survey.

Community dissimilarity and environmental 
association
We applied abundance-based dissimilarity metrics for mea-
suring the proportional changes among species communities 
and capturing variation associated with, e.g. the stochas-
tic occurrence of rare and low-abundance species in survey 
data. Such species are typical of highly diverse communi-
ties including moths (Fisher  et  al. 1943). We quantified 
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community dissimilarity by calculating pairwise Bray–Curtis 
dissimilarity between the communities observed at each site 
in each year. Bray–Curtis distance (BC) between two sites 

j and k is defined as BC j k

i j i ki

I

i j i ki

I

N N

N N
,

, ,

, ,

min( , )

min( , )
� �

�
�

�

�
�

1
2

1

1

,  

where Ni,j is the abundance of species i at the site j and Ni,k 
the abundance of species i at the site k. Hence, BC quantifies 
the dissimilarity between two community compositions on 
the level of individuals. BC varies between 0 (the same species 
with the same abundances between sites) and 1 (no shared 
species between sites).

Environmental variation was characterized by comput-
ing Euclidean dissimilarity for environmental conditions 
and sampling effort (for butterflies) between each site and 
year. Dissimilarities were calculated specifically for each cli-
mate and land cover variable. For butterflies, we characterized 
sampling effort with the number of visits and the number of 
different habitat segments per transect and year. As birds were 
surveyed by visiting an active site once per year, there was 
no variability in survey effort between active sites (Virkkala 
and Lehikoinen 2014). Lastly, we accounted for the differ-
ent community sizes and the nestedness pattern of abundant 
species (Baselga 2010) by computing the pairwise difference 
in species richness between sites and using that as an explana-
tory variable in the models.

We characterized random processes (i.e. neutral dynam-
ics + patch dynamics) with the spatial and temporal distances 
between each site and each year. Spatial and temporal dis-
tances reflect spatially and temporally structured processes 
that are not necessarily associated with environmental vari-
ables, such as dispersal.

Our approach allowed us to study community dissimilarity 
in a spatio-temporal context and to partition the spatio-tem-
poral dynamics into pure spatial and temporal components 
(Fig. 1C). Specifically, the purely spatial and temporal com-
ponents were derived by filtering the community and envi-
ronmental dissimilarity data to either include only pair-wise 
comparisons for which the temporal distances were zero (for 
spatial dynamics) or for which the spatial distances were zero 
(for temporal dynamics).

Given that we had in total ten explanatory variables, there 
is a risk of collinearity between the covariates. To address 
this concern, we computed Pearson correlation coefficient 
between covariates for each species in spatio-temporal, spa-
tial, and temporal dissimilarity settings. We found a remark-
able correlation (> 0.7, adopted as a practical threshold 
identified by Dormann et al. 2013) between coniferous and 
mixed forests for butterflies in the context of spatio-temporal 
(coefficient 0.74) and spatial (coefficient 0.87) dissimilar-
ity. Since these two correlations were the only ones exceed-
ing 0.7 among the 495 correlations examined, they have no 
major impact on our analyses or conclusions. Moreover, as 
we accounted for posterior correlation between covariate 
effects, the increase in uncertainty resulting from collinear-
ity is comprehensively propagated to the final comparisons 

made between the imprints of environmental filtering versus 
random processes and of climate versus land cover.

Analysis and model inference
To extract the spatio-temporal, purely spatial and purely tem-
poral dimensions of community dissimilarity, we fit a total 
of five models for each species group separately (Table 1): 
one for assessing spatio-temporal community dissimilar-
ity (model 1 with spatio-temporally stationary responses), 
two for assessing spatial community dissimilarity (model 
2 with temporally stationary responses and model 3 with 
temporally non-stationary responses), and two for assessing 
temporal community dissimilarity (model 4 with spatially 
stationary responses and model 5 with non-stationary vary-
ing responses).

In each model, we regressed the log-transformed Bray–
Curtis dissimilarity values against log-transformed dissimi-
larity values of climate, land cover, species richness, spatial 
and temporal distance variables (as applied in Soininen and 
Hillebrand 2007). For butterflies, we also added a log-
transformed variable reflecting difference in sampling effort 
(number of visits and habitat segments in a site in a year). 
The linear predictor for the models 1, 2 and 4 (stationary 
responses) was defined as

y x xi i j i j i
j

J

( ) ,� � �
�
�� � �

1

	  (2)

where yi is the i:th sample of log-transformed Bray–Curtis dis-
tance, xi is a collection of log-transformed environmental, spa-
tial and temporal dissimilarity values of length J, α is a model 
intercept, βj is a linear weight for the j:th variable and εi is a 
random error term. All variables were scaled to a zero mean 
and a standard deviation of one, thereby making their esti-
mated effects comparable. The estimates for the βj correspond 
to the importance of the respective environmental, spatial or 
temporal variable for the community dissimilarity. For mod-
els 2–5, we included random effects to explain the additional 
temporal or spatial variability that is not associated with any 
explanatory variable (below for a more thorough presenta-
tion of the random effects). In models 2 and 3 for spatial dis-
similarity, we included a temporal first-order random walk. 
In models 4 and 5 for temporal dissimilarity, we included a 
Besag-type conditional autoregressive spatial random effect.

Linear combinations
The comparison between the categories of environmental 
filtering and random processes was conducted by taking lin-
ear combinations of the covariate effect estimates. We com-
puted environmental filtering by summarizing the estimates 
for climate and land cover variables. We computed random 
processes by summarizing the estimates for the variables cor-
responding to spatial and/or temporal distances. The differ-
ence between the categories was estimated by subtracting 
the sum effect of random processes from the sum effect of 
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environmental filtering. The difference between the effects is 
here called their linear combination (LC) and defined as

LC ~ ( , , )N X X XD D D
T� � 	  (3)

where µ  is a vector collecting estimates for the covariate 
effects, and Σ is a variance-covariance matrix of the joint pos-
terior probability distribution of the covariate effects. XD is a 
design matrix with as many columns as there are explanatory 
variables and only one row, which defines the covariate com-
parison. For comparing environmental filtering and random 
processes, XD has a value of (1) for the environmental covari-
ates and (−1) for the variables corresponding to spatial and/
or temporal distances. For comparing climate and land cover, 
XD has (1) for climate covariates and (−1) for land cover 
covariates. Covariates irrelevant to the linear combinations, 
such as survey effort, were assigned zeros. The size of the 
vector µ  is the number of explanatory variables. Effectively, 
generating such a linear combination equals summarizing the 
estimated effects of the covariates belonging to two catego-
ries and subtracting the sum effect of the second category 
from the sum effect of the first category. Positive estimates for 
linear combinations indicate higher importance of environ-
mental filtering over random processes (comparison 1) and of 
climate over land cover (comparison 2).

In both comparisons, we assess the differences between the 
marginal effects of the covariates. If we had not accounted 
for the collinearity between covariates by estimating posterior 
correlations of the covariate effects, we would end up with 
overly large uncertainties for the comparisons. By accounting 
for these posterior correlations, we can address the difference 
between the effects of covariate categories more precisely. The 
resulting comparison closely aligns with the idea of Cottenie 
(2005), who proposed establishing the difference between the 
mutually independent effects of environmental filtering and 
random processes or climate and land cover.

Non-stationary responses
For the models assuming non-stationary responses, we 
replaced the term βj in Eq. 2 with a temporally non-sta-
tionary response βj,t (model 3) or a spatially non-stationary 
response βj,s (model 5). Especially spatially non-stationary 
responses have gained much attention in ecological model-
ing of species distributions (Thorson et al. 2023, Doser et al. 
2024a, 2024b) and community dissimilarity (Jarzyna et  al. 
2014). As there is substantial literature on their development 
(Gelfand et al. 2003) and use (Doser et al. 2024a, 2024b), 
our main achievement is in scaling them to simultaneous esti-
mation of multiple covariate effects, and of broader categories 
consisting of multiple, biologically-related variables, rather 
than in developing a whole new family of models.

We modeled temporally non-stationary response as a first-
order random walk so that

� � �j t j t jN, ,~ ( , )�
�

1
1 	  (4)

where π denotes random variability between two consecutive 
time points. Thus, we get βj,t + βj,t−1 + ωj,t, where � �j t j, � �1 
(Blangiardo et al. 2013, Bakka et al. 2018). Note that π was 
estimated along with the responses but is not of primary inter-
est for our current hypothesis testing. Following the INLA-
procedure we set a penalized complexity prior for each π−1 so 
that with probability 0.99 they are smaller than 1. We defined 
the temporally varying covariate effects on a one-year resolu-
tion and thus allowed the estimates to vary from year to year.

The spatially non-stationary response was modeled as 
a Besag-type random effect, which models the response of 
community dissimilarity to explanatory variables as an aver-
age of responses of the adjacent monitoring sites (Besag et al. 
1991). The response at the monitoring site given the adjacent 
monitoring sites was defined as

� � �j s j s j sN Q, , , ,�
�� � �1 	  (5)

where μj,s is the average of the responses in the spatially adja-

cent monitoring sites 
� j n

n

N

s

s

N

,
�� 1  and Q−1 is the precision 

proportional to the number of adjacent monitoring sites 

multiplied by the precision parameter Q
N s

� �1 1
�

. Here, 

Ns is the number of adjacent monitoring sites to the focal 
monitoring site (s) and τ is the precision parameter. We 
assigned a log-gamma prior on log(τ) so that log(τ) ~ log 
– gamma(.1,.1). We defined the adjacency matrix with the 
k-nearest neighbour method by fixing the number of neigh-
bors per monitoring site to six. For computing the adjacency 
matrix, we used the chooseCN function of the ‘adegenet’ 
(Jombart 2008) R package (ver. 2.1.8).

The linear combinations of the temporally non-stationary 
estimates were derived at the level of a year for temporally 
non-stationary models (model 3) and at the level of monitor-
ing sites for spatially non-stationary models (model 5). We 
computed linear combination for non-stationary models fol-
lowing the same approach as used for computing linear combi-
nations for models with stationary effects over years and sites. 
However, the vector µ  corresponds to the temporal average 
in the case of spatial dissimilarity (model 3) and spatial aver-
age in the case of temporal dissimilarity (model 5). Regarding 
non-stationary models, we computed linear combinations for 
each monitoring year in the case of spatial dissimilarity (model 
3) and monitoring site in the case of temporal dissimilarity 
(model 5). Hence, we could produce temporally and spatially 
explicit examinations in addition to the general examination. 
We captured the full uncertainty of the linear combinations 
by propagating uncertainty from posterior distributions of 
model parameters and accounting for the temporal and spatial 
correlations between monitoring sites and years.

Model fitting
All models were fitted with hierarchical Bayesian inference 
using ‘INLA’ package (ver. 22.05.07) in R (ver. 4.2.1; www.r-
project.org). To provide model fit diagnostics for model 

 16000587, 2025, 9, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1002/ecog.07335 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [24/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Page 8 of 17

selection over stationary and non-stationary models, we 
compared them in terms of the negative expected log poste-
rior predictive density (−E[LPPD]) (Vehtari et al. 2017). We 
utilized the conditional predictive ordinate -values (CPO) 
from of the models fitted with INLA. The data point spe-
cific CPO values correspond to the probability of observing 
the respective value of the response variable if introducing 
the data point only to model validation. We summarized the 
CPO values for a model by taking the negative of the mean 
of logarithmic scores –E(log(CPO)). A smaller value denotes 
a better model fit.

Results

Environmental variability
The environmental change recorded across space and time 
differed among species groups, as due to the different moni-
toring period and placement of monitoring sites for differ-
ent species groups (Fig. 3, Supporting information). Between 
monitoring sites within a study year, the heat and precipi-
tation sums of the growing season varied by an average of 
1273°C and 388 mm for birds, by 819°C and 251 mm but-
terflies and by 1282°C and 427 mm for moths, respectively. 
The coverage of most land cover classes varied from full cov-
erage to an almost complete absence for all species groups.

Across study period and monitoring sites, heat and pre-
cipitation sum of the growing season changed on average per 
monitoring year by 7.05°C and 2.48 mm for birds, 0.42°C 
and 1.73 mm for butterflies and 13.72°C and −0.13 mm for 
moths, respectively. Simultaneously, average changes in the 
coverage of different land cover classes were between zero and 
three percentage for all species groups. However, there was 
large variability between the monitoring sites in land cover 
changes (Supporting information).

Spatial dissimilarity
The average spatial Bray–Curtis dissimilarity per year varied 
between 0.38 and 0.44 for birds, between 0.50 and 0.52 for 
butterflies and between 0.67 and 0.68 for moths (Supporting 
information:). These numbers reflect the positive effect of 
species pool size on community differentiations (145 birds 
species, 93 butterfly species and 890 moth species) and 
higher levels of variability of insect compared with vertebrate 
communities.

To characterize differences in the imprints of environ-
mental filtering (climate and land cover) versus random 
processes (spatial distance), we used the linear combina-
tion (LC) (βclimate + landcover – βspat.distance). Here, positive values 
denote a larger imprint of environmental filtering, whereas 
negative values denote a larger imprint of random processes. 
We applied the same approach to compare the imprints of 
climate (reflected by positive LC) and land cover (reflected 
by negative LC). Overall, models assuming stationary and 
non-stationary responses showed consistent results for spatial 
community dissimilarity across species groups, with a larger 
average imprint of environmental filtering than of random 

processes among birds (where the LC of the stationary model 
was 0.38 and of the non-stationary model 0.24, both p < 
0.05), butterflies (LC of the stationary model 0.14; non-
stationary model 0.12, both p < 0.05) and moths (LC of 
the stationary model 0.12; non-stationary model 0.16, both 
p < 0.05) (Fig. 2A, C). However, the average response esti-
mated by the temporally non-stationary model varied during 
the study period between −0.21 and 0.72 for birds, between 
−0.22 and 0.45 for butterflies and between −0.35 and 0.39 
for moths (Fig. 2E). For birds, we found a declining trend in 
the imprint of environmental filtering.

Climate left a larger imprint than land cover on commu-
nity dissimilarity among birds (LC of the stationary model 
was 0.09 and of the non-stationary model 0.35, both p < 
0.05). For butterflies, the relative imprints of climate and 
land cover were associated with major uncertainty when esti-
mated by the stationary model (LC 0.03, p > 0.05), whereas 
the non-stationary model resolved a larger imprint of climate 
(LC 0.07, p < 0.05). For moths, the LC was associated with 
major uncertainty in both the stationary and non-stationary 
models (0.01 stationary model and -0.03 non-stationary 
model, both p > 0.05) (Fig. 2B, D). Across the study period, 
the average LC varied substantially (Fig. 2F). For birds, aver-
age LC varied between 0.13 and 0.62, between −0.14 and 
0.44 for butterflies, and between −0.17 and 0.08 for moths, 
with matching variation in the associated uncertainty. For 
butterflies and moths, the imprint of climate strengthened 
consistently after 2013, indicating a shift towards a dominant 
role of climatic filtering.

Temporal dissimilarity
The average temporal Bray–Curtis dissimilarity per site was 
lower than the year-level average spatial dissimilarity: 0.22 for 
birds, 0.32 for butterflies and 0.44 for moths. The site-level 
averages varied between 0.15 and 0.30 for birds, 0.28 and 
0.37 for butterflies and 0.37 and 0.49 for moths (Supporting 
information). This reflects the long latitudinal gradient along 
which communities differentiate more than during the study 
period.

For temporal dissimilarity, we found larger inconsisten-
cies between stationary and non-stationary models than for 
spatial dissimilarity (above). This difference was largely due 
to the large spatial variance in the imprints of assembly pro-
cesses and environmental variables among monitoring sites 
(Fig. 3).

Stationary models supported a larger imprint of random 
processes than of environmental filtering, with an average LC 
of −0.49 for birds, −0.28 for butterflies and −0.44 for moths 
(all p < 0.05; Fig. 3A). In the non-stationary model, the 
average LC was associated with major uncertainty for birds 
(−0.03, p > 0.05) and butterflies (0.24, p > 0.05). However, 
for moths the estimates of the non-stationary model were 
consistent with those from the stationary model (average 
LC −0.51, p < 0.05; Fig. 3C). Regarding the comparison 
between the imprints of climate and land cover, stationary 
models supported a larger imprint of climate for all species 
groups with average LC 0.04 for birds, 0.08 for butterflies 
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and 0.15 for moths (all p < 0.05; Fig. 3B). Contrary to the 
stationary model, non-stationary model supported a larger 
imprint of land cover than of climate for birds (average LC 
−0.39, p < 0.05) and butterflies (average LC −0.47, p < 
0.05; Fig. 3D). For moths, the non-stationary model agreed 
with the stationary model in identifying a larger imprint of 
climate (average LC 0.17, p < 0.05) than of LC (Fig. 3D).

Inflated uncertainty in the average LC of the imprint of 
environmental filtering versus random processes was due 
to the large spatial variance of the respective site-level LC. 
Site-level average LC varied among monitoring sites between 
−2.4 and 3.03 for birds, −0.91 and 2.16 for butterflies and 
−2.00 and 0.23 for moths (Fig. 3E, G, I). Regarding the 
LC of the imprints of climate versus land cover, average LC 
among monitoring sites varied between −3.63 and 2.11 for 

birds, between −2.33 and 0.39 for butterflies, and between 
−0.51 and 1.40 for moths (Fig. 3F, H, J).

Along the latitudinal gradient, we found distinct patterns 
among species groups in site-level average LC. For birds, the 
site-level average LC followed a complex pattern, crossing 
zero at least twice in comparisons for environmental filter-
ing versus random processes and climate versus land cover 
(Fig. 5). For butterflies, the site-level average LC flipped at 
61°N from showing a larger imprint of environmental filter-
ing over random processes to suggesting the opposite, with 
a simultaneous decline in the imprint of land cover over cli-
mate. Nonetheless, the average LC did not flip to support a 
larger imprint of climate (Fig. 5). For moths, the site-level 
average LC stayed unchanged, overall supporting larger 
imprints of random processes and of climate (Fig. 5).

Figure 2. Average imprint of environmental filtering versus random processes (upper panels) and climate versus land cover (bottom panels) 
for spatial dissimilarity in stationary (A)–(B) and non-stationary models (C)–(F). For climate-land cover comparison, the mean values are 
computed over the years since 2000 as there is no land cover data for those years. In panels (A–D), bars and dots denote the mean and error 
bars denote the 95% credibility intervals. On the y-axis, positive values denote larger imprints of environmental filtering (A), (C) and cli-
mate (B), (D). For plots (A) and (C), we cut out the space below zero, which would represent random processes. In panels (E) and (F), the 
line denotes the mean estimate with 95% credibility interval presented as the shading around it. In plot (F), we cut out the years prior to 
2000. All species groups are associated with environmental filtering though with annual variability. Climate is more important than land 
cover for birds and butterflies. The average imprints of climate versus land cover on butterflies and moths switches consistently from the 
domination of land cover to that of climate after 2013.
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Spatio-temporal dissimilarity
We finish the results by comparing the purely spatial and 
temporal components of community dissimilarity to their 
combination as spatio-temporal dissimilarity. Bray–Curtis 
dissimilarity in the spatio-temporal study setting was low-
est for birds (average 0.48; 95% credibility interval (CI): 
0.39–0.56), followed by butterflies (average 0.58; 95% CI: 
0.51–0.64) and moths (average 0.74; 95% CI: 0.70–0.78; 
Supporting information).

The estimates for the imprints of assembly processes and 
environmental variables for spatio-temporal dissimilarity are 
not straightforward but more like haphazard compromises 
between the respective estimates for spatial and temporal 
dissimilarities. Random processes had a larger imprint than 
environmental filtering had on the community dissimilarity 

of bird (average LC: −0.09, p < 0.05) and moth commu-
nities (average LC −0.09, p < 0.05), whereas imprints on 
butterfly communities were associated with wide uncer-
tainty (average LC 0.01, p > 0.05; Fig. 4A). Climate left a 
larger imprint than land cover on the dissimilarity of bird 
communities (average LC 0.08, p < 0.05) and butterflies 
(average LC 0.02, p < 0.05), whereas land cover left a larger 
imprint on moth communities (average LC −0.15, p < 
0.05; Fig. 4B).

Model comparison
Overall, model comparison based on model fit showed that 
non-stationary models performed better than the stationary 
models in explaining spatial and temporal community dis-
similarity for all species groups (Table 1).

Figure 3. Average imprint of environmental filtering versus random processes (upper panels) and climate versus land cover (bottom panels) 
for temporal dissimilarity in stationary (A)–(B) and non-stationary models (C)–(J). In panels (A)–(D), bars and dots denote the mean and 
error bars denote the 95% credibility intervals. On the y-axis, positive values denote larger imprints of environmental filtering (A), (C) and 
climate (B), (D). In plots (E)–(J), points represent monitoring sites on the maps. Red points denote larger imprint of environmental filter-
ing compared to random processes and of climate compared to land cover, whereas blue points denote the opposite. Stationary models 
strongly support random processes and climate as the major drivers of community change. In non-stationary models, the responses of birds 
and butterflies to environmental filtering and random processes varied geographically creating highly uncertain average responses. The 
responses of moths possessed less geographical variation with a consistently larger imprint of random processes. Land cover had a larger 
imprint on birds and butterflies though again with large geographical variability. Climate had a larger imprint on moths than what land 
cover had.
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Discussion

In this paper, we have revealed complex imprints of different 
forces on spatial and temporal community dissimilarity. By 
aggregating temporally and spatially varying responses over 
the monitoring period and monitoring sites, respectively, 
we could assess the relative imprints of climate, land cover 
and random processes as drivers of community dissimilarity 
across birds, butterflies, and moths. According to the non-
stationary models, we found a general imprint of environ-
mental filtering on spatial dissimilarity with climate as the 

main environmental component. Our results were more 
mixed regarding temporal dissimilarity for which the aver-
age imprints of environmental filtering and random processes 
varied among species groups and were highly uncertain. 
Temporal dissimilarity was driven by a mix of climate and 
land cover with major variation between species groups 
(Fig. 3). On top of these general patterns, we found non-
stationarities in spatial and temporal assembly processes and 
environmental associations, though clearly larger between-
monitoring sites variance in the drivers of temporal dissimi-
larity. When combined, variability in the drivers of temporal 

Figure 4. Average imprint of environmental filtering versus random processes (A) and climate versus land cover (B) for spatio-temporal 
dissimilarity. Panels lay out the mean value (bar and point) and 95% credibility intervals. Positive values denote a larger imprint of environ-
mental filtering or climate and negative values denote a larger imprint of random processes or land cover. Spatio-temporal dissimilarity is 
either relatively weakly associated with random processes (birds and moths) or uncertain in terms of 95% credibility interval (moths). 
Climate is more important than land cover for birds and butterflies.
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dissimilarity between monitoring sites generated distinct lati-
tudinal trends among species groups. Below, we will address 
each finding in turn.

Non-stationary drivers of spatial dissimilarity
Across species groups, we found a general imprint of climate-
associated environmental filtering on spatial dissimilarity. 
The large imprint of climate-related environmental filter-
ing can be explained by the relatively steep climatic gradient 
across Finland, a country that spans 11° of latitude and 1200 
km in a North–South direction. Within this domain, strong 
climatic sorting has previously been found for butterflies and 
moths (Luoto et al. 2006, Pöyry et al. 2011). In contrast to 
these earlier reports, we did not find support for the purely 
climatic filtering of moth communities. However, non-sta-
tionary responses revealed a growing imprint of climate for 

butterflies and moths. These shifts are likely caused by cli-
matically driven range expansions of southern species north-
wards (Antão et al. 2020, Hällfors et al. 2021). This would 
likely create stronger South–North directed stratification 
in the community composition so that generalist species, 
which tolerate different climatic conditions are replaced by 
warm-affiliated species in southern Finland. This community 
change would eventually result in a regime shift in the drivers 
of community dynamics.

Non-stationary drivers of temporal dissimilarity
In terms of temporal dissimilarity, we found large spatial 
variance in the imprints of environmental filtering versus 
random processes on especially birds and butterflies. This 
was at least partly due to the varying imprints of climate ver-
sus land cover on them. Interestingly, the difference in the 

Figure 5. Latitudinal change in the imprint of environmental filtering versus random processes (top row) and climate versus land cover 
(bottom row). Dots denote monitoring sites, and the line denotes the spline-type mean over the sites in relation to latitude. Shaded areas 
denote the 95% credibility intervals. All species groups follow a different (though all non-linear) pattern along latitude in both of the com-
parisons: birds follow a complex function; butterflies follow a step-function, where the imprint of environmental filtering and land cover 
decline until 61°N after which the change stagnates; the average response of moths does not change along latitude.

Table 1. Models fitted to evaluate the spatio-temporal dimensions of community dissimilarity. For each model, we define the study setup 
(spatio-temporal, spatial or temporal), the type of response (whether the imprints are assumed to be stationary or non-stationary in space or 
time), and the equation showing the model structure (with reference to the numbering of equations in the main text). By ‘non-stationary’, 
we refer to a type of model where the response between community turnover and explanatory variable may change between years or moni-
toring sites. Lastly, we include measure of model fit defined as the negative expected log posterior predictive density (−E[LPPD]). For non-
stationary models (3 and 5), −E[LPPD] is shown in comparison to the respective stationary model. A smaller −E[LPPD] indicates a larger 
support for the model by the data.

​
Model

​ ​ ​ ​ −E[LPPD] ​
Setup Response Equation Bird Butterfly Moth

1 Spatio-temporal Stationary 2 1.215 1.247 1.194
2 Spatial Stationary 2 1.206 1.252 1.159
3 Spatial Non-stationary 4 −0.056 −0.004 −0.012
4 Temporal Stationary 2 1.105 1.232 1.131
5 Temporal Non-stationary 5 −0.047 −0.019 −0.02
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average estimates from models assuming stationary versus 
non-stationary responses were large enough to result in com-
pletely different conclusions for birds and butterflies. Models 
assuming stationary responses would lead us to conclude that 
climate is more important than land cover – whereas models 
assuming non-stationary responses will lead us to conclude 
the opposite. Accounting for the non-stationary responses for 
temporal dissimilarity showed that the declines in habitats, 
here mixed forests for birds and agricultural landscapes for 
butterflies, can act as major drivers of temporal community 
change (Supporting information). These findings are partly 
in line with earlier studies revealing a high importance of land 
cover for each of the species groups (Baselga et al. 2015 for 
birds; Kuussaari et al. 2007, Gossner et al. 2016 for insects; 
Merckx et al. 2019 for moths specifically). Other studies sug-
gest interactive effects of climate and land cover over different 
habitat types (Jarzyna et al. 2015, Nieto‐Sánchez et al. 2015, 
Jarzyna et al. 2016). Especially for birds, intense forestry may 
have created the strong effect of land cover-related filtering in 
southern and northeastern Finland (Korhonen et al. 2021). 
For a reason likely related to sampling design (discussed 
in a later section), stationary models did not bring out the 
imprints of land cover. In addition to external drivers, there 
can also be imprints of different community dynamics. Such 
effects may arise through more severe competition (i.e. large 
imprint of random processes) in southern sites, where spe-
cies are immersed in larger species pool than at northern sites 
(Soininen et al. 2007, Qian et al. 2008). However, our results 
did not support such competition hypothesis as we did not 
find a linear decline in the relative imprint of random pro-
cesses along the latitudinal gradient for temporal dissimilarity 
of any species group.

Generally, the conflicting results between stationary and 
non-stationary models show that community analysis is sen-
sitive to the spatial scale for which community assembly pro-
cesses are inferred. Conducting a study across a long climatic 
gradient and a diverse set of different land cover types with-
out accounting for non-stationarities may then hide a suite of 
different community assembly processes at a local scale.

General support for non-stationary responses
Just why we may expect non-stationary responses in real land-
scapes is evident: monitoring sites have undergone different 
levels of land cover and climate changes (temporal dissimilar-
ity) and annually varying weather conditions (spatial dissimi-
larity). We may also detect changes which are more consistent 
by their nature and could be labeled as regime shifts. It is 
only intuitive that communities experiencing different levels 
of habitat modification in space and time will show different 
imprints of environmental change. Nonetheless, most studies 
to date have effectively smudged this variation by quantify-
ing a single imprint of environmental change across space 
and time or over multiple highly different monitoring sites 
and time periods. Overall, non-stationary responses could 
address sampling related issues, such as imbalanced sampling 
in relation to land cover modifications, and track community 
dynamics in a higher level of detail than stationary models 
were able to.

The importance of addressing non-stationary responses 
was shown by an improvement in the model performance 
(−E[LPPD]) for non-stationary models as compared to 
stationary models assuming stationary responses (Table 1). 
Thus, we find that our approach offers a transparent and 
clear-cut approach to account for ubiquitous variation in 
natural settings.

In evaluating our current findings, we note that the 
effects of land cover can be sensitive to the choice of buffer 
size around monitoring sites. Although we did use different 
buffer sizes for species groups (to thereby account for their 
different dispersal abilities), the buffers chosen may still not 
match the exact geographical range utilized by the species. 
This may reduce the model precision, as it will cause ran-
dom deviations between the land cover types inside the buf-
fer and the land cover types accessible to a species. However, 
it should not create systematic bias, as monitoring sites are 
randomly placed in the landscape. Another source of error is 
the differing spatial resolution and monitoring frequency of 
climate (10 km; daily) versus land cover (30 meter; six years). 
Although coarser spatial resolution should reduce the effect 
size for climate, we still found a detectable imprint of climate 
variables in our analyses. We found that during the moni-
toring periods, climatic conditions have become warmer and 
wetter, whereas changes in land use have been more variable 
(Supporting information). Hence, we believe that despite the 
varying covariate resolution and buffer size, we could still 
capture the direction and magnitude of climate and habitat 
changes.

Estimating community assembly processes from 
long-term monitoring data
We argue that standard approaches to modeling spatio-tem-
poral community dissimilarity may serve to obfuscate dis-
parate and even conflicting processes. We found seemingly 
conflicting results regarding the importance of environmental 
filtering and random processes for spatial and temporal dis-
similarity. Importantly, the conflict was consistent between 
stationary and non-stationary models. Here, we should note 
that estimates of environmental imprints on spatio-temporal 
community dissimilarity are sensitive to the study design, 
and to the balance between spatial and temporal replicates of 
the data. This consideration has been previously brought up 
by Magurran et al. (2010) and Guzman et al. (2022). In vivid 
illustration of it, any spatio-temporal analysis built on only 
a few replicates in time over multiple sites in space is bound 
to reflect mostly spatial community dissimilarity. Here we 
found that the spatio-temporal model did not reflect well 
non-stationary models for either spatial or temporal dissimi-
larity. A spatio-temporal model assuming stationary effects 
may then poorly represent the true forces structuring local 
communities.

Just as spatio-temporal models will be sensitive to the study 
design, spatial and temporal models with stationary responses 
are also sensitive to imbalanced sampling. The discrepancies 
detected in the current study can be attributed to the fact 
that for the stationary model, we computed effects over pair-
wise comparisons, whereas for the non-stationary models, 
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we computed effects over groups of pair-wise comparisons. 
The average effect of stationary models will then overrepre-
sent those years and sites from which we have relatively more 
samples. Our results show that non-stationary responses can 
address imbalanced sampling strategies, yielding reliable esti-
mates of community-level responses over areas or time peri-
ods. For birds and butterflies, stationary models represented 
monitoring sites which are relatively intact have relatively 
longer sampling histories and deflate the impact of the sites 
which have undergone a more serious land cover change. Non-
stationary responses could account for the imbalance in the 
site-level monitoring periods and return spatially more repre-
sentative estimates for the drivers of the community change. 
Moreover, the explicit quantification of uncertainty in spatially 
non-stationary responses for temporal dissimilarity may guide 
us in refining the study design. For example, high uncertainty 
in the average imprints related to birds’ and butterflies’ tem-
poral dissimilarity originated from large spatial variance high-
lighting the importance of non-stationary approaches.

Conclusions
Overall, we argue that resolving variability of responses is 
essential to answer theoretical and applied questions about 
how communities change.

First, non-stationary responses connect community data 
to scaling rules of ecological processes. For spatial and tem-
poral dissimilarity, we found inconsistent scaling in time and 
space, respectively, as reflected by varying responses between 
years and between monitoring sites.

Second, non-stationary responses explain locally varying 
diversity patterns. Earlier studies have shown diverse tempo-
ral trends of beta-diversity (Dornelas et al. 2014, Blowes et al. 
2022), but have failed to reveal any explicit associations 
between assembly processes and environmental change. In 
our study, we were able to attribute patterns of community 
dissimilarity across species groups to plausible patterns in the 
state of the drivers. We believe that non-stationary responses 
can explain a suite of diversity patterns with the ecological 
scaling of underlying processes.

Third, comparing the effects of climate and land cover as 
drivers of community dissimilarity across localities allows us 
to study the sensitivity of communities to extrinsic pressures 
(Jaureguiberry et al. 2022). In this context, we were able to 
pinpoint regions where community dissimilarity was dis-
proportionately affected by changes in land cover. For birds, 
these regions occur in areas which are characterized by recent 
changes in forest cover and agricultural areas (Supporting 
information).

By testing the importance of different assembly processes 
in a large spatio-temporal context, our study responds to 
the call of McGill and Algar (2018) for linking metacom-
munity theory to macroecology and global change ecology. 
Our approach provides a key extension to the methodological 
toolbox for studying community-level responses to environ-
mental change over diverse habitats and reveals how these vari-
able imprints are brought out in practice, across a full nation 
and across multiple organism groups. Most importantly, 

non-stationary assembly processes provide us with a concept 
for analyzing biome-wide community dissimilarity as a sum 
of simultaneously operating drivers.
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