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environmental stresses associated with climate
change. Epigenetic mechanisms, serving as the
foundational blueprints of plant memory, are
crucial in regulating plant adaptation to envi-
ronmental stimuli. They achieve this adaptation
by modulating chromatin structure and acces-
sibility, which contribute to gene expression
regulation and allow plants to adapt dynam-
ically to changing environmental conditions. In
this review, we describe novel methods and
approaches in Al and ML to elucidate how plant
memory occurs in response to environmental
stimuli and priming mechanisms. Furthermore,
ABSTRACT we explore innovative strategies exploiting
transgenerational memory for plant breeding to
develop crops resilient to multiple stresses. In
this context, Al and ML can aid in integrating
and analyzing epigenetic data of plant stress
responses to optimize the training of the pa-
rental plants.

Judit Dobranszki Valya Vassileva

Plants exhibit remarkable abilities to learn,
communicate, memorize, and develop stimulus-
dependent decision-making circuits. Unlike
animals, plant memory is uniquely rooted in
cellular, molecular, and biochemical networks,
lacking specialized organs for these functions.
Consequently, plants can effectively learn and
respond to diverse challenges, becoming used
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INTRODUCTION—GAINING
INSIGHTS INTO EPIGENETIC
MEMORIES IN PLANTS

he remarkable ability of plants to adapt to highly con-

trasting and challenging environments is a key aspect of
their biology. This is crucial for sessile organisms, which
cannot escape threatening environmental constraints. In par-
ticular, they have acquired the ability to store information from
previous experiences and subsequently use or erase it (Gal-
lusci et al., 2023; Hemenway and Gehring, 2023). As a result of
this adaptability, the idea of plant memory has emerged, along
with the concept that plants have evolved a specific kind of
intelligence (van Loon, 2016; Calvo et al., 2020). Indeed, these
remarkable plant capacities do not depend on cognitive abil-
ities but are entirely mediated by cellular processes. These
extend from the storage of specific metabolites (Schwachtje
et al., 2019), signaling molecules (Sadhukhan et al., 2022),
messenger RNAs (mRNAs), post-translational protein mod-
ification, and RNA polymerase stalling (Crisp et al., 2016), to
the stable and heritable remodeling of chromatin domains, a
process known as epigenetics (Lamke and Baurle, 2017;
Guarino et al., 2022). While all these biochemical and molec-
ular processes contribute to plant memory, they act on dif-
ferent time scales, from minutes to months and even years,
but also at various levels, from individual cells to entire or-
ganisms and even at populations, leading to an environmental
memory (Auge et al., 2023). Short-term memory mechanisms
are more related to the rapid plant acclimation to stresses, a
process termed priming or hardening and may involve all the
aforementioned cellular processes (Hilker and Schmiilling,
2019; Liu et al., 2022). However, while metabolic processes
are generally considered important for the short-term memory
of stresses, transcriptional memory mechanisms, such as RNA
polymerase |l stalling or mRNA stability, and those involving
epigenetic regulations, may act over longer durations (see
below; Pastor et al., 2013). Consequently, the latter are major
contributors to the long-term memory of plant cells. They form
the basis of cellular memory and enable cells to retain past
experiences, thereby determining the organism's memory
through a process called somatic memory, which describes
the transmission of information via mitosis. Somatic memory
mediated by epigenetic mechanisms is particularly crucial for
information storage in the meristem and has been described in
the case of the vernalization process in Arabidopsis thaliana
(Baulcombe and Dean, 2014). How the cell population of
meristem evolves over time and leads to a change in the ep-
igenetic state of the meristem that will allow flowering months
later has been modeled, showing the progressive evolution of
meristem cell epigenetic state as a function of cold and the
change in meristem state (Song et al., 2012). Of course, this
memory is reset during sexual reproduction, requiring all
processes to restart in the offspring. In the context of climate
change, the plant somatic memory is central to plant accli-
mation, as it allows plants to “remember” past exposure to
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stresses and contribute to a more efficient response to sub-
sequent events, thereby enhancing their resilience. In addition,
there is increasing evidence for the transmission of epigenetic
information during sexual reproduction (Quadrana and Colot,
2016). In most reported cases, such memories were reported
when new epigenetic information was established during pe-
riods of stress in parental plants, maintained in meristems
before transmission to gametes, and after fertilization in the
newly formed embryo (Anastasiadi et al., 2021). While inter-
generational epigenetic inheritance has been demonstrated
(Wibowo et al., 2016), clear evidence for transgenerational
epigenetic memories in the absence of new stress application
to the progeny remains limited (Quadrana and Colot, 2016;
Van Dooren et al., 2020). Interestingly, intergenerational
memory appears more efficient in clonally propagated plants,
as demonstrated with heat stress in wild strawberries (Lopez
et al., 2024) and drought stress in poplar (Vanden Broeck
et al., 2018), clover (Rendina Gonzalez et al., 2018), or over-
grazing (Yin et al., 2023). Furthermore, perennials can also
develop a trans-annual memory that may be stored in the
apical meristem during winter (Le Gac et al., 2018), although
this process may vary between plant species, stress intensity,
and the period of stress application. Ultimately, the diversity
of these memory mechanisms relies on several different
molecular mechanisms and allows plants to adapt their be-
havior when facing environmental challenges and optimize the
trade-off between growth, yield and survival at the individual
and population levels. These findings are highly relevant not
only for wild populations but also in the context of agriculture,
as harnessing plant memories, including those based on epi-
genetic mechanisms, may represent a promising new tool for
developing crops that are better adapted to environmental
challenges, as discussed in several recent reviews (Gallusci
et al., 2017, 2023; Berger et al., 2023; Ganie et al., 2024;
Miryeganeh, 2025). However, addressing the critical knowl-
edge gaps regarding the molecular mechanisms underlying
stress memory is now required to develop innovative strat-
egies to enhance crop resilience to environmental challenges
and thereby support food security in the context of climate
change.

EPIGENETIC REGULATION OF
PLANT DEFENSE RESPONSES
AGAINST ENVIRONMENTAL
STRESSES

Facing continuous biotic and abiotic challenges that affect
their growth, development, productivity, and environmental
adaptability, plants have evolved sophisticated defense strat-
egies. Unlike animals, which rely on specialized or adaptive
immunity, plants utilize innate immunity to combat biotic
stresses (Bentham et al., 2020). Their multilayered defense
mechanisms involve epigenetic regulation through DNA
methylation, histone modifications, chromatin remodeling and
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non-coding RNAs (ncRNAs), comprising short (e.g., micro-
RNAs (miRNAs), small interfering RNAs (siRNAs)) and long
non-coding (INcRNAs) types (Figure 1). These epigenetic
mechanisms are crucial for shaping both dynamic and herit-
able responses to stress.

DNA methylation and demethylation
DNA methylation in plants involves the addition of a methyl
group to the 5-position of cytosine residues, primarily in CG,

Journal of Integrative Plant Biology

CHG, and CHH contexts. This process contributes to the
silencing of transposable elements (TEs), maintaining
genome stability and modulating gene expression (Li et al.,
2022a; Mishra et al., 2024). In response to environmental
stimuli, plants reprogram their methylation patterns to
activate or repress specific genes by modulating access to
the transcriptional machinery. Lower DNA methylation levels
in specific genomic regions have been linked to increased
disease resistance in plants, mainly via the activation of
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Figure 1. Schematic overview of epigenetic mechanisms in plant responses to biotic and abiotic stresses

The diagram highlights the involvement of DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs (ncRNAs; including
IncRNAs, siRNAs, and miRNAs) in the regulation of defense genes and hormonal signaling pathways. These coordinated processes are crucial for
establishing long-term stress memory, facilitating adaptive responses, and enhancing plant resilience against environmental challenges. hc-siRNAs,
heterochromatic small interfering RNAs; miRNAs, microRNAs; ncRNAs, non-coding RNAs; IncRNAs, long non-coding RNAs; siRNAs, small interfering
RNAs; TEs, transposable elements; TGS, transcriptional gene silencing; PTGS, post-transcriptional gene silencing.
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salicylic acid (SA)-dependent defense pathways, although this
response varies depending on the type of stress, tissue and
developmental stage. Active DNA demethylation, mediated by
DNA glycosylases such as DEMETER (DME)-like proteins,
Repressor of Silencing 1 (ROS1), and related enzymes, is
equally important in plant stress responses. These enzymes
remove 5-methylcytosine (m°C) marks from DNA, creating an
apurinic/apyrimidinic (AP) site which is subsequently repaired
by the addition of non-methylated cytosines, enabling the re-
activation of stress- and defense-related genes (Schumann
et al., 2019; Halter et al., 2021; Farkas and Dobranszki, 2024).
The dynamic balance between methylation and demethylation
allows plants to flexibly regulate gene expression during
immediate stress responses. Furthermore, pathways like RNA-
directed DNA methylation (RdDM) may contribute to the es-
tablishment of longer-term epigenetic memory under
recurring environmental stress conditions.

Histone modifications and chromatin dynamics
Histone proteins undergo 100s of post-translational mod-
ifications, including acetylation, methylation and ubiquitination,
which significantly influence chromatin organization and ac-
cessibility (Mierziak and Wojtasik, 2024). These modifications
can either promote or repress transcription, depending on their
specific type and location (Figure 1). Histone acetylation, typi-
cally associated with transcriptional activation, is catalyzed by
histone acetyltransferases (HATs), which add acetyl groups to
lysine residues. This neutralizes their positive charge, loosens
chromatin structure and facilitates access for transcription
factors and RNA polymerase to genes, including stress-
responsive genes. Conversely, histone deacetylases (HDACS)
remove acetyl groups, leading to chromatin condensation and
transcriptional repression (Ramirez-Prado et al., 2018). For in-
stance, in rice, the HDAC HDA704 is recruited by the tran-
scription factor OsWR2 to deacetylate H4K8 in the promoter of
OsABI5 under drought conditions, thereby repressing its ex-
pression and contributing to drought stress tolerance (Guo
et al., 2023a). Histone methylation on lysine and arginine resi-
dues can either activate or repress genes, depending on the
specific residue modified and the degree of methylation state
(mono-, di-, or tri-methylation), allowing plants to finely adjust
gene activity in response to stress cues (Jaskiewicz et al.,
2011). Histone ubiquitination, particularly monoubiquitination of
histone H2B, is generally linked to transcriptional activation and
contributes to plant immunity and tolerance to abiotic stresses
(Zhang et al., 2015; Ma et al., 2019; Chen et al., 2020). Through
precise coordination of histone modifications, plants activate
complex defense mechanisms tailored to specific stressors,
while simultaneously balancing responses to avoid metabol-
ically costly overreaction that could compromise cellular
homeostasis and growth.

Chromatin remodeling and nucleosome dynamics

Histone modifications act as chemical tags on chromatin
signaling transcriptional accessibility, while adenosine
triphosphate  (ATP)-dependent chromatin  remodelers
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physically reposition or evict nucleosomes to either permit or
restrict access to specific DNA regions by the transcriptional
machinery. These ATP-dependent remodeling complexes alter
chromatin architecture and gene expression patterns using
energy from ATP hydrolysis (Huang and Jin, 2022). In plants,
key members of the SNF2 family (a family of helicase-like
proteins) BRAHMA (BRM), SPLAYED (SYD), and DECREASE
IN DNA METHYLATION 1 (DDM1) play a major role in the
regulation of gene expression, particularly in defense re-
sponses (Bhadouriya et al., 2021). BRAHMA and SYD are di-
rectly involved in transcriptional regulation of stress-
responsive genes, whereas DDM1 facilitates the access of
DNA methyltransferases to heterochromatic regions, thereby
indirectly influencing the expression of defense-related genes
through epigenetic silencing mechanisms. Chromatin remod-
elers modulate transcription by shifting or evicting nucleo-
somes, especially at loci involved in stress signaling, hormone
response and pathogen defense. As illustrated in Figure 1,
their activity is tightly coordinated with DNA methylation and
histone modifications to provide precise control of gene ex-
pression. This remodeling is particularly important under
stress, allowing for the rapid activation of silenced genes
without permanent genomic alterations, while also supporting
stable epigenetic memory when necessary.

RNA-mediated silencing and systemic signaling

Small RNAs (sRNAs) are short, ncRNA molecules that regulate
gene activity at both transcriptional gene silencing (TGS) and
post-transcriptional gene silencing (PTGS) levels (Zhan and
Meyers, 2023). An important defense mechanism in plants is
gene silencing, mediated by specific types of sRNAs—
miRNAs and siRNAs, which target plant mRNAs, and viral and
subviral RNAs for sequence-specific degradation and modu-
lation of transcriptional reprogramming (Igbal et al., 2021).
While miRNAs primarily induce PTGS, they can occasionally
function in TGS (Basso et al., 2019). Depending on their length,
siRNAs can silence genes by targeting mRNAs at the PTGS
level or by affecting specific genomic loci at the TGS level
through epigenetic changes (Figure 1) (Basso et al., 2025).
Small RNAs also modulate plant hormonal pathways and
enhance plant resistance by suppressing specific negative
regulators (Cambiagno et al., 2018; Waheed et al., 2021).
Mutations affecting sRNA biogenesis or the RdDM pathway
may increase plant susceptibility to stress (Cai et al., 2018;
Basso et al., 2025). In the RdDM pathway, heterochromatic
siRNAs (hc-siRNAs) guide de novo DNA methylation, which
activates defense-related genes, including nucleotide-binding
leucine-rich repeat receptors (NLRs) and other genes
encoding signaling proteins, thereby triggering tolerance re-
sponses and balancing growth and defense (Papareddy et al.,
2020). Endogenous sRNAs not only act within the cell of origin
but can also move through plasmodesmata and the vascular
system to systematically trigger gene silencing (Molnar et al.,
2011). In turn, exogenous sRNAs have a similar effect on
plants and interacting organisms through environmental
or cross-kingdom RNA interference (RNAI) (Cai et al., 2018).
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In addition to sRNAs, IncRNAs also contribute to gene regu-
lation under stress. They can act as precursors for siRNAs,
decoys for miRNAs or by directly guiding chromatin-modifying
complexes to specific loci, thereby influencing TGS
(Chekanova, 2015). Some IncRNAs participate in the RdDM
pathway, functioning as scaffold RNAs or recruiting RNA
polymerase V complexes to direct methylation of TEs or
stress-related genes (Béhmdorfer et al., 2016). The exchange
of sRNAs mediates interactions between host plants and
pathogens, as seen in cotton plants infected by Verticillium
dahlia. The host plant produces miR166 and miR159 which are
exported to the V. dahlia hyphae, to silence two genes re-
quired for disease (Zhang et al., 2016). Conversely, pathogens
like Botrytis cinerea can deliver sSRNAs into cells of A. thaliana
and tomato (Solanum lycopersicum L.), where they load onto
the plant RNA-induced silencing complex (RISC) to suppress
plant immunity (Weiberg et al., 2013). The ability to control the
growth of fungi, such as those that cause powdery mildew and
rust, by sRNA uptake is being utilized to control these
pathogens. Host-induced gene silencing (HIGS) results in the
silencing of a pathogen-specific gene through the in planta
expression of double-stranded RNA (dsRNA) homologous to
the pathogen target gene of interest (Kim and Rossi, 2008;
Basso et al., 2025). Several genes related to transcription, host
colonization, respiration, glycosylation, chitin synthesis, and
virulence have been targeted for RNAi-mediated silencing
(Sharma et al., 2019; Saito et al., 2022). Betti et al. (2021)
showed that plant cells can take up exogenous naked miRNAs
secreted by other plants or artificially synthesized and deliv-
ered. Therefore, this acts as a means of communication
between neighboring plants, and once inside, it can generate a
non-cell-autonomous silencing signal (Voinnet, 2005). Exoge-
nous miRNAs have also been shown to alter plant phenotype
(Betti et al., 2021). Heterografting experiments have shown
transgene movement from potato rootstock to suppress
specific genes in tobacco scion (Kasai et al., 2016) and be-
tween grapevine and sweet cherry trees (Zhao et al., 2020a).
Collectively, these findings highlight the remarkable ability of
both exogenous and endogenous sRNAs to move through
continuous vascular connections and induce changes.

In summary, epigenetic regulation is essential for plant
stress response, enhancing resistance to various environ-
mental disturbances (Figure 1). DNA methylation, histone
modifications, chromatin remodeling, and ncRNAs not only
enable adaptive responses and contribute to heritable stress
memories but also offer promising strategies for advancing
environmentally friendly agricultural practices to improve
food security in a stress-rich world.

EPIGENETIC MECHANISMS
UNDERLYING PLANT PRIMING

Priming in plants can be induced by applying mild stress or
using signal molecules as elicitors. Signaling with various
compounds, including volatile organic compounds (VOCs), or
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nucleic acids like sSRNAs and DNA, is a natural phenomenon
in plants (Ali et al., 2013; Duran-Flores and Heil, 2018;
Marzec, 2022; Onosatu et al., 2022; Ruf, 2022; Dobranszki
et al., 2025). Primed plants display enhanced fitness and a
greater capacity to respond more effectively to environmental
stimuli (Hilker and Schmdilling, 2019). This enhanced re-
sponsiveness is mediated through diverse mechanisms, in-
cluding epigenetic processes that contribute to stress
memory (Turgut-Kara et al., 2020). Harris et al. (2023) aptly
termed these mechanisms “blueprints” that confer resistance
or tolerance to recurrent stress. Our current understanding of
plant stress memory, priming and the primed state largely
emerged from omics investigations, such as epigenomics,
transcriptomics, proteomics, and metabolomics and their
correlation with phenotypic characterization. As previously
mentioned, the duration of a stress memory is determined by
the longevity of the epigenetic changes underlying the primed
state. Somatic memory may be either short-term, lasting up
to 7-10d (Jaskiewicz et al., 2011; Po-Wen et al., 2013;
Schillneim et al., 2018; Pardal et al., 2021; Sheikh et al.,
2023), or long-term, persisting through two or more pheno-
logical phases (Wilkinson et al., 2023). Priming can target
both nearby and distant Type-I and Type-Il memory genes
(Harris et al., 2023).

Histone marks of short-term stress memory

Memory storage of abiotic stresses (such as drought, hyper-
osmotics, salinity, heat, cold, light, and trace metal stresses,
etc.) lasting 3-14 d has been primarily associated with H3 and
H4 histones in various plant species. This typically involves
methylation and acetylation of H3 (H3K4me2/3, H3K27me2/
me3, H3K9ac, and H3K9me3) and H4 (H4R3sme2, H4ac, and
H4K5/8/12/16ac). Notably, H3 phosphorylation (H3T3ph) was
also observed in A. thaliana during tolerance to osmotic stress.
Additionally, H2 monoubiquitination has been associated with
drought and salt tolerance in rice (Oryza sativa L.) (Ma et al.,
2019; Chen et al., 2020), as well as with drought tolerance in A.
thaliana and cotton (Gossypium hirsutum L.) (Chen et al., 2019a).
Low levels of H3 methylation (H3K27me3) have been shown to
prime A. thaliana for increased thermotolerance under recurrent
heat stress by altering the transcription of Type-Il memory genes
(HSP22 and HSP17.6C) (Yamaguchi et al., 2021).

Plant memory of pathogen infection was mainly stored in
H3 and H4 core histone proteins by methylation (H3K4me3
and H3K4me2) and/or acetylation (H3K9ac, H4K12ac, and
H3K9K14ac) (Jaskiewicz et al., 2011). Priming of A. thaliana
with sulforaphane (1-isothiocyanato-4-methylsulfinylbutane),
a secondary metabolite in some crucifers (Schillheim et al.,
2018), induced H3 (H3K4me3 and H3K9ac) trimethylation
and acetylation at the promoter and the proximal region of
the WRKY6 and PDF1.2 genes. The latter serves as a marker
gene for the activation of the jasmonate signaling pathway
after infection (Koornneef and Pieterse, 2008). However, H3
modification was not detected in the PR7 defense gene, a
marker gene of the SA signaling pathway during infection
with Pectobacterium carotovorum (Penninckx et al., 1996;
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Koornneef and Pieterse, 2008; Schillheim et al., 2018). varieties of rice and white clover (Trifolium repens L.)
In contrast, when priming was induced by f-aminobutyric (Gayacharan and Joel, 2013; Rendina Gonzélez et al., 2018).
acid (BABA), methylation (H3K4me2) and acetylation Similarly, salinity stress priming resulted in either increased or
(H3K9K14ac) of H3, and priming of PR71 (gene encoding decreased m°C methylation depending on the plant species
pathogenesis-related protein 1) occurred, but PDF1.2 (gene (Guarino et al., 2022).
encoding plant defensin 1.2) was not primed upon infection DNA hypomethylation (m®C) also plays a significant role in
with the same pathogen (Po-Wen et al., 2013) (Figure 2). the formation of somatic memory and, consequently, in
Furthermore, Sheikh et al. (2023) showed that the linker defense priming (Figure 2). Epigenetic changes in pathogen
histone, H1, also plays a role in the regulation of histone receptor genes neighboring TEs (i.e., genes for pattern
acetylation (H3K56ac) and methylation (H3K4me3 and recognition receptors (PRARs) and nucleotide-binding repeats
H3K27me3), as well as DNA methylation of defense-related (NLRs)) may contribute to this memory. DNA hypo-
genes in A. thaliana during priming by flagellin 22 (flg22) methylation in response to infection of A. thaliana with

peptides (Figure 2). Pseudomonas syringae pv. tomato upregulated TE

expression, leading to the induction of NLRs. Furthermore,
Changes in DNA methylation during short-term stress sRNAs appear to participate in the silencing activated TEs,
memory thus controlling the expression of both TEs and pathogen

DNA methylation change at cytosine sites (m°C) have been  receptor genes (Cambiagno et al., 2018). Specifically, DNA
observed during hyperosmotic and drought stresses hypomethylation, in the CHH context of stress-responsive
(Guarino et al., 2022; Harris et al., 2023), while methylation at  genes or their regulatory genes was the main feature of en-
adenine sites (m°A) was noted during salinity priming (Zhang  hanced resistance to P. syringae pv. tomato in tomatoes
et al., 2018). Modifications in m°C-type DNA methylation in primed with BABA (Catoni et al., 2022).

response to drought stress may be different, such as hyper-

or hypomethylation, depending on the susceptibility or earlier ~ Chromatin remodeling and nucleosome repositioning
adaptation state of a plant variety. Hypermethylation was during short-term stress memory

detected in non-adapted or susceptible varieties, whereas Histone modifications (e.g., acetylation, methylation, ubiquiti-
hypomethylation was found in previously adapted or tolerant nation and phosphorylation) influence chromatin structure
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Figure 2. Epigenetic background of priming for enhanced resilience to biotic stresses

This figure illustrates the main types of epigenetic modifications identified during priming and their relationship to each other in preparing plants for more
effective defense responses against pathogens. Examples of affected defense-related genes and the corresponding epigenetic marks are provided. Key
examples include the following. (i) Priming of Arabidopsis thaliana against Pseudomonas syringiae pv. maculicola involved H3 modifications on the
promoters of defense genes (WRKY6, WRKY9, and WRKY53), like H3K4 trimethylation at Lys 4 (H3K4me3) in npr1, sni1, and cpr1 mutants and thereby
their enhanced readiness. In addition, acetylation of H3 and H4 (H3K9ac and H4K12ac) histones was also increased at the promoters of some WRKYs due
to priming (Jaskiewicz et al., 2011). (i) Sulforaphane priming in A. thaliana reduced the plant susceptibility to downy mildew (Hyaloperonospora arabi-
dopsidis). In response to H3 modifications (H3K4me3 and H3K9ac), chromatin unpacking was detected associated with WRKY6 and PDF1.2 transcription
sites (Schillheim et al., 2018). (i) B-aminobutyric acid (BABA) treatment primed pattern-triggered immuniity (PTI)-responsive genes (FRK1, NDR1, HIN1,
NHL10, and CYP81F2) in A. thaliana, leading to enhanced expression upon infection with Pectobacterium carotovorum ssp. carotovorum or treatment with
its epitopes (flg22, elf26 (EF-Tu)). This primed state of PTl-related genes was associated with enrichment of H3 acetylation (H3K9K14ac) and methylation
(H3K4me2 resulting in open chromatin at their promoter regions. (iv) Histone H1 can influence H3 modifications (H3K56ac, H3K4 me3, and H3K27me3) as
well as DNA methylation of defense-related genes (Sheikh et al., 2023). (v) DNA hypomethylation can increase the expression of transposable elements
(TEs) located near pathogen receptor genes (e.g., pattern recognition receptors (PRRs) and nucleotide-binding repeats (NLRs)), while sSRNAs participate in
silencing these TEs via RNA-directed DNA methylation (RdADM) (Cambiagno et al., 2018). SA, salicylic acid; sSRNA, small RNA.
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and, consequently, gene expression. During stress, to facili-
tate gene expression from tightly packaged DNA regions,
particularly those containing stress-related genes, the DNA
must become accessible to protein factors or complexes.
Post-translational modifications of chromatin remodeling
complexes and histone proteins modulate nucleosome
assembly and spacing, thereby regulating the DNA accessi-
bility (Yung et al., 2021).

Heat stress priming in A. thaliana requires increased
activity of FORGETTER1 (FGT1), which interacts with
chromatin remodelers from the SWI/SNF and ISWI-families.
This interaction affects nucleosome dynamics and thereby
modulates nucleosome occupancy at Type-l memory genes,
such as HSA32 (Brzezinka et al., 2016).

Nucleosome repositioning and chromatin opening (e.g.,
changes in chromatin accessibility) during priming to biotic
stress are also associated with changes in transcription.
Altered nucleosome positioning has been observed in
response to flg22 treatment in more than half of the flg22-
regulated genes in A. thaliana and Nicotiana benthamiana
Domin (Pardal et al., 2021). The identification of these altered
nucleosome patterns in non-differentially expressed genes
(DEGs) (both within gene bodies and their promoters)
suggests that these genes were primed for changes in gene
expression.

Epigenetic marks of long-term somatic stress memory
Long-term somatic memory, lasting for 3 weeks, was estab-
lished for herbivore attack in A. thaliana plants previously
primed with jasmonate. In response to jasmonate treatment,
DNA hypomethylation of ATREP2 TEs occurred. Hypomethy-
lated ATREP2 then produced 21-nt siRNAs that bind to
ARGONAUTE1 within RISC. The siRNAs, enriched with se-
quences from immunity-related genes, are proposed to mediate
trans-regulation and contribute to the long-term memory of
jasmonate-dependent immunity (Wilkinson et al., 2023). Luna
et al. (2014) detected 28-d-long priming in A. thaliana triggered
by BABA. This long-term priming was related to H3K9m2 and
DNA methylation (in the CHG context) mediated by KYP histone
methyltransferase. It affected SA-inducible genes and NPR1 by
silencing their suppressor genes.

TRANSGENERATIONAL MEMORIES
AND CROP BREEDING

Although priming is usually transient, fading within a week or
a few weeks and certainly within an individual's lifetime,
several studies demonstrated inter- or transgenerational
inheritance of priming (Ldmke and Bé&urle, 2017; Guarino
et al., 2022; Harris et al., 2023). From an acclimation and
adaptation perspective maintaining a primed state is benefi-
cial for plants if it confers a survival and adaptation
advantage by preserving the memory of environmental stress
(L&mke and Baurle, 2017). Naturally occurring or induced
epigenetic variations can be utilized to alter phenotypic
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diversity, thereby achieving stress resistance. These varia-
tions can be employed to develop stress-resilient crops and,
if heritable, to breed plants with enhanced resilience. As this
method relies on changes in gene function without altering
the gene sequence, it offers the advantage of preserving
innate genetic diversity (Sampson et al., 2024).

Intragenerational memory-based priming can be applied
in plant breeding to enhance adaptation and, consequently,
improve resilience to a stressor within a growing season.
Exploring opportunities in cross-stress priming can lead to
the development of crops that are resilient to cross-stress or
even multiple stresses. In cross-stress priming, the initial
stress, whether biotic or abiotic, differs from the subsequent
stress(es) but allows for increased plant tolerance to the latter
stress(es) due to the synergistic defense signaling pathway
against stresses (Liu et al., 2022). For instance, repeated
application of abiotic stress (salt, drought, or cold) in
A. thaliana showed increased resistance against P. syringae
pv. tomato. This cross-priming was associated with H3
modifications (H3K3me2/me3 and H3K9K14ac) in pattern-
triggered immunity-related genes, such as WRKY53, FRK1,
and NHL10 (Singh et al., 2014).

The transfer of priming to offspring may lead to increased
stress resilience against abiotic or biotic stress, and even
resilience to cross- or multiple stresses, in the next
generation(s) (Liu et al., 2022). FIg22 treatment induced epi-
genetic changes in A. thaliana that led to a higher frequency
of somatic homologous recombination, which persisted for at
least four generations, indicating the epigenome's adaptive
flexibility to environmental effects (Molinier et al., 2006).
Next-generation and transgenerational acquired resistance to
pathogens in A. thaliana and potato plants was linked to
epigenetic marks of H3K9ac, H3K9me2/3, H3K4me2,
H3K27me3, and DNA hypomethylation affecting transcription
of near or far Type-l or Type-Il memory genes (Sanchez et al.,
2016; Meller et al., 2018; Furci et al., 2019). Four epiQTLs
were identified in epigenetic recombinant inbred lines
(epiRILs) of A. thaliana resistant to Hyaloperonospora arabi-
dopsis. Priming and defense response were associated with
DNA hypomethylation at some pericentric regions in
A. thaliana (Furci et al., 2019). Transgenerational priming of
salt tolerance was related to DNA hypermethylation of Type-I
memory genes in A. thaliana (Wibowo et al., 2016). Priming
for heat tolerance was connected to histone mark
(H3K27me3) or TE activation caused by siRNA synthesis in
A. thaliana (Liu et al., 2019a) while being connected to
miR168 in Brassica rapa L. (Bilichak et al., 2015).

The transfer mechanism of epigenetic marks to progenies,
that is the inheritance of stress memory, depends not only on
the type, strength, and exposure period of the stress but also
on the plant's reproductive mode (Gallusci et al., 2023). In
asexual plant propagation, a stress-primed epigenetic state is
transmitted to the next generation through mitosis of the cells
from which the next generation develops. Recent studies
suggest that the epigenetic inheritance of stress-induced epi-
genetic state is likely to be sustained, as demonstrated for
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poplar (Vanden Broeck et al., 2018) and strawberry (Lopez
et al., 2024), although variations may occur depending on the
type of asexual propagation. However, for clonally propagated
crops, this may provide an innovative approach to train pa-
rental plants to improve the tolerance of their progenies to
different or eventually multiple stress resilience (Epi-trained
plants; Figure 3) (Liu et al., 2022; Berger et al., 2023).
Epigenetic inheritance through sexual reproduction is still
controversial; the stress-induced epigenetic state must be
meiotically stable and survive epigenetic reprogramming
during gametogenesis and seed development for the herit-
ability of acquired resistance (Epi-bred plants; Figure 3)
(Bilichak and Kovalchuk, 2016). Transgenerational memory of
a stressor may be based on genomic regions that differ in their
epigenetic state, known as epialleles. Epialleles are of great
importance in plant breeding, especially under climate change
conditions, as they may be used to develop new, flexible, and

Abiotic/Biotic Stress
(drought, salt, metal, parasites etc.)

Signaling compounds
(VOC, sRNA, DNA, etc.)

Chemicals
(BABA, sulforaphane, etc.)

Physical cues
(sound, ultrasound, etc.)

Plant memory, omics and artificial intelligence

stress-responsive crops with enhanced stress resilience rela-
tively quickly (Varotto et al., 2020) (Figure 3).

There are different strategic possibilities to explore the
epigenetic potential of plants for breeding purposes. Utilizing
epigenetic diversity associated with agronomically important
traits inherent in natural or cultivated populations may be
one way to enhance crop stress resilience. This may involve
the epigenetic diversity of a population, including epialleles,
heritable histone modifications (e.g., H3K9me3 and
H3K27me3), or alterations in the regulatory system of the
epigenetic mechanisms, which can be subjected to artificial
selection similar to genetic alleles (Greaves et al., 2014;
Varotto et al., 2020; Gallusci et al., 2023; Berger et al., 2024).
This necessitates profiling the epigenome, including acces-
sibility and modifications in the chromatin (DNA methylation
and histone modifications) (Sanchez et al., 2016; Meller et al.,
2018; Furci et al.,, 2019; Sampson et al., 2024), as well as

Generation F,,

eco mmmm) 000 mmmm)
Clonal propagation

Propagation by seeds

_ o000 mmmm) 000 mmmm)

Plants with acquired, enhanced stress resilience

Epi-Bred Plant

Figure 3. Priming-mediated modification of the plant epigenome for the production of epigenetically trained (Epi-Trained) or bred
(Epi-Bred) plants

Transgenerational inheritance of stress memory, involving the transmission of epigenetic marks across generations, presents a novel opportunity in plant
production and breeding. The mechanism of this transmission is influenced by the plant's mode of reproduction. Epi-Trained Plants (Asexual Propagation):
in asexually propagated plants, stress-induced epigenetic states are passed on to the next generation via mitosis. This offers an innovative strategy to
“train” parental plants, enhancing the tolerance of their clonal offspring to single or multiple stresses. Epi-Bred Plants (Sexual Reproduction): epigenetic
inheritance through sexual reproduction requires the stress-induced epigenetic state to withstand epigenetic reprogramming during gametogenesis and
seed development, allowing acquired resistance to be inherited by the progeny. This process relies on epialleles, which are genomic regions exhibiting
heritable differences in their epigenetic state. These offspring are termed Epi-bred plants. VOC, volatile organic compound; sRNA, small RNA; BABA,
B-aminobutyric acid; Me, methylation; AC, acetylation; Uq, ubiquitination; Ph, phosphorylation.
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identifying regulatory RNA population, and creating of epi-
genetic databases.

Predicting the relationship between a phenotype and
stable epigenetic variation(s), for example, deciphering the
epigenetic alphabet (Gallusci et al., 2017; Guarino et al,
2022), may allow the use of epigenetic variants for breeding
purposes by (de)activating epivariations of concern. This
implies the artificial modification of the epigenome, either
globally or targeted (Varotto et al., 2020; Gallusci et al., 2017,
2023). The use of chemical inhibitors of DNA methylation, for
example, 5-azacytidine, may increase the variability of epi-
genetic variants; however, they may affect the methylation of
multiple genes across the epigenome, also causing un-
desirable phenotypes. However, some chemical agents can
be used for targeted modification of the epigenome. For ex-
ample, BABA-induced resilience to stress against Phytoph-
thora infestans, related to H3K4me2, H3K27me3, and DNA
hypomethylation, was transmitted to offspring in potato
(Meller et al., 2018; Kuznicki et al., 2019).

Unlike some chemicals that act genome-wide and
non-specifically, and causing DNA hypomethylation,
(e.g., 5-azacytidine, 5-aza-2’-deoxycytidine and zebularine)
(Ogneva et al., 2019; Zhang et al., 2020; Li et al., 2021; Liang
and Jiang, 2021; Liu et al., 2021a), genome-editing tools, like
CRISPR (clustered regulatory interspaced short palindrome
repeats), TALE (transcription-like effector), or ZFN (zinc finger
nuclease) systems allow targeted, purposefully designed
modification of the epigenome (Qi et al., 2023). These enable
locus-specific modification of DNA methylation patterns and
histone modifications (Bilichak and Kovalchuk, 2016; Waryah
et al,, 2018; Qi et al., 2023; Sampson et al., 2024). Veley et al.
(20283) successfully applied ZFNs to improve cassava resist-
ance against bacterial blight by using DMS3 (DEFECTIVE IN
MERISTEM SILENCING 3) in the ZFN system. Thus, the
methylation of the effector binding element of SWEET10a, a
susceptibility gene of the plant, was modified, which led to
hindering its expression and causing resistance to the bac-
terial disease. The development of the CRISPR/dead-(d)Cas9
system in epigenome editing is emerging (Sampson et al.,
2024). Plant resistance to drought stress was improved in A.
thaliana by the CRISPR/dCas9 system, for example, by
fusing dCas9 with histone acetyltransferase 1 (Roca Paixio
et al.,, 2019) and ROS1 demethylase (Devesa-Guerra et al.,
2020). Although the CRISPR/Cas9 system is the leading
technology in genome/epigenome--editing tools due to its
operational simplicity, high efficacy and low cost, there are
some limitations which need to be addressed for wider ap-
plication (Qi et al., 2023; Raza et al., 2025). These include
reducing off-target effects by improvement of Cas9, sgRNA
(single guide RNA), or delivery methods, using gene editors
acting without generating DNA double-strand breaks (DSBs)
as reviewed elsewhere (Guo et al., 2023b). The effectiveness
of the system was increased by applying aptamers, such as
SAM (Synergistic Association Mediator) (Konermann et al.,
2015) and SunTag (Papikian et al., 2019); strategies for im-
proving the editing efficiency were recently reviewed in the
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study of Wang and Han (2024). Another bottleneck to the
wider application of the gene-editing technology currently is
not technical, but, as mentioned above, comes from the lack
of extensive knowledge related to the relationship between
the epigenome and the phenotype (Sampson et al., 2024).
Machine learning (ML)- and artificial intelligence (Al)-driven
models based on high-throughput phenotyping and omics
data offer the potential to improve the prediction of inter-
actions and relationships between epigenetics and stress
tolerance in various crops.

THE USE OF Al AND ML IN PLANT
EPIGENETICS

Approaches for epigenetic marks prediction

The epigenetics field is awash in data, presenting both a
significant challenge and a transformative opportunity. Arti-
ficial intelligence is emerging as a powerful tool to navigate
this “data deluge,” enabling the extraction of relevant insights
even from complex genomic—environmental interactions
(GxXE) (Butera et al., 2023; Boye et al., 2024). Traditional
statistical methods, often hindered by the complexity, high
dimensionality, and non-linearity of omics data, are increas-
ingly being complemented—and sometimes surpassed—by
Al models, particularly ML and deep learning (DL; a type
of ML that uses neural networks) (Kang et al., 2022; The
Business Research Company, 2025). For instance, while
traditional statistical methods might identify DEGs or corre-
lations between individual epigenetic marks and gene ex-
pression, Al models can integrate various omic data layers
(e.g., genomics, transcriptomics, epigenomics and proteo-
mics). Furthermore, Al can incorporate RNA and protein
secondary or tertiary structures into these layers, which is
challenging for traditional methods (Sun et al., 2021; Yu et al.,
2022). Therefore, Al can significantly impact epigenetics by
incorporating additional information layers into omics
data sets.

At the same time, Al approaches come with various
limitations. Understanding the strengths and limitations of
each Al model helps researchers select the most suitable
architecture. Supervised learning is one of the most widely
used ML techniques in classification and prediction in
epigenetics. In this approach, a model learns from labeled
data to predict outcomes. Such ML models include Extreme
Gradient Boosting (XGBoost) (Chen and Guestrin, 2016),
linear or logistic regression (Olive, 2017), Support Vector
Machines (SVMs) (Hosmer et al., 2013; Scholkopf and
Alexander, 2022), Random Forest algorithms (Breiman,
2001), and Least Absolute Shrinkage and Selection Operator
(LASSO) regression (Zemlianskaia et al., 2022). Linear or lo-
gistic regression techniques are commonly applied to ex-
amine the relationship between epigenetic features and
phenotypic traits. Support Vector Machines are used to
group samples based on epigenetic profiles (e.g., DNA
methylation) or detect novel subgroups in the data (e.g.,
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sample subtypes) (Fernandez and Miranda-Saavedra, 2012).
Random Forests rank the importance of various genomic
features (e.g., specific methylation sites) in predicting phe-
notypic outcomes (Chen and Ishwaran, 2012). LASSO is used
to identify the most significant epigenetic features (such as
methylation patterns) associated with developmental stages
(Brieuc et al., 2018). This technique divides the data set into k
subsets, training the model on k—1 subsets and testing the
remaining subset. This process is repeated multiple times to
evaluate performance and robustness (Wong, 2015), to en-
sure that the model is well-generalized.

Epigenetics' complexity and high-dimensional nature
(such as gene expression data, DNA methylation, or chro-
matin accessibility) often require unsupervised ML techni-
ques to extract meaningful patterns and features (Arslan
et al., 2021). Unlike supervised learning models that predict
specific labels based on labeled data (e.g., control vs. treat-
ment), unsupervised learning seeks to uncover hidden
structures or relationships in unlabeled data (Broker et al.,
2024). It is particularly valuable for exploratory data analysis,
enabling the discovery of hidden structures and generating
novel hypotheses. Furthermore, it is useful for tasks like
clustering and feature extraction. These approaches, to re-
duce complexity, often use dimensionality reduction algo-
rithms. Principal component analysis (PCA) is one of the most
widely used dimensionality reduction techniques (Ma and
Dai, 2011), transforming the data into a set of orthogonal
(uncorrelated) variables called principal components, which
capture the maximum variance in the data. The first few
principal components usually retain most information, and
the rest can be discarded. t-Distributed stochastic neigh-
borhood embedding (-SNE) is a non-linear technique that
reduces dimensions while preserving local structures
(Linderman and Steinerberger, 2019). t-Distributed stochastic
neighborhood embedding converts similarities between data
points into probabilities and tries to match them in lower di-
mensions. Unlike PCA, t-SNE is more suitable for complex,
non-linear data structures (e.g., network nodes). Uniform
Manifold Approximation and Projection (UMAP) is similar to
t-SNE but preserves data set local and global structures,
constructing a graph to represent the relationships between
points in high-dimensional space and then optimizing the
layout in a lower-dimensional space (Armstrong et al., 2021).
Uniform Manifold Approximation and Projection is often
faster and more scalable than t-SNE while preserving a more
global structure.

Regarding DL models, many can be applied in epi-
genetics, often in combination with dimensionality reduction
techniques such as autoencoders. An autoencoder is an ar-
tificial neural network that learns to encode high-dimensional
data into a lower-dimensional latent space, and then re-
construct the input from this representation, thereby cap-
turing key features of the data (Zhou et al., 2018; Powadi
et al., 2024). For example, Recurrent Neural Networks (RNNs)
(Mienye et al., 2024) utilize memory mechanisms to process
sequential data such as genomic sequences, but face
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limitations with long sequences. Recurrent Neural Networks
are well-suited for processing sequential genomic data like
DNA sequences, enabling predictions of methylation patterns
or chromatin states, and gene expression prediction between
labeled samples (e.g., stressed vs. non-stressed plants).
Graph Neural Networks (GNNs) are well-suited for analyzing
interconnected biological data, such as molecular interaction
networks. Graph Neural Networks excel at identifying inter-
actions between transcription factors, key DNA methylation
sites, enhancers, and target genes, or analyzing Hi-C contact
maps to predict chromatin architecture. Nevertheless, GNNs
can be resource-intensive and face challenges regarding
scalability (increasingly large graphs) and over-smoothing
(node features averaging out, making their representations
too similar) (Gamarnik, 2023; Du et al., 2024; Jiang et al.,
2024). Convolutional Neural Networks (CNNs) effectively
capture spatial hierarchies and patterns in grid-like data,
effective for capturing spatial patterns in genomic data, and
thus excel in tasks like identifying sequence motifs from
Assay for Transposase-Accessible Chromatin using Se-
quencing (ATAC-Seq) data. Yet, CNNs are less suitable for
sequential or non-spatial data and much less effective for
long-range interactions, require substantial data for optimal
performance, and may require careful tuning of filter sizes
and layer depths to capture meaningful patterns (Koo and
Eddy, 2019; Song et al., 2022; Mienye and Swart, 2024).
Approaches that align with the roles of epigenetic writers,
readers, and erasers may yield further insights into epigenetic
memory and phenotypes. Relevant DL models include Gen-
erative Adversarial Networks (GANs), which consist of two
competing networks: a generator and a discriminator
(Ghahramani et al., 2018). Just as the GAN generator pro-
duces realistic synthetic data, epigenetic writers establish
marks on DNA or histones to encode cellular identity or
memory. Generative Adversarial Networks are particularly
valuable for data augmentation when working with limited
data sets, as the generator's ability to introduce subtle
changes can simulate how writers deposit diverse, context-
specific epigenetic marks. The discriminator assesses the
authenticity of generated data, analogous to how epigenetic
readers interpret existing marks to influence gene ex-
pression. Readers evaluate whether a specific epigenetic
signature corresponds to a functional cellular state, similar to
the discriminator distinguishing real from synthetic data.
Meanwhile, erasers act as regulatory elements that remove
marks, much like how the discriminator penalizes unrealistic
outputs, maintaining a balance in training. The adversarial
nature of GANs reflects a broader tension between epi-
genetic stability (homeostasis) and flexibility (plasticity).
However, GANs face challenges such as mode collapse and
training instability, where the generator produces repetitive or
low-quality outputs instead of exploring the full diversity of
possible outcomes. This is especially problematic in epi-
genetics, where subtle molecular differences can drive highly
diverse phenotypes (Yu et al., 2021; Oladayo Esan et al.,
2023). Addressing these challenges may require advanced
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GAN variants, such as Wasserstein GANs, unrolled GANs, or
dynamic clustering frameworks (e.g., DynGAN) (Zou et al.,
2023; Wang et al.,, 2023a; Luo and Yang, 2024). It is
important to note that, despite their potential, direct
applications of GANs in plant epigenetics have yet to be
demonstrated.

A less complex model in DL is the Multi-Layer Perceptron
(MLP). Multi-Layer Perceptrons are feedforward neural net-
works suitable for tasks such as regression, pattern recog-
nition, and classification (Tripathi et al., 2022; Rashedi et al.,
2024). While MLPs lack the architectural complexity of
models like GANSs, they offer clear advantages for modeling
specific epigenetic features. For example, MLPs can predict
gene expression from methylation profiles or classify plant
cell types based on chromatin state data. However, MLPs are
generally less effective at modeling complex data dis-
tributions or generating novel epigenetic profiles, and they
struggle to capture intricate spatial or contextual depend-
encies. Still, MLPs have been successfully applied to predict
exon positions in plant genomes from RNA-seq data (Jahedi
et al., 2023). Although not directly focused on epigenetics,
this approach could be adapted for analyzing epigenetic
markers, such as DNA methylation or histone modifications,
by leveraging high-dimensional plant genomic data sets.

Other DL approaches, such as Transformer models and
Large Language Models (LLMs), may open new frontiers in
epigenetics. Their ability to process massive data sets and
capture long-range dependencies makes them well-suited for
tasks such as integrating multi-omics information and gen-
erating data-driven hypotheses. Unlike earlier models that
process data sequentially, Transformers analyze all input el-
ements in parallel, significantly improving training speed and
scalability (Wang et al., 2023b). Transformer-based models
like Bidirectional Encoder Representations from Trans-
formers (BERT) and Generative Pre-trained Transformer
(GPT) have since been adapted for computer vision in tools
like Vision Transformers (ViTs) (Wang et al. 2025). However,
these models have high computational demands and require
large training data sets, which may limit their use in resource-
constrained research settings (Luo et al., 2023; Patwardhan
et al., 2023; Zhang and Shafiq, 2024). Just as LLMs are
trained on specialized language corpora, omics data sets
offer a structured foundation for training models to interpret
biological processes across multiple layers (Gao et al., 2024).
These methods are particularly promising for interpreting
ncRNA-seq data, and likely capture aspects of epigenetic
regulation, enabling insights into cellular diversity and func-
tion. Although LLMs have not yet been directly applied to
plant epigenetics, relevant tools and frameworks are begin-
ning to emerge (Gao et al., 2024).

Deep Belief Networks (DBNSs) are probabilistic generative
models useful for unsupervised learning and feature ex-
traction (Hinton et al., 2006; Li et al., 2025b). Deep Belief
Networks discover hidden relationships between epigenetic
marks (e.g., methylation and histone modifications) and gene
expression without requiring pre-labeled data. Common
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performance measures employed in classification tasks that
use balanced data sets for training are accuracy, sensitivity,
specificity, and precision (Sokolova and Lapalme, 2009).
Deep Belief Networks have been used for crop classification,
pest prediction, and yield forecasting by extracting high-level
features from agricultural data sets. DBNs could be adapted
for analyzing epigenetic markers like DNA methylation or
histone modifications in plants (Patel et al., 2024). Another
similar technique, the Self-Organizing Maps (SOMs) (Javed
et al.,, 2024), helps researchers uncover latent features,
identify clusters, and model complex relationships in DNA
methylation, gene expression, and histone modification data
(Nikkila et al., 2002). Like DBNs, SOMs have not been used in
plant epigenetics (Yang, 2025).

The interpretability of complex Al models, such as su-
pervised model architectures, poses a significant challenge in
translating predictions into biological understanding. While
these models offer high accuracy, understanding exactly why
they make certain predictions (their interpretability) can be a
challenge. The “black box” nature of some models makes it
challenging to identify the precise biological mechanisms
behind these predictions. Figure 4 outlines the analytical
pipeline, which consists of three main steps: (i) data pre-
processing with normalization and quality control; (i) feature
engineering with dimensionality reduction through PCA
analysis and data imputation (a process used to fill in missing
values); and (iiij model selection and training. In the same
context, Al can also handle complex issues like microclimate
variability across a field (Chen et al.,, 2024), which is
increasing noisy patterns in traditional analyses.

Integrating epigenotypes to phenotypes: toward
epigenetic ideotypes

Integrating phenotypes with epigenetic omics data is funda-
mental to develop robust crops across diverse environments
— a concept known as “epigenetic ideotypes” (Donald, 1968).
Large-scale imaging, facilitated by “plant phenomics”
(i.e., the systematic study of phenotypes at scale), is often
essential to validate subtle phenotypic effects arising from
epialleles, which may be overlooked by traditional methods
(Sheikh et al., 2024). Plant phenomics can be achieved
through advanced sensors, offering real-time data and data
sets with the depth and richness required to unlock the full
potential of Al applications (Pasala and Pandey, 2020).
This automated monitoring enhances the accuracy of field
assessments and reduces labor costs, providing deeper in-
sights into the complex interplay between epigenetic states
and environmental conditions.

Machine learning models employed in phenomics include
regularized linear regression, sometimes combined with
LASSO for implicit feature selection (Liu et al., 2019b), and
techniques like SVMs or Support Vector Regression (SVR)
(Zhao et al., 2020b). Machine learning approaches, like SVR,
could be valuable for modeling these modifications and their
effects on gene expression. SVRs have been used for the
analysis and modeling of genome prediction of quantitative
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Methylome data ncRNA data Chromatin modification data
(.bedGraph, .cov files) (.fastq, .bam files) (.bed, .wig files)
Bismark output RNA-seq & small RNA-seq data ChiP-seq data
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Data preprocessing: normalization and quality control
(FastQC v0.11.9, Trim Galore v0.6.7)

l

[ Feature Engineering: Dimensionality reduction (PCA, 95% variance) and Imputation ]

|

Feature selection:
Filter (ANOVA, P < 0.05)
Wrapper (RFE, top 1000)
Embedded methods (LASSO, o = 0.01)

[ Model selection: Random forest, SVM, neural networks ]
[ Model training & cross validation: (10-fold CV) ]
Analysis: plant stress responses — Modeling: epigenetic memory

Figure 4. Machine learning pipeline for integrating and analyzing multi-omics epigenetic data in plant stress responses

This workflow outlines the steps involved in using machine learning to understand how epigenetic modifications relate to plant responses to stress.
1. Input and Preprocessing: The pipeline begins with three types of omics data: DNA methylation profiles (methylome data), non-coding RNA
(ncRNA) expression levels, and chromatin modification patterns. Raw data undergo quality control using FastQC and normalization with Trim
Galore. Il. Feature Engineering and Selection: to prepare the data for machine learning, feature engineering involves dimensionality reduction using
principal component analysis (PCA), retaining 95% of the variance, and imputation to handle missing values. Feature selection employs a
combination of three approaches: (i) Filter Methods: analysis of variance (P < 0.05) to identify statistically significant features; (ii) Wrapper Methods:
Recursive Feature Elimination (RFE) to select the top 1,000 most informative features; (iii) Embedded Methods: Least Absolute Shrinkage and
Selection Operator (LASSO) with « =0.01 for sparse feature selection. /ll. Model Training and Evaluation: the selected features are then used to
train three machine learning models: Random Forest, Support Vector Machines (SVM), and Neural Networks. Model robustness is assessed using
10-fold cross-validation (CV). Random Forest is chosen for its ability to handle numerous features and evaluate feature importance. SVM is
included for its effectiveness with high-dimensional and sparse data sets. Neural Networks are used to model complex, non-linear relationships
inherent in omics interactions. IV. Output and Analysis: the pipeline culminates in two parallel, interconnected analyses: (i) Characterization of Plant
Responses to Stresses: identifying key epigenetic features and their patterns associated with different stress responses and (ii) Modeling of
Epigenetic Memory: predicting and understanding the epigenetic signatures that contribute to long-term stress memory. The outputs of these
analyses can iteratively inform each other, leading to a deeper understanding of the complex interplay between epigenetics and plant stress
responses.
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effects (Long et al., 2011). By analyzing data sets from
imaging platforms or sensor technologies, these ML ap-
proaches can help detect early stress indicators, including
nutrient deficiencies, drought, or pest infestations (Singh
et al., 2021). Other DL-related models, particularly GNNs and
CNNs (LeCun et al., 2015), excel at extracting spatial hier-
archies and patterns from image data relevant to plant phe-
notyping and microscopy analysis in epigenetics (Yamashita
et al., 2018; Shibu and Salim, 2023). Machine learning holds
substantial potential for the analysis of interactions between
epigenetic, transcriptional and translational regulation. At the
RNA-seq level, DL techniques can be employed to model
highly complex RNA—protein interactions and their structural
relationships (Sun et al., 2021; Townshend et al., 2021; Wei
et al., 2022). Furthermore, recent studies have explored
how DL can integrate multiple Al approaches to build more
comprehensive predictive frameworks (e.g., Qin et al., 2025).

These capabilities are especially valuable in plant epi-
genetics, where stress responses involve multilayered and
dynamic regulatory networks.

Multi-Layer Perceptron utilizes a classic feedforward
neural network architecture, where each node in one layer is
fully linked to all nodes in the subsequent layer. It is simple to
implement and performs well with structured data, which
makes it a common choice for applications like regression
and classification tasks (Tripathi et al., 2022; Nisha et al,,
2024). Transformers (Luo et al., 2023) have become state-of-
the-art for sequence-to-sequence tasks due to their self-
attention mechanisms that allow parallel processing and
capture long-range dependencies. They were first created for
natural language processing (NLP) tasks, as seen in models
like BERT and GPT, and ViTs. In plant omics, Transformer
architectures are being explored for sequence labeling tasks
such as identifying cis-acting regulatory elements, predicting
DNA methylation, and classifying ncRNA function across
tissues and developmental stages. However, because of their
high computing requirements and reliance on large data sets,
their application in conditions of restricted resources can be
difficult (Patwardhan et al., 2023; Zhang and Shafig, 2024).

Recent applications of Transformer architectures in plant
biology show promising results in image-based diagnostics
and transcriptomic analyses. A notable example is the
AISOA-SSformer model (Dai et al., 2024), which improved
semantic segmentation of rice leaf diseases by integrating a
hierarchical Transformer encoder with sparse parameter up-
dating and an attention-based feature refinement mecha-
nism. This architecture outperformed traditional convolu-
tional and hybrid models on metrics like Dice coefficient and
Mean Intersection over Union (MloU) (Guindon and Zhang,
2017), particularly excelling in identifying disease-affected
areas with fuzzy edges and complex backgrounds. Such
advances underscore the growing relevance of Transformer
models in agricultural Al applications and highlight their
adaptability to irregular and heterogeneous biological data. In
addition to improving large-scale image recognition tasks,
Transformer-based models have recently been adapted for
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small-scale transcriptomic analysis. For example, Huang
et al. (2025) introduced TransGeneSelector, a hybrid
DL framework that combines a Wasserstein GAN with a
Transformer network to mine key regulatory genes from
limited RNA-seq data. Applied to A. thaliana under germina-
tion and heat stress conditions, the model demonstrated
superior  classification performance and accurately
identified upstream regulatory genes, validated via reverse
transcription - quantitative polymerase chain reaction
(RT-gPCR). This approach addresses a common bottleneck
in plant omics, limited sample sizes, and highlights the
potential of Transformer models for extracting biologically
meaningful features, even in data-constrained settings.

Understanding the strengths and limitations of each
model can help researchers and practitioners make in-
formed decisions and select the most suitable architecture
for their specific tasks. Omics data sets, when formatted as
sequential or structured inputs, can provide a robust foun-
dation for training LLMs to interpret biological processes
across multiple levels (Lam et al., 2024). Notable examples
include clustering methods and manifold learning
approaches, which reveal underlying non-linear patterns
similar to those identified through PCA. These methods
provide powerful tools for interpreting ncRNA-seq data and
can likely also include epigenetic information, driving
insights into cellular diversity and function. Approaches that
fit the corresponding writers, readers, and eraser models
may provide further insights into epigenetic memory and
phenotypes.

Machine learning or DL approaches can surpass the lim-
itations of traditional phenotyping methods, which often lack
the capacity for deep data acquisition and capturing subtle
phenotypic variations. Machine learning algorithms were
applied to identify epigenetic markers associated with
adaptive traits under selection during domestication
processes. Studies have used ML approaches to analyze
epigenetic changes, such as DNA methylation patterns
associated with pathogen resistance (as a phenotype).
For example, epigenetic markers were identified in maize for
distinguishing active genes from pseudogenes based on
DNA methylation profiles (Cembrowska-Lech et al., 2023;
Sun et al., 2023). Yet, the application of these approaches,
especially DL, remains limited in the plant epigenetic field.

Methylation dynamics in plant stress memory—
insights from omics and ML

Moving forward, integrating extensive genome-wide data
with multi-generational phenotypic data sets is a robust
foundation for Al-driven predictive epigenomics (N'Diaye
et al., 2020). Unlike traditional statistical methods, which
often struggle to find patterns in the vast and complex data
sets generated, Al excels at identifying subtle patterns and
making predictions from these high-dimensional data sets
(Xie et al., 2024). This capability is crucial for understanding
the complex interplay of epigenetic marks in plant memory.
Successful examples of Al-driven selection of methylation
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dynamics in plant stress memory are rather limited. Yet, ML
has successfully identified distinct methylation signatures
associated with drought resistance in rice (Smet et al., 2023).
Random Forests, as they combine the predictions of many
decision trees (akin to a consensus of experts), are partic-
ularly good at assessing the importance of different features
in the data, making them ideal for this type of analysis (Zhao
et al., 2018). Machine learning has transformed DNA
methylation studies by enabling precise identification and
prediction of methylation signatures in diverse biological
contexts (Mavaie et al., 2021). In plants, methylation changes
at promoter and regulatory regions control stress-responsive
genes, and ML models have been applied to identify genomic
regions susceptible to methylation shifts under stressors,
such as drought, heat, salinity, or pathogens (Mavaie et al.,
2021; Rico-Chavez et al., 2022; Kimotho and Maina, 2024).
N'Diaye et al. (2020) applied six ML algorithms and a deep
neural network to predict tissue-specific gene expression in
wheat (Triticum aestivum L.) using whole-genome bisulfite
sequencing data. Their models achieved up to 81% accu-
racy, identifying promoter CG methylation as the most
informative feature, and directly linking methylation patterns
to gene expression.

Similarly, Wang et al. (2021a, 2021b) developed the Smart
Model for Epigenetics in Plants (SMEP), a DL model capable
of predicting multiple epigenetic marks, including DNA m°C,
RNA m°®A, and histone modifications, with ~80%-95% ac-
curacy in rice, maize and A. thaliana. This model was ex-
perimentally validated using data from heat-treated rice
seedlings, confirming predicted m®A methylation changes
post-stress. Common ML models like Random Forests
and DL architectures have been effectively used to map
methylation dynamics under varying levels and durations of
stress, enabling identification of stress-associated epigenetic
marks in rice and wheat (Wang et al., 2021a; Smet et al.,
2023; Mansoor et al.,, 2024). In this framework, Random
Forest classifiers further refine the analysis by distinguishing
stress-adaptive genes and pinpointing key regulatory regions
(Zhao et al., 2018). Moreover, unsupervised methods, par-
ticularly clustering and PCA, have been used to identify
drought-responsive differentially methylated regions (DMRs),
some of which were experimentally validated by bisulfite
sequencing and functional assays, confirming their role in
stress memory and potential transgenerational inheritance
(Murmu et al.,, 2024). These findings resonate with the
conceptual framework proposed by Galviz et al. (2022), who
emphasized that stress responses and memory in plants
unfold across interconnected spatial and temporal di-
mensions. Their “space-time biological stress concept”
suggests that epigenetic marks, such as DNA methylation,
can serve as molecular bridges between past stress events
and future responses, enabling plants to recall and adapt to
recurrent challenges. In rice, early hybrid ML-DL models
demonstrate the ability to group DMRs associated with
drought resistance and predict heritable epigenetic changes
(Shaik and Ramakrishna, 2012).
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In Medicago ruthenica (L.) Trautv. drought stress memory
links to specific methylation patterns (hypomethylation) in
genes like Chalcone Synthase (CHS) and Delta-1-Pyrroline-
5-Carboxylate Synthetase (P5CS), validated through bisulfite
sequencing and RT-gPCR (Zi et al., 2024). Machine learning
models trained on similar methylome data sets identified
conserved methylation signatures in root tissues that persist
post-recovery, aligning with the sustained upregulation of
stress-responsive genes (Champigny et al., 2020; N'Diaye
et al., 2020; Zhang et al., 2024). Furthermore, CNN models
accurately predicted epigenetic marks in rice (Oryza sativa L.),
including  DNA m°C, m°®A, and histone marks like
H3K4me3, H3K27me3, and H3K9ac (Rahman et al., 2021;
Wang et al., 2021a). Yet, most applications remain focused
on single-generation trait prediction, high-throughput
phenotyping, genomic selection, and environmental mod-
eling. The potential for leveraging Al to model transgenera-
tional effects, such as epigenetic inheritance or long-term
adaptation, remains largely unexplored. This is a promising
frontier, and the field is only beginning to investigate these
possibilities.

Regarding the single-cell level, recent advances in single-
cell epigenomics have shed light on the cell-type-specific
regulation of stress responses in plants. Nobori et al. (2025)
combined  single-nucleus RNA-seq and ATAC-seq
(snMultiome) with spatial transcriptomics (MERFISH) to map
immune responses in A. thaliana at single-cell
resolution. This integrative approach led to the discovery of
rare PRIMER cells, immune-primed cell states with unique
chromatin accessibility and transcription factor motifs,
revealing how epigenetic marks vary across cell types and
spatial domains. By resolving transcription factor-accessible
chromatin region-gene modules, the study demonstrated how
immune memory and transcriptional responsiveness are en-
coded in distinct epigenomic profiles. Recent work by
Schouveiler et al. (2025) outlined practical workflows for ap-
plying single-cell transcriptomics and chromatin accessibility
assays in A. thaliana seeds, demonstrating how integration
with spatial metabolomics can unravel tissue-specific regu-
latory networks involved in dormancy, germination, and early
stress responses. These findings underscore the power of
single-cell epigenomics in decoding the dynamic, multilayered
regulatory mechanisms underlying stress memory in plants.

Beyond single-species studies, ML models trained on
cross-species genomic data have shown the capacity to
predict mRNA abundance and link sequence variation to
gene activity. In Populus balsamifera L., DNNs—which can
model highly complex non-linear relationships through
multilayered learning—have demonstrated that traits in novel
genotypes can be accurately predicted using a limited
number of DNA methylation markers. This highlights the
potential of Al to process high-dimensional epigenetic data
and extract biologically meaningful relationships (Tahir et al.,
2024). This approach effectively classified tissue types and
geographic provenance and explained a significant portion of
phenotypic variance in quantitative wood traits, based on
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natural variation in DNA methylation. Additionally, ML tech-
niques are increasingly applied to expression quantitative
trait loci (eQTL) analysis, identifying associations between
epialleles, memory formation, and adaptive behaviors (Zhao
et al., 2023). These approaches could be further extended to
investigate transgenerational epigenetic memory. Even in
studies not directly applying ML, such as the identification of
drought-induced DMRs in barley using Methylation-Sensitive
Amplified Polymorphism (MSAP-seq) analysis (Xiong et al.,
1999) (@ PCR-based technique used to study DNA methyl-
ation patterns at specific CCGG recognition sites in a
genome) the generated data (e.g., reversible methylation
changes in genes like HYP5CS1 linked to stress memory)
is well-suited for ML algorithms. Approaches, such as Gra-
dient Boosted Trees (GBT), to predict memory-associated
methylation patterns (Li et al., 2022b), could be used.

Another aspect of stress memory relates to repeated
stress exposures in one generation. This type of memory
allows plants to “remember” an initial stress event during
their development and respond more effectively to sub-
sequent similar stresses later in the same generation.
Somatic stress memory is mitotically inherited and typically
lasts for a relatively short period without involving changes to
the genetic sequence itself (Yadav et al., 2022; Kambona
et al., 2023). Machine learning applications in crops like rice
and wheat prioritize stable methylation mark identification
associated with repeated stress cycles, which are more likely
to contribute to heritable stress memory. For instance,
studies have linked osmotic tolerance in rice seedlings to
hypomethylation of OsSOS7 and root-specific methylation
loss under salinity stress (Yin et al., 2024). By integrating
multi-omics data sets, ML models can prioritize specific loci,
such as OsNRAMPS5, for targeted genome editing using
CRISPR technology to enhance crop resilience. In rice and
wheat, ML-driven predictions of stable methylation marks
following repeated stress exposure are guiding breeding ef-
forts aimed at improving crop resilience to adverse environ-
mental conditions (Benlioglu et al., 2024; Yin et al., 2024). In
rice, MSAP analysis revealed that drought-resistant varieties
like Huhan-3 exhibit stable transgenerational inheritance of
stress-induced hypermethylation loci, which correlate with
improved drought tolerance across generations (Zheng et al.,
2013). Machine learning-driven analyses of such data sets
could effectively isolate stress memory-associated loci by
filtering out stochastic methylation variations common in
stress-sensitive varieties.

These advancements underscore the critical role of Al in
deciphering the epigenetic basis of plant stress memory while
mitigating the risk of over-generalization through rigorous
experimental cross-validation (CV). However, we should note
that there are also species-specific effects on stress memory.
For example, research in A. thaliana utilizing whole-genome
bisulfite sequencing has shown that many drought-induced
methylation changes are temporary, with limited transgenera-
tional inheritance (Ganguly et al., 2017). Here, ML classifiers
were vital in distinguishing context-specific methylation from
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potential stress memory candidates, highlighting Al's ability to
detect subtle yet biologically significant patterns within complex
data sets. Furthermore, most crop methylation data are gen-
erated using bisulfite sequencing techniques rather than directly
from ML models. Future research should, therefore, focus on
integrating ML with robust wet-lab validation methods, such as
CRISPR-edited lines, to effectively bridge the gap between
prediction and practical application in breeding programs. It is
also crucial to recognize tissue-specific variability, as high-
lighted by studies in maize that found minimal consistent stress-
induced methylation changes. The analysis of extensive data
sets generated from NGS and cutting-edge technologies like
Oxford Nanopore, particularly when combined with high-
resolution single-cell methylome analysis, is often complicated
by the inherent challenge of integrating diverse data layers and
the substantial variability of methylation patterns observed
across different plant species, tissues, and environmental con-
ditions (Omony et al., 2020; Agius et al., 2023). This limitation
underscores the need for ML models that can accommodate
such biological complexities to ensure accurate and relevant
predictions. Looking ahead, promising future directions include
the development of more interpretable Al models, such as those
employing attention mechanisms or SHapley Additive ex-
Planations (SHAP) values (methods to understand what the Al is
“looking at” when making predictions), exploring the trans-
generational inheritance of epigenetic memory through ML-
driven analyses, and creating standardized, high-quality multi-
omics data sets to train more robust and generalizable models
(lbragi¢ et al., 2025).

Non-coding RNAs in plant stress responses:
integration of omics and ML for predictive insight
Non-coding RNAs contribute to plant stress memory by
modulating gene expression before, during, and after stress
exposure, ultimately equipping plants for future challenges
(Yang et al.,, 2023; Gill et al., 2024). Advances in omics
technologies, particularly RNA-seq, have enabled detailed
profiling of ncRNA in different tissues and stress conditions,
revealing how specific ncRNAs (miRNAs, siRNAs, and
IncRNAs) are upregulated or downregulated in response to
environmental cues (Nejat and Mantri, 2018), and that they
consistently increase during repeated drought cycles, high-
lighting their role in building stress memory (Yan et al., 2019).
Drought-responsive miRNAs can suppress genes linked to
water loss (Wei et al., 2009; Ferdous et al., 2015; Akdogan
et al., 2016), while some IncRNAs may activate genes related
to osmotic stress via interactions with chromatin-modifying
complexes (Kim, 2021; Yang et al., 2023). Other miRNAs,
such as those targeting pathogen resistance genes,
contribute to plant immunity (Luo et al., 2024).

Despite recent advances, the functions of many ncRNAs
remain poorly understood. Machine learning approaches
have greatly promoted functional predictions of ncRNA
based on the analysis of sequence motifs, expression
dynamics and gene networks. Artificial intelligence can pre-
dict the missing landscapes of ncRNA roles from sequence
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motifs, gene interactions, and expression profiles, un-
covering functional relationships between ncRNAs and stress
(Rincon-Riveros et al., 2021). Pradhan et al. (2023a) devel-
oped ASLncR, an SVM model trained on k-mer features,
which predicts stress-responsive IncRNAs with 76.2%
accuracy. In a related study, ASmiR (Pradhan et al., 2023b)
used pseudo-K-tuple nucleotide composition to identify
stress-responsive  miRNAs with over 90% accuracy.
Similarly, Kumar Meher et al. (2022) built SVM-based models
to classify pre- and mature miRNAs with test accuracies
between 62% and 69%, available via ASRmiRNA.
Unsupervised learning techniques like k-means, hier-
archical clustering and PCA have been used to group
ncRNAs based on expression similarity across stress con-
ditions, revealing coordinated regulatory modules and shared
functional responses, even in ncRNAs with unknown targets
(Chen et al., 2019b; Chang et al., 2022). Additionally, CNNs
and SVMs identify sequence motifs or structural features,
aiding in the classification of ncRNAs into functional groups
like miRNAs, siRNAs, or IncRNAs (Rincén-Riveros et al.,
2021; Mathur et al., 2024). Machine learning models also
assess expression stability across stress cycles, enabling the
accurate identification of ncRNAs involved in stress memory
and identifying targets for modifications (Yadav et al., 2024).
Random Forest models, such as GENIES3, were effective in
identifying IncRNAs that regulate resistance to significant
plant pathogens like Phytophthora infestans in potatoes (Cao
et al., 2021). Integrating ncRNA data with transcriptomic and
epigenomic profiles enabled ML models to map ncRNA in-
teractions within gene networks, offering insights into their
roles in stress responses (Pradhan et al., 2023a). For ex-
ample, an ML model predicted interactions between IncRNAs
and miRNAs based on sequence and interaction profile
similarity (Cai et al., 2022). Furthermore, examining ncRNA
expression across tissues and stress scenarios revealed their
broader role in plant defense, highlighting key regulatory
ncRNAs, such as miRNAs, that enhance plant immunity by
targeting pathogen resistance genes (Luo et al., 2024).
Meanwhile, DL models have been explored to predict
interactions between IncRNAs and chromatin remodeling
complexes, clarifying how ncRNAs change gene expression
through chromatin dynamics (Tabe-Bordbar and Sinha,
2023). This study retrained ML models such as CPAT, PLEK,
and LncFinder using plant-specific data sets to improve the
identification of IncRNAs involved in chromatin remodeling
and epigenetic regulation. The ensemble approach com-
bining CPAT-plant and LncFinder-plant achieved higher
precision in identifying plant IncRNAs across multiple species
(Tian et al., 2024). More integrative models are emerging.
Recent studies have applied ML approaches, such as SVM
and Random Forest, to predict and analyze regulatory RNAs
involved in stress-responsive networks (Rico-Chavez et al.,
2022; Pradhan et al.,, 2023a). Similarly, Vakilian (2020)
employed Gaussian SVM regression to predict miRNA
responses to drought, salinity, heat, and cold stress in
Arabidopsis, achieving high predictive accuracy (R =0.96)
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and identifying key stress-associated miRNAs (miR-169, miR-
159, miR-393, and miR-396). Beyond immediate stress re-
sponses, ncRNAs also participate in plant stress memory,
modulating gene expression before, during and after stress
episodes, thereby enhancing adaptive preparedness. Recent
RNA-seq studies have proposed the expression stability of
specific miRNAs as a marker for stress memory (Yang et al.,
2023; Gill et al., 2024). Machine learning models have been
developed to assess ncRNA expression patterns in succes-
sive stress events, identifying predictive features linked to
adaptive responses and guiding the selection of genetic
targets for resilient crop development (Yadav et al., 2024).

Lastly, the integration of ncRNA data sets with tran-
scriptomic and epigenomic profiles enables the mapping of
ncRNA-regulated gene networks. This systems-level view,
supported by ML tools, provides mechanistic insights into
how ncRNAs orchestrate complex stress responses
(Tabe-Bordbar and Sinha, 2023; Pradhan et al., 2023a).
Together, these advances pave the way for predictive,
experimentally informed, and application-ready research on
the involvement of ncRNAs in crop stress resilience. How-
ever, such predictions often require experimental validation
to confirm their biological relevance. Consequently, future
research should focus on techniques such as CRISPR/Cas9
to manipulate ncRNA expression or their networks, assessing
the impact on plant stress memory and adaptation. Long-
term studies are also needed to track ncRNA-mediated
memory responses across multiple generations and under
varying environmental conditions. Research should prioritize
developing and applying precise techniques, such as single-
cell RNA-seq and functional assays, to validate ncRNA
targets and their functional relevance. Additionally, stand-
ardized protocols for ncRNA annotation and expression
analysis are needed to improve data comparability across
studies, ensuring robust and reproducible findings.

Chromatin modifications and stress adaptation:
decoding the complexities with ML

In addition to DNA methylation, histone methylation and
acetylation are pivotal epigenetic modifications which serve
as molecular switches orchestrating plant stress memory, a
crucial mechanism for survival and adaptation (Sharma et al.,
2022; Gallusci et al., 2023). These dynamic chromatin marks
precisely control the accessibility of stress-responsive genes,
ensuring their timely activation or suppression upon sub-
sequent stress exposure. The application of ML methods,
leveraging the power of chromatin immunoprecipitation
sequencing (ChIP-seq) data, has significantly enhanced our
ability to predict these vital histone marks associated with
various environmental stressors (Wu et al., 2019; Li et al.,
2022c; Heping et al., 2024). Using ChlP-seq for stress-
exposed plants reveals how histone modifications respond to
environmental cues. Specific histone marks often accumulate
at the promoters of stress-responsive genes and facilitate
their rapid activation (Ueda and Seki, 2020), while repressive
modifications target regions that need to be silenced to
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conserve energy and resources (Yung et al, 2021).
Large-scale ChiP-seq data sets are invaluable for identifying
stress-responsive chromatin regions. When combined with
transcriptomic and methylome profiles, they provide a com-
prehensive view of the role of chromatin in stress responses,
revealing regulatory loci that may serve as targets for crop
improvement.

Machine learning models help manage the complexity of
chromatin modification data, particularly in identifying his-
tone marks linked to plant resistance to stress. Trained on
ChIP-seq data, these models can predict histone marks as-
sociated with plant stress resilience or susceptibility to spe-
cific environmental stressors like drought, salinity and plant
pathogens (Wu et al., 2019). They examine features such as
genomic locations, enrichment levels, and correlations with
gene expression to clarify the impact of chromatin dynamics
in stress adaptation. In addition to individual histone
modifications, ML approaches can also model interactions
among chromatin marks and other epigenetic layers,
including DNA methylation and ncRNA activity, to create
a systems-level understanding of chromatin function
(Roychowdhury et al., 2023). Analyzing time-course ChlIP-seq
data from plants subjected to repeated stress cycles enables
Al models to dissect the temporal dynamics of chromatin
modifications and pinpoint those specifically associated with
memory formation. These models can also identify critical
chromatin regions essential for long-term plant memory
(Piecyk et al., 2022; Peng and Rajjou, 2024). Beyond in-
dividual histone modifications, ML approaches are increas-
ingly used to investigate the complex interactions among
various chromatin marks and other epigenetic elements, in-
cluding DNA methylation and ncRNA (see below) activity
(Roychowdhury et al., 20283). Other approaches could also
boost the identification of epigenetic marks, such as the
SMART approach, which includes histone modifications
(Wang et al., 2021b). Chromatin modifications, particularly
histone methylation and acetylation, contribute to the es-
tablishment of stress memory by preserving specific marks at
genomic loci after stress exposure, enabling plants to
“remember” past conditions and respond quickly upon
re-exposure (Sharma et al., 2022; Gallusci et al., 2023). By
modulating accessibility to stress-responsive genes, chro-
matin marks ensure these genes are readily activated or
suppressed upon re-exposure. Recent studies have shown
that ML models can successfully detect memory-associated
histone modifications. By the analysis of time-course ChIP-
seq data from plants subjected to repeated stress, these
models can identify histone marks likely to function as
memory indicators and pinpoint chromatin regions involved
in plant stress adaptation (Piecyk et al., 2022; Peng and
Rajjou, 2024). Smart Model for Epigenetics in Plants, de-
scribed by Wang et al. (2021a, 2021b), was also trained on
ChIP-seq data to predict histone marks such as H3K27me3,
H3K4me3, and H3K9ac in rice. Wu et al. (2019) used a
combined ChIP-seq and RNA-seq ML framework to predict
drought-responsive histone patterns in A. thaliana, validated
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via ChIP-gPCR. Similarly, Peng and Rajjou (2024) applied DL
to tomato time-course ChlP-seq data and identified
H3K27me3 changes associated with heat memory genes,
confirmed through RT-gPCR and phenotypic assays.

Yet, we are far from reaching a direct application of such
models to integrative epigenetics but these studies demon-
strate how Al has the potential to effectively pinpoint
chromatin-based memory mechanisms. In the future, these
approaches may support precision breeding and genetic
engineering strategies aimed at improving crop resilience
through the targeted manipulation of chromatin states.
Furthermore, the same limitations mentioned above apply
here for the additional marks on histones.

Epitranscriptomics and plant stress memory
Beyond DNA and histones, epitranscriptomics, the study of
post-transcriptional RNA modifications, is increasingly rec-
ognized as a dynamic regulatory layer, critically influencing
plant stress responses and memory. Modifications such as
N6-methyladenosine (mPA), pseudouridylation (¥), m®C, and
RNA editing affect RNA stability, splicing, translation, and
interactions with RNA-binding proteins, enabling the fine-
tuning of gene expression for effective adaptation to envi-
ronmental stresses (Shoaib et al., 2022; Cai et al., 2025).
Recent research indicates that RNA modifications contribute
to plant stress memory by stabilizing stress-responsive
transcripts and priming molecular pathways for future
stress encounters (Liu et al., 2024), influencing transcript
stability and translation efficiency under stress (Liu et al.,
2024; Dobranszki et al., 2025; Kutashev and Moschou, 2025).
Among over 170 identified RNA modifications, m°®A is the
most abundant and best-characterized internal mark in eu-
karyotic mRNAs, including those of plants (Hu et al., 2022).
m®A is deposited by “writer” complexes like MTA ((N(6)-
adenosine-methyltransferase MT-A70-like), MTB (METTL14
human homolog protein) and FIP37 (FKBP12-interacting
protein), removed by “erasers” such as the ALKBH (AIkB Ho-
molog, Histone H2A Dioxygenase) proteins, and interpreted by
“readers” with YTH-domains like ECT2, ECT3, and ECT4
(evolutionarily conserved C-terminal region 2, 3 and 4) (Liang
et al., 2020; Shen et al., 2023). m®A plays a multifaceted role in
the regulation of mMRNA splicing, export, stability, decay, and
translation efficiency. These processes are central to tran-
scriptomic reprogramming under stress, enabling rapid and
reversible adjustments in gene expression. Importantly, m®A
marks often accumulate near stop codons and in 3’
untranslated regions (3’ UTRs), a spatial pattern associated
with increased transcript stability and translational regulation
(Liang et al., 2020; Shen et al., 2023). Transcriptome-wide
studies in wheat under drought stress revealed that m®A
abundance positively correlates with mRNA levels of key
stress-responsive genes. This response involved upregulation
of the mPA reader ECT9 (gene encoding YTH-domain-
containing family protein), which promotes drought tolerance,
and downregulation of the eraser ALKBH10B (Pan et al.,
2024). Similarly, in A. thaliana, the demethylase ALKBH10B
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fine-tunes MRNA stability during drought, modulating decay
rates of stress-inducible transcripts (Han et al., 2023). In ad-
dition to immediate stress responses, m®A methylation also
contributes to transcriptional memory and stress imprinting. In
rice, high-resolution mapping showed dynamic shifts in m°A
deposition during repeated stress exposures with conserved
3’ UTR sites linked to memory-like expression patterns (Wang
et al., 2024). Recent research by Li et al. (2025a) further con-
firmed the role of the mPA writer MTAT in the regulation of
seed germination and salt stress response in rice, linking m®A
hypomethylation to altered expression of key stress-
responsive genes. These findings align with evidence in A.
thaliana and O. sativa demonstrating that stress-induced m°®A
methylation enables the stabilization or rapid re-induction of
specific transcripts, potentially acting as reversible molecular
imprints that sensitize plants to future environmental chal-
lenges (Hasan et al., 2024; Cai et al., 2025). Importantly, m°A-
mediated regulation functions alongside other RNA mod-
ifications such m°C and ¥, which are increasingly recognized
for their roles in stress adaptation. These modifications exhibit
cell-type specificity and context-dependent behavior, adding
to the regulatory complexity. Emerging evidence suggests
intricate crosstalk between sRNAs and IncRNAs, supporting a
multilayered epitranscriptomic network (Statello et al., 2021).

The large data sets generated by epitranscriptomic
studies (e.g., m®A-seq and MeRIP-seq) present a significant
opportunity for Al analysis, which can uncover patterns and
dynamics that are difficult to manually interpret. The Plant
Epitranscriptomic Analysis (PEA) toolkit is a notable example.
It is an integrated RML toolkit specifically designed for plant
epitranscriptome analysis, including the prediction of chem-
ical modifications of RNA (CMRs) such as mP°A. Plant
Epitranscriptomic Analysis employs ML technologies—
specifically, the Positive Samples Only Learning algorithm —
for transcriptome-scale prediction of CMRs in plants. Plant
Epitranscriptomic Analysis has been applied to A. thaliana
and demonstrated high sensitivity and specificity for m°®A
prediction, outperforming existing predictors (Zhai et al.,
2018). Other ML models, such as m°®A pred, predict m°A sites
across the transcriptome with >90% accuracy using se-
quence features and contextual information (Taguchi, 2023).

Machine learning models can be combined in this context
with DL models, like RNNs and Transformers, to capture the
temporal dynamics of RNA modifications during stress recovery.
For example, RNNs trained on time-series m°®A data from heat-
stressed tomato predicted modification “hotspots” on Heat
Shock Protein (HSP) transcripts critical for thermotolerance
(Vakulenko and Grigoriev, 2021). Similarly, DL frameworks
like epitranscriptome analysis using nanopore sequencing
(EpiNano), used with nanopore sequencing data, can simulta-
neously detect multiple RNA modifications. EpiNano is a com-
putational tool designed to detect RNA modifications, partic-
ularly mPA, from nanopore data using a pre-trained ML model to
identify modified bases by analyzing “errors” (Shen et al., 2023).
Integrating epitranscriptomic data with epigenetics, tran-
scriptomics, and proteomics using ML frameworks reveals how

www.jipb.net

Plant memory, omics and artificial intelligence

RNA modifications contribute to gene expression networks
under stress.

Artificial intelligence/ML tools accelerate the discovery of
modification—function relationships and offer predictive insights
into plant resilience mechanisms. Integrating epitranscriptomics
with field phenotyping and genome editing holds promise for
engineering climate-resilient crops. Deciphering this complexity
is @ major challenge due to the isoform diversity and dynamic
nature of RNA modifications. As a result, Al and ML approaches
have become essential. Tools such as 6mAboost, iIRNA-methyl,
and DL models trained on plant-specific data sets are advancing
the prediction of modification sites, functional annotation, and
integration with multi-omics stress response networks (Figure 5)
(Acera Mateos et al., 2023). These tools enable the identification
of stress-specific epitranscriptomic signatures and support the
construction of dynamic regulatory models. In this context, re-
cent advances in multi-epiomics, integrating epigenomics, epi-
transcriptomics, and epiproteomics (protein isoforms and their
modifications in the context of epigenetic regulation), offer a
powerful framework for decoding stress-responsive regulation
and phenotypic plasticity with promising implications for crop
resilience and sustainable agriculture (Miglani and Kaur, 2025).
However, several challenges remain. Current methods for
mapping RNA modifications (e.g., MeRIP-seq) lack single-
nucleotide resolution (Zhong et al., 2023). While nanopore se-
quencing shows promise, ML-driven base calling improvements
are still needed for higher accuracy (Liu et al., 2021b). Moreover,
a holistic understanding of plant stress memory mechanisms
requires combining epitranscriptomic insights with DNA meth-
ylation and histone modification data (Hu et al., 2022).

Altogether, epitranscriptomics represents a promising
frontier in understanding how plants perceive, encode, and
recall stress stimuli. When integrated with DNA methylation,
histone modifications, ncRNAs, and chromatin remodeling,
RNA modifications provide a more holistic view of plant
stress memory systems. These regulatory layers converge
into an integrated epigenomic landscape that coordinates
transcriptional, post-transcriptional, and chromatin-level
modifications, facilitating adaptive stress responses and
long-term molecular imprinting. Future research should
address these challenges and explore applications such as
CRISPR-based epitranscriptome engineering.

Current limitations in Al applications to plant
epigenetics

Artificial intelligence and ML offer powerful tools for the inter-
pretation of complex epigenomic data sets, but several limi-
tations still hinder their effective use in researching plant stress
memory. A major concern is data set bias, as most available
plant epigenetic data are derived from model species. This
taxonomic imbalance limits the generalizability of Al models to
different crops and wild species, many of which may possess
distinct epigenetic architectures and stress response mecha-
nisms (Richards et al., 2017). The temporal dynamics of
epigenetic changes introduce an additional layer of complexity.
In the context of stress memory, current Al approaches often fail
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Figure 5. Integration of RNA modifications in plant gene expression, stress memory, and artificial intelligence (Al)-driven multi-omics
frameworks

This figure illustrates how RNA modifications, specifically N6-methyladenosine (m®A), 5-methylcytosine (m®C), and pseudouridine (¥), influence gene
expression and contribute to stress memory in plants. RNA Modifications and Gene Expression: these modifications generally enhance transcript stability
and translation, particularly when located in the 3" UTR (untranslated region), leading to the activation of stress-responsive genes. The deposition of these
modifications is mediated by “writer” proteins (e.g., MTA, MTB, FIP37), their recognition by “reader” proteins (e.g., YTH-domain proteins ECT2-ECT4), and
their removal by “eraser” proteins (e.g., ALKBH10B). Role in Stress Memory: studies in Triticum aestivum (wheat), Arabidopsis thaliana, and Oryza sativa
(rice) have shown that persistent or recurrent m®A marks, particularly at 3’ UTR sites, are involved in plant stress memory. Al-Driven Multi-Omics
Framework: an Al-driven computational framework, utilizing tools such as 6mAboost and iRNA-Methyl, facilitates the prediction of RNA modification sites
and their functional annotation. This framework enables stress response modeling and the integration of RNA modification data with other multi-omics data
sets. Diagram key: solid arrows represent molecular pathways, while dashed arrows indicate feedback loops and computational inferences.
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to capture the dynamic nature of epigenetic modifications
across different stress exposure timepoints, recovery phases
and transgenerational inheritance. Existing models still treat ep-
igenetic marks as static features, overlooking their regulation and
plasticity during plant development and across generations
(Hemenway and Gehring, 2023). As mentioned above, another
major problem is the interpretability of models, particularly for DL
approaches that often operate as “black boxes”. Such models
may achieve high predictive accuracy, but they typically offer
limited transparency, making it difficult to trace the rationale
behind their predictions. The resulting opacity poses a barrier to
uncovering causal links between specific epigenetic mod-
ifications and stress memory phenotypes, one of the primary
goals in this field of research (Hemenway and Gehring, 2023;
Qamar and Bawany, 2023).

Ecological relevance remains a major limitation in current Al
applications to plant stress research, largely due to the scarcity
of multi-stress data sets. In natural settings, plants often en-
counter simultaneous or sequential stresses (Georgieva and
Vassileva, 2023), but most Al models are trained on simplified
single-stress data derived from controlled environments. This
simplification limits the capacity to capture the complex cross-
talk and dynamic regulation of stress responses. Moreover, most
phenotyping studies, including those using advanced ML-based
imaging systems, are typically conducted in greenhouse con-
ditions that fail to replicate the complexity and variability of field
environments (Singh et al., 2021). At the same time, high-
throughput phenotyping platforms generate vast heterogeneous
data sets that are difficult to integrate, reducing the ecological
interpretability of ML analyses (Gill et al., 2022; Kim et al., 2024).
Technical challenges also arise in the integration of diverse epi-
genomic layers (methylome, chromatin accessibility and histone
modifications) in different temporal and spatial scales. Many
existing algorithms perform well on isolated omics layers, but
falter when tasked with multi-omics integration, which is essen-
tial for modeling the mechanisms of stress memory. In addition,
the high dimensionality of epigenomic data, combined with the
small sample sizes typical of plant studies, increases the risk of
overfitting and statistical noise. Cross-species prediction remains
particularly problematic due to fundamental differences in ge-
nome architecture, methylation patterns and regulatory networks
(Lamke and Baurle, 2017). Transfer learning approaches show
promise, as demonstrated in studies predicting gene function
between A. thaliana and tomato, but require careful adaptation to
account for evolutionary divergence in epigenetic mechanisms
(Singh et al., 2021), which complicates the translation of findings
from model species to agronomically important crops (Moore
et al., 2020).

Finally, benchmarking is complicated by the absence of
standardized data sets and evaluation metrics specific to
plant stress memory research (Salai and Ramapuram, 2024),
making it difficult to objectively compare model performance
and establish best practices in this rapidly evolving field.

In summary, ML approaches hold great promise to un-
cover the epigenetic foundations of plant stress memory. To
consolidate current knowledge on the molecular components
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involved in plant epigenetic regulation under environmental
stress, Table 1 presents an overview of key genes and epi-
genetic marks associated with transgenerational memory.
Each entry includes the type of epigenetic modification,
commonly used detection techniques, and relevant Al-based
tools for data analysis. Certain tools have been directly ap-
plied in the cited studies; others are suggested based on their
compatibility with the corresponding data types. To facilitate
interpretation, the tools mentioned in Table 1 are further
described in Table S1, which provides their core functions
and key references. However, current limitations in data
availability, model interpretability, temporal modeling and
cross-species applicability must be addressed. Integration of
multi-omics data (DNA methylation, ncRNAs and chromatin
modifications) via interpretable Al frameworks will be key for
the identification of adaptive epigenetic markers, which could
advance breeding and genetic engineering strategies and
lead to the development of stress-resilient crops essential for
sustainable agriculture in changing climates.

CONCLUSIONS

Modern agriculture faces two critical challenges: rapid
increase in the worldwide population and climate change.
The increasing demand for food necessitates enhanced
agricultural productivity. However, this increase cannot be
achieved due to intensified anthropogenic activities that
pose environmental risks, such as water pollution, soil
degradation and elevated greenhouse gas concentrations.
Indeed, it is urgent to develop precision agriculture methods
for rapid and cost-effective monitoring of crop health
(Padhiary et al., 2024). These methods can significantly re-
duce the dependency on phytochemicals and excessive
irrigation while sustaining crop vyield. Crops are frequently
exposed to multiple cross-stresses, a situation exacerbated
by global climate change, impacting production yield and
quality and consequently threatening food security (Basso
et al., 2024). However, plants are constantly evolving to
refine their defense mechanisms and resilience, orches-
trated by the interplay of their genetics, biochemistry, and
physiology (Mishra et al., 2024; Dobranszki et al., 2025).
Beyond immediate responses to adverse conditions, plants
acquire and accumulate epigenetic changes that are trans-
ferred or inherited transgenerationally to their progeny
(Gallusci et al., 2023; Guarino et al., 2024). This molecular
memory developed during and in response to the stress
suffered by previous generations primes their offspring to
respond and adapt to the same stress more effectively than
other plants that have not gone through the same experi-
ence (Guarino et al., 2022; Gallusci et al., 2023). Innovative
approaches are needed for the early identification of abiotic
and biotic stressors directly in the field, using portable
and user-friendly instruments. Simultaneously, developing
climate-smart cultivars remains a primary goal in breeding
programs. Genomic selection using high-throughput
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Table 1. Key genes/epigenetic modifications involved in transgenerational memory—detection techniques and

Al-based predictive tools

Journal of Integrative Plant Biology

Molecular detection

Key genes or epi-marks  Type of epigenetic modification techniques Reference Al-based tool for analysis
FORGETTER 1 (FGT1) Chromatin modification ChIP-seq Friedrich DeepHistone,
et al. (2019) ChromHMM

DDM1 Chromation modification ChIP-seq Osakabe et al. (2024) DeepMod, EpiPredictor

MET1/2 DNA methylation WGBS or methylation- Yang et al. (2020) Methyl-IT*, MethyQA
specific PCR

DRM1/2 DNA methylation WGBS or methylation- Kinoshita and Methyl-IT, Methylpy
specific PCR Seki (2014)

NREP1 DNA methylation WGBS or methylation- Lépez Sanchez MethylSeekR, DeepCpG
specific PCR et al. (2016)

H3K4 and H3K27
H3K4me2/3

HDA6
H3K36

H3K14

CHR5

IncRNAs

mCA of multiple mRNAs

m°A of multiple mRNAs
miRNAs and phasiRNAs

Histone trimethylations
Histone demethylation

Histone deacetylation
Histone methylation

Histone acetylation
Chromatin remodeling

Genetic and epigenetic effects
mRNA methylation and post-

transcriptional regulation

DNA and RNA methylation
DNA methylation

ChIP-seq and RNA-seq

ChIP-seq, ChIP-PCR, and
RNA-seq

ChIP-PCR and RNA-seq
ChIP-PCR

Western blot and HAT assay

ChIP and MNase-seq

RNA-seq

RNA-seq, mPA-RIP-seq,
GMUCT-seq, RT-PCR and
dot blot

m°C-RIP-seq and RNA-seq
RNA-seq and methylome

Zha et al. (2021)
Hou et al. (2015)

Wang et al. (2017)
De-La-Pefa

et al. (2012)
Dubey et al. (2019)
Zou et al. (2017)
Maleki et al. (2025)
Prall et al. (2023)

ChromHMM, Epic2
DeepHistone, ChroModule

DESeq. 2*, DiffBind
Chromoformer,
DeepHistone
DeepHistone
NucleoATAC, DANPOS
PLncPRO, LncADeep

MACS2*, DESeq. 2*,
m6Anet

Cui et al. (2017) iRNA-m°C, m®UPred
Romero-Rodriguez  miRDeep-P2, PHASIS
et al. (2023)

Note: The references cited provide the original identification or functional characterization of the listed genes or epigenetic marks. Bolded Al
tools marked with an asterisk (*) have been used in the cited studies; the remaining tools are suggested based on compatibility with the data

types generated in these papers.

Abbreviations: Al, artificial intelligence; ChlP-seq, chromatin immunoprecipitation and sequencing; ChIP-PCR, chromatin immunoprecipitation-
polymerase chain reaction; GMUCT-seq, genome-wide mapping of uncapped and cleaved transcripts by sequencing; HAT assay, histone
acetyltransferase assay; MNase-seq, micrococcal nuclease digestion combined with high-throughput sequencing; m°A-RIP-seq, mfA RNA
immunoprecipitation followed by high-throughput sequencing; m°C-RIP-seq, m°C RNA immunoprecipitation sequencing; RNA-seq, RNA se-

quencing; WGBS, whole-genome bisulfite sequencing.

genotyping integrated with sensor-phenomics, speed
breeding and digital twin technologies represents the fore-
front of modern crop breeding. Another emerging frontier is
the development of virtual systems employing advanced
software adjustments and network support to optimize
crop productivity by simulating environmental conditions
and agronomic treatments, providing valuable insights for
decision-making. However, implementation of such in-
tegrative approaches remains hard for breeders and small-
and medium-sized enterprises due to their complexity.
Cyber-agricultural systems (CAS) could be designed to
mitigate the negative effects of climate change and meet the
increasing food demand through ultra-precision agriculture
(Sarkar et al., 2024). These systems may integrate: (i)
innovative approaches such as phenotyping to gather
detailed crop data; (ii) modeling (advanced breeding meth-
odologies to predict crop performance and implementation);
and (jiii) decision-making tools to optimize breeding and
agricultural management. CAS will optimize agronomic
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treatments at both plant and field levels, replacing heavy
machinery with smaller, lightweight, multifunctional plat-
forms. This ultra-precision approach promises higher scal-
ability, enhanced functionality and efficient management
with reduced operational costs due to enhanced resilience
to climate extremes and increased autonomy and
profitability.

Enhancing our understanding of the relationship between
this stress memory and its implications for the plant pheno-
type and agronomic performance through the identification of
epigenetic marks will enable the implementation of bio-
technological tools in plant breeding and genetic engineering
through the (de)activating epialleles associated with desirable
traits (Sampson et al., 2024). The effective identification of
these marks is highly reliant on experimental plans that use
multi-omic approaches (such as stress and non-stress bio-
assays in plants, DNA and RNA methylome, RNA and ncRNA
transcriptome, chromatin status, histone marks, and plant
phenomics), in which Al based on ML and DL may play a
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prominent role in identifying plant memory molecular patterns
in large-scale data sets (Heping et al., 2024; Peng and Rajjou,
2024; Yadav et al., 2024). With these multi-omics data sets,
systematic Al approaches are applied for data preprocessing
(quality control, data sufficiency, and normalization), quanti-
fication of gene expression and their clustering, development of
Al-based models to identify the connection point between ep-
igenetic memory and plant phenotype (Benlioglu et al., 2024;
Yin et al., 2024). Although, epigenetic data appear to be quite
complex and variable, ML and DL methods or models have
been consolidated and allow these patterns and their con-
nections to be successfully identified in multiple contexts (Gill
et al., 2024; Heping et al., 2024). Thanks to these recently
achieved advances in Al, we currently possess extensive and
highly accurate knowledge of plant epigenetics in the face of
stress conditions as well as other non-stressful conditions. The
developing low-cost epigenetic sensors for field use will pro-
vide practical tools to monitor epigenetic changes in crops
under real-world conditions, which could revolutionize pre-
cision agriculture and plant breeding efforts. In addition, es-
tablishing crop-specific epigenetic databases will enable cen-
tralized resources to organize and share the growing volume of
epigenetic data in different crops, facilitating comparative
analyses and the development of more robust Al models.
Furthermore, investigating the transgenerational inheritance of
epigenetic memory remains a crucial area for understanding
the long-term impact of environmental stresses on plant
adaptation and evolution.

In conclusion, our study highlights: (i) the role of epigenetic
marks in controlling and fine-regulating plant phenotypes, and
the importance of applying Al to process multi-omics data to
identify patterns associated with resistance to adverse
conditions; and (ii) the potential of applying transgenerational
priming to shape epigenetic marks to improve commercial
cultivars' abilities to face stress conditions in the field.

GENERATIVE Al USAGE
STATEMENT

During the preparation of this work, the authors utilized
Gemini Al tool for the purpose of polishing the text, en-
hancing its fluency and readability and refining the nuances
of the language. After using this tool, the authors carefully
reviewed and revised the content where necessary, and take
full responsibility for the final version of the publication.
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