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Expanding data availability for tree-level 
remote sensing-based forest inventories 

Abstract 

Precision forestry seeks to optimize forest management by using site-specific 

information at fine spatial scales, often supported by remote sensing. Implementing 

this framework requires detailed ground-truth data of forest attributes and 

conditions, but the collection of such information across large areas is limited by 

cost and scalability. Complementary data sources can help address this demand by 

expanding the availability of tree-level information. This thesis explores how 

different data sources, namely close-range laser scanning, airborne laser scanning, 

harvester production reports, and synthetic point clouds, can expand data availability 

for precision forestry. Paper I develops and evaluates a method for deriving stem 

attributes such as diameter, taper, and volume from car-mounted mobile laser 

scanning acquired along forest roads, demonstrating its potential as an efficient 

source of tree-level reference data. Paper II assesses the suitability of mobile laser 

scanning as an alternative to conventional field plots for training airborne laser 

scanning-based models, showing that both sources can support tree-level modelling 

of diameter and volume. Paper III presents a pipeline for automatic tree species 

annotation by linking airborne laser scanning data with harvester production reports, 

demonstrating that data derived from forest operations can reduce the need for field 

surveys or manual labelling in species classification tasks. Finally, Paper IV 

introduces a semi-empirical simulation framework for generating synthetic stem 

defects in terrestrial laser scanning point clouds, using them to train a convolutional 

neural network for crook detection and discussing the implications of simulation. 

Taken together, the four studies show that complementary data sources have the 

potential to serve as ground-truth information in forest assessments, providing data 

of sufficient quality and quantity to support remote sensing-based forest inventories 

at tree-level. This thesis underlines both opportunities and limitations of these 

approaches, highlighting their relevance for integration into inventory frameworks. 

Keywords: Precision forestry, remote sensing, forest inventory, laser scanning, 

mobile laser scanning, terrestrial laser scanning, harvester production reports, 

synthetic point clouds. 

  



Förbättring av tillgången på data för 
fjärranalysbaserade skogsinventeringar på 
trädnivå 

Sammanfattning 

Skogsskötsel kan optimeras genom att använda geografisk information med hög 

upplösning som skapas med fjärranalys. För detta behövs detaljerade referensmätningar, 

men tillgången är begränsad om manuella mätmetoder används. I denna avhandling 

utforskas nya metoder för insamling av referensdata, såsom markbaserad och flygburen 

laserskanning, skördardata, och syntetiska punktmoln. I den första studien utvecklas och 

utvärderades en metod för att beräkna trädstammars egenskaper med laserskanning från 

en bil som körs på skogsbilvägar. Denna teknik vara effektiv för att samla in träningsdata 

till fjärranalysmetoder. I den andra studien undersöktes lämpligheten att använda mobil 

laserskanning för att träna metoder som tillsammans med flygburen laserskanning 

används för att skapa trädkartor. Utvärderingen visade liknande resultat om referensdata 

från mobil laserskanningen respektive manuell fältinventering användes. I den tredje 

artikeln presenteras en beräkningskedja för automatisk registrering av trädslag genom att 

länka samman data från flygburen laserskanning med georefererade skördardata. På detta 

sätt kunde en skördare användas för att automatisk träna en metod som i kombination 

med flygburen laserskanning skapar trädkartor med trädslagsinformation. I den fjärde 

studien introducerades en semi-empirisk simuleringsmetod för att skapa syntetiska data 

från markbaserad laserskanning. Syntetiska data kunde användas för att träna neurala 

nätverk som detekterar krokar på trädstammar med markbaserad laserskanning. Det var 

möjligt att dra slutsatser om hur realistiska simuleringarna behöver vara för att de ska 

vara användbara för att träna metoder som detekterar stamdefekter i data från en verklig 

laserskanning. I de fyra studierna visas att kompletterande datakällor har en potential att 

tjäna som referensdata i skogsinventeringar. Detta eftersom de levererar data med 

tillräcklig kvalitet och kvantitet för att kunna användas i olika tillämpningar, inklusive 

modellering och beslutsstöd i skogsbruket. Denna avhandling belyser både möjligheter 

och begränsningar med dessa angreppssätt och framhäver deras relevans för integration 

i inventeringsramverk. 

 

Nyckelord: precisionsskogsbruk, fjärranalys, skogsinventering, laserskanning, mobil 

laserskanning, markbaserad laserskanning, skördardata, syntetiska punktmoln.  
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1. Introduction 

In a world with increasing pressure on natural resources, forestry has 

become more complex, balancing multiple objectives such as biodiversity 

conservation, timber production, climate change mitigation, and recreational 

services. Meeting these different and sometimes conflicting goals requires 

detailed and accurate information to optimize decision-making and resource 

allocation. In this context, precision forestry refers to forest management 

conducted at high spatial and temporal resolutions, enabling optimal 

decisions at fine scales, such as the level of individual trees or map pixels. 

Rather than a single practice or technology, precision forestry represents a 

change in the management framework, in which decisions are based on site-

specific conditions, often measured with remote sensing, with help of data 

analysis, modelling techniques, and automation (Venanzi et al. 2023). In a 

potential precision forestry management framework, remote sensing data can 

be used for detailed site mapping, revealing tree growth rates, soil conditions 

and topography (Raigosa-García et al. 2024). Later, management operations 

can use such information for targeted silvicultural treatments, such as 

fertilization, thinning and harvesting (Görgens et al. 2020; Salmivaara et al. 

2020). 

To support these practices, high-resolution data at multiple spatial scales 

is required. For example, remote sensing technologies such as Light 

Detection and Ranging (LiDAR) and imaging sensors mounted on different 

platforms can provide essential information on forest structure and 

composition (Valbuena et al. 2020; Ehbrecht et al. 2021). When combined 

with statistical tools and decision support systems (Cattaneo et al. 2024), 

these data sources can improve the description of forest dynamics, helping 

in tasks such as growth modeling (de Oliveira et al. 2021; Appiah Mensah et 

al. 2023; Puliti et al. 2023), species classification (Fassnacht et al. 2016; Li 

et al. 2024; Ma et al. 2024), and biomass estimation (Brede et al. 2022; 

Schäfer et al. 2024). Moreover, as forest management progresses towards a 

precision forestry paradigm, attributes beyond traditional stand-level 

averages are gaining importance. For instance, detailed descriptions of 

individual tree’s physical characteristics - such as crown structure (Terryn et 

al. 2022), leaf angulation (Li et al. 2018), and wood properties (Pehkonen et 

al. 2025) - are important for both daily operational planning and long-term 
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breeding programs (Dungey et al. 2018; Jin et al. 2021), influencing forest 

productivity, resilience, and timber quality.  

However, the implementation of precision forestry at scale remains 

challenging, despite the advancements in remote sensing technologies and 

analytical methods. Some devices often used for assessing forest attributes, 

such as Terrestrial Laser Scanning (TLS) systems, are highly effective for 

experiments and conducting small surveys but often lack the scalability 

needed for the operationalization, as data collection with those might still be 

time-consuming and resource-intensive (Calders et al. 2020). In other words, 

some sensors are often unfeasible for collecting fine-scale attributes across 

large, forested areas.   

At the same time, integrating artificial intelligence (AI) into forest 

management has significantly increased the demand for high-quality 

datasets, as these models require substantial amounts of data to effectively 

learn patterns and make accurate predictions. Consequently, the lack of 

training datasets has been a bottleneck in the deployment of AI-based 

solutions for forest management (Kattenborn et al. 2021). 

Thus, precision forestry must increasingly rely on data collection methods 

that can provide detailed insights on an operational scale. These methods 

may combine remote sensing technologies mounted on mobile platforms, the 

use of georeferenced data from forestry machinery, or synthetic datasets to 

complement real-world observations. By leveraging such diverse 

approaches, we can bridge the gap between research-level precision forestry 

technologies and their large-scale implementation in forest management. 

1.1 Remote Sensing in Forestry 

Remote sensing is the science and art of extracting information about 

objects, areas, or phenomena from data collected by sensors that are not in 

direct contact with them (Lillesand et al. 2015). When it comes to its usage 

in forestry, remote sensing methods provide means of efficiently and 

repeatably measuring ecosystems across multiple spatial and temporal scales 

(Lechner et al. 2020). By doing so, remote sensing has significantly 

advanced forest monitoring and management capabilities (Fassnacht et al. 

2024). 

Remote sensing techniques can be broadly divided into passive and 

active. Passive sensors rely on capturing reflected radiation, commonly using 



21 

 

the sun as the radiation source. Common examples include multispectral and 

hyperspectral sensors mounted on satellites or airplanes, which can be used 

to assess conditions such as forest health, species composition, and structure 

through vegetation indexes and spectral classification (Lechner et al. 2020; 

Jafarbiglu & Pourreza 2022). 

On the other hand, active remote sensing, using techniques such as 

LiDAR and Synthetic Aperture Radar (SAR), emits their own radiation 

towards targets and measures the reflected signals. LiDAR has emerged as a 

promising alternative for forest assessments at different scales due to its 

ability to capture the three-dimensional (3D) structure of vegetation with 

high spatial resolution and accuracy (Lovell et al. 2003; Hopkinson et al. 

2004). This active remote sensing technique uses light pulses to generate 3D 

point clouds that can describe different layers of the forest cover, which 

makes it particularly valuable in forestry, where understanding vertical 

structure, tree size, and spatial arrangement is essential (Valbuena et al. 

2020). Over the past decades, laser scanning has been widely used in forest 

research, supporting applications from biomass estimation to habitat 

modeling and structural complexity analysis (Liang et al. 2022). 

More recently, developments in platforms for sensors have enhanced the 

applicability of remote sensing. Unmanned Aerial Vehicles (UAVs) and 

terrestrial platforms, equipped with optical or LiDAR sensors, bridge the gap 

between large-area airborne surveys and detailed, site-specific observations. 

These systems offer high spatial resolution, rapid deployment, and 

accessibility to remote or challenging terrains, making them increasingly 

valuable tools for precision forestry practices (Guimarães et al. 2020; Liang 

et al. 2022; Walker & Dahle 2023).  

Nevertheless, all remote sensing and remote sensing-derived 

measurements are subject to errors and uncertainties that can influence their 

interpretation and application. For instance, uncertainties may come from, 

although not limited to, the measurement system and the methods used to 

process data and translate it into products for different users (Goulden & 

Hopkinson 2010). For example, LiDAR-derived tree height estimates can be 

biased by beam divergence and incidence angle of laser pulses on the treetop 

(Hopkinson 2007). Thus, as precision forestry practices expand, correctly 

leveraging remote sensing data while accounting for sources of uncertainty 

becomes integral to improving the efficiency and effectiveness of forest 

management interventions (Persson et al. 2022). 
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1.2 Close-range Laser Scanning 

Traditionally, forest inventories have been based on attributes that can be 

efficiently measured manually with simple tools, such as diameter at breast 

height (DBH), and total height. While foundational to forest inventory and 

widely used in both research and management, these field-based methods 

offer a coarse and often simplified representation of tree form and structure. 

Detailed traits such as taper, crown shape, branching patterns, bark 

morphology, or leaf traits were typically estimated subjectively, assessed 

destructively, or simply omitted due to the challenges of measuring them in 

the field (Liang et al. 2022). 

Close-range laser scanning, as well as other close-range remote sensing 

techniques, come as a paradigm shift in how trees are measured, making it 

possible to observe fine-scale traits that were not measurable before (Disney 

2019). These techniques, also referred to as proximal sensing, can be 

described as when remote sensing instruments are used from ground-based 

or low-altitude platforms, standing relatively near the target objects - 

typically within a range of few meters to a few hundred meters. While there 

is no universally defined distance threshold, this category of remote sensing 

generally includes systems like TLS, Mobile Laser Scanner (MLS), and low-

flying UAVs. Their usage in forestry has grown significantly, and their 

potential for forest assessments is well documented in the literature (Liang 

et al. 2022; Molina-Valero et al. 2025). 

 Close-range remote sensing also includes passive optical techniques, 

such as high-resolution RGB imagery. For example, Kim et al. (2022) trained 

convolutional neural networks (CNNs) to recognize species-specific bark 

traits from high resolution photography. The CNN classified 42 tree species 

by bark texture with approximately 90% overall accuracy, identifying traits 

such as blisters, lenticels, and vertical fissures in the bark as determinant for 

species identification. 

Amongst close range-remote sensing techniques, TLS has become a 

prominent tool for the characterization of forest structure (Arrizza et al. 

2024), timber quality, and availability of fuel in different forest strata 

(Hillman et al. 2021; Wallace et al. 2022; Olofsson & Holmgren 2023). For 

instance, Moriguchi (2023) highlighted the potential of multi-view TLS 

surveys for the precise estimation of a tree’s fractal dimension, while Terryn 

et al. (2020) used quantitative structure models (QSMs), constructed from 

TLS point clouds, to determine structural features from the tree crowns and 
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later use those to discriminate between tree species. On a higher level, Yang 

et al. (2023) highlighted the role of TLS as a rapid and reliable method for 

measuring leaf angles, revolutionizing the current ability to measure such 

fine-scale attribute of the forest crown. Rather than single-time 

measurements, TLS has also been used for continuous monitoring of the 

diurnal variation of leaf water content (Junttila et al. 2019) and structural and 

phenological dynamics of forest canopy (Campos et al. 2021).  

Despite these capabilities, TLS surveys can be time- and labor-intensive, 

often requiring similar effort as traditional fieldwork. Thus, Mobile Laser 

Scanning (MLS) has emerged as a more efficient alternative to static TLS. 

MLSs leverage mobile platforms, such as ground vehicles, for rapidly 

acquiring high-resolution data over larger forest areas. These systems offer 

a trade-off: while they may not reach the same levels of geometric precision 

as a TLS, they allow for broader spatial coverage with reduced acquisition 

time (Hunčaga et al. 2020). As such, MLSs are often used for high-resolution 

forest monitoring of larger areas. Amongst different MLSs, Personal Laser 

Scanners (PLSs) – laser scanning systems carried in backpacks or handheld 

devices – are often used for plot-level surveys. These systems allow 

navigation around trees and understory, producing close-range point clouds 

that can be used for different purposes, such as tree detection, stem attribute 

measurement, tree species classification (Liu et al. 2022), and fuel type 

characterization (Hoffrén et al. 2024). 

Because PLS systems are frequently operated in environments where 

GPS/GNSS signals are obstructed, such as under forest canopy, accurate 

sensor positioning must rely on other techniques such as Simultaneous 

Localization and Mapping (SLAM). SLAM (Durrant-Whyte & Bailey 2006) 

is a technique used to estimate a platform’s own position while 

simultaneously constructing a map of its surroundings relying on onboard 

sensors, such as Inertial Measurement Units (IMUs), optical cameras and 

LiDAR (Qian et al. 2017; Wu et al. 2025). It works by identifying and 

tracking stable geometric features across successive observations, allowing 

the system to infer both its movement and the surrounding area over time. In 

other words, SLAM uses the estimated sensor position to build a map, and at 

the same time it uses the evolving map to infer the sensor’s position (Aguiar 

et al. 2020). As measurements accumulate, small localization errors can 

result in positional drift. Despite these limitations, modern SLAM 

implementations have been successfully adapted from indoor and urban 
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robotics to complex forest environments, enabling accurate georeferencing 

and map reconstruction without relying on external GNSS input (Holmgren 

et al. 2017; Kukko et al. 2017; Pierzchała et al. 2018; Hyyppä et al. 2020c). 

While SLAM is particularly important in GPS/GNSS denied 

environments, platforms that operate in more open conditions can benefit 

from satellite positioning, which tends to be more stable and provides global 

georeferencing. In this context, researchers have leveraged ground vehicles 

as platforms for laser scanning systems to further scale up data acquisition. 

By mounting LiDAR sensors on moving vehicles such as cars, all-terrain 

vehicles (ATVs), or even tractors and forestry machines, data collection 

becomes significantly more efficient. Such a combination of sensor and 

platform enhances data collection capabilities as vehicles can usually cover 

larger areas in shorter times when compared with PLSs. For instance, instead 

of measuring scattered field plots, a surveyor could drive along several 

kilometers of roads through a forest and capture data on thousands of trees 

in a single day (Pires et al. 2024). 

The choices of sensor and platform depend on several factors, such as 

mission scope, hardware availability, and desired autonomy. For instance, 

Pierzchała et al. (2018) and Sheng et al. (2024) used consumer grade 

Velodyne VLP-16 LiDAR scanners on small, unmanned ATVs to extract 

DBH of individual trees, reaching accuracies from 1.48 cm to 3.48 cm. In 

parallel, Liang et al. (2018b) and Bienert et al. (2018) mounted survey grade 

systems on ATV and car, respectively, allowing for heavier and more 

advanced hardware. In these cases, the system produced point clouds with 

improved geometric accuracy. However, higher point cloud accuracy is not 

always a synonym for accurate estimation of tree attributes, with the 

algorithms used for extracting such variables playing an equally significant 

role. For instance, even though Bienert et al. (2018) used a professional 

survey grade MLS for data collection, the method chosen for attribute 

estimation required a denser point cloud. Thus, the accuracy obtained by 

using this instrument - 3.7 cm Root Mean Square Error (RMSE) in DBH 

estimation – was similar to the ones obtained by consumer grade systems. 

This highlights that both hardware and data processing methods play equally 

important roles in determining the final accuracy of forest structural metrics. 

From a hardware perspective, another important factor influencing the 

accuracy of LiDAR-derived vegetation and stem measurements is beam 

divergence, which determines the footprint size of the laser beam at a given 
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distance. A larger divergence produces a wider footprint, reducing peak 

pulse power concentration and increasing the chances of a laser beam 

interacting with multiple surfaces such as foliage, branches, and background 

(Hopkinson 2007). Beam divergence affects the resolution of fine-scale 

features and should be carefully considered depending on forest type and 

application (Calders et al. 2020). In addition, wider footprints caused by 

either widening the beam or increasing flying altitude can reduce the 

maximum canopy return heights in tall stands (Hopkinson 2007). These 

effects arise because reduced pulse power can delay the triggering of returns 

within vegetation, allowing the laser beam to penetrate deeper into the forest 

cover before generating a return. Measurement errors are also influenced by 

surface curvature and angle of incidence, both of which shape the returned 

signal. Beyond beam geometry and power concentration, the way echoes are 

detected can affect point cloud accuracy, as detection strategies respond 

differently to distorted returns from sloped or curved surfaces (Forsman et 

al. 2018).  These sensor- and configuration-related effects can cause 

systematic differences in measured canopy structure when comparing 

different datasets, which may be mistaken for real ecological variation if not 

accounted for during analysis. 

In addition to ground-based platforms, UAVs have increasingly been 

used as aerial platforms for LiDAR and optical sensors in close-range 

applications (Jaakkola et al. 2017). Their ability to rapidly cover relatively 

large areas, access difficult terrain, and acquire high-resolution data has 

made them popular in forestry (Sun et al. 2023), with applications that 

include forest health monitoring (Ecke et al. 2022), mapping of forest 

structure (Liu et al. 2018; Almeida et al. 2019) and individual tree detection 

(Straker et al. 2023). Depending on the flight’s altitude and trajectory, UAVs 

can operate right above or even fly below the canopy to reconstruct tree 

stems and understory conditions with level of detail comparable to terrestrial 

methods (Hyyppä et al. 2020c; Kuželka et al. 2020; Puliti et al. 2020). 

Nonetheless, UAV acquisitions are sensitive to flight stability, GNSS signal 

quality, and environmental conditions such as wind, all of which can reduce 

the accuracy of resulting data (e.g. point clouds) and increase variability 

between missions. 

UAV-mounted laser scanners (UAV-LS) and optical sensors have been 

applied in a wide range of forestry tasks. For example, Kattenborn et al. 

(2019) used UAV optical data as a semi-automatic reference data acquisition 
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method to map woody invasive species using Sentinel-1 and 2, concluding 

that, in certain cases, UAV-based reference data acquisitions can be a 

promising alternative to traditional field surveys. Additionally, Brede et al. 

(2022) highlighted the role of UAV-LS to scale Above Ground Biomass 

(AGB) measurements across large areas with reduced fieldwork 

requirements, being a promising data collection tool for calibration and 

validation sites.  

In parallel, researchers and practitioners have been exploring the potential 

of UAV systems that fly below the forest canopy for providing in-situ 

measurements of different forest attributes. In that regard, Hyyppä et al. 

(2020a) tested a remotely piloted under-canopy UAV-LS. With the system, 

the authors detected 84% - 93% of the trees and estimated DBH and stem 

curves with RMSEs from 0.60 cm - 0.92 cm and 1.2 - 1.4 cm, respectively, 

depending on the forest type being analyzed. In an attempt to automate data 

collection even further, Liang et al. (2024) presented a fully autonomous 

under canopy UAV-LS. The system was used for estimation of tree-level 

attributes, achieving RMSE of 5.13 cm for DBH and 5.18 cm for stem 

curves. When comparing these accuracies with the ones obtained by using 

TLS systems, the authors noticed that the lower performance of UAV-LS 

was largely due to reduced geometric accuracy of the point clouds. In UAV 

systems, this can be affected by GPS/GNSS signal quality, flight stability 

and trajectory, SLAM algorithms, among other factors. In addition, UAV-

LS platforms often carry smaller sensors, which may differ from TLS in 

terms of beam divergence and pulse energy, further influencing 

measurement precision. Addressing these limitations could significantly 

improve tree attribute estimation with UAV-LS.  

In close-range laser scanning techniques, uncertainties may come not 

only from sensors and platforms used, but also from the interaction between 

the laser beam and the forest structures. Occlusion by understory vegetation 

or nearby trees stems can lead to incomplete point cloud coverage, 

particularly for lower stem sections and inner crown structures (Hyyppä et 

al. 2020b). Variations in scanning protocol, such as the number and position 

of scan locations or the trajectory and speed of MLS/PLS platforms, directly 

influence point density and coverage of resulting point clouds, affecting tree 

detection and the accuracy of fine-scale features (Gollob et al. 2019; Torralba 

et al. 2022). Environmental factors such as branch movement caused by wind 

can distort how trees are represented in point clouds (Vaaja et al. 2016; 



27 

 

Pyorala et al. 2018). On the processing side, assumptions such as the perfect 

circularity and straightness of stems in cylinder fitting can bias results in 

stands with irregular forms or leaning trees.  

Addressing these challenges requires acquisition protocols and 

processing workflows that explicitly account for error sources. For example, 

Astrup et al. (2014) proposed a methodology for adjusting for occlusion in 

inventories based on single-scan TLS setups, enabling stand-level volume 

estimates that are comparable to conventional inventory approaches. Still, 

the lack of robust, repeatable workflows for processing point clouds, with 

stable accuracy across different forest conditions, is a barrier for the 

implementation of close-range technologies in an operational context. In 

practice, there are nearly as many processing workflows as there are 

combinations of sensors, platforms, and forest conditions (Liang et al. 

2018a). Each study tends to develop its own pipeline, tailored to specific 

point cloud characteristics, scanner configurations, or target variables, 

making it difficult to generalize or replicate results across different contexts.  

For example, individual tree detection and stem attribute estimation can 

be approached using a wide variety of methods, ranging from geometric rules 

to complex data-driven models. Often, tree detection in ground-based point 

clouds involves shape-based algorithms, such as cylinder fitting, where 

vertical point clusters are identified and modeled as cylindrical or circular 

sections, typically at breast height (Olofsson & Holmgren 2016; Hyyppä et 

al. 2022; Muhojoki et al. 2024). This technique is most effective in sparse, 

well-structured plots but often struggles with leaning stems, overlapping 

crowns, or occlusion near the ground (Hyyppä et al. 2020b). Similarly, DBH 

estimation is commonly performed using single-slice circle fitting (Olofsson 

et al. 2014), where a cross-sectional cut of the stem at around 1.3 m is 

analyzed to fit a circle. While efficient and interpretable, these methods can 

become unreliable when stems are obscured by understory vegetation, or 

when point density is insufficient. Additionally, more advanced approaches 

such as QSMs fit a series of cylinders along the full stem and branches, 

enabling the estimation of DBH, taper, and volume simultaneously 

(Raumonen et al. 2015; Brede et al. 2019; Bornand et al. 2023).  

As an alternative to heuristic methods, deep learning has increasingly 

been used for processing point clouds. This branch of machine learning, 

based on artificial neural networks, passes information through multiple 

layers that learn progressively more abstract representations of the input. By 
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employing many hidden layers and connections, these architectures can 

capture complex relationships in the data. Such capabilities make deep 

learning a powerful tool in remote sensing of forests, where learning spatial 

patterns from data is essential. (Kattenborn et al. 2021; Hamedianfar et al. 

2022). For instance, semantic segmentation models can be used to classify 

each point into classes like stem, leaves, branches, and ground, while 

instance segmentation models separate the forests into individual tree point 

clouds (Wielgosz et al. 2024).  

Recent advancements include frameworks such as ForAINet (Xiang et al. 

2024), which performs both semantic and instance segmentation of airborne 

LiDAR data accurately distinguishing tree components. The model achieved 

an F1-score above 85% for individual tree detection and a mean Intersection 

over Union (IoU) of over 73% across five semantic classes: ground, low 

vegetation, stems, live branches, and dead branches. From these 

segmentations, it was possible to derive accurate biophysical parameters 

such as tree height, crown diameter, crown volume. In parallel, 

SegmentAnyTree (Wielgosz et al. 2024) was developed as a sensor-agnostic 

model for individual tree segmentation, transferable across UAV-LS, TLS, 

and MLS datasets. The model showed consistent performance for point 

clouds with densities above 50 points/m² and remained effective down to 10 

points/m² using random subsampling as an augmentation strategy. Together, 

such models show how deep learning enables scalable, flexible, and high-

resolution analysis of 3D forest structure. 

 Given such a variety of ways of processing point clouds, there is a 

growing effort within the research community to make processing tools more 

accessible and user-friendly. For instance, Murtiyoso et al. (2024) identified 

24 tools designed for processing ground-based point clouds in forest 

applications, of which 20 are open source and 2 are freely available as 

compiled software. One example is 3DFin (Laino et al. 2024), a cross-

platform, open-access tool designed for automatic forest inventories using 

TLS, MLS, or photogrammetric point clouds. It allows users to extract key 

features such as DBH, total height, and tree position with high accuracy, and 

can be integrated as a plugin in other software or used as a standalone 

application. 
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1.3 Operational Machinery as a Data Source for 
Precision Forestry 

Mechanized forest operations produce large volumes of potentially 

valuable data. However, the information collected daily in operations such 

as harvesting is sometimes underused as reference data for remote sensing 

applications. For example, harvester production reports (HPRs) contain 

detailed records of harvested trees, including species, stem diameter and 

length, assortments, taper, and even indications of tree health or damage. 

These data are gathered as part of routine operations and could be more 

integrated into remote sensing-based modelling, as the precision and 

consistency of harvester data make it a potentially rich source of ground 

truth.  

In the last decade, studies have demonstrated the practical value of 

integrating harvester data with remote sensing for forest modelling 

(Holmgren et al. 2012). More recently, Saukkola (2019) used tree-level data 

recorded by harvesters in Southern Finland to developed models to predict 

forest inventory attributes using ALS (Aerial Laser Scanning) and aerial 

imagery. By locating trees through harvester head positioning, they achieved 

accurate predictions of basal area-weighted mean diameter and height 

(RMSEs ranging from 10-11% and 6-8%, respectively), demonstrating the 

use of harvester data as reliable ground truth. Similarly, Noordermeer et al. 

(2023) used harvester data as reference to impute stem frequency 

distributions through various ALS-based inventory approaches. They found 

that area-based methods yielded the highest accuracies for key variables like 

DBH, tree height, and volume distributions. In a fully operational context, 

Söderberg et al. (2021) used standardized harvester outputs from cut-to-

length (CTL) machines in Sweden, combined with ALS data, to predict 

stand-level forest metrics such as stem volume and basal area. Their 

approach achieved RMSEs between 3% and 15% and generated stem 

diameter distributions, useful for applications such as yield prediction and 

bucking simulations. Finally, Suvanto et al. (2025) used data from over 

10,000 clear-cut stands in Finland to model and map the risk of Norway 

spruce (Picea abies (L.) H. Karst.) root rot. By linking rot indicators derived 

from bucking patterns recorded by harvesters with spatial environmental 

data, they identified key drivers of rot occurrence and produced risk maps 

for operational use.  
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Together, these studies illustrate how HPRs can serve as a powerful and 

scalable data source for precision forestry when properly integrated with 

remote sensing. Nevertheless, measurement precision in harvester systems 

can vary with machine calibration, operator, and log handling, which means 

that such datasets can carry their own uncertainties. For example, variation 

in how logs are positioned in the harvester head can introduce errors in 

diameter and length measurements, which may propagate into any models. 

More advanced approaches, such as mounting LiDAR sensors on forestry 

machinery, hold significant potential for real-time decision support (Pohjala 

et al. 2025). The integration of remote sensing into operational machinery 

can transform conventional activities into surveys, maximizing data 

collection (Faitli et al. 2024). For example, Gollob et al. (2023) successfully 

tested a LiDAR scanner mounted on a cable yarder carriage during logging 

operations in mountainous terrain. By scanning from the moving carriage, 

they automatically detected over 92% of trees within typical harvesting 

corridors, achieving RMSEs in DBH estimation ranging from 1.59 cm to 

2.23 cm, depending on site conditions. Similarly, Sagar et al. (2024) 

introduced the use of onboard LiDAR integrated into CTL harvesters to 

detect stem defects. Their trials demonstrated high accuracy despite using 

only few real-world trees, showing that integrated LiDAR sensors can act as 

complementary technology for near real-time decision making, facilitating 

the work of the machine operator and forest managers. 

Despite the most recent advancements, fully leveraging operational 

machinery for data collection still requires further development. For 

instance, robust and cost-efficient hardware that can withstand harsh 

environments is necessary if integrating LiDAR sensors into e.g. cable 

yarding. In addition, efficient protocols for data integration, analysis, and 

decision support systems tailored specifically for precision forestry are 

needed to effectively use the generated information. As these technological 

and methodological challenges are addressed, machinery-integrated 

solutions could represent an additional step towards achieving a precision 

state in forest management. 
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1.4 Synthetic Data Generation 

Synthetic data refers to data that is simulated or generated based on a set 

of predefined assumptions or rules, with the aim of replicating or 

approximating real-world scenarios. This is especially relevant for 

supervised learning, where the scarcity of real-world data can hinder model 

training (Westling et al. 2021; Schäfer et al. 2024). Through simulations, 

virtual trees or forests can be created with predefined characteristics, 

allowing researchers to generate extensive, controlled datasets without costly 

or logistically demanding field campaigns (Lines et al. 2022; Kulicki et al. 

2025). 

Synthetic laser scanning simulations can be broadly categorized into 

different types. The so-called physical models simulate the laser and target 

interaction, making them suitable for studying the influence of instrument 

settings such as beam divergence or pulse repetition frequency. Geometrical 

models attempt to replicate tree and forest structure using mathematically 

defined shapes, such as cylinders, allowing precise control over structural 

parameters. Statistical models generate vegetation structure based on 

probabilistic distributions of different attributes, often calibrated from field 

or inventory data. Finally, imputation models insert real-world 

measurements of trees or forests into simulated scenes, preserving realism in 

structure while allowing experimental control. Many modern simulators 

combine these approaches. For example, Winiwarter et al. (2022) presented 

HELIOS++, a simulation framework that combines 3D scenes with modular 

scanner and platform models to replicate TLS, MLS, UAV-mounted or ALS 

data acquisitions. Such framework allows users to configure parameters such 

as beam divergence, scan pattern, platform trajectory, and pulse repetition 

rate. Thus, HELIOS++, as well as other laser scanning simulators, can 

produce virtual point clouds that can be used for applications ranging from 

data acquisition planning to algorithm testing. Similarly, Kukko and Hyyppä 

(2009) developed a simulation method that integrates spatial and radiometric 

modelling to produce waveform and point cloud data by modelling both 

light–object interactions and the characteristics of specific scanning systems. 

In this context, recent studies have demonstrated the utility of synthetic 

laser scanning data. Bryson et al. (2023) used a synthetic tree simulator to 

generate training data for deep learning-based stem segmentation in LiDAR 

point clouds. Their synthetic-data-trained segmentation models performed 

similarly to models trained exclusively on real-world data, achieving 
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improvements in IoU ranging from 1% to 7%. Analogously, Schäfer et al. 

(2023) compared synthetic ALS data against actual ALS data. They found 

that the canopy cover and height distributions extracted from synthetic data 

were comparable to the ones extracted from real LiDAR data, still biomass 

models trained on the synthetic datasets showed a slight reduction in 

accuracy compared to those trained on field data. 

In addition to overcoming data scarcity, synthetic LiDAR data enables 

precise experimental control, as users can systematically vary parameters 

such as tree species composition and canopy structure, to isolate their effects 

on model outcomes. Such controlled environment helps researchers better 

understand different phenomena without the unexplained variability 

common in real-world data. For instance, Fassnacht et al. (2018) generated 

synthetic canopy height models by combining a forest growth simulator with 

realistic 3D representations of individual trees derived from actual LiDAR 

point clouds. This allowed them to simulate forests under known conditions 

and systematically test how plot size affects model performance. Similarly, 

Bester et al. (2023) used synthetic TLS data to compare machine-learning 

models and point-cloud processing strategies for volume estimation. By 

removing uncontrolled variability and measurement noise, they were able to 

identify the best method choice for volume estimation in ideal conditions.  

Despite these advantages, using synthetic LiDAR data for modelling has 

limitations. Simulations often simplify real-world complexity, potentially 

introducing biases or inaccuracies, especially if forest structure or sensor 

characteristics are highly simplified (Schäfer et al. 2023).  Therefore, 

simulations are often seen as complimentary to real-world data, being 

particularly useful for method development, initial model training, or 

hypothesis testing, after which fine-tunning and validation against field-

collected data might still be necessary. In summary, synthetic laser scanning 

data provides a powerful and flexible strategy for forestry modelling, 

enabling controlled experiments and generation of training datasets. While 

they may not fully replicate the complexity and variability of field data, 

simulated point clouds are a valuable data source for advancing remote 

sensing applications in forestry. 
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1.5 Objectives 

The overall objective of this thesis is to develop and evaluate methods for 

generating tree-level reference data to improve predictive modelling in 

remote sensing-based forest inventories. For that, the thesis summarizes 

different studies in order to illustrate how they together contribute to 

addressing current challenges in acquiring tree-level information. The 

objectives of each study are: 

 

Paper I: To develop an algorithm for individual tree detection, DBH, 

stem profile, and volume estimation from car-mounted MLS data, and to 

evaluate the effect of distance from the roadside on estimation accuracy. 

Paper II: To compare ALS-based DBH and stem volume models trained 

with car-mounted MLS data against those trained with traditional field 

inventory data, assessing the potential of MLS as an alternative reference 

data source. 

Paper III: To propose a method for automatically annotating ALS data 

at the single-tree level using HPRs, and to use these annotated datasets for 

training a tree species classification CNN across ALS datasets with varying 

spectral and spatial resolutions. 

Paper IV: To propose a simulation pipeline for generating synthetic 

crooks on TLS-derived tree stems, and to evaluate the performance of a 

crook detection CNN trained on the synthetic dataset. 
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2. Material and Methods 

This thesis is composed of four studies, each utilizing different data 

sources, methodologies and reaching different outcomes. Table 1 provides 

an overview of the studies, summarizing the main data sources, target 

variables, and analysis carried out in each case. While each study addresses 

a specific research question, together they demonstrate how alternative data 

sources, beyond traditional field inventories, can be used to estimate tree-

level attributes in a scalable manner. The table allows for a quick comparison 

of the different data (e.g., MLS, TLS, ALS, synthetic data), processing 

workflows, and modelling strategies applied, and how these relate to the 

respective study objectives and outcomes.
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2.1 Paper I: Individual tree detection and estimation of 
stem attributes with mobile laser scanning along 
boreal forest roads 

 

Paper I presented a methodology for detection of tree stems and 

estimation of stem attributes using car-mounted MLS data acquired along 

forest roads, the overall processing workflow is shown in Figure 1. The study 

took place in Remningstorp, in southern Sweden (lat. 58.5° N, long. 13.6° 

E). The area is dominated by Norway spruce, followed by Scots pine (Pinus 

sylvestris L.), and birch (Betula spp.), with tree density of 580 trees/ha. 

 

 
Figure 1. Overview of the processing pipeline for Paper I, showing the main steps from 

extraction of tree-level attributes from car-mounted Mobile Laser Scanning (MLS). 

DTM = Digital Terrain Model. ALS = Aerial Laser Scanning. DBH = Diameter at Breast 

Height. 

The ALS data used in Paper I was collected in October 2019 using a 

Leica TerrainMapper-LN sensor operating at a pulse frequency of 1600 Hz 

and a field of view of 30°. The system was flown at an approximate altitude 

of 1450 meters, with the airplane maintaining an average speed of 213 km/h 

(equivalent to 115 knots). This configuration produced a footprint size of 

about 35 cm and yielded a mean point density of 22 points/m2 across the 

study area.  

In this study, the main data source used a car-mounted MLS system 

composed by a RIEGL VUX-1LR (RIEGL Laser Measurement Systems 
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GmbH, Horn, Austria), a GNSS and an IMU. The data collection was done 

in November 2019, covering approximately 7 kilometers of forest roads, 

with both sides of the road scanned at a driving speed of 8 km/h. The LiDAR 

sensor, operating in the near-infrared wavelength (1550 nm), was mounted 

at an angle of 30° from the horizontal plane, oriented upwards and turned 

towards the front of the vehicle. This configuration was chosen to reduce the 

influence of GNSS/IMU positioning errors on stem diameter estimation, as 

the stem curvature could be observed in a single scan sweep (as in a 

horizontal mount) while still capturing some ground information (as in a 

vertical mount). In addition, the scanner’s sweep frequency was reduced 

compared to standard settings to achieve denser sampling within each scan 

line for more accurate diameter estimation, while accepting greater spacing 

between consecutive lines. The sensor emitted pulses at a frequency of 820 

Hz and featured a 330° field of view, producing an angular step width of 

0.0066°. At a distance of 100 m, the pulse footprint measured approximately 

5 cm. The system recorded up to three returns per emitted pulse and achieved 

a ranging accuracy of 1.5 cm at 150 m. A sample resulting point cloud is 

shown in Figure 2. 

 

 
Figure 2. Representation of a 3D point cloud acquired by the car-mounted Mobile Laser 

Scanning system. The left side is closer to the sensor than the right side and has more 

points in the canopy and on the stem compared to the trees on the right side of the figure. 

Finally, TLS data was used as validation for the stem curve and DBH 

estimates from the car-mounted MLS system. In this case, a Trimble TX8 

scanner was used. This system operates in the near-infrared wavelength 

(1500 nm) and emits one million points per second. The sensor had a full 
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360° horizontal and 317° vertical field of view. At a distance of 100 m, the 

point spacing was approximately 4 cm, while the beam footprint expanded 

to 3.4 cm. Stem profiles were extracted from the TLS point cloud following 

the method described by Olofsson and Holmgren (2016). 

2.1.1 Paper I: Methodology 

Due to the scanning configuration, with high pulse repetition rate and low 

scanning frequency, the point cloud had high spatial resolution within scan 

lines (point spacing of approximately 0.5 cm at 40 m) and wider gaps 

between two consecutive lines (approximately 17 cm at 40 m). Such 

configuration resulted in stems being represented not as continuous 

cylindrical surfaces but as discrete cross-sectional arcs (Figure 3), guiding 

the detection algorithm which detects circles – or arcs - scan line-wise. 

Stem arc detection within each scan line began with spatial clustering of 

neighboring points. The clustering threshold was derived from the sensor’s 

angular step width and range accuracy. In practice, this meant calculating the 

expected spacing between consecutive echoes on a flat surface at a given 

range from the sensor, then adding a margin to account for the sensor’s 

ranging uncertainty and surface curvature. Points within the same scan line 

that were closer than this adaptive threshold were grouped as belonging to 

the same object. This approach allowed stem points to be clustered 

consistently, regardless of their distance from the scanner. 

Once clusters were formed, an intensity-based filter was applied to reduce 

the number of partial returns – as observed by Forsman et al. (2018). For 

each cluster, points with intensity < 70% of the 95th percentile of return 

intensity in that cluster were excluded. This step served to prioritize echoes 

from solid surfaces, excluding low intensity returns often associated with 

foliage and edges.  

To determine if a cluster corresponded to a stem arc, circles were fit to 

the filtered point clusters using a modified RANSAC (Random Sample 

Consensus) approach. The procedure went as follows: in each iteration, three 

points were randomly sampled from a cluster to define a candidate circle. A 

circle was accepted as a potential stem arc if it maximized the number of 

inliers - points lying within a tolerance distance (equal to the sensor’s range 

accuracy at 150 m, 1.5 cm) from the circle perimeter. An additional 

constraint was applied: candidate circles containing a significant number of 

interior outliers were rejected, since true laser returns should lie only on or 
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outside the stem surface. The circle with the largest inlier count amongst 

valid candidates was selected as the best fit, and its center, radius, and 

average height were recorded. 

 

 

Figure 3. Representation of a stem section in the car-mounted Mobile Laser Scanning 

(MLS) point cloud. The stem is represented as a collection of arcs. It is possible to notice 

branches and shaded areas (occlusion). Individual tree detection begins with identifying 

these arcs within each scan line. 

Arcs 

Branch points 

Occlusion 
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Since arcs were detected independently in each scan line, they were 

aggregated vertically to form the full stems. For that, the centers of arcs 

within a fixed horizontal neighborhood (here defined as 50 cm) were used to 

estimate a local stem direction vector, as in the study by Holmgren et al. 

(2019). This strategy aimed at grouping arcs that corresponded to the same 

physical stem even in the presence of gaps due to occlusion. 

After stem reconstruction, each tree was divided into vertical sections 

(formed by multiple arcs) to estimate stem profiles. For each section, 

diameters were then estimated using a second RANSAC-based circle fitting 

procedure. In this step, the circles were fit using a two-step process: a 

preliminary circle was fit using the same RANSAC criteria as before, and its 

radius and center are used to select a refined subset of points located within 

a tolerance band (e.g., 1.1 times the estimated radius). A final least-squares 

fit on this subset provides the segment’s diameter. 

The extracted diameter values and their respective heights were used to 

fit a taper curve to each tree. In this step, a composite model averaging a 

quadratic taper and a square root function was applied, providing a smooth, 

robust stem profile even when only a few measurements (arcs) were 

available. For more details on the taper curve methodology, equations and 

thresholding used, we refer to Paper I. Total tree heights were retrieved for 

each tree from ALS data over the study area, as the highest return within a 

small radius (30 cm) of the stem base. Stem volume values were obtained by 

integrating the taper curve, and DBH values were determined using the 

diameter value extracted from the taper curve at 1.3 m. 

Stem detection was validated against field inventory data, and the 

extracted DBH, stem curves and stem volumes were validated against TLS 

reference data. The validation was carried independently in six distance 

zones, extending from the forest road into the stand: 0–10 m, 10–20 m, 20–

30 m, 30–40 m, 40–50 m, and 50–60 m. For each zone, MLS-detected tree 

positions were matched to field-measured stem positions within a 30 cm 

search radius. Matched stems were treated as true positives, unmatched MLS 

detections as commission errors, and unmatched field-measured stems as 

omissions. Based on these, standard metrics of precision (P - Equation 1) and 

recall (R – Equation 2) were computed for each distance band to assess 

detection performance. 

 

(1) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑝 = 𝑇𝑃𝑝/(𝑇𝑃𝑝 + 𝐶𝑝)  
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(2) 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑝/(𝑇𝑃𝑝 + 𝑂𝑝)  

 

where 𝑇𝑃𝑝 is the number of trees correctly detected trees (true positives), 𝐶𝑝  

and 𝑂𝑝 are the number of commission and omission errors in zone p, also 

known as false positives and false negatives, respectively. 

For the correctly detected trees, MLS-derived DBH, stem profiles, and 

volume estimates were compared to TLS-derived values using Root Mean 

Square Error (RMSE – Equation 3) and bias (Equation 4). For that, stem 

profiles were extracted from the TLS point cloud as described by Olofsson 

and Holmgren (2016). Later, DBH and volume were estimated using TLS-

derived stem profiles under the same methodology as for MLS-derived data. 

This zone-wise validation design allowed for an assessment of how both 

detection rates and attribute accuracy were influenced by the increasing 

distance between trees and the MLS trajectory – i.e. distance to the road. 

 

(3)    𝑅𝑀𝑆𝐸 =  √∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛
𝑖=1 𝑛⁄    

(4) 𝑏𝑖𝑎𝑠 =  ∑ (𝑦̂𝑖 − 𝑦𝑖)𝑛
𝑖=1 𝑛⁄     

 

where n is the number of trees. 𝑦̂𝑖 and 𝑦𝑖 are target variable’s predicted and 

observed values for tree i. 

2.2 Paper II: Mobile laser scanning as reference for 
estimation of stem attributes from airborne laser 
scanning 

The main objective of Paper II was to assess the suitability of the car-

mounted MLS described in Paper I as an alternative to traditional field 

inventory for collecting reference data in a tree-level forest inventory based 

on remote sensing. Specifically, the study aimed at estimating DBH and stem 

volume at the individual tree-level from ALS data, using reference – or 

training - datasets derived either from conventional field measurements or 

from MLS data. The motivation for this analysis is the potential efficiency 

gains in forest inventories and the opportunity to increase the amount of 

collected data compared to traditional methods. 

Paper II was conducted in Remningstorp (Figure 4 A - lat. 58.5° N, long. 

13.6° E). The ALS data used is described in section 2.1. The aerial point 

clouds were first segmented into individual tree crowns using the two-
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dimensional segmentation algorithm by Holmgren et al. (2022). The 

resulting segments were considered individual trees. 

As previously stated, two reference datasets were collected in the study 

area using different data collection methods. The first was obtained through 

conventional field inventory, namely the “field inventory dataset”, or simply 

“FI dataset”. The survey consisted of 265 circular plots with a 10 m radius, 

systematically distributed across the study area with 200 m spacing between 

plot centers (Figure 4 A). In each plot, all living trees with DBH ≥ 4 cm were 

recorded, including DBH and stem position using a DP POSTEX system 

(www.haglofsweden.com). A co-registration algorithm was used to align 

field-measured tree positions with the ALS-derived crown segments, 

following the method described by Olofsson et al. (2008). This algorithm 

uses cross-correlation of images created from positions and tree sizes as 

measured by ALS and field inventory, respectively. Since ALS-derived 

segments were treated as individual trees, if multiple field-recorded trees 

were assigned to the same segment, the tree with the largest DBH was 

retained. Unmatched field trees were treated as omission errors, while 

unmatched ALS segments were treated as commission errors. A total of 181 

plots remained in the final field inventory dataset, corresponding to 3023 

individual trees that were successfully matched to their respective ALS 

segments (Figure 5). For further details on the field inventory dataset, we 

refer to Paper II. 

The second reference dataset used was collected using the MLS system 

described in Paper I (section 2.1) and is referred to as the “MLS dataset”. 

The tree detection and attribute estimation methodology followed all steps 

previously described in section 2.1.1. However, data collection was restricted 

to trees located between 20 to 40 m from the roadside to avoid biases 

associated with edge effects and tree detection errors. This distance range 

had previously demonstrated the best balance between stem attribute 

accuracy and detection rates (Pires et al. 2022). Within this range, the survey 

covered approximately 28 ha of forest. MLS-derived tree positions showed 

a systematic displacement of approximately 1.5 m relative to ALS segments, 

so tree positions were manually adjusted to ensure alignment. In total, the 

position of 6432 MLS-derived trees matched corresponding ALS crowns 

(Figure 5). 

Before training the models to estimate stem attributes based on the FI and 

MLS datasets, the trees in the FI dataset were divided into training and 
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validation groups according to their field plots, thereby creating a benchmark 

dataset for both MLS- and FI-derived models. Specifically, 70% of the plots 

in the FI dataset (2050 trees) were used for training, while the remaining 30% 

(973 trees) were reserved for validation (crosses in Figure 4 A). 

Consequently, the FI-based models were trained on 70% of the FI dataset, 

whereas the MLS-based models were trained using the entire MLS dataset. 

All models were then validated against the 30% validation portion of the FI 

dataset. 

 

 
Figure 4. (A) Overview of the study area used in Papers I and II, with field plots used 

for training showed as green circles, the field inventory plots used for validation shown 

as orange crosses and the roads scanned by Mobile Laser Scanning (MLS) survey in red. 

(B) Position of the study area in Sweden. (C) Close-up on the area from which MLS data 

was collected, considering the 20-40m distance range to the roadside. 
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Figure 5. Diameter at Breast Height (DBH) distribution of trees associated with an aerial 

laser scanner-derived tree crown in the field inventory and car-mounted Mobile Laser 

Scanning (MLS) datasets. 

2.2.1 Paper II: Methodology 

In Paper II, a set of metrics was derived from the segmented ALS data, 

such as height percentiles, intensity percentiles, and crown-related attributes 

(Table 2). These metrics served as predictors in subsequent statistical 

models. 

 
Table 2. Description of the Aerial Laser Scanning (ALS)-based metrics used as 

independent variables in Paper II. 

Metric Description 

h10 – h99 10th to the 99th height percentiles 

i10 – i99 10th to the 99th intensity percentiles 

meani Mean of intensity values 

stdi Standard deviation of intensity values 

skewi Skewness of intensity values 

kuri Kurtosis of intensity values 

CR Crown radius 

CA Crown area 

CE Extent of crown polygon 

CRh95 𝐶𝑅 ∙ ℎ95 

CR2h95sqrt √CR2 ∙ ℎ95 
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Once the reference datasets with target variables were defined, models 

predicting DBH and stem volume from ALS-derived metrics were trained 

separately using each of the two reference datasets. For that, regression 

coefficients were estimated using ordinary least squares (OLS), and the 

optimal combination of predictor variables was selected using a backward 

elimination method to minimize collinearity. During stem volume 

estimation, a logarithmic transformation was applied to both stem volumes 

and ALS-derived metrics to enhance linearity. Biases introduced by this 

transformation were corrected using a ratio estimator based on the sum of 

observed and predicted volumes (Holm 1977). 

The performance of the two sets of predictive models, one trained on FI 

data and the other on MLS data, was validated against an independent subset 

of the FI dataset, not used in training (crosses in Figure 4 A). Validation was 

done at tree- and plot-levels in terms of RMSE and bias (Equations 3 and 4, 

respectively). Individual tree-level DBH and stem volume estimates were 

compared directly against field measurements, while plot-level stem volume 

estimates were derived by summing individual tree predictions within each 

validation plot. 

2.3 Paper III: Boreal tree species classification using 
airborne laser scanning data annotated with 
harvester production reports, and convolutional 
neural networks 

Paper III explored the use of HPRs as an alternative data source for 

automatic tree-level annotation of ALS data. Linking ALS data with spatially 

explicit HPRs, containing species and GNSS-based tree positions, provided 

rapid and nearly cost-free training data for CNN-based tree species 

classification. In addition, we evaluated how both spatial and spectral 

characteristics of ALS data affect tree species classification performance 

under the proposed methodology. 

The analysis in Paper III was conducted in the municipality of Hällefors, 

in Southern Sweden (lat. 59.46° N, long. 14.31° E) in Norway spruce–

dominated production forests. In total, 17 stands were included in the study, 

with areas ranging from 3.7 to 16.8 hectares. The stands were selected based 

on their planned harvesting dates, which occurred between 2021 and 2022. 
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In the harvested stands, Norway spruce was the dominant species (~79%), 

followed by Scots pine (~11%) and birch species (Betula spp.; ~10%). 

In this paper, the ALS data collection was done using a dual-wavelength 

system, developed by the Finnish Geospatial Institute (FGI) and described 

by Hakula et al. (2023). The setup consisted of two single-wavelength 

LiDAR sensors: a RIEGL miniVUX-1UAV (~100 points/m²) operating at 

905 nm (near-infrared) and a RIEGL VUX-1HA (~875 points/m²) operating 

at 1550 nm (shortwave infrared). These sensors were mounted on a 

helicopter flown at an altitude of 100 meters at a speed of approximately 50 

km/h. Although the system was originally equipped with a third (green-

wavelength) scanner, data from that channel was unavailable due to technical 

problems, and only the near- and shortwave infrared returns were used to 

generate the final dual-wavelength point cloud. 

2.3.1 Paper III: Methodology  

In forest environments, point clouds with higher point density often 

provide greater sampling of crown surfaces, allowing fine-scale differences 

in crown shape, branch structure, and canopy texture to be more clearly 

observed, features critical for species discrimination. Another important 

factor is the laser beam footprint, defined by the beam’s divergence and 

distance to the target, which determines the area illuminated when the beam 

hits a surface. This property affects how leaves, branches, and canopy gaps 

are represented in the point cloud, as a smaller footprint can capture narrower 

branches and smaller gaps more clearly, while a larger footprint tends to blur 

finer details.  

Beyond spatial properties, the wavelength of the emitted pulses also plays 

a key role in describing forest environments, as different wavelengths 

interact differently with vegetation. Using multiple wavelengths can 

therefore provide complementary information on canopy structure and 

species traits, supporting more accurate classification. 

To compare the impact of both spectral (wavelength) and spatial (point 

density and footprint) resolutions on the classification performance, three 

ALS datasets were derived from the data collection (Table 3): (1) the 

miniVUX dataset (905 nm, lower point density, larger footprint), (2) the 

VUX dataset (1550 nm, higher point density, smaller footprint), and (3) a 

dual-wavelength dataset combining co-registered returns from both sensors 

(higher spatial and spectral resolutions).   
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Table 3. Description of the Aerial Laser Scanning (ALS) datasets used for tree species 

classification. 

 ALS dataset 

 MiniVUX (1) VUX (2) 
Dual-wavelength 

(1+2) 

Sensor(s) miniVUX-1UAV VUX-1HA 
miniVUX-1UAV (1) 

+ VUX-1HA (2) 

Footprint at 100 m 

from the target (cm) 
16 x 5 5 16 x 5 (1) + 5 (2) 

PRR1 (kHz) 100 1017 100 (1) + 1017 (2) 

Scan speed 

(revolutions/s) 
100 143 100 (1) + 143 (2) 

Point density 

(points/m2) 
100 875 975 (1+2) 

Wavelength (nm) 905 1550 905 (1) + 1550 (2) 

Note. 1Pulse Repetition Rate. 

A total of 69,253 trees were harvested between November 2021 and 

October 2022 across 17 stands using a CTL harvester equipped with a 

GNSS-based positioning system. This system combined two GNSS receivers 

on the harvester cabin with built-in sensors that recorded boom angle and 

extension at the time of felling, allowing estimation of each tree’s position. 

From the HPRs, each tree’s species, DBH, and log lengths were extracted. 

Tree species were grouped into three classes: Norway spruce, Scots pine, and 

a combined “Deciduous” class merging birch and other broadleaves. 

To generate training labels, individual tree crowns were first segmented 

from the dual-wavelength ALS point cloud using the two-dimensional 

segmentation algorithm by Holmgren et al. (2022). Tree-level annotation 

was performed by matching each HPR-recorded tree position to the nearest 

ALS-derived tree segment, using the distance and similarity in tree height as 

matching criteria. This matching procedure avoided the need for extensive 

visual interpretation. For further details on the annotation procedure, we refer 

to Paper III. 

Altogether, 45,516 tree positions were linked to an ALS-derived segment, 

representing 65.7 % of all harvested trees. Of those, 36,162 trees (79.4 %) 

were Norway spruces, 5,397 trees (11.9 %) Scots pine, and 3,957 (8.7 %) 

were deciduous trees. Finally, the number of labeled trees in each class was 

downsampled to the number of trees in the class with least instances 

(“deciduous”). After downsampling, a brief quality-control step was 
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conducted to ensure label reliability. Segments that clearly did not 

correspond to trees (e.g., artifacts from segmentation) were assigned to a 

separate “Noise” class across all ALS datasets. Additionally, 228 trees (0.5% 

of matched cases) with evident species-label inconsistencies, likely due to 

harvester annotation errors or mismatches in spatial alignment, were 

excluded to avoid using incorrect labels for training the model. Thus, the 

final dataset was composed by 3772 “Pine”, 3559 “Spruce”, and 3459 

“deciduous” trees, with 853 segments being sorted as “Noise”. 

After sorting the tree segments into classes, each tree point cloud was 

converted into a set of two-dimensional raster images.  Converting the point 

clouds into 2D allowed leveraging state-of-the-art CNN architecture without 

requiring voxelization or point-based models. To increase the number of 

representations for each tree, side-view projections were created by rotating 

the point cloud around the vertical axis (Z) in 45° intervals, resulting in four 

projections per tree. For each rotation, points were projected onto a vertical 

(X vs. Z) plane and rasterized into a grayscale or RGB images, depending on 

the ALS dataset used.  

In the miniVUX and VUX datasets (single-wavelength), grayscale 

images were created with pixel values representing the point density, i.e., the 

number of returns within each pixel. No intensity or spectral information was 

used in these cases. In contrast, images derived from the dual-wavelength 

dataset were created as RGB false-color composites. The red channel was 

assigned the mean intensity of NIR points, the green channel the mean 

intensity of SWIR points, and the blue channel the Normalized Difference 

Infrared Index (NDII – Equation 5), considering all returns. In both cases, 

the pixel and image sizes were defined based on the tree’s size and the point 

density, ensuring an even representation of structure without cropping the 

trees or leaving blank spaces. For further details on the rasterization of point 

clouds and image generation, we refer to Paper III. 

 

(5)  𝑁𝐷𝐼𝐼𝑘 =  
𝑛𝑖𝑟𝑘−𝑠𝑤𝑖𝑟𝑘

𝑛𝑖𝑟𝑘+𝑠𝑤𝑖𝑟𝑘
   

 

where nir is the mean intensity of the returns from the miniVUX dataset, and 

swir is the mean intensity of the returns from the VUX dataset for pixel k. 

For the classification task, we used a CNN from the YOLO family - 

YOLOv8s-cls - due to its performance in classification problems and its user-

friendly PyTorch implementation (Jocher et al. 2023). The model was trained 
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for 15 epochs using default settings. Because each tree was represented by 

four side-view images, each species class was composed of approximately 

14,000 images. The dataset was split into 70% for training and 30% for 

validation. To prevent a tree from being used in both sets, each tree was 

assigned exclusively to one set, so that all four views of a given tree were 

used either for training or for validation. YOLO networks have proven 

effective in forestry-related applications such as tree detection and wood 

defect identification (Fang et al. 2021; Straker et al. 2023), making YOLOv8 

an ideal choice for species classification in this context.  

The testing procedure followed a leave-one-stand-out cross-validation 

design: in each round, one stand was excluded from the training and 

validation datasets and used for testing, allowing a realistic accuracy 

assessment across different areas. Tree-level predictions were aggregated 

across views by averaging class probabilities, and the highest-probability 

class was assigned as the final label. Model performances were evaluated 

using confusion matrices and standard metrics: overall accuracy (OA – 

Equation 6), F1-score (Equation 7), precision (P - Equation 1) and recall (R 

- Equation 2), and macro F1-score, which is the average of each class’s F1-

score. 

 

(6)  𝑂𝐴 = 𝑇𝑃 𝑁⁄   

(7) 𝐹1𝐶 =  2 ∙ 𝑃𝐶 ∙ 𝑅𝐶 (𝑃𝐶 + 𝑅𝐶)⁄   

 

where 𝑇𝑃 is the number of true positives, and 𝑁 represents the number of 

trees analyzed in this study. 𝑃𝐶 is the precision, and 𝑅𝐶 is the recall of class 

𝐶.  

2.4 Paper IV: Stem crook detection in terrestrial laser 
scanning data using semi-empirical simulations 

Paper IV presented a semi-empirical method for generating synthetic 

crook deformations on TLS-derived stem point clouds, which were then used 

to train a CNN for crook detection. This study was motivated by the lack of 

labeled data for stem defects such as crooks, which limits the training and 

testing of methodologies for detecting such defects, especially using machine 

learning models.  
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The analysis in Paper IV was conducted in northern Sweden, in Scots 

pine–dominated forests located near Sävar (Figure 6 A - lat. 64° N, long. 

20.6° E) and Tribladsberget (Figure 6 B - lat. 64.3° N, long. 19.8° E). The 

TLS surveys were performed using a Leica RTC360 system, which operates 

at a wavelength of 1550 nm. The scanning mode provided point spacing of 

approximately 6 mm at 10 m range. The system captures up to 2 million 

points per second, with a full 360° horizontal and 300° vertical field of view. 

The range accuracy is 1.9 mm at 10 m. 

 

 
Figure 6. (A) Overview of the Sävar site, and the field plots where a preliminary survey 

to collect model stems was conducted. (B) Overview of the Tribladsberget site, and the 

field plots where the test survey was conducted. (C) Position of the Sävar and 

Tribladsberget sites in Sweden. 

A preliminary survey was first conducted at the Sävar site, in a Scots 

pine-dominated stand (Figure 6 A). Data were collected in five 15 × 50 m 

plots. There, the multi-scan TLS acquisition was performed by placing the 

scanner along the plot perimeter every 5–10 m, requiring 15–20 scans per 

plot. In total, 287 stems were extracted from the five plots. Of these, seven 

crooked trees were marked in the field and manually identified in the point 

clouds, providing reference examples to guide the simulation of crooks. 
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A second survey was later carried out at Tribladsberget in areas with high 

concentrations of crooked trees (Figure 6 B). Like the Sävar site, the stand 

was also Scots pine-dominated. However, in this survey plots had no fixed 

size. Instead, the scanning focused on crooked trees, with 4-10 TLS scans 

collected around individual trees or clusters across 14 plots. Black-and-white 

reflective targets were placed at the plot corners, and their coordinates were 

measured with GNSS. These targets were used both to georeference the TLS 

data and to define the plot boundaries, which were delineated by connecting 

the target positions into closed polygons. Altogether, the mapped area 

covered 0.622 ha, from which 310 stems were extracted. 

2.4.1 Paper IV: Methodology 

The analysis in Paper IV started with setting the definition of crooks 

based on Swedish log grading guidelines and field observations (Biometria 

2025). In these guidelines, crooks are described as noticeable deviations 

from vertical growth, often abrupt and visually distinctive (Figure 7). To 

inform simulation parameters, we carried out inspections in the Sävar site 

(Figure 6 A) and at the Sävar sawmill. Observations from these visits guided 

the dimensions and shapes of the crooks ultimately simulated in the study. 

Synthetic crooks were created by deforming stem point clouds of Scots pine 

trees captured during the TLS survey on the Sävar site. A total of 280 defect-

free model stems were segmented using 3DFin (Laino et al. 2024) up to a 

height of 25 m and used as the basis for simulation. Crooks were generated 

by modifying the X-coordinates of points along the stem using cubic 

smoothing splines, while keeping the Y and Z coordinates fixed. Two crook 

types were implemented: (1) a single-direction bend (1dir), and (2) a double-

direction bend with an inflection point (2dir), each parameterized by crook 

length (l), starting height (s), horizontal deviation (d), and, for 2dir crooks, 

the inflection position (ip) and the inflection extension (ie). Figure 8 

illustrates the types of crooks that were modelled. These parameters were 

defined based on crook characteristics observed during visits to the sawmill 

and forest site and were then randomly sampled within those observed ranges 

(Table 4). For each stem, 50 unique deformations were generated, resulting 

in a total of 14,000 simulated crooks. For further details on the crook 

simulation, we refer to Paper IV. 
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Figure 7. Example of a crook in a standing tree (photo by Nils Lindgren, used with 

permission). 
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Figure 8. Schematic representation of the one (1dir) and two directional (2dir) crooks in 

a model Scots pine (Pinus sylvestris L.) stem. All points along the predefined crook 

length (l) are shifted according to the smooth spline (dashed yellow line). s = crook 

starting height, d = crook deviation, ip = inflection position, ie = inflection extension. 

 
Table 4. Parameter ranges used for simulating crook deformations in synthetic stem point 

clouds. 

Parameter Minimum Maximum Increment 

Crook length (l) 30 cm 120 cm 2 cm 

Crook deviation (d) 5 cm 25 cm 2 cm 

Inflection position (ip) 25% 50% 2% 

Inflection extension (ie) 50% 100% 2% 

Starting height (s) 30 cm 90th height percentile 25 cm 

Prior to crook detection, the 3D point clouds were converted into 2D 

binary raster images. Each stem was divided into vertical sections of 2 m 
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height, with a 0.5 m overlap between adjacent sections. Each section was 

then rotated around the vertical axis in 20° increments (from 0° to 160°), 

producing nine views per section. Each view was rasterized into a 192 × 96 

binary raster, where pixels encoded presence (1) or absence (0) of points in 

the corresponding spatial region.  

The rasterized stem images were then used as training input to a CNN for 

crook detection. In this study, we used YOLOv8s (Jocher et al. 2023), a 

version of the YOLO (You Only Look Once) object detection architecture. 

YOLOv8s was selected due to its efficient performance and suitability for 

small, single-class detection problems, as well as its accessible 

implementation in PyTorch. The model consists of a backbone for feature 

extraction, a neck for multi-scale feature fusion, and a prediction head for 

bounding box regression. The model was trained for 15 epochs with a batch 

size of 128 and a dropout rate of 0.25 to reduce overfitting. The dataset was 

randomly split into training and validation subsets, with 30% of the images 

reserved for validation at the end of each epoch. To ensure independence 

between the subsets, all viewpoints from the same simulated stem were 

assigned exclusively to either training or validation. 

The survey on Tribladsberget (Figure 6 B) was used to test the crook 

detector. All 310 stems were visually inspected for crooks by dividing each 

stem into consecutive 2 m sections with 0.5 m overlap, ensuring continuous 

assessment. Crooks were annotated following Biometria’s guidelines as 

visible deviations from vertical growth, including both gradual shifts and 

abrupt bends, with epicormic branches or stem wounds often serving as cues. 

For each crook, start and end points were marked where the deviation began 

and where the stem resumed straight growth, resulting in 65 annotated 

crooks.  

For inference, stems from Tribladsberget site were rasterized using the 

same procedure as for training. The trained CNN was applied independently 

to each raster view, and for each stem section, bounding boxes from different 

views were merged by averaging center coordinates and box sizes. A 

prediction was considered a true positive if its intersection-over-union (IoU 

– Equation 8) with a ground-truth crook exceeded a given threshold. 

Omission and commission were also recorded. 

 

(8) 𝐼𝑜𝑈 =  𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛  𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛⁄   
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The final accuracy assessment was based on standard object detection 

metrics: precision (Equation 1), recall (Equation 2), and F1-score (Equation 

7). In addition, a sensitivity analysis was performed across multiple IoU 

thresholds (𝐼𝑜𝑈 ∈  [0.01,1]) to assess how detection performance responded 

to varying levels of spatial agreement between predictions and visual 

assessments. This approach ensured that the model’s ability to generalize 

from synthetic training data to real-world data was evaluated under different 

levels of localization tolerance.  
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3. Results 

3.1 Tree detection and attribute estimation from car-
mounted MLS (Paper I) 

In Paper I, tree detection accuracy varied with the distance to the 

roadside (Table 5). In this study, the best tree detection performance occurred 

between 10 m and 40 m distance to the roadside, with both precision and 

recall exceeding 92%. On the other hand, accuracy declined closer to the 

road (0-10 m range), due to a high presence of commission errors, likely 

caused by misclassified large branches and understory vegetation, and 

beyond 40 m, where increasing stem occlusion and decreasing point density 

likely led to omissions errors, i.e. lower recall. 

 
Table 5. Individual tree detection precision and recall according to the distance range 

from the road. 

Zone Precision Recall 

0 – 10 m 82.8% 85.7% 

10 – 20 m 96.5% 96.7% 

20 – 30 m 98.8% 94.2% 

30 – 40 m 92.5% 92.5% 

40 – 50 m 98.0% 86.1% 

50 – 60 m 100.0% 62.7% 

DBH and stem volume estimates derived from MLS were compared to 

TLS references (Figure 9 and Figure 10). RMSEs for DBH ranged from 

1.82 cm to 4.84 cm, also depending on distance to the roadside, while bias 

remained low and stable across zones (< 3%). MLS-derived stem profiles 

were also consistent with TLS reference values, particularly within 20–40 m 

from the roadside (Figure 11). 
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Figure 9. Terrestrial Laser Scanning (TLS)-derived vs. Mobile Laser Scanning (MLS)-

derived Diameter at Breast Height (DBH), in cm. The red line is the 1:1 line, where 

reference and estimated values are equal. The orange lines represent a 10% deviation 

from the 1:1 line. RMSE = Root Mean Square Error. 
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Figure 10. Terrestrial Laser Scanning (TLS)-derived vs. Mobile Laser Scanning (MLS)-

derived stem volume, in m3. The red line is the 1:1 line, where reference and estimated 

values are equal. The orange lines represent a 10% deviation from the 1:1 line. RMSE = 

Root Mean Square Error. 
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Figure 11. Terrestrial Laser Scanning (TLS)-derived vs. Mobile Laser Scanning (MLS)-

derived stem profiles, in cm. The red line is the 1:1 line, where reference and estimated 

values are equal. The orange lines represent a 10% deviation from the 1:1 line. 

3.2 ALS-based Estimation of Tree Attributes Using Field 
and MLS References (Paper II) 

The results of Paper II showed that ALS-based models trained on MLS-

derived reference data achieved equivalent performance to those trained on 

traditional field inventory (FI) data. Norway spruce trees’ DBH estimates 

had RMSEs of 3.97 cm and 4.06 cm when using the MLS and FI datasets as 

reference, respectively (Figure 12). Tree-level stem volume estimation for 

the same species yielded RMSE values of 0.176 m³ for the MLS- and FI-

based models in the same species group (Figure 13). However, while the 

estimates based on the MLS data had negligible biases, the FI-based 

estimated had bias of -5.71%. 
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Figure 12. Field-measured vs. ALS-derived Diameter at Breast Height (DBH), in cm. 

The columns represent different reference datasets, and the rows represent the different 

species groups. The red line is the 1:1 line, where field-measured and ALS-derived values 

are equal. The orange lines represent a 15% deviation from the 1:1 line. RMSE = Root 

Mean Square Error. 
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Figure 13. Individual tree-level field inventory vs. ALS-derived stem volume, in m3. The 

columns represent different reference datasets, and the rows represent the different 

species groups. The red line is the 1:1 line, where the field inventory and ALS-derived 

values are equal. The orange lines represent a 15% deviation from the 1:1 line. RMSE = 

Root Mean Square Error. 
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At the plot level, stem volume predictions showed similar accuracy 

regardless of training source. The RMSE was 43.7 m³ (18.7%) with FI 

dataset and 46.2 m³ (19.8%) when using MLS dataset for training. Relative 

biases were -4.92% and 1.07% for the FI and MLS-based models, 

respectively (Figure 14). 

 

 

Figure 14. Plot-level field inventory vs. ALS-derived stem volume, in m3. The columns 

represent different reference datasets. The red line is the 1:1 line, where the field 

inventory and ALS-derived values are equal. The orange lines represent a 15% deviation 

from the 1:1 line. RMSE = Root Mean Square Error. 

The variable selection step had similar outcomes regardless of the 

reference dataset used, prioritizing ALS height percentiles and crown-related 

metrics (Tables 6 and 7), with only minor differences in selected predictors. 

In both training scenarios, models with two predictors yielded the highest 

adjusted R2. For DBH estimation (Table 6), the FI-based model relied on h95 

and CA, while the MLS-based model achieved best performance using h95 

and the crown ratio derived from h95 (CRh95). For stem volume prediction 

(Table 7), both datasets led to the same variable combination: h95 and CA. 

This consistency across models suggests that ALS-derived structural metrics 

related to tree height and crown size are strong predictors of stem 

dimensions, regardless of the reference source used. 
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Table 6. Models with one, two and three independent variables for Diameter at Breast 

Height (DBH) estimation using the forest inventory (FI) or car-mounted Mobile Laser 

Scanner (MLS). 

N° of 

Predictors 

FI dataset MLS dataset 

Model Adj. R2 Model Adj. R2 

1 𝐷𝐵𝐻𝐹𝐼 =  𝛼1 ∙ ℎ95 0.93 𝐷𝐵𝐻𝑀𝐿𝑆 =  𝛼1 ∙ 𝐶𝑅ℎ95 0.96 

2 𝐷𝐵𝐻𝐹𝐼 = 𝛼1 ∙ ℎ95 + 𝛼2 ∙ 𝐶𝑅2ℎ95𝑠𝑞𝑟𝑡 0.94 𝐷𝐵𝐻𝑀𝐿𝑆 = 𝛼1 ∙ 𝐶𝑅ℎ95 + 𝛼2 ∙ ℎ95 0.98 

3 
𝐷𝐵𝐻𝐹𝐼 = 

𝛼1 ∙ ℎ95 + 𝛼2 ∙ 𝐶𝑅2ℎ95𝑠𝑞𝑟𝑡 + 𝛼3 ∙ 𝑠𝑘𝑒𝑤𝑖 
0.94 

𝐷𝐵𝐻𝑀𝐿𝑆 = 

𝛼1 ∙ 𝐶𝑅ℎ95 + 𝛼2 ∙ ℎ95 + 𝛼3 ∙ 𝑖90 
0.98 

Note. Adj. R2 stands for the adjusted coefficient of determination (R2). 

 
Table 7. Models with one, two and three independent variables for stem volume 

estimation using the forest inventory (FI) or car-mounted Mobile Laser Scanner (MLS). 

N° of 

Predictors 

FI dataset MLS dataset 

Model Adj. R2 Model Adj. R2 

1 𝑣̂𝐹𝐼 =  𝑒𝛽0+𝛽1∙𝑙𝑛 ℎ95    0.78 𝑣̂𝑀𝐿𝑆 =  𝑒𝛽0+𝛽1∙𝑙𝑛 ℎ95   0.74 

2 𝑣̂𝐹𝐼 =  𝑒𝛽0+𝛽1∙𝑙𝑛 ℎ95+𝛽2∙𝑙𝑛 𝐶𝐴  0.80 𝑣̂𝑀𝐿𝑆 = 𝑒𝛽0+𝛽1∙𝑙𝑛 ℎ95+𝛽2∙𝑙𝑛 𝐶𝐴   0.79 

3 
𝑣̂𝐹𝐼 = 

𝑒𝛽0+𝛽1∙𝑙𝑛 ℎ95+𝛽2∙𝑙𝑛 𝐶𝐴+𝛽3∙𝑙𝑛 ℎ10    

0.80 𝑣̂𝑀𝐿𝑆 = 

𝑒𝛽0+𝛽1∙𝑙𝑛 ℎ95+𝛽2∙𝑙𝑛 𝐶𝐴+𝛽3∙𝑙𝑛 𝑚𝑒𝑎𝑛𝑖 

0.79 

Note. Adj. R2 stands for the adjusted coefficient of determination (R2). 𝑣̂ is the estimated 

stem volume before bias correction. 

Overall, results show that MLS data can be a reliable reference data 

collection method in remote sensing-based forest inventory. When used for 

ALS-based model training at tree-level, the data derived from this close-

range remote sensing technique can pose as an alternative or complement to 

traditional field plots. 

3.3 Tree Species Classification from ALS and HPR files 
(Paper III) 

The resolution of the 2D images generated from the ALS point clouds 

played a significant role in the species classification performance. As shown 

in Table 8, image resolution varied across ALS datasets. Images created from 

the miniVUX dataset had the lowest average resolution, with a mean pixel 

size of 27.6 cm, often failing to capture fine crown details. In contrast, the 

VUX and dual-wavelength datasets produced images with significantly 
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higher resolution - 10.1 cm and 9.5 cm average pixel sizes, respectively – 

often preserving structural traits such as trunk and crown shape (Figure 15). 

 
Table 8. Average pixel size (cm) for the tree species classes and noise class (± standard 

deviation). Different letters in the last row denote statistically significant differences 

according to Student’s t-test at a 95% confidence level. 

Class MiniVUX VUX Dual-wavelength 

Pine 26.7 (± 5.88) 9.23 (± 2.1) 8.76 (± 1.98) 

Spruce 27 (± 6.04) 9.61 (± 2.3) 9.11 (± 2.17) 

Deciduous 27.5 (± 6.43) 10.5 (± 2.83) 9.88 (± 2.62) 

Noise 38.9 (± 11.8) 16.4 (± 5.57) 15.4 (± 5.14) 

All classes 27.6 a (± 7.04) 10.1 b (± 3.07) 9.52 c (± 2.86) 

Tables 9, 10 and 11 show the species classification results for the 

miniVUX, VUX and dual-wavelength datasets, respectively. The best 

performance was achieved using the dual-wavelength dataset, where the 

model reached an overall accuracy of 92.3% and a macro F1-score of 0.896. 

The VUX dataset, despite its lower spatial and spectral resolutions, still 

achieved 91.6% accuracy and 0.894 macro-F1. The miniVUX dataset, with 

the lowest spatial resolution, achieved 85.4% accuracy and 0.835 macro-F1. 

These results suggest that, for the species groups analyzed in this study, both 

spectral and spatial resolution influenced classification performance. While 

combining wavelengths as in the dual-wavelength dataset added value, the 

ability to preserve crown structure in the raster images – affected by 

increasing point density and smaller footprint sizes - was critical for accurate 

species identification. It should be noted that these results are based on the 

analysis of three dominant species groups in managed, mature forests. Thus, 

they could differ significantly in more diverse forest types or in areas with 

higher species diversity. 
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Figure 15. Two dimensional representations of individual tree point clouds produced 

with different aerial laser scanning datasets. 

Class Mini-VUX VUX Multispectral 
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Pixel size = 8.48 cm 

 

 
Pixel size = 7.95 cm 

 

Noise 

 
Pixel size = 28.6 cm 

 
Pixel size = 9.62 cm 

 
Pixel size = 9.14 cm 
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Table 9. Confusion matrix of predictions made using miniVUX-based images. 

 
Observed Species 

Precision F1-score 
Pine Spruce Deciduous Noise 

P
re

d
ic

te
d

 

S
p

ec
ie
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Pine 3190 137 292 17 87.7% 0.867 

Spruce 245 3233 206 97 89.8% 0.876 

Deciduous 257 158 2886 114 84.5% 0.840 

Noise 30 71 75 625 78% 0.756 

Recall 85.7% 87.6% 83.4% 73.3% OA1 = 85.4% macro-F12 = 0.835 

Note. 1Overall Accuracy. 2Arithmetic mean of F1-scores. 

 

Table 10. Confusion matrix of predictions made using VUX-based images. 

 
Observed Species 

Precision F1-score 
Pine Spruce Deciduous Noise 

P
re

d
ic

te
d

 

S
p

ec
ie
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Pine 3409 85 57 5 95.9% 0.937 

Spruce 203 3362 109 80 89.6% 0.914 

Deciduous 94 76 3207 85 92.6% 0.928 

Noise 16 76 86 686 79.4% 0.798 

Recall 91.6% 93.4% 92.7% 80.1% OA1 = 91.6% macro-F12 = 0.894 

Note. 1Overall Accuracy. 2Arithmetic mean of F1-scores. 

 

Table 11. Confusion matrix of predictions made using dual-wavelength images. 

 
Observed Species 

Precision F1-score 
Pine Spruce Deciduous Noise 

P
re

d
ic

te
d

 

S
p

ec
ie
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Pine 3455 103 87 9 94.6% 0.937 

Spruce 198 3392 60 100 90.4% 0.923 

Deciduous 45 43 3242 97 94.6% 0.942 

Noise 24 61 70 650 80.8% 0.783 

Recall 92.8% 94.2% 93.7% 75.9% OA1 = 92.3% macro-F12 = 0.896 

Note. 1Overall Accuracy. 2Arithmetic mean of F1-scores. 

3.4 Crook Detection Using Synthetic Training Data 
(Paper IV) 

In Paper IV, crook detection accuracy varied depending on the IoU 

threshold used to decide if a detection was correct. As shown in Figure 16, 

the model achieved high sensitivity to the presence of crooks at low 
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thresholds, with F1-scores exceeding 0.60 for IoU < 0.3 and with recall 

exceeding 0.80. These figures dropped substantially at stricter thresholds. At 

the commonly used IoU = 0.5, the F1-score fell to approximately 0.45, with 

a recall of approximately 0.55 and precision of 0.35. This indicates strong 

detection capabilities but poor placement of the bounding box around the 

crooks. 

 

 
Figure 16. Accuracy of the crook detection model across varying Intersection over Union 

(IoU) thresholds. The plot shows F1-score (red), precision (green), and recall (blue) as a 

function of the IoU threshold used to define true positives. 

In addition, systematic detection errors were observed (Figure 17). At the 

IoU threshold of 0.25, most true positives occurred between 3 m and 8 m 

above ground. However, commission errors were common above 10 m, 
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likely due to low point density and increasing structural complexity of the 

crown. On the other hand, omission errors were mostly observed below 

2.5 m, possibly due to irregular basal stem shapes that were underrepresented 

or less realistically modeled during simulation. Together, these results 

demonstrate that a model trained only with synthetic data can generalize to 

real-world TLS for crook detection when flexible spatial thresholds are 

allowed. However, accurate localization and detection across the full stem 

profile is a challenge, particularly in regions with occlusion, low sampling 

density, or geometric variability. The results highlight both the opportunities 

and challenges that come associated with using simulation-based training for 

rare stem defect detection. 

 

 
Figure 17. Position of crook detection outcomes along the stem. Bars represent the 

number of crooks detected (true positives, green), commission (red), and omission (blue) 

errors across stem height intervals.  
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4. Discussion 

This thesis explores how multiple data sources, from close-range remote 

sensing technologies to harvester production reports and simulations, can 

enhance data availability for tree-level forest inventories based on remote 

sensing. Across Papers I to IV, different datasets, analytical techniques and 

algorithms are used to estimate forest attributes. While each study has a 

different objective, together they demonstrate that emerging data collection 

strategies can enhance the scalability, efficiency, and automation of forest 

monitoring workflows. 

In Papers I and II we propose car-mounted MLS as an operationally 

viable alternative to traditional field-based reference data collection. The 

results show that tree attributes such as DBH and stem volume can be 

accurately estimated from car-mounted MLS datasets, achieving comparable 

accuracy to TLS. More importantly, the system can provide reference data 

in sufficient quality and quantity to precision forestry related applications, 

such as tree-level modelling, by taking advantage of road networks. In 

practice, the approach enabled the measurement of over 6000 trees within a 

two-hour survey, highlighting its potential to substantially increase data 

collection efficiency compared to conventional fieldwork. Paper II further 

confirms that these MLS-derived measurements can be used to train ALS-

based models at tree-level, yielding similar results to models trained on 

conventional field-plot data. These findings are particularly relevant for 

large-scale forest inventories, where the cost and labor intensity of traditional 

field surveys often limit the data collection capabilities. By enabling rapid 

and consistent data acquisition, MLS-derived ground-truth data can support 

model training for remote sensing–based forest monitoring, at tree-level. 

Paper III addresses another limitation often faced in forest remote 

sensing workflows: data annotation. By integrating HPRs with ALS data, we 

proposed an automatic annotation pipeline that minimizes manual 

interpretation and provides a reference dataset for tree species classification. 

As HPRs are a routine by-product of mechanized harvesting, they represent 

a source of information that can be repurposed for modelling without 

requiring extra data collection. For the species groups analyzed under the 

same forest conditions, our comparative analysis of ALS datasets with 

different spectral and spatial resolutions showed that spatial resolution, here 

denoted by a combination of footprint size and point density, has a strong 



72 

 

impact on classification accuracy. These findings suggest that ALS-based 

species classification can be made more efficient both through sensor choice 

and the use of such operational by-products. 

Finally, Paper IV proposes the usage of synthetic data as a way to 

overcome the lack of training data for rare stem defects detection, 

specifically crooks. The framework for generating synthetic crook 

deformations proved effective for training a CNN, though its ability to 

generalize to real-world data was limited. While localization accuracy was 

limited, the study illustrates how simulation-based training can support 

defect detection where annotated real-world data is rare or difficult to obtain. 

Future work should focus on increasing simulation realism and in strategies 

to reduce problems related to domain shift. 

Nevertheless, shifting from traditional data collection methods to 

alternative or novel data sources introduces new uncertainties into 

modelling. For instance, in Paper I, estimate’s accuracy varied according to 

how far from the sensor trajectory (i.e. roadside) the trees were, with a high 

number of commissions from 0-10 m from the roadside, while omissions 

were prominent beyond ~40 m. In Paper II, even though models trained on 

MLS references produced estimates comparable to those trained on field 

plots, it remains important to assess how adopting such estimates as inputs 

may influence downstream forest planning decisions and constraints. In 

Paper III, even though the automatic labeling removed much of the manual 

work required in annotation, key uncertainties can come from the HPR side, 

such as operator annotation errors and imperfect HPR–to–ALS matching. 

Finally, in Paper IV, training a crook detector only on synthetic data yielded 

weak localization at stricter IoU thresholds and height-dependent errors 

(varying with crook position along the stem), underscoring a possible 

synthetic-to-real domain gap. 

Despite these shortcomings, this thesis advances precision forestry by 

addressing challenges related to data availability and scalability of detailed 

(i.e. tree-level) forest inventories. In that sense, Hyyppä et al. (2022) 

proposed a transition towards direct laser-based measurements of stem form 

and volume – in line Papers I and II. In contrast to the ground-based 

platform in Paper I, Hyyppä et al. (2022) used a helicopter-mounted system 

for stem attribute derivation, which achieved a lower tree detection rate yet 

allowed coverage of a larger area. More broadly, aerial platforms such as the 

one used by Hyyppä et al. (2022) or Puliti et al. (2020) can cover larger areas 
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and are not bound to the road network or terrain accessibility, which may be 

more scalable than car- or ATV-mounted systems. At the same time, ground-

based systems present a different set of trade-offs. Costs and operational 

risks are substantially lower compared to aerial platforms, making them 

attractive for detailed local inventories. However, their dependence on the 

road network or terrain accessibility introduces limitations, as inaccessible 

forest patches may remain unsampled, leading to potential design biases. 

Paper II builds on this discussion by addressing the research gap pointed 

out by Hyyppä et al. (2022), namely whether laser scanning-based stem 

attribute estimates can serve as reliable reference data for training individual-

tree-level models. Our comparison of MLS- and FI-derived datasets revealed 

both advantages and limitations of using laser scanning as reference. The 

MLS dataset provided a larger sample size, which can strengthen model 

calibration. However, model performance does not necessarily improve once 

a threshold in sample size is reached (Fassnacht et al., 2014; Lisańczuk et al., 

2020), and adequate representation of attribute variability across the study 

area often plays a more important role than the absolute number of samples 

(Junttila et al., 2013; Li et al., 2023). 

In their review study, Liang et al. (2022) emphasize that close-range 

remote sensing technologies hold great promise for forest observation, but 

their operational deployment depends on improvements in data acquisition 

protocols, calibration and validation. In this sense, the thesis tested and 

validated the use of MLS, TLS and low-flying ALS as a step towards 

addressing this gap, providing examples of how such information could 

support forest inventory practices. Rather than focusing on single-sensor 

solutions or controlled conditions, the work illustrates how scalable 

inventory methods may gradually be developed by leveraging diverse close-

range data. 

Beyond operational inventory applications, Valbuena et al. (2020) 

suggest that structural traits such as height, cover, and complexity can 

provide a useful bridge between 3D data and ecological understanding. The 

work presented in this thesis offers some insights in this direction by showing 

how attributes like DBH and stem volume (Papers I and II), tree species 

(Paper III), and shape anomalies (Paper IV) can be derived from close-

range remote sensing data. While the thesis focus was on tree size and shape, 

it may also support the mapping of other structural metrics relevant to 
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ecological studies. With further development, these approaches could 

contribute to broader trait-based assessments of forest ecosystems. 

Disney (2019) emphasizes TLS’s capacity of describing plant structure 

and function, particularly architectural traits and form-function relationships. 

Some of the methods described in the thesis, such as the reconstruction of 

stems (Papers I and II) and the detection of deformations like crooks (Paper 

IV), may offer some contribution in that direction. These approaches were 

not designed with ecological modelling in mind, but they demonstrate how 

structural detail captured with close-range sensors can be processed and 

interpreted in scalable ways.  

In addition to enhancing data availability, close-range remote sensing has 

been tested both as auxiliary information in probability-based estimators and 

as a practical extension to national forest inventories (NFIs). Molina-Valero 

et al. (2025) showed that incorporating TLS and/or UAV-LS as auxiliary 

information significantly reduced the standard error of stand volume 

estimates. The study also showed that simply using TLS-derived values of 

DBH, height, or volume does not guarantee variance reductions because 

single-scan TLS can introduce occlusion-related bias and increased plot-

level variability. At NFI scale, practice-oriented pilots in France, Finland, 

and Switzerland reached a complementary conclusion: close-range laser 

scanning such as TLS and MLS should complement existing survey 

protocols, with the goal of expanding what is measured in each plot, as 

vertical structure, regeneration, and lying deadwood, rather than replacing 

standard measurements (Holvoet et al. 2025).  

At the same time, making full use of alternative data collection tools also 

requires changes in the systems that support forest planning. Most planning 

frameworks use fixed stands as the main management unit, but maps based 

on sources such as close-range LiDAR or HPRs may contain information 

that would be lost or underused when aggregated to stand level, for example 

tree-level stem defects. Such aggregation can reduce the value of the data 

and lead to suboptimal planning decisions (Maleki et al., 2024). To better 

capture this type of detail, planning frameworks need to allow more flexible 

units. Dynamic treatment units are one example, where harvest blocks are 

formed by grouping small spatial units, adapting to local variation instead of 

following fixed stand boundaries (Pascual et al., 2016; Wilhelmsson et al., 

2021).  
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Building on the examples tested in this thesis, future research should 

continue to explore how complementary data collection tools can expand the 

range of attributes captured in forest inventories. Close-range laser scanning 

and HPRs, in particular, can describe attributes that are costly or impractical 

to measure through conventional means, such as regeneration density, lying 

deadwood, crown architecture, and stem form. Further work is needed to 

determine how such tools can be incorporated into inventory protocols, not 

as replacements for established measurements, but as additions that increase 

the relevance of forest inventories. Second, future studies should investigate 

how the derived information can be integrated into decision support systems, 

and which types of management or planning decisions it can effectively 

support. For instance, while estimating attributes such as regeneration or 

deadwood at large scale is valuable in itself, their real impact lies in 

clarifying how such information can guide operational and strategic choices. 
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5. Conclusion 

Reliable reference data are essential in remote sensing-based forest 

inventories, providing the foundation for model training and validation. Yet, 

the collection of such data remains a bottleneck, particularly in cases where 

extensive reference datasets are needed, e.g. for training neural networks, or 

where the target variables cannot be easily or reliably measured through 

traditional manual fieldwork. This thesis contributes to addressing this 

challenge by exploring how multiple data sources and techniques can expand 

the availability of tree-level information, thereby supporting scalable and 

more detailed forest inventories.  

 

The results show that: 

• Mobile laser scanning from cars can measure stem attributes with 

accuracy comparable to stationary laser scanning, while enabling 

data acquisition at greater speed, offering a viable alternative to 

conventional manual field inventories.  

• By linking ALS data with HPRs, we demonstrated that operational 

by-products of mechanized harvesting can be repurposed to create 

automatically annotated reference datasets, reducing manual 

interpretation and ensuring consistency in tree species classification.  

• Synthetic laser scanning data can be used to train neural networks 

for the detection of rare defects, such as stem crooks, implying that 

semi-empirical simulation approaches can overcome data scarcity in 

tasks where large, annotated datasets are impractical to obtain. 

 

Together, these studies demonstrate that reference data availability can be 

expanded through efficient acquisition methods, automated data fusion, and 

simulations. Such approaches are not without uncertainties, but they open 

pathways for improving the scalability of tree-level remote sensing enabling 

information supply to precision forestry. 
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Popular science summary 

Forests are managed to meet many different goals, including timber 

production, biodiversity conservation, climate change mitigation, and 

recreation. These objectives are often in conflict, which makes management 

increasingly complex and dependent on reliable information. Precision 

forestry has emerged as a framework to address this challenge. It aims to 

optimize management by using site-specific information at fine spatial 

scales, often at the level of individual trees, supported by measurements, 

modelling, and automation. To make precision forestry possible, large 

amounts of detailed data are required. Traditionally, this information has 

been obtained from field surveys, where a limited number of trees are 

carefully measured in sample plots. These methods are accurate and remain 

essential, but they are expensive and time-consuming, and often not scalable 

to the level of detail demanded by precision forestry. This thesis investigates 

how complementary data sources can help bridge this gap. Close-range laser 

scanning from vehicles, digital records generated during forest harvesting, 

and synthetic datasets that replicate real conditions all provide new 

opportunities to expand the availability of tree-level information. These 

approaches can supply data in the quality and quantity needed to support a 

range of applications, from modelling forest growth and species composition 

to identifying irregularities in tree stems relevant for timber quality. Taken 

together, the findings show how emerging data sources can complement 

traditional surveys and strengthen the basis for forest assessments. By doing 

so, they contribute to making precision forestry more operational, enabling 

management decisions that are better adapted to the diverse and often 

competing demands placed on today’s forests. 
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Populärvetenskaplig sammanfattning 

Skogshushållning har många olika mål, t.ex. virkesproduktion, bevarande av 

biodiversitet, motverka klimatförändringar och främja rekreation. Dessa mål är ofta 

i konflikt med varandra vilket medför allt oftare komplexa beslutsprocesser där 

pålitlig information behövs. Precisionsskogsbruk har växt fram som ett koncept där 

dessa utmaningar kan adresseras. I detta skogsbruk strävar man efter att optimera 

genom att använda geografisk information med hög upplösning, ofta på trädnivå, 

baserat på mätningar, modelleringar och automation. För att möjliggöra 

precisionsskogsbruk behövs stora mängder detaljerade data. Traditionellt kommer 

denna information från fältinventeringar där ett begränsat antal träd mäts noggrant 

på provytor. Dessa metoder är noggranna och är fortfarande mycket viktiga, men de 

är kostsamma och långsamma. Det är därför inte möjligt att skala upp dessa metoder 

med en bibehållen upplösning som är tillräcklig hög för kraven på information i 

skogsbruket. I denna avhandling undersökts hur kompletterande datakällor kan 

användas för att skapa relevant information. Laserskanning på korta avstånd från 

fordon, digital registrering med hjälp av moderna skördare, och syntetiska data som 

speglar verkliga förhållanden skapar alla nya möjligheter att utöka tillgången av 

information på trädnivå. Dessa tillvägagångsätt kan användas för att skapa data i den 

kvantitet och med sådan kvalitet som behövs för att stödja många olika 

tillämpningar, från modellering av skogstillväxt och trädslagsfördelning till att 

identifiera oregelbundenheter på trädstammar kopplade till virkeskvalitet. 

Sammanfattningsvis visar resultaten hur framväxande datakällor kan komplettera 

traditionella inventeringar och stärka grunden för skogsuppskattning. De nya 

datakällorna kan bidra till att göra precisionsskogsbruk mer operationellt, vilket 

möjliggör beslutsprocesser som är bättre anpassade till de många olika och ofta 

konkurrerande krav som finns på dagens skogsbruk. 

  



96 

 

  



97 

 

Acknowledgements 

Many people have been part of this journey. First of all, I had the privilege 

of counting on an amazing supervision group: Eva, Henrik, Kenneth, and 

Johan. They made the process not only productive but also genuinely 

pleasant, always supported my ideas, gave feedback that lifted me up, and 

were ready to teach, explain, or discuss whenever I needed. With them, I 

learned not only about remote sensing and doing research but also had a live 

demonstration of what great mentorship looks like. This is something I will 

carry with me, and I can only hope to pass it forward in the future. 

I would also like to thank my colleagues at Remote Sensing division and 

at the Department more broadly. This is a truly special place to work, with a 

light and friendly atmosphere that supports PhD students in many ways: from 

introducing us to fika to the constant willingness of all research staff, 

administrators, and engineers to offer help and guidance whenever needed. I 

can honestly say that I enjoyed coming to work, and I am very grateful for 

the sense of community we share. 

To my colleagues at Stora Enso AB, in special to Daniel Forsberg, Peder 

Wikström, Anna Karlberg, and Erik Willén, thanks for getting me familiar 

with Swedish forestry. Our collaboration showed me how research connects 

with forestry and made the whole experience more rewarding. 

To my fellow (present and past) PhD students and postdocs, thank you 

for all the laughs we shared and for always being ready for the next 

adventure. The everyday moments with you, filled with the most incredible 

non-sense, have turned into stories that I will retell many times. Special 

thanks to Emanuele Pappucci, for creating the beautiful artwork on the cover. 

Um agradecimento mais que especial aos meus amigos brasileiros aqui 

em Umeå, que me ajudaram a matar a saudade de casa e riram dos efeitos 

sonoros do Ratinho. A presença de vocês tornou essa jornada mais leve. 

Por último mas não menos importante, meu muito obrigado à minha 

familia e minha esposa. Eu sempre senti o apoio e o carinho de vocês. 

Quando eu achava que algo não ia dar certo, vocês sempre diziam: ‘lógico 

que vai dar, Raul, sempre dá certo’. Esse voto de confiança me acompanhou 

durante toda a jornada e faz mais sentido a cada conquista. Esse trabalho 

também é de vocês. 

  



98 

 

 



Ι





ISPRS Journal of Photogrammetry and Remote Sensing 187 (2022) 211–224

Available online 18 March 2022
0924-2716/© 2022 The Authors. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Individual tree detection and estimation of stem attributes with mobile 
laser scanning along boreal forest roads 
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A B S T R A C T   

The collection of field-reference data is a key task in remote sensing-based forest inventories. However, tradi
tional methods of collection demand extensive personnel resources. Thus, field-reference data collection would 
benefit from more automated methods. In this study, we proposed a method for individual tree detection (ITD) 
and stem attribute estimation based on a car-mounted mobile laser scanner (MLS) operating along forest roads. 
We assessed its performance in six ranges with increasing mean distance from the roadside. We used a Riegl VUX- 
1LR sensor operating with high repetition rate, thus providing detailed cross sections of the stems. The algorithm 
we propose was designed for this sensor configuration, identifying the cross sections (or arcs) in the point cloud 
and aggregating those into single trees. Furthermore, we estimated diameter at breast height (DBH), stem pro
files, and stem volume for each detected tree. The accuracy of ITD, DBH, and stem volume estimates varied with 
the trees’ distance from the road. In general, the proximity to the sensor of branches 0–10 m from the road 
caused commission errors in ITD and over estimation of stem attributes in this zone. At 50–60 m from roadside, 
stems were often occluded by branches, causing omissions and underestimation of stem attributes in this area. 
ITD’s precision and sensitivity varied from 82.8% to 100% and 62.7% to 96.7%, respectively. The RMSE of DBH 
estimates ranged from 1.81 cm (6.38%) to 4.84 cm (16.9%). Stem volume estimates had RMSEs ranging from 
0.0800 m3 (10.1%) to 0.190 m3 (25.7%), depending on the distance to the sensor. The average proportion of 
detected reference volume was highly affected by the performance of ITD in the different zones. This proportion 
was highest from 0 to 10 m (113%), a zone that concentrated most ITD commission errors, and lowest from 50 to 
60 m (66.6%), mostly due to the omission errors in this area. In the other zones, the RMSE ranged from 87.5% to 
98.5%. These accuracies are in line with those obtained by other state-of-the-art MLS and terrestrial laser scanner 
(TLS) methods. The car-mounted MLS system used has the potential to collect data efficiently in large-scale 
inventories, being able to scan approximately 80 ha of forests per day depending on the survey setup. This 
data collection method could be used to increase the amount of field-reference data available in remote sensing- 
based forest inventories, improve models for area-based estimations, and support precision forestry development.   

1. Introduction 

The first studies that used ground-based LiDAR (Light Detection and 
Ranging) to measure forests date from the early 2000 s (Hopkinson 
et al., 2004; Lovell et al., 2003). Since then, different authors have 
explored and reported on the accuracy of stationary (Terrestrial Laser 
Scanner – TLS) and mobile (Mobile Laser Scanner – MLS) ground-based 
LiDAR to measure forest parameters and stem attributes. These systems 
can provide accurate measurements of stem profiles and diameter at 
breast height (DBH) at tree-level in a relatively short time and with 

centimeter-level accuracy (Balenović et al., 2020; Hyyppä et al., 2020c; 
Olofsson and Holmgren, 2016; Pierzchała et al., 2018; Puliti et al., 
2020). In addition, some ground-based laser systems can go beyond 
estimation of traditional plot-level attributes (Newnham et al., 2015) 
and provide, for instance, information on trees’ branch structure (Lau 
et al., 2018; Zhang et al., 2020) and sawmill timber quality (Pyörälä 
et al., 2019b, 2019a) with good accuracy and a high level of detail. 

However, ground-based LiDAR systems are not operationally used in 
forest inventory despite their proven suitability for retrieving field data 
due to different reasons, for instance, the high prices of the equipment 
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and the availability of data processing tools. In addition, the intensive 
manual work required for collection of TLS and MLS data (Calders et al., 
2020), with field campaigns comparable to those of traditional forest 
inventory, make these technologies less competitive with traditional 
methods. 

Area-based approaches (ABA, Næsset 2002) have been used in many 
operational remote sensing-based forest inventories, providing esti
mates for a given region or pixel that can vary in size from a few square 
meters to hectares (Holopainen et al., 2014). In this approach, field- 
reference data are used as a response variable in the calibration of 
remote sensing-based models. Such models can be used to estimate 
forest attributes, such as timber volume per hectare, over the entire 
inventoried area. To develop a good model, the reference data should be 
representative of the whole study area, covering as much of the forest 
variability as possible. However, drawing a sample that sufficiently 
represents the whole inventoried area is time- and resource-consuming, 
which causes surveys to be a trade-off between cost efficiency and ac
curacy gain. The ABA has been used in simple homogenous forest con
ditions such as Scandinavian forests to provide rather accurate stand- 
level estimates. However, such estimates usually lack the details 
necessary for optimal planning of forest usage for different goals, such as 
tree-level information (Holopainen et al., 2014). Hence, the term Pre
cision Forestry has been introduced and is often used to describe the 
stage at which individual tree maps are generated (Hyyppä et al., 
2020c), including both qualitative (e.g., species) and quantitative (e.g., 
diameter and volume) information about each tree. This stage requires 
efficient methods for collecting reference data in an amount sufficient to 
train models at the individual tree level. 

Recently, MLS systems appeared as efficient alternatives to conduct 
forest measurements (Holmgren et al., 2019; Hyyppä et al., 2020b; Liu 
et al., 2021; Puliti et al., 2020). They can be grouped according to their 
platform, namely handheld, on a backpack, or vehicle- or UAV-mounted 
(also called ULS). One important challenge of using MLS is the posi
tioning signal under the forest canopy, which makes the co-registration 
of the point clouds a challenge to be solved by different methods (Bakula 
et al., 2015; Kukko et al., 2017; Qian et al., 2017). Improvements in the 
accuracy of positioning under forest canopy, and in the LiDAR sensor 
technology, have made it possible to acquire MLS point clouds compa
rable with those obtained with TLS in terms of accuracy and precision. 
For instance, Hyyppä et al. (2020c) obtained point clouds with point 
registration accuracies ranging from ± 1 cm in a backpack MLS to ± 3 
cm in a handheld MLS and under canopy ULS. 

Amongst the different MLS systems, the ones mounted on all-terrain 
vehicles (ATVs) or cars are used in the assessment of some types of urban 
infrastructure and by the automotive industry (Puente et al., 2013), but 
less often in forestry compared to TLS or other MLS systems. This system 
has a great potential to be used in automatic large-scale forest assess
ments and to provide an alternative to traditional reference data 
collection. Nevertheless, only a few promising studies have assessed its 
suitability to measure forest structure at individual tree-level. For 
instance, Forsman et al. (2016) proposed an algorithm to detect stem 
points in a point cloud acquired from a car-mounted MLS, yielding an 
RMSE (Root Mean Squared Error) of 3.7 cm on DBH estimations. Later, 
Čerňava et al. (2019) tested the performance of a highly accurate MLS 
mounted on a tractor under heavy canopy conditions, reporting an 
RMSE of 3.1 cm on DBH estimations in these areas. Both studies suggest 
that vehicle-mounted MLS could be used to conduct forest 
measurements. 

A car-mounted MLS can provide reference data in the quantity and 
quality required to calibrate models at individual tree level and reduce 
the need of labor-intensive field campaigns, thus supporting efficient 
Precision Forestry. This system can take advantage of forest road net
works in regions like Sweden, where there are approximately 210,000 
km of forest roads accounting for about one-third of the total road 
network in the country (Axelsson et al., 2018), making measurements on 
the go during field visits or operations. However, areas with dense forest 

cover and sparse road network could not be suitable for using of a 
vehicle-mounted MLS with inventory purposes, once the sampling 
would be restricted to only a few areas. In terms of autonomy, cars or 
ATVs are capable of operating for longer during field campaigns when 
compared to other MLS systems (e.g., under-canopy ULS). Moreover, it 
would be possible to train models with local reference data in remote 
sensing-based forest inventory, instead of using samples at the regional 
or national level. Finally, the smooth trajectory on forest roads together 
with a clear positioning signal can yield high accuracy point clouds, 
making it possible to derive accurate estimates of forest variables at 
individual tree level. 

A method able to estimate stem attributes using MLS from forest 
roads could change the current opportunities of using remote sensing- 
based methods that require large amounts of reference data for cali
bration and parametrization. For instance, Kolendo et al. (2021) used a 
large-scale reference dataset to parameterize ITD algorithms in conif
erous forests, reaching tree count RMSEs varying from approximately 6 
to 13%, depending on the forest type. Skudnik and Jevšenak (2022) 
found that, in the presence of sufficient reference data for calibration, 
artificial neural network-derived tree height predictions can outperform 
predictions derived from mixed effect models. Generally, deep learning 
methods require large datasets for calibration to be used at their full 
potential (Hamraz et al., 2019; Xi et al., 2020). 

In addition, the type of reference data is a constraint while working 
with remote sensing-based environmental assessments, because some 
forest attributes are not easily measurable with manual methods. For 
instance, Zhen et al. (2016) pointed out the difficulty to acquire precise 
tree locations in field reference data as a disadvantage of individual tree 
detection approaches in forest inventories. Another example is the 
estimation of stem profiles, which requires either destructive methods or 
heavy machinery to be measured. In this sense, the car-mounted MLS 
has the potential to provide data of the type and amount required by 
different applications and pose as a suitable reference data collection 
component in remote sensing-based forest inventories. 

A possible drawback of such a solution is that at the roadside, where 
there is usually less competition among individual trees, the trees are 
under edge effect and may show different growth rates and patterns 
compared to trees further into the stand (Delgado et al., 2007; Harper 
et al., 2015). Consequently, a car-mounted MLS solution that limits data 
collection to the roadside might sample mostly trees that are not 
representative of the whole forest and may not be suitable for calibrating 
remote sensing-based models. 

The main objective of this study is to assess the suitability of a car- 
mounted MLS sensor to retrieve field reference data along forest 
roads. We assess the potential of such technology in providing reference 
data for remote sensing-based forest inventories. The specific objectives 
are: (1) to propose algorithms for ITD (Individual Tree Detection), DBH, 
stem profiles, and total volume estimation with MLS data, and (2) to 
assess the influence of distance from the roadside on the estimations. 

2. Material and methods 

2.1. Study area and reference data 

The proposed algorithms were validated on the Remningstorp test 
site, in Southern Sweden (lat. 58.5 degreesN, long. 13.6 degreesE), 
where the dominant tree species were Norway spruce (Picea abies) – 
85.7%, Scots pine (Pinus sylvestris) – 9.1%, and Birch (Betula spp.) – 
3.4%, with density of 580 trees/ha. Altogether, 18 circular plots with a 
radius of 10 m were measured in the field during summer 2017. In each 
field plot, all living trees with a DBH greater than 4 cm had their DBH 
and position recorded. The mean DBH of the measured trees was 26.7 
cm, with approximately 95% of all measured trees having DBH >= 15 
cm. The plots were organized in six groups, with the plot centers aligned 
perpendicularly to the road (Fig. 1). 

To evaluate the effect of the distance from the road on the proposed 
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method’s accuracy, we divided the trees into 6 range zones, according to 
their distances from the roadside: 0–10 m, 10–20 m, 20–30 m, 30–40 m, 
40–50 m, and 50–60 m (Fig. 1). 

In November 2019, TLS surveys were conducted in each group using 
a multi-scan setup, with 2 scans per plot (Fig. 1). The TLS sensor used 
was a Trimble TX8. The wavelength was near-infrared (1500 nm) and 
repetition rate was 1 million points per second. The field of view was 
360 degrees in the horizontal and 317 degrees in the vertical direction, 
and the point spacing of 0.4 cm at 10 m from the scanner. The footprint 
diameter was 3.4 cm at 100 m from the sensor. The system records up to 
three returns from the same pulse with a range accuracy less than 0.2 
cm. 

The TLS point cloud was processed according to Olofsson and 
Holmgren (2016). The stem volume was estimated for the TLS data using 
the stem curve procedure described in section 2.3.7. In comparison with 
field-measured DBHs, the TLS measurements had an overall Root Mean 
Squared Error (RMSE) and bias of 1.54 cm and 0.93 cm, respectively. 
Table 1 shows the RMSE of TLS-derived DBH estimates for each distance 
range from the road. These values are higher than the reported by 
Olofsson & Holmgren (2016) of 1 cm RMSE. This difference may be 
partly explained by the two years elapsed between the field and TLS 

surveys, which might also have caused the systematic overestimation 
evidenced by the positive bias. In addition, zones as 0–10 m and 50–60 
m were scanned by the TLS from only one direction, whereas the zones 
from 10 to 50 m had TLS positioned in both sides of the trees. This 
scanning set up might have caused lower accuracy in the closest and 
furthest distance ranges. 

2.2. Mobile and Airborne laser scanning systems and Pre-processing 

The MLS data survey was carried out using a car-mounted Riegl VUX- 
1LR sensor in November 2019. In total, approximately 7 km of forest 
roads were scanned in the both sides, yielding 84 ha of scanned forests 
considering the 0–60 m range. The car had a speed of 8 km/h and the 
sensor was leaning 30 degrees from the horizontal plane, with the side of 
the sensor pointing up and turned toward the front part of the car. The 
sensor shot near-infrared (1550 nm) pulses at a repetition rate of 820 Hz, 
which together with a field of view of 330 degrees yielded the angular 
step width (ASW) of 0.0066 degrees. The footprint diameter was 5 cm at 
100 m from the sensor. The system records up to three returns from the 
same pulse with point registration accuracy of 1.5 cm. 

The Airborne laser scanning (ALS) data was collected in October 
2019 with a Leica TerrainMapper-LN system from approximately 1450 
m above ground. The airplane had an average speed of 115 knots. The 
laser beam footprint was 0.35 m, the pulse frequency equal to 1600 Hz, 
and the scanner field of view equal to 30 degrees. The average point 
density was approximately 22 points/m2. 

Before ITD, the point clouds were classified into ground and non- 
ground points using the ground classification algorithm by Zhang 
et al. (2016) implemented in the lidR R package (Roussel et al., 2020). 
Once classified, we divided the MLS point clouds in two. The first point 
cloud excluded the ground points, and this was used for ITD, diameter, 
and stem profile estimation. The second point cloud was formed by only 

Fig. 1. Schematic representation of spatial disposition of a group of plots in relation to the roadside and TLS survey setup (A), with details of the position of the plots 
in the study area (B), and position of the field plots in Sweden (C). 

Table 1 
RMSE and bias of TLS-derived DBH estimates according to the distance range 
from the road.  

Zone RMSE Bias 

0–10 m 2.57 cm (10.7%) 2.35 cm (9.87%) 
10–20 m 1.53 cm (5.60%) 1.04 cm (3.81%) 
20–30 m 1.40 cm (5.06%) 1.11 cm (4.02%) 
30–40 m 1.55 cm (5.62%) 0.85 cm (3.11%) 
40–50 m 1.32 cm (5.15%) 1.01 cm (3.94%) 
50–60 m 1.62 cm (6.36%) 0.82 cm (3.22%)  
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the ground points and used to find the aboveground height of the trees. 

2.3. Individual tree Detection, stem Profiling, and stem curve estimation 

The scanner’s setup was chosen to facilitate tree detection and stem 
diameter estimation. The sensor’s high repetition rate, combined with a 
scanning frequency lower than that normally used in surveys, yielded 
point clouds with high density within scan lines, but two consecutive 
scan lines are more separated in space. For instance, at 40 m from the 
sensor, two consecutive points were approximately 0.5 cm apart, 
whereas two consecutive scan lines were approximately 17 cm apart. 
The scanning frequency was chosen to yield very high density in stem 
cross sections, facilitating branch filtering and circle fits. However, it 
caused a significant loss of information in the vertical direction along the 
stem. Thus, this setup provided a better representation of the the targets 
in the scanline direction than in three dimensions, since solid tar
gets—like stems—do not become represented in the point cloud as 
continuous surfaces, but rather as a collection of cross sections (Fig. 2). 
For this reason, the proposed ITD algorithm assumed that points 
belonging to the same stem appear in the point cloud as arcs, and it finds 
point clusters with circular shape within each scan line. After that, the 
identified arcs were segmented into single stems. Next, to estimate the 
stem profile, we divided the detected stems into sections, corrected their 
inclination (to point straight up), and estimated their diameter. 

One characteristic of the car-mounted MLS data is the uneven point 
density of the point cloud (Fig. 3), which varied according to the dis
tance from the sensor: while areas closer to the road (and thus closer to 
the sensor) had trees with both the stem and canopy scanned, trees 
further into the stand might have lacked several portions of the stem and 

did not have returns from the upper canopy part, which prevented the 
retrieval of total heights from the MLS point cloud for many trees in 
these areas. To contour this issue, each tree’s total height was retrieved 
from ALS instead of MLS point clouds. Total heights can also be 
modelled based on other tree attributes, however, in this study we used 
ALS-retrieved values in order to better understand the effects of the 
distance from the road in the estimates. 

Finally, once the stem profiles of each tree were estimated, a stem 
curve model was fit to each detected tree. With such model, we could 
estimate diameters at any height of the tree even though it might not 
have been scanned. A flow chart of the method is presented in Fig. 4, and 
the details of each step are described in the following sections. 

2.3.1. Intensity-based point clustering per scanline 
The trees were independently detected in each scanline by finding 

arcs in the point cloud, as in Forsman et al. (2016). In this step, we 
assumed that points close enough to each other could be considered as 
returns from the same target, e.g., the same stem. 

The algorithm operates in each scanline in two steps. First, it clusters 
points together and secondly, it uses intensity thresholds to select only 
reliable laser returns in each cluster. This avoided inaccurate echoes at 
the edge of the stem due to, for instance, the laser beam’s footprint 
(Forsman et al., 2018, 2016). This process works as follows:.  

- For each scan line, cluster together points that are at a maximum 
distance dt cm from each other. In other words, inside a cluster a 
point should be maximum dt cm from its nearest neighbor in the 
same cluster. The cluster should have at least 15 points;  

- For each cluster, save the 95th intensity percentile as the intensity 
peak (Ip). Then filter out points with intensity value less than 70% of 
Ip. 

The threshold distance dt used to cluster points together was based 
on the laser survey’s angular step width (ASW) and accuracy (A). It 
denotes the maximum distance a point in a given cluster should be from 
its closest point in the same cluster. It is given by equation (1), 

dt = sin(ASW/2)*D*2 + 2*A, (1) 

where the first part of the equation denotes the minimum distance 
between two consecutive points at a given distance D from the sensor, 
assuming the points have reflected from a perfectly flat target. The ASW 
represents the angular separation between two consecutive laser pulses. 
Finally, different factors, such as the stem shape and point positioning 
errors, could cause the distance between two consecutive points to be 
bigger than the theoretical one. For this reason, we added two times A to 
dmin to form dt, accounting thus for both the circular shape of the stem 
and inaccuracies in the point’s position. 

2.3.2. Circle fitting 
The first circle fitting was done for two reasons: first, to eliminate 

point clusters that do not have the arc shape we assume stems to have, 
and second, to obtain coordinates for each circular cluster, which will be 
subsequently used to segment the arcs into tree stems. 

To fit the circle, we used the modified version of the Random Sample 
Consensus (RANSAC) algorithm described by Olofsson et al. (2014). This 
algorithm iteratively fits circles to a given set of points and chooses the 
best fit (Fig. 5). The circles were fit to the projection of the points on the 
horizontal plane, i.e., only the X and Y coordinates were used in the 
fitting process. The number of iterations for each cluster was set to 140, 
based on the probability of finding a good circle model, as in the paper 
by Olofsson et al. (2014). In each iteration for a given cluster, three 
points were randomly selected and a circle was fit to them. For each 
iteration, we recorded the number of inliers as being the number of 
points within a given tolerance distance from the circle. The points 
outside this tolerance distance were considered outliers. Each iteration 
determines unique sets of inliers and outliers, which are not dependent 

Fig. 2. Representation of a stem section in the car-mounted MLS point cloud. 
The stem is represented as a collection of arcs. It is possible to notice branches 
and shaded areas. 
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on the other iterations. In this study, we decided to set this tolerance 
distance equal to the accuracy of the laser survey, which was 1.5 cm. 

We assumed that the laser beam cannot go through the stem, so if the 
randomly chosen circle in a given iteration had more than 1% of the 
outliers inside the trunk, the iteration was considered invalid. Then, we 
selected the fit with the highest number of inliers amongst the valid it
erations as the best fit. After the best fit is selected, the outcomes of all 
the other iterations are ignored. The inliers of the best fit were used in a 
final adjustment by iteratively looking for the circle with smallest mean 
squared distance between its inliers and its edge. The center coordinates 
(X, Y), its radius and height (median height of the points), were recorded 
for the next step. 

2.3.3. Stem segmentation 
Since the trees were detected independently in each scan line, it was 

necessary to vertically aggregate the arcs to build consecutive tree 
stems. Thus, in the stem segmentation, we associated several arcs to a 
single stem using the circle center locations obtained in the previous 
step, according to the tree stem segmentation proposed by Holmgren 

et al. (2019):  

- For each arc’s circle, estimate a direction vector (Vdi) using other 
circles within a 50 cm radius of the target circle with Principal 
Component Analysis (PCA). Use the center coordinates (X, Y and 
height) of the circles as input;  

- For each Vdi, calculate the root-mean-square-deviation (RMSD) of 
the 3D linear distance of the circles’ centers to Vdi;  

- Sort all the Vds from the smallest to the largest RMSD;  
- For each Vdi, starting from that with smallest RMSD, segment to the 

same stem all the arcs whose circular areas – generated in section 
2.3.2 – are crossed by Vdi. In other words, segment to the same stem 
all circles crossed by the direction vector calculated in the first step. 
Repeat this step until no more arcs are available (i.e., no more arcs 
without a stem associated). 

Once the arcs were segmented into stems, we recorded the position 
of the lowest arc as the position of the stem. 

Fig. 3. Representation of 3D point cloud, where the point density varies according to the distance from the sensor. The left side is closer to the sensor than the right 
side and has more points in the canopy and on the stem compared to the trees in the right side of the figure. 

Fig. 4. Flowchart showing the processing of MLS point cloud.  
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2.3.4. Stem partitioning 
Neighboring arcs from the same stem were grouped to provide better 

input data for the circle fitting than would be possible using a single arc 
(Fig. 6 A and B). This process, which we called stem partitioning, was 
necessary for two reasons. First, branch points are often classified as 
stems, especially in transition areas where both connect. Second, the 
identified arcs might have imperfections, such as gaps or noise around 
them (Fig. 2). 

The grouping was done by partitioning the segmented stem into 
small sections of 30 to 50 cm. The size of the section was dependent on 
how many arcs could be found in each height interval. In this study, the 
minimum number of arcs in each section was defined according to the 
laser survey’s setup, which gives that two consecutive scan lines would 
be 17.1 cm apart from each other in height. Thus, on a 30 cm long 
section of a given stem, we expect to find two arcs. However, this dis
tance between scan lines can vary according to the car’s speed during 
the survey. Hence, when fewer than two arcs were found in a 30 cm 
section, the section size was increased by 10 cm until it reached 50 cm, 
or until the minimum of two arcs were found. If at least two arcs were 
not found in a 50 cm interval, this interval was considered empty and 
not used in the stem profiling. In the first two zones, from 0 to 10 m and 
10–20 m, we recorded stems with at least 10 sections, to avoid classi
fying bushes or branches as trees. When stems in those zones had fewer 
than 10 sections, they were considered noise. 

2.3.5. Inclination correction 
Hyyppä et al. (2020b) demonstrated that the horizontal projection of 

points from inclined stems can lead to biased diameter estimations when 
trees lean more than 3–4 degrees. To avoid such errors, stem direction 
should always be perpendicular to the plane on which the points are 
projected. 

In this study, diameters were always estimated in the horizontal 
plane. Therefore, the stem’s inclination was corrected before projecting 
its sections. It is also important to note that a stem’s inclination is not 
constant along the tree. For this reason, we corrected the inclination at 
each 2 m of stem, respecting the sections defined in the previous step: we 
found the direction vector of each 2-meter log simply by getting the 
centroids of the log’s upper- and lowermost sections. Then, we rotated 

Fig. 5. Schematic representation of the point selection done by the modified 
RANSAC (Olofsson et al., 2014). 

Fig. 6. Representation of a stem section from a Norway spruce tree where all points were classified as stem points. A: Single arc seen from above; B: group of arcs 
(stem section) seen from above. 
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the log to match a vector of the same size with its upper- and lowermost 
sections vertically aligned. 

2.3.6. Diameter estimation 
After defining the sections and correcting their inclination, we esti

mated the sections’ diameters by fitting circles to the projection of each 
section’s points on the horizontal plane. The main difference between 
the two circle fit steps in this study is that in section 2.3.2 the process 
was done at arc level (i.e., only one scan line), whereas in the current 
step the fit was done at section level (i.e., group of arcs). 

In addition, the circle fit for diameter estimation was done in two 
stages as proposed by Lindberg et al. (2012), making the estimation less 
sensitive to the local influence of branches. In the first stage, we fitted 
circles as described by Olofsson et al. (2014). In the second stage, the 
center positions (Xc, Yc) and diameters (D) from the circles in the first 
stage were used to select a new set of points. If we let (xi, yi) be a point 
coordinate from the stem section we are analyzing, we select the points 
that meet the criteria in equation (3) in the second stage. 

(Xc − xi)2
+(Yc − yi)2

≤ (p*D/2)2 (2)  

where p is a constant that expresses the maximum distance from the 
circle center (Xc, Yc) a point (xi, yi) should be so it would be included in 
the second stage, expressed as a proportion of the radius value found in 
the first stage. In this study, we use p = 1.1. 

At last, a final circle fitting was done using the points selected in the 
second stage, and the diameter value and section height found were 
recorded as the stem profile of the tree. 

2.3.7. Stem curve 
We used the stem curve model by Hyyppä et al. (2020b) to describe 

the diameter variation along a tree’s stem, estimating diameter values 
for regions of the tree that have not been scanned, e.g., the treetop and 
DBH height. The model combines equations (4) and (5). 

Ra(z) = a1*(H − z) + a2*(H − z)2
, (3)  

Rb(z) = b*
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(H − z)

√
, (4)  

where H is the total height of the tree retrieved from ALS, and R(z) is the 
radius at the height z. Both a1, a2, and b are coefficients to be determined 

with least square regression. With the coefficients, equation (5) gives the 
stem volume (V). 

V = π
/

2*
(∫ H

0
Ra(z)2dz+

∫ H

0
Rb(z)2dz

)

. (5) 

The system composed by equations (3) and (4) was chosen for 
several reasons, as pointed by Hyyppä et al. (2020b). First, the small 
number of coefficients used in the equations make the model robust to 
deal with outliers along the stem profile. Second, the average of both 
equations (effective fit) fits well to the stem profile, performing similarly 
in trees with several diameter values measures along the stem (Fig. 7 – 
Tree A), and trees with less measurements (Fig. 7 – Tree B). 

To obtain accurate total heights for all the trees we use ALS data over 
the same area. The retrieval of total heights from the ALS point cloud 
was done with a 30 cm radius search around the MLS-retrieved tree 
positions. Inside this radius, the highest height value was considered the 
tree’s total height. 

2.4. Accuracy assessment 

Different reference data sources were used to assess the accuracy of 
the variables retrieved with the car-mounted MLS. The accuracy of the 
ITD was assessed in each zone by matching the MLS-detected trees with 
the field-recorded tree positions. This was done by conducting a radius 
search around 30 cm of each MLS-detected tree. If an MLS-detected tree 
corresponded to a field-recorded one, the tree was considered a true 
positive. If it did not correspond to any field-recorded tree, it was 
considered a commission error. Finally, we considered omission when a 
field-recorded tree position did not have any correspondence with the 
MLS-detected individuals. Then, we computed the precision (equation 
(6)) and sensitivity (equation (7)) to quantify the accuracy of the ITD: 

Precision = TP/DT, (6)  

Sensitivity = TP/(DT + OT), (7)  

where TP is the number of trees correctly detected (true positives), DT is 
the total number of trees found by the proposed ITD algorithm, and OT is 
the number of trees present in the reference data which were not found 
by the proposed method (omissions). 

Fig. 7. Parabolic function Ra (z) in blue (equa
tion (3)), square root function Rb (z) in green 
(equation (4)) that compose the stem curve 
model fit to the stem profiles of two different 
trees (Tree A and B). The average (effective fit) of 
Ra (z) and Rb (z), which is used to estimate the 
effective diameter values and stem volume, is 
shown in red. Trees A and B have different 
number of diameter measurements along the 
stem. (For interpretation of the references to 
colour in this figure legend, the reader is referred 
to the web version of this article.)   
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TLS-derived DBHs, stem profiles and total volumes were used as 
reference to assess the accuracy of MLS-derived estimates of these three 
forest attributes. In this study, TLS-derived values were preferred over 
other methods of reference data collection once the measurement of 
stem profiles and volume though destructive methods was not feasible. 
Thus, in each zone, the performance of the proposed method was eval
uated by comparing the MLS-derived and TLS-derived DBHs, stem 
profiles and total volumes of each detected tree by computing the RMSE 
- equation (8) - and bias - equation (9). The relative RMSE and bias were 
calculated in relation to the reference mean values of each variable. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1
(ŷi − yi)2

/

n

√
√
√
√ , (8)  

bias =
∑N

i=1
(ŷi − yi)

/

n, (9)  

where yi and ŷi are the target’s variable reference and estimated values, 
respectively, for unit i and n is the total number of units. 

To compare the stem profiles obtained with the two methods, we 
defined a comparison range that comprehends the height interval of the 
stem where both MLS and TLS measurements are available. Inside the 
comparison range, we calculated the average diameter for each 1-meter 
interval, thus reducing the local influence of outliers in both the MLS 
and reference datasets. 

Finally, we evaluated the difference of the diameter distributions 
obtained with the different sensors in each detection zone (5 cm classes). 
For that, we used the error index e (Reynolds et al., 1988) proposed by 
Packalén and Maltamo (2008), as in equation (10), 

e =
∑N

i=1
0.5 × |fi/N − f̂ i/N̂ |, (10)  

where fi and f̂ i are the number reference and MLS-detected trees in 
diameter class i, respectively. N and N̂ are the total number of reference 
and MLS-detected trees, respectively. 

3. Results 

3.1. Individual tree detection 

Table 2 shows a summary of ITD’s precision and sensitivity in 
different zones. The ITD performance varied according to the tree’s 
distance from the road. From 0 to 10 m, we noticed the lowest precision 
and sensitivity in the study. This is mostly due to the high number of 
large branches and the proximity to the sensor. From 0 to 10 m from the 
road, we observed bigger branches compared to areas further into the 
stand. This factor, combined with the proximity to the sensor, meant 
that such branches were heavily scanned, causing some of them to be 
classified as separate trees (commission errors). At the same time, 
omission errors were caused by the high proportion of branches in the 
trees in this zone, which made discriminating between branches and 
stems not always possible. For instance, some stems might have been 
visible but could not be considered circular due to the amount of noise 

around them. In these cases, the stems were filtered out of the point 
cloud. 

The ITD had the best performance in the intermediate zones. Similar 
figures were observed from 10 to 20 m, 20–30 m, and 30–40 m, with 
both precision and sensitivity exceeding 90%. In these zones, the 
branches are smaller compared to the first zone, which made discrimi
nating between branches and stems easier. Besides, in the intermediate 
zones, the point density is not as high as at 0–10 m from the road, 
causing fewer commission errors. 

Beyond 40 m from the roadside, as distance to the sensor increases, 
we observe high precision and decreasing sensitivity. In these zones, few 
or no commission errors were observed, which justified the high preci
sion values. However, as trees get more distant, the chances of occlusion 
increase and point density decreases, making it more likely that fewer 
points would hit the stems, and thus more difficult to discriminate be
tween stem and crown. 

3.2. DBH, stem profile, and DBH distributions 

The prediction accuracy of DBH varied through the different zones 
(Fig. 8), with the RMSE and bias ranging from 1.81 cm (6.38%) to 4.84 
cm (16.9%), and − 0.41 cm (-1.35%) to 0.82 cm (2.86%), respectively. In 
some zones, e.g., from 0 to 10 m, the presence of outliers and the lower 
accuracy of the reference data in this zone influenced the accuracy of the 
predictions more. However, most errors were between ± 10%. In 
addition, the variation of RMSE in the different zones is a consequence of 
the presence or absence of scan arcs around the DBH height (1.3 m). 
Some trees do not have arcs near 1.3 m, which causes their DBH values 
to be a result of the stem curve built from diameter values at higher parts 
of the tree and creates the observed outliers. 

The stem profile estimates (Fig. 9) had slightly lower RMSE than the 
DBH estimates, ranging from 1.58 cm (6.26 %) to 2.18 cm (8.76%). The 
bias ranged from − 0.44 cm (-1.58%) to 0.22 cm (0.84%). We assessed 
the accuracy only in the scanned regions of the stem (comparison range), 
so these error values concern only the stem regions with both MLS and 
TLS data. On the other hand, DBH estimates were retrieved from a stem 
curve model, since not all the trees were scanned at 1.3 m height. For 
this reason, the DBH-related accuracy contains not only errors from the 
stem profiling, but also errors from stem curve fitting. 

The error index of diameter distributions ranged from 0.11 to 0.33 
(Fig. 10), with no trees below 10 cm DBH being correctly estimated, 
regardless of the zone. However, our study area had a few small trees 
(DBH < 10 cm), which does not allow a proper evaluation of the esti
mations in this stratum. The largest e was observed from 0 to 10 m. The 
smallest e values were found from 30 to 60 m, where e was equal to 0.11. 

3.3. Volume 

The stem volume estimates had the highest relative RMSEs in this 
study, ranging from 0.08 m3 (10.1%) to 0.19 m3 (25.7%) and bias from 
− 0.03 m3 (-4.07%) to 0.19 m3 (8.25%) (Fig. 11). The highest RMSE and 
bias are in the first zone (0–10 m). The stem volumes are more likely to 
be overestimated in the zones closer to the road, whereas values further 
into the stand tend to be systematically underestimated. 

We also compared the total reference and estimated total volumes of 
each zone (Table 3). For these estimates, the accuracy was highly 
correlated with the ITD performance in each zone, with the volume of 
omitted or commissioned trees being the main error source. For 
instance, both commission errors and the systematic overestimation of 
stem volumes observed from 0 to 10 m caused the total volume for the 
zone to be overestimated by 13% in average. On the other hand, omis
sions might have caused the underestimation observed from 50 to 60 m, 
where 66.6% of the total reference volume was detected. The area-level 
estimates performed better in the intermediate zones, where the ITD had 
the best overall performance. In the intermediate zones, the mostly 
small trees are omitted, which did not seem to influence the total volume 

Table 2 
Individual tree detection (ITD) precision and sensitivity according to the dis
tance range from the road.  

Zone Precision Sensitivity 

0–10 m  82.8%  85.7% 
10–20 m  96.5%  96.7% 
20–30 m  98.8%  94.2% 
30–40 m  92.5%  92.5% 
40–50 m  98.0%  86.1% 
50–60 m  100.0%  62.7%  
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estimates. 

4. Discussion 

4.1. Algorithm performance 

The sensor configuration was tailored to detect tree stems along 
forest roads. Its high repetition rate combined with the sensor’s incli
nation provided detailed cross sections of stems and enabled collection 
of data from both the ground and upper canopy. In this study, we pro
posed an algorithm for individual tree detection designed for such a 
sensor configuration, identifying the cross sections (or arcs) in the point 
cloud and aggregating those into single trees. 

ITD is the key task in many MLS applications and is often the first 
result reported in several studies. The ITD method we proposed had a 
performance in the zones from 10 to 40 m (Table 2) comparable with 
that of other state-of-the-art methods: Liu et al. (2021) reported 96.7% 
precision and 93.5% sensitivity in a natural forest site with approxi
mately 411 trees per hectare. Different precisions and sensitivities were 
found in the benchmark study by Hyyppä et al. (2020c), depending on 
the type of forest and MLS sensor. In obstructed forest (approximately 
420 stems/hectare), the authors reported precisions and sensitivities of 
100% and 79% respectively with backpack MLS, 100% and 76.7% with 
hand-held MLS, and 100% and 81.4% with under-canopy ULS. In sparse 
forest plots, with around 410 stems/hectare, the ITD performed better. 
Under these conditions, precisions and sensitivities of 100% and 92.9% 
respectively were found with all three systems, the backpack and hand- 

held MLSs and the under-canopy ULS. In these studies, the sensors were 
moving inside the forest plot, with a maximum distance from tree to the 
closest sensor of 20 m. In our study, depending on the zone, trees could 
be up to 60 m from the closest sensor location, which explains the lower 
ITD accuracy in zones far from the road. 

The accuracy of DBH estimates (Fig. 8) achieved with our method 
ranged from 1.82 cm (6.38%) to 4.84 cm (16.9%) in the different zones. 
These estimates were less sensitive to the distance from the road, which 
made it possible to obtain accurate DBH estimates in all six zones. Our 
results are in-line with accuracies reported by other authors with 
different vehicle-mounted MLS systems. For instance, Bienert et al. 
(2018) used a highly accurate car-mounted MLS to estimate DBH with 
3.7 cm RMSE, using field-measured DBHs as references. In addition, 
Liang et al. (2018b) reported an RMSE of 11.2% in DBH predictions with 
ATV-mounted MLS in boreal forests with approximately 600 stems/ha. 
Finally, Pierzchała et al. (2018) used a ATV-mounted MLS system 
composed by a Velodyne VLP-16 sensor, a stereo camera, an IMU, and a 
GPS to measure DBHs with RMSE equal to 2.4 cm. 

The lowest RMSE in DBH estimation was found at 20–30 m from the 
road, a zone where we did not observe any outliers, which implies that 
the accuracies in the other zones could potentially be improved by using 
refined methods of outlier correction and different sensor set-up. For 
instance, a more efficient branch filtering method could improve not 
only the accuracy of DBH estimates but also tree detection, e.g. in zones 
where the large amount of unfiltered branches prevent the stems from 
being detected due to the algorithm’s inability to identify circles in such 
cases. In addition, a reduced gap between two consecutive scan lines 

Fig. 8. Reference vs. estimated DBH. The red line is the 1:1 line, where reference and estimated values are equal. The orange lines represent a 10% deviation from 
the 1:1 line. RMSE = Root Mean Square Error. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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could increase the amount of diameter measurements along the stem 
and the chances of having a measurement around 1.3 m, which would 
make both DBH and stem volume estimates more accurate regardless of 
the zone. 

e is a measure of disparity between two distributions generated with 
different methods. In our study, the variation in e could be partially 
explained by the DBH estimates’ error: tree-level errors caused stems to 
be allocated in the wrong diameter classes, thus increasing e when 
comparing the estimated and reference DBH distributions. For instance, 
in our study the highest e (0.33) was found in the 0–10 m zone, with one 
of the highest RMSEs (4.84 cm) and biases in DBH estimation (0.48 cm). 

Stem profiles describe stems’ shape and can be used to calculate stem 
volume. However, a manual diameter measurement of the higher part of 
the stem is impractical in operational forest inventory, since the trees 
would need to be felled before the measurements are conducted. 
Therefore, different TLS and MLS solutions have been proposed as non- 
destructive and efficient alternatives to stem profile measurement, and 
the method we describe in this study provided stem profiles with com
parable accuracies (Fig. 9). For instance, a benchmark study by Liang 
et al. (2018a) found RMSEs of stem curve estimation ranging from 0.9 
cm to 5.0 cm when comparing 13 multi-scan TLS-based algorithms 
under different forest conditions. Hunčaga et al. (2020) compared the 
accuracies of stem profiles obtained with different sensors, finding 
RMSEs equal to 1 cm, 1.3 cm and 1.9 cm in stem profiles obtained with 
TLS, hand-held MLS and close-rage photogrammetric point clouds, 
respectively. In addition, Hyyppä et al. (2020a) assessed the accuracy of 
stem curves obtained with under-canopy ULS, reaching RMSEs equal to 
1.2 cm and 1.4 cm in sparse and obstructed forest plots, respectively. 

Finally, MLS-derived stem profiles can also be obtained with RMSEs 
ranging from 5.0% to 18.7% (Hyyppä et al., 2020b; Liang et al., 2018b) 
depending on, among other things, the type of MLS system and forest. 

A drawback of the proposed method is that the stem profiles it pro
vided were limited to the detectable portion of a tree’s stem. In other 
words, even though we could obtain accurate estimates of the stem di
ameters at different heights regardless of the tree’s distance from the 
road, the number of detected stem sections varied amongst trees, in our 
study ranging from a few units to tens. A challenge of working with 
largely varying stem profiles is finding a model capable of describing the 
stem curve accurately regardless of the number of available sections. To 
overcome this challenge, we used stem curve equations by Hyyppä et al. 
(2020b) (equations (3) and (4)), which were robust with both numerous 
and few stem profile measurements due to the low number of parame
ters to be calculated, thus preventing overfitting in stem profiles with 
only a few sections. 

The accuracy of the stem volume estimates in our study varied from 
0.08 m3 (10.6%) to 0.12 m3 (15.9%) in most of the zones, except at 0–10 
m, where the RMSE was 0.20 m3 (32.0%). The higher RMSE at 0–10 m 
can be at least partially explained by the lower accuracy of the reference 
in the same zone (Table 1). The bias of stem volume was mostly related 
to the distance from the road, varying from − 0.03 m3 (-3.25%), at 
30–40 m, to 0.06 m3 (10.2%), at 0–10 m. Closer to the road (e.g. 0–10 
m), branches were often classified as stem points, which caused them to 
be included in the circle fitting and diameter estimation procedures. For 
this reason, the stem volumes closer to the road were systematically over 
estimated (Fig. 11). Further from the road (e.g., at 50–60 m) the sys
tematic underestimation was often due to the few sections used to 

Fig. 9. Reference (TLS) vs. estimated (MLS) stem profile. The red line is the 1:1 line, where reference and estimated values are equal. The orange lines represent a 
10% deviation from the 1:1 line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

R.P. Pires et al.                                                                                                                                                                                                                                  



ISPRS Journal of Photogrammetry and Remote Sensing 187 (2022) 211–224

221

estimate the stem curves in these areas. In other words, further from the 
sensor, the stem profiles may not represent the whole stem accurately 
and therefore lead to the observed underestimation. 

Despite higher error at 0–10 m, our method performed in-line with 
other state-of-the-art methods for stem volume estimation. For instance, 
Hyyppä et al. (2020c) estimated stem volumes with relative RMSE 
ranging from 10% to 15% while benchmarking backpack and handheld 
MLS and depending on the MLS system used. Second, Liang et al. 
(2018a) reported relative RMSEs of volume estimates varying from 
16.7% to 60.4% with different TLS-based algorithms in multi-scan 
setups. Third, Bienert et al. (2018) used car-mounted MLS to estimate, 
among other variables, merchantable and total stem volumes, reporting 
RMSEs equal to 0.4 m3 and 0.6 m3, respectively. Finally, the benchmark 
study by Liang et al. (2018a) compared different TLS systems and pre
sented average RMSEs of 0.12 m3, 0.21 m3 and 0.18 m3, in the easy, 
medium and difficult plots, respectively,. 

Regarding total volume estimates, the RMSE (Table 3) ranged from 
7.97% to 10.5% in most zones, except for the first and last zones, where 
commission and omission errors caused over and under estimations, 
respectively. These values are comparable with the accuracy of different 
LiDAR-based methods at the area level. For instance, Puliti et al. (2020) 
found a deviance of 32.2% at the plot level, 28.9% at the stand level, and 
3.5% at the forest level when comparing under-canopy ULS- and field- 
based volume estimates. Maltamo et al. (2019) used accurate tree po
sition data from harvester and ALS-based metrics to train k-NN (k 
nearest neighbor) estimators of total volume, reaching 9% RMSE in 
stand-level validations. Finally, Liang et al. (2018a) reported an average 
of 94% of total volume being detected with different TLS-based 

algorithms. 

4.2. Applicability 

One advantage of using car-mounted MLS instead of other ground- 
based LiDAR systems is the data collection efficiency provided by the 
car-mounted platform and the forest roads. The MLS survey used in this 
study took 2 h, scanning approximately 7 km of forests on both sides of 
the road. Therefore, at least 20 km of forest roads could be scanned in 
one day. When using the estimates from two zones (e.g., from 20 to 30 m 
and 30–40 m), the survey yields two sections, 20 m × 20 km, totaling 80 
ha of scanned forest per day. In comparison, using traditional forest 
inventory methods, the same crew would measure approximately 10 
circular plots, with a radius of 10 m, per day, yielding approximately 
0.31 ha of inventoried area. 

The choice of zones to use as reference data depends mostly on the 
edge effect and accuracy loss due to the distance from the sensor. First, it 
is important to make sure that the trees used as reference to train models 
are not under edge influence. Harper et al. (2015) suggested that boreal 
forests are less affected by both natural and human-caused edges, with 
the edge effect influence rarely exceeding 20 m in parameters such as 
basal area and canopy cover. Second, the low accuracy of the predictions 
in the zones from 40 to 60 m indicates that these areas are less suitable as 
reference for, e.g., remote sensing-based models. With the proposed 
sensor configuration, the data acquired at 20–40 m from the road or 
stand’s edge had the highest overall accuracy, being the most recom
mended for use as reference for model calibration. 

The algorithm we describe is easy to implement. The parameters 

Fig. 10. DBH distributions and error index according to the distance from the roadside obtained with MLS (pink) and TLS (cyan), with overlaps in dark cyan. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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used, including angular step width and average distance between scan 
lines, were mostly derived from the survey’s setup, enabling imple
mentation in different forest conditions without the need of further 
parametrization. However, the difference in the accuracy of the 
analyzed variables in the different zones suggests that the algorithm’s 
performance could be enhanced by using zone specific parameters. 

5. Conclusions 

In this study, we propose an algorithm to extract stem attributes from 
a car-mounted MLS circulating on forest roads, with focus on quantita
tive forest attributes such as DBH and stem volume in boreal forest 
conditions. Furthermore, we analyzed its performance at different dis
tance ranges from the roadside. The results indicate that the proposed 
method can be an alternative for efficient reference data collection in 
forest inventories. With the presented sensor set up and algorithm, we 
were able to reduce the bias despite the proximity to the road by 
reaching beyond the forest area under edge effect. In addition, the ac
curacy of DBH and stem profile estimates remained stable from 10 to 60 
m from the road, with the presence of few outliers. However, the ac
curacy of individual tree detection and stem volume estimates decreases 
as the distance from the road increases. Finally, future work might focus 
on improving branch filtering and explore how the predictions can be 
used to train remote sensing-based models in large-scale forest 
inventories. 
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Yu, X., Wang, Y., Kaartinen, H., Virtanen, J.P., Hyyppä, J., 2020b. Accurate 
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A B S T R A C T

The acquisition of high-quality reference data is essential for effectively modelling forest attributes. Incorpo
rating close-range Light Detection and Ranging (LiDAR) systems into the reference data collection stage of 
remote sensing-based forest inventories can not only increase data collection efficiency but also increase the 
number of attributes measured with high quality. Therefore, we propose a model-based forest inventory method 
that uses reference data collected by a car-mounted mobile laser scanning (MLS) system along boreal forest 
roads. This approach is used for the estimation of diameter at breast height (DBH) and stem volume at the in
dividual tree-level from airborne laser scanning (ALS) data. In addition, we compare the estimates obtained using 
the proposed method with the ones derived from reference data collected by traditional field inventory of 265 
field plots systematically distributed over the study area. The accuracy of the estimates remained comparable 
regardless of the reference dataset used for estimation of DBH and stem volume. When using the field inventory 
dataset for model training, the root mean square error (RMSE) of DBH estimates were 4.06 cm (18.8 %) for 
Norway spruce trees, 6.3 cm (29.6 %) for Scots pine and 8.61 cm (55.9 %) for deciduous trees. Similarly, when 
evaluating predictions based on the MLS dataset as reference, RMSEs were equal to 3.97 cm (18.4 %) for Norway 
spruce, 6.12 cm (28.8 %) for Scots pine, and 8.98 cm (58.3 %) for deciduous trees. In general, biases were below 
1 cm for most species classes, with the exception of deciduous trees. The accuracy of stem volume also had 
RMSEs varying across different tree species. For the estimates based on traditional field inventory, the RMSEs 
were 0.176 m3 (38.8 %) for Norway spruce, 0.228 m3 (52.4 %) for Scots pine and 0.246 m3 (158 %) for de
ciduous trees. When using the MLS dataset as a reference, the RMSEs were equal to 0.176 m3 (38.8 %), 0.228 m3 

(52.4 %), and 0.246 m3 (158 %) for Norway spruce, Scots pine, and deciduous trees, respectively. Car-mounted 
MLS demonstrated its potential as an efficient alternative for collecting reference data in remote sensing-based 
forest inventories, which could complement traditional methods.

1. Introduction

Forests are crucial ecosystems that sustain a diverse range of plant 
and animal species, while also providing essential services as carbon 
sequestration, water conservation, and soil stabilization. Moreover, they 
play a key role in transitioning towards a carbon-neutral economy and 
mitigating climate change impacts (European Commission, 2021). 
However, the demand for timber as a renewable material puts pressure 
on forest resources worldwide, making the establishment of manage
ment practices that account for the complexity of forest ecosystems 
increasingly necessary. Hence, accurate assessments of forest structure 
and growth are necessary in order to plan interventions that balance the 

maintenance of biodiversity and sustainable timber production. In 
response to this need, LiDAR (Light Detection and Ranging) technology 
is used to obtain auxiliary information in the production of spatially 
explicit estimations of forest attributes such as growing stock, site index, 
and biodiversity mapping (Appiah Mensah et al., 2023; Lefsky et al., 
2002; Maltamo et al., 2014).

LiDAR-based variables are frequently combined with field reference 
data to construct predictive models for key forest attributes, such as 
Diameter at Breast Height (DBH) and stem volume, at individual tree- or 
area-level (Maltamo et al., 2014). These models are subsequently used to 
generate wall-to-wall maps of such attributes over large areas, varying 
from single forest estates to entire countries (Nilsson et al., 2017).
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In most operational remote sensing-based forest inventories, LiDAR- 
derived metrics are used to predict forest attributes at area-level, named 
area-based approach (ABA - Næsset, 2004, Næsset, 2002), with field plot 
data serving as the reference values in the modelling process (da Bispo 
et al., 2020; Kotivuori et al., 2016; Leite et al., 2020; Nilsson et al., 2017; 
Novo-Fernández et al., 2019). Such training data is usually collected 
using manual methods, which require low start-up cost but can be 
logistically challenging, since extensive field campaigns are usually 
necessary in order to sample the complete range of a given forest attri
bute over large areas (Hyyppä et al., 2020a; Persson et al., 2022; Wang 
et al., 2016). In addition, the inclusion of variables such as stem profiles 
and above ground biomass (AGB) in reference data collection can be 
impractical, requiring destructive techniques or laboratory infrastruc
ture and increase the total cost and time required for sampling (Hauglin 
et al., 2014; Hunčaga et al., 2020; Stovall et al., 2018). As an alternative, 
some attributes might not be measured during the surveys but estimated 
using mathematical models or approximations, which may cause the 
derived data to be non-representative of the actual forest conditions. For 
instance, using globally calibrated models on local scale to predict at
tributes such as AGB can result in biased estimates as demonstrated by 
Brede et al. (2022) and Calders et al., 2022

Therefore, at the same pace as different LiDAR sensors and platforms 
become available, authors have explored the suitability of such tech
nologies not only for producing wall-to-wall maps of forest attributes, 
but also for reference data collection. Different close-range LiDAR sen
sors such as Terrestrial, Mobile and UAV-borne laser scanners (TLS, MLS 
and UAVLS, respectively) can collect high-resolution point clouds, 
proving three-dimensional data with unprecedented level of detail on 
forest structure and tree architecture (Hyyppä et al., 2020c; Olofsson 
et al., 2014). With such sensors, it is possible to extract tree attributes 
such as DBH directly from the point clouds with relatively high accuracy 
(Brede et al., 2022; Brede et al., 2017; Holmgren et al., 2019; Hyyppä 
et al., 2020c; Hyyppä et al., 2020b; Kuželka et al., 2020; Olofsson and 
Holmgren, 2016). For instance, Hyyppä et al. (2020c) found RMSEs of 
DBH estimates ranging from 2 to 8 % while comparing the performance 
of different MLSs and UAVLS. In addition, transitioning to LiDAR-based 
reference data collection could reduce uncertainties related with field 
measurements (Persson et al., 2022) and enable the sampling of attri
butes that are difficult to measure by traditional means in large-scale 
surveys, as stem profiles and branch structure.

Nevertheless, the implementation of LiDAR-based reference data 
collection in operational scale remains a challenge. Apart from the high 
acquisition costs, some ground-based LiDAR systems such as TLSs and 
backpack-mounted or hand-held MLSs have limited scalability, since 
they are restricted to specific areas or plots, and require labor-intensive 
surveying campaigns (Calders et al., 2020). Such limitations hinder the 
operational use, particularly in cases where broad spatial coverage is 
required. In order to overcome these limitations, researchers have been 
investigating various combinations of sensors and platforms as potential 
tools for efficient data collection. As an example, Pires et al. (2022)
presented a solution for measuring DBH and stem curves in boreal for
ests along roads using car-mounted MLS. The study reported DBH 
measurement accuracies ranging from 1.8 cm to 4.8 cm, which varied 
depending on the distance of the trees from the roadside. Similarly, 
Hyyppä et al. (2022) used a high-resolution airborne laser scanning 
(ALS) system mounted on a helicopter flying at low altitude to measure 
stem curves and DBH over boreal forest areas, yielding accuracies 
ranging from 2.2 cm to 2.9 cm in DBH estimation, depending on the test 
sites. In another study, Hyyppä et al. (2020a) extracted stem curves from 
below-canopy UAVLS, reaching RMSEs equal to 1.2 cm and 1.4 cm in 
sparse and obstructed forest plots, respectively (Hyyppä et al., 2020a).

Such combinations of sensors and platforms could enable automatic 
and detailed forest inventories of large areas and provide researchers 
and forest managers with a wider range of information, supporting 
better-informed decision-making. Furthermore, the automation of data 
collection and analysis can reduce the time and costs associated with 

traditional field surveys, while also providing more frequent updates on 
the forest conditions.

Understanding the effect of using innovative data collection methods 
in large-scale forest inventories is important for ensuring precise and 
effective forest management. Integrating an additional data collection 
method, such as car-mounted MLS, into forest inventory could introduce 
new uncertainties, which depend on the choice of the sensor and plat
form used for surveying. As an example, the accessibility to certain parts 
of a forest stand by different platforms, such as all-terrain vehicles, cars, 
and below-canopy UAVs, may be restricted by terrain and vegetation 
conditions, resulting in the inability to collect reference data in those 
areas. Such limitation could result in the systematic inclusion of trees 
growing under certain condition (e.g. edge effects) in the reference 
dataset, and these trees might not be representative of the forest as a 
whole (Delgado et al., 2007; Harper et al., 2015). Moreover, problems 
with tree detection may lead to certain strata, such as trees with small 
DBH values, being underrepresented in the reference dataset (Brede 
et al., 2017; Holmgren et al., 2019; Hyyppä et al., 2020a, 2020b, 2020c; 
Liu et al., 2021).

With that in mind, this study proposes a model-based forest in
ventory approach that uses a car-mounted MLS for reference data 
collection, and compares the estimates obtained using the novel method 
with those derived from reference data collected by traditional field 
inventory. With this analysis, we want to contribute to the advancement 
of remote sensing-based forest inventory methods and elucidate possible 
implications of using remote sensing-based tools in forest inventory. 
Specifically, we compare estimates of DBH and stem volume at the in
dividual tree-level by using models trained with different reference 
datasets. Specific objectives are (i) to train ALS-based models for DBH 
and stem volume prediction using car-mounted MLS as reference for 
model training, (ii) to train ALS-based models using field inventory data 
as reference for model training, and (iii) to compare the estimates 
generated by both models.

2. Material and methods

2.1. Study area

The study area Remningstorp has approximately 1039 ha (ha) of 
forest area and is located in Southern Sweden (lat. 58.5 degrees N, long. 
13.6 degrees E), in a boreal forest region (Fig. 1). The dominant tree 
species are Norway spruce (Picea abies (L.) H. Karst.) – 85.7 %, Scots pine 
(Pinus sylvestris L.) – 9.1 %, and Birch (Betula spp.) – 3.4 %. The average 
stem density in the area is 580 trees/ha.

2.2. Aerial laser scanning

In October 2019, ALS data was acquired over the study area (Fig. 1) 
using a Leica Terrain Mapper-LN system mounted on an aircraft. The 
sensor operated at an altitude of approximately 1450 m and with an 
average speed of 115 knots, with a pulse frequency of 1600 Hz. The laser 
beam footprint was 35 cm and the field of view was 30 degrees. The 
resulting point density in the cloud is 22 points/m2, on average. 
Following the acquisition, the ALS point clouds were classified into 
ground and non-ground using the classification algorithm by Zhang 
et al. (2016), as implemented in the lidR package (Roussel et al., 2020) 
in R (R Core Team, 2020).

After the classification, the point cloud was segmented into indi
vidual trees using the three-dimensional tree segmentation procedure by 
Holmgren et al. (2022). In this study, it was assumed that each segment 
corresponded to one tree crown. Finally, a set of ALS-derived metrics 
were calculated for each tree segment obtained in the previous step 
(Table 1). In this study, every 10th height and intensity percentiles, the 
95th and 99th height and intensity percentiles, along with descriptive 
statistics of intensity values, were used as predictors. In addition, a set of 
tree crown-related attributes, such as crown radius, area, and extent, 
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were included in the ALS-based metrics pool for their influence on a 
tree’s DBH (Hemery et al., 2005; Iizuka et al., 2022; Iizuka et al., 2018). 
These attributes were derived from the delineated tree crown produced 
by the tree segmentation algorithm. Crown area (CA) was defined as the 
area of the delineated tree crown and, given that crowns are not 
perfectly circular, the crown radius (CR) of a tree was defined as the 
radius of a perfect circle with an area equal to its crown area. Later, the 

crown extent (CE) was defined as diagonal length of the smallest rect
angle containing each crown polygon. Finally, combinations of CR and 
the 95th height percentile were identified for their significant linear 
correlation with either DBH or stem volume.

2.3. Reference data collection

We use the terms “reference data” or “training data” to refer to the 
data used for estimating the model parameters in the model-based 
inference. In this study, two reference datasets were collected in the 
study area using different data collection methods. Therefore, we denote 
the reference dataset obtained through conventional field inventory as 
the “field inventory dataset”, or simply “FI dataset”. Similarly, we refer 
to the reference dataset collected through car-mounted MLS as the “MLS 
dataset”.

2.3.1. Field inventory dataset
The survey using standard field-based forest inventory consisted of a 

set of 265 circular plots with 10 m radius systematically distributed over 
the study area (Fig. 1). The plot centers were placed at 200 m distance 
from each other and, inside each plot, all living trees with DBH ≥ 4 cm 
had the DBH and tree position recorded using a DP POSTEX system 
(http://www.haglofsweden.com). In each plot, the heights of 1 to 5 

Fig. 1. (A) Overview of the study area, with field plots used for training showed as green circles, the field inventory plots used for validation shown as orange crosses 
and the roads scanned by the MLS survey in red. (B) Position of the study area in Sweden. (C) Close-up on the area from which MLS data was collected, considering 
the 20-40 m distance range to the roadside. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

Table 1 
Description of the ALS-based metrics used as independent variables in this 
study.

Metric Description

h10 – h99 10th to the 99th height percentiles
i10 – i99 10th to the 99th intensity percentiles
meani Mean of intensity values
stdi Standard deviation of intensity values
skewi Skewness of intensity values
kuri Kurtosis of intensity values
CR Crown radius
CA Crown area
CE Extent of crown polygon
CRh95 CR× h95

CR2h95sqrt
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
CR2 × h95

√
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sample trees were measured with a hypsometer and the remaining trees 
had their heights estimated using the model in Eq. (1). The model was 
adjusted using the ordinary least squares with the height from the 
sample trees as reference and 95th height percentile from ALS predictor. 
The model’s goodness of fit is shown in the appendix A. 

Ĥ = β0 + β1 • h95 (1) 

where Ĥ is the estimated tree height, h95 is the ALS-derived 95th height 
percentile and β0 and β1 are the model parameters. The stem volumes 
were calculated by using the species-specific volume functions by 
Brandel (1990).

The tree positions acquired in the field were co-registered with the 
ones derived from ALS data using the co-registration algorithm by 
Olofsson et al. (2008). This algorithm aligns the positions of the field- 
measured trees to the ALS-derived positions using cross-correlation of 
the position images within a search radius from the field-measured po
sitions. In this step, we used a search radius of 20 m and the ALS-derived 
positions considered the location of highest point within each ALS- 
derived tree segment. This step was necessary in order to ensure the 
correspondence between each field-measured tree and its respective 
ALS-derived segment. If a segment contained more than one field- 
recorded tree position, the tree with highest DBH was considered to 
be the ALS-detected tree (i.e. the one tree represented by the segment) 
and the other field-recorded trees within that segment were considered 
omission errors. Segments that did not contain any field-recorded tree 
positions were considered commission errors.

Altogether, 62 plots had no trees with DBH ≥ 4 cm and were not used 
in this study. Additionally, a visual assessment was conducted in order to 
assure the quality of the co-registration. The co-registration was 
considered not successful when the corrected tree positions were outside 
the plot area or when no field-detected tree was matched to an ALS 
segment. According to these criteria, the matching procedure was not 
successful in 9 plots. Finally, 13 plots were overlapping MLS data 

collection areas and were excluded from the analysis, resulting in 181 
plots effectively being used in this study. In terms of individual trees, 
3023 field-recorded positions were associated with their respective ALS- 
derived tree segment in the FI dataset (Fig. 2).

2.3.2. MLS dataset
In 2019, a car-mounted MLS survey was conducted in the study area 

(Fig. 1). The system consisted of a Riegl VUX1LR laser scanner, syn
chronized with an Inertial Measurement Unit (IMU) and a GPS/GNSS 
system, resulting in a georeferenced point cloud with a point registration 
accuracy of 1.5 cm. The sensor was leaning 30 degrees from the hori
zontal plane and had 330 degrees of field of view. The car kept an 
average speed of 8 km/h. Approximately 7 km of forests were scanned 
along both sides of the road during a 2-h survey. The roads were chosen 
according to their accessibility by car so the system could measure a 
large part of the test site without having to turn back. Stem attributes 
were extracted from the resulting point clouds as described by Pires et al. 
(2022): first, tree stems were identified in the point clouds using an arc 
detection procedure. Afterwards, a stem curve model was fitted to each 
detected tree stem. Finally, DBH and stem volume values were derived 
from the stem curves of each detected individual.

To ensure the best possible tree detection accuracy and prevent the 
inclusion of trees influenced by edge effects, Pires et al. (2022) suggested 
limiting the reference data for model calibration to only include detec
ted trees within the distance range of 20–40 m from the roadside. 
Considering this range from the roadside and the distance traveled by 
the car as shown in Fig. 1 - C, the MLS data collection area summed 
approximately 28 ha of forests, which were used in the study. Moreover, 
the MLS-derived tree positions showed a systematic displacement in 
relation to the ALS-derived segments of approximately 1.5 m. Thus, the 
tree positions were manually adjusted to align the MLS-derived positions 
with the ALS-detected trees, resulting in 6432 MLS-derived tree posi
tions matching their corresponding ALS-derived tree crowns (Fig. 2).

Fig. 2. Diameter at breast height (DBH) distribution of trees associated with an aerial laser scanner-derived tree crown in the Forest inventory and car-mounted 
mobile laser scanner (MLS) datasets.
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2.4. Estimation of forest attributes

Before training the models to estimate stem attributes based on the FI 
and MLS datasets, the trees in the FI dataset were divided into training 
and validation groups according to their field plots, creating a bench
mark dataset for the MLS- and FI-derived models. Specifically, 70 % of 
the plots in the FI dataset (2050 trees) were used for model training, 
while the remaining 30 % (973 trees) were used for validation (Fig. 1 - 
A). Consequently, the FI-based models were trained on 70 % of the FI 
dataset, whereas the MLS-based models were trained using the entire 
MLS dataset. All models were then validated using the validation portion 
of the FI dataset.

In order to avoid collinearity issues in the models, only the 95th 
height percentile was considered amongst all height percentiles during 
variable selection. Ordinary least squares regression was used to esti
mate the models’ coefficients independently for each reference dataset, 
and the results of the variable selection procedure are presented in the 
results section. DBH and stem volume estimation models were devel
oped independently for each reference dataset. In this step, the selection 
of models with different combinations of explanatory variables was 
carried out using the backwards variable selection method implemented 
in the caret package (Kuhn, 2020) in R (R Core Team, 2020). Altogether, 
three models including one to three explanatory variables were evalu
ated for each reference dataset. The objective was to identify the model 
that achieved the highest adjusted R2 value with the fewest number of 
explanatory variables. To prevent bias in estimating the DBH for trees 
with small values, the intercept in the DBH prediction model was set to 
zero. Furthermore, we applied a logarithmic transformation to the stem 
volume and ALS-derived metrics in order to enhance the linearity in the 
relationship between explanatory and target variables. To address po
tential bias introduced by transforming the stem volume before model 
fitting, we employed the bias correction estimator (b) proposed by 
Snowdon (1991) - Equation 2). b is estimated separately for each dataset 
after training the volumetric model (i) and the final volume prediction is 
calculated by Eq. (3). This approach was adopted to ensure a more ac
curate and unbiased estimation process. 

bi =
∑ni

j=1
Vij

/
∑ni

j=1
v̂ij (2) 

V̂ ij = v̂ij • bi (3) 

where n is the number of trees in the dataset i, Vij is the stem volume of 
tree j from dataset i. v̂ij and V̂ ij are the estimated stem volumes of tree j 
from dataset i before and after bias correction, respectively.

2.5. Accuracy assessment

The accuracy of DBH estimates was assessed by comparing the ALS- 
derived predictions trained on either the FI or MLS datasets to the field- 
measured values on the validation portion of the FI dataset at tree-level. 
Similarly, stem volume estimates were evaluated both at the individual 
tree- and plot-level by comparing ALS-derived predictions, trained on 
either the FI or MLS datasets, with the stem volume reference values on 
the validation subset of the FI dataset. As predictions for both variables 
were made at the tree level, plot-level estimates of stem volume were 
obtained by summing up all ALS-derived predictions within the area of 
each validation plot.

Specifically, the estimates were compared with their respective field- 
measured values in terms of Root Mean Square Error (RMSE - Eq. (4)) 
and bias (Eq. (5)). The relative RMSE and bias were calculated in rela
tion to the mean values of the target variables in the FI dataset. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j

(
ŷj − yj

)2
/

n

√
√
√
√ (4) 

bias =
∑n

j

(
ŷj − yj

)
/

n (5) 

where n is the number of trees. ŷj and yj are target variable’s ALS- 
derived and field inventory values for tree j.

We used precision (Eq. (6)) and sensitivity (Eq. (7)) to assess the 
accuracy of the individual tree detection in the validation plots. 

Precisionp = TPp
/(

TPp +Cp
)

(6) 

Sensitivityp = TPp

/(
TPp +Op

)
(7) 

where TPp is the number of trees correctly detected trees (true positives), 
Cpand Op are the number of commission and omission errors in plot p.

3. Results

3.1. Individual tree detection

Table 2 shows the mean precision and sensitivity values in different 
diameter classes. The results indicate that the ITD method used in this 
study performs best in larger DBH classes, with precision and sensitivity 
values reaching nearly 100 % in trees greater than 40 cm in DBH. On the 
other hand, the method had its worst performance in detecting trees 
with DBHs ranging from 0 to 10 cm, where the highest commission and 
omission errors were noticed. In general, the performance of ITD in this 
DBH class negatively affected the overall accuracy of ITD, with 
approximately 70 % of all omission errors being trees with DBH ≤ 10 cm 
(Fig. 3).

3.2. Modelling forest attributes

Table 4 show the variables selected for different model sizes in the 
two reference datasets when modelling DBH and stem volume, respec
tively. In both cases, models with 2 predictors were preferred over other 
options due to their fewer explanatory variables, despite achieving 
similar adjusted R2 values as the other models. Thus, while using the FI 
dataset, the selected independent variables for the DBH model were h95 
and CA. Using the MLS dataset, the combination of CRh95 and h95 had 
the best performance in the variable selection step (Table 3). For the 
stem volume models, h95 and CA were chosen as explanatory variables 
while using either the FI or the MLS dataset for model training (Table 4).

3.3. Prediction of stem attributes

The RMSE of the DBH estimates differed from 0.09 to 0.37 cm when 
comparing the models trained on the different datasets (Fig. 4). When 
using the FI dataset as reference, RMSEs ranged from 4.06 cm (18.8 %) 
in Norway spruce trees to 8.61 cm (55.9 %) in deciduous trees for pre
dictions made a tree-level. When evaluating the predictions made using 
the MLS dataset as reference, RMSEs ranged from 3.97 cm (18.4 %) in 
Norway spruce to 8.98 cm (58.3 %) in deciduous trees also at tree-level, 
as shown in Fig. 4. Most biases were under 1 cm, with exception of the 
deciduous trees group, which exhibited bias of 2.77 cm (18 %) and 2.32 

Table 2 
Precision and sensitivity values of Individual Tree Detection (ITD) in Aerial 
Laser Scanning (ALS) data.

Diameter Class Precision Sensitivity

0–10 cm 51.6 % 22.8 %
10–20 cm 71.7 % 66 %
20–30 cm 83 % 89.6 %
30–40 cm 91.5 % 90.9 %
≥ 40 cm 98.5 % 98.5 %
Overall 81.3 % 70.9 %
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cm (15.1 %) for predictions made using the FI and MLS datasets, 
respectively.

For stem volume estimates, RMSE values obtained at individual tree- 
level (Fig. 5) were similar regardless of the dataset used for model 
training, with RMSEs ranging from 0.176 m3 (38.8 %) in the Norway 
spruce group to 0.228 m3 (52.4 %) in the Scots pine group for the FI- 
based estimations, as shown in Fig. 5. Meanwhile, the MLS dataset- 
based estimations per tree species showed RMSEs ranging from 0.176 
m3 (38.8 % - Norway spruce) to 0.246 m3 (158 % - deciduous). On the 
other hand, RMSE and bias were lower when comparing the results at 
plot-level (Fig. 6). In this case, MLS-based predictions had RMSE equal 
to 46.2 m3/ha (19.8 %) and bias equal to 2.5 m3/ha (1.07 %), while FI- 
based predictions showed RMSE of 43.7 m3/ha (18.7 %) and bias of 
− 11.5 m3/ha (− 4.92 %), as shown in Fig. 6.

4. Discussion

The purpose of this study was to compare the results from two model- 
based forest inventory approaches that use on different training data
sets. The first training dataset was sampled with traditional field data 
collection techniques, in other words field plots allocated according to a 
systematic sampling design and measured using standard equipment 
such as calipers and hypsometers. In contrast, we assessed the suitability 
of car-mounted MLS as a method for field data collection. This method 
uses a purposive sampling design, restricting data collection to a range 
of 20–40 m from the road network. Overall, both inventory methods 
resulted in similar models with respect to variable selection and pre
diction accuracy.

The MLS and FI datasets differed with respect to the sample size and 
possible measurement errors, which affected the estimated model pa
rameters. With respect to the sample size, while the FI dataset contained 
2050 trees for training, the MLS dataset contained 6432 trees. At the 
same time the training sample size may impact model-based inference 
(Li et al., 2023), adding reference data does not necessarily enhance 
estimation accuracy (i.e. RMSE) after a certain threshold (Fassnacht 
et al., 2014; Lisańczuk et al., 2020). In this context, adequate repre
sentation of the modeled trees attribute’s variability across the study 
area may have a more substantial impact on a model’s output than the 
actual size of the training dataset (Junttila et al., 2013). Moreover, both 
datasets are susceptible to different types of measurement and estima
tion errors due to limitations from the instruments used during data 
collection. The DBHs in the FI dataset were measured with calipers, thus 
being subject to human errors such as challenges associated with 
measuring at 1.3 m height and incorrect annotation. Additionally, in this 
dataset the stem volume was estimated by a volumetric model calibrated 
at landscape-level, potentially introducing bias on the estimates when 
applied to a local scale as in this study (Brede et al., 2022; Calders et al., 
2022).

At the same time, the laser-based measurements of DBH and stem 
volume on the MLS dataset were subject to different kinds of errors. For 
instance, Pires et al. (2022) pointed out that the variability in stem 
detection by the MLS system, influenced by factors such as distance from 
the sensor to the tree and the presence of branches and understory 
vegetation around the stem can affect the accuracy of DBH and stem 
volume values on the MLS dataset. Accurate and precise measurements 
are crucial when collecting training data as they directly affect the 
reliability of the resulting models. In this sense, Hyyppä et al. (2022), 
Hyyppä et al., 2020b, Hyyppä et al., 2020c) suggested that maintaining 
errors on the training dataset under 10 % would be sufficient to produce 
accurate models based on close-range laser scanning. Hence, by 
restricting data collection to a 20–40 m range from the road, we ob
tained MLS-derived measurements with sufficient quality to produce 
estimation models with similar prediction accuracy as the ones trained 
on the FI-dataset. Nevertheless, using data collected closer to the road
side, such as within a 10–20 m range, could potentially improve MLS- 
based estimates by reducing measurement errors in the MLS dataset. 
When evaluating the accuracy of estimates in different distance ranges 
from the roadside, Pires et al. (2022) found that tree detection and es
timates of DBH and stem volume within this 10–20 m range had lower 
errors when compared to estimates from greater distances, such as 

Fig. 3. Histogram of number of omissions and relative frequency in each 
diameter at breast height (DBH) class. Only trees with DBH ≥ 4 were measured.

Table 3 
Models with one, two and three independent variables for DBH (Diameter at 
Breast Height) estimation using the forest inventory (FI) or car-mounted MLS 
(MLS). Adj. R2: adjusted R2.

N◦ of 
predictors

FI dataset MLS dataset

Model Adj. 
R2

Model Adj. 
R2

1 DBHFI = α1 • h95 0.93
DBHMLS =

α1 • CRh95 0.96

2
DBHFI = α1 • h95 +

α2 • CR2h95sqrt
0.94

DBHMLS = α1 •

CRh95+ α2 • h95
0.98

3
DBHFI = α1 • h95 + α2 •

CR2h95sqrt + α3 • skewi
0.94

DBHMLS = α1 •

CRh95+ α2 • h95 +

α3 • i90

0.98

Table 4 
Models with one, two and three independent variables for stem volume estimation using the forest inventory (FI) or car-mounted MLS (MLS). Adj. R2: adjusted R2. ̂v is 
the estimated stem volume before bias correction.

N◦ of predictors FI dataset MLS dataset

Model Adj. R2 Model Adj. R2

1 v̂FI = eβ0+β1•lnh95 0.78 v̂MLS = eβ0+β1•lnh95 0.74
2 v̂FI = eβ0+β1•lnh95+β2•lnCA 0.80 v̂MLS = eβ0+β1•lnh95+β2•lnCA 0.79
3 v̂FI = eβ0+β1•lnh95+β2•lnCA+β3•ln h10 0.80 v̂MLS = eβ0+β1•lnh95+β2•lnCA+β3•lnmeani 0.79
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30–40 m from the roadside. In our analysis, data collected from 0 to 20 
m to the roadside was not used for modelling to avoid over-representing 
trees potentially affected by edge effects in the training data (Harper 
et al., 2015). However, further analysis is needed to evaluate how 
including these trees potentially under edge effect in the training data 
might influence the accuracy and robustness of the prediction models.

Despite the similar model predictions and prediction accuracies 
evaluated in this study, the DBH errors observed were generally 1–2 cm 
higher than the ones reported in other studies that aimed at modelling 
diameter at the individual tree level, when considering the DBH esti
mation accuracy for the Norway spruce trees. For example, Sun et al. 
(2022) tested six different modelling methods for DBH prediction at 
individual tree level of Larch trees (Larix olgensis A. Henry), reaching 
RMSE values ranging from 1.92 cm with artificial neural networks to 
2.56 cm with linear regression. However, regardless of the method used, 
all models tend to underestimate the DBH values of trees with larger 
diameters. Fu et al. (2020) used a nonlinear mixed-effects model (NLME) 
for DBH prediction of Picea crassifolia (Kom.) trees, reaching RMSE equal 

to 4.4 cm at individual tree level. Finally, Hao et al. (2021) also used 
NLME for DBH prediction of Larch trees, yield RMSE of 1.94 cm at in
dividual tree level with the inclusion of site-specific random effects, 
which significantly improved the model’s performance.

The errors in DBH estimation noticed in our study could have been 
caused different factors, such as the complexity of the target variable 
being modeled and the robustness of the statistical models used for 
prediction, which may involve considerations regarding model as
sumptions, parameter estimation methods, and the incorporation of 
relevant covariates or predictors. In addition, the different accuracies in 
the estimation of DBH and stem volume across species groups can be 
partially explained by the fact that Norway spruce is the main tree 
species in the study area, accounting for 85.7 % of all trees, which 
caused the models to be optimized for this specific species. For this 
target variable, the inclusion of site- and species-specific relationships 
between DBH and the explanatory variables could potentially improve 
the accuracy of our predictions (Hao et al., 2021; Raumonen et al., 
2015).

Fig. 4. Field-measured vs. ALS-derived Diameter at Breast Height (DBH), in cm. The columns represent different reference datasets and the rows represent the 
different species groups. The red line is the 1:1 line, where field-measured and ALS-derived values are equal. The orange lines represent a 15 % deviation from the 1:1 
line. RMSE = Root Mean Square Error. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Analogously, individual tree-level estimates of stem volume may also 
be improved by using different modelling techniques, such as general
ized linear models and non-parametric estimation methods (Hauglin 
et al., 2018). For instance, Karjalainen et al. (2019) reached generally 
lower relative RMSEs for this variable, which varied from 29 % to 41 %, 
while testing the transferability of a non-parametric stem volume model 
amongst different sites. When aggregated to plot-level (Fig. 5), the 
values obtained in this study were in-line with other volume estimation 
methods, which reported RMSEs ranging from 15.5 % to 56.2 % in 
boreal and temperate forest conditions (Kandare et al., 2017; Kankare 
et al., 2011; Kukkonen et al., 2021; Vastaranta et al., 2012; Yu et al., 
2010). Similarly, Puliti et al. (2020) observed decreasing errors when 
comparing volume estimates at coarser levels, reaching relative RMSEs 
of 32.2 %, 27.1 % and 3.5 % at plot-, stand- and forest-level, respec
tively, while assessing the potential of UAVLS in estimating growing 
stock without field data for model calibration. Furthermore, Hauglin 
et al. (2018) used accurately positioned harvester data as reference for 

volume models and reported relative RMSEs ranging from 19 % to 60 % 
at plot-level, depending on the forest strata.

Omission and commission errors in individual tree detection can also 
influence the accuracy of plot-level volume estimates. In this study, 
omission errors were also the most pronounced in small DBH classes, 
resulting in sensitivities equal to 22.8 % in trees from 0 to 10 cm and 66 
% in trees from 10 to 20 cm. Although these classes account for a smaller 
proportion of the total volume, cumulative omissions can result in sig
nificant bias in total or mean values. This kind of detection error is a 
common cause of stem volume underestimation when aggregating tree- 
level results to an area unit (Kandare et al., 2017; Kukkonen et al., 2021; 
Sačkov et al., 2019; Vastaranta et al., 2012), as the omission of trees in 
the suppressed or understory forest layers is common in ITD algorithms. 
For instance, Wang et al. (2016) found omission rates varying from 
approximately 40 % to nearly 100 % of suppressed trees when 
comparing 9 distinct ITD algorithms in boreal forest conditions. Anal
ogously, Sparks et al. (2022) reported higher rates of omissions in 

Fig. 5. Individual tree-level field inventory vs. ALS-derived stem volume, in m3. The columns represent different reference datasets and the rows represent the 
different species groups. The red line is the 1:1 line, where the field inventory and ALS-derived values are equal. The orange lines represent a 15 % deviation from the 
1:1 line. RMSE = Root Mean Square Error. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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suppressed trees when benchmarking ITD algorithms in mixed-conifer 
temperate forests.

Finally, future studies should focus on improving individual tree- 
level DBH and stem volume models, as well as exploring the estima
tion of tree species using remote sensing data. Potential improvements 
in tree attribute estimation and accurate identification of tree species 
would significantly contribute to more accurate and ecologically 
informed forest inventory and management practices.

5. Conclusion

In our analysis, we found that the estimation models trained with 
either the FI or MLS datasets presented similar values for RMSE and bias 
for estimates of DBH and stem volume at individual tree level. This 
implies that both methods perform similarly and hence the use of MLS 
for training data collection instead of conventional field inventory can 
save time and costs. Nevertheless, the results obtained in this study are 
limited to a Norway spruce dominated boreal forest ecosystem. There
fore, future analyses, such as the proposed method’s performance in 
different forest conditions and the impact of seasonal environment 
variations on the data quality, are needed to fully elucidate the capa
bilities and limitations of car-mounted MLS for training data collection.
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Appendix A. Appendix

Fig 1. A – Goodness of fit of tree height estimation model based on the 95th height percentile from aerial laser scanning data
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Kuželka, K., Slavík, M., Surový, P., 2020. Very high density point clouds from UAV laser 
scanning for automatic tree stem detection and direct diameter measurement. 
Remote Sens. 12 https://doi.org/10.3390/RS12081236.

Lefsky, M.A., Cohen, W.B., Parker, G.G., Harding, D.J., 2002. Lidar Remote Sensing for 
Ecosystem Studies, 52, 19–30.

Leite, R.V., Silva, C.A., Mohan, M., Cardil, A., de Almeida, D.R.A., de e Carvalho, S.P.C., 
Jaafar, W.S.W.M., Hernández, J.G., Weiskittel, A., Hudak, A.T., Broadbent, E.N., 
Prata, G., Valbuena, R., Leite, H.G., Taquetti, M.F., Soares, A.A.V., Scolforo, H.F., Do 
Amaral, C.H., Corte, A.P.D., Klauberg, C., 2020. Individual tree attribute estimation 
and uniformity assessment in fast-growing eucalyptus spp. Forest plantations using 
lidar and linear mixed-effects models. Remote Sens. 12, 1–20. https://doi.org/ 
10.3390/rs12213599.

Li, C., Yu, Z., Dai, H., Zhou, X., Zhou, M., 2023. Effect of sample size on the estimation of 
forest inventory attributes using airborne LiDAR data in large-scale subtropical 
areas. Ann. For. Sci. 80 https://doi.org/10.1186/s13595-023-01209-4.
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Míscicki, S., 2020. Influence of sampling intensity on performance of two-phase 
forest inventory using airborne laser scanning. For. Ecosyst. 7 https://doi.org/ 
10.1186/s40663-020-00277-6.

Liu, L., Zhang, A., Xiao, S., Hu, S., He, N., Pang, H., Zhang, X., Yang, S., 2021. Single tree 
segmentation and diameter at breast height estimation with mobile LiDAR. IEEE 
Access 9, 24314–24325. https://doi.org/10.1109/ACCESS.2021.3056877.

Maltamo, M., Næsset, E., Vauhkonen, J., 2014. Forestry applications of airborne laser 
scanning: concepts and case studies, Springer Netherlands, Dordrecht. https://doi. 
org/10.1007/978-94-017-8663-8.

Næsset, E., 2002. Predicting forest stand characteristics with airborne scanning laser 
using a practical two-stage procedure and field data. Remote Sens. Environ. 80, 
88–99. https://doi.org/10.1016/S0034-4257(01)00290-5.

Næsset, E., 2004. Practical large-scale forest stand inventory using a small-footprint 
airborne scanning laser. Scand. J. For. Res. 19, 164–179. https://doi.org/10.1080/ 
02827580310019257.

Nilsson, M., Nordkvist, K., Jonzén, J., Lindgren, N., Axensten, P., Wallerman, J., 
Egberth, M., Larsson, S., Nilsson, L., Eriksson, J., Olsson, H., 2017. A nationwide 
forest attribute map of Sweden predicted using airborne laser scanning data and field 
data from the national forest inventory. Remote Sens. Environ. 194, 447–454. 
https://doi.org/10.1016/j.rse.2016.10.022.

Novo-Fernández, A., Barrio-Anta, M., Recondo, C., Cámara-Obregón, A., López- 
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A B S T R A C T

This study explores the potential of spatially explicit Harvester Production Reports (HPRs) for automatic 
annotation of Aerial Laser Scanning (ALS) data at tree-level, enabling accurate tree species classification using 
Convolutional Neural Networks (CNNs). By integrating HPRs into the modelling process, this approach provides 
a practical solution for addressing challenges in remote sensing data annotation for forestry applications. The 
ALS data were acquired in managed Norway spruce-dominated forests in southern Sweden using a dual- 
wavelength system composed by two monochromatic sensors. Thus, three datasets were produced: the 905 
nm miniVUX dataset (~100 points/m2), the 1550 nm VUX dataset (~875 points/m2), and the dual-wavelength 
dataset (~975 points/m2), the last being a junction of the two first datasets. The automatic annotation was 
performed by matching tree records in the HPR and ALS data based on spatial proximity and height similarity, 
with a total of 45,516 HPR-recorded tree positions being linked to ALS-derived segments and assigned species 
labels based on HPR records. Then, the individual tree-level ALS point clouds were converted into 2D images 
from multiple viewing angles, with varying image dimensions and pixel sizes to accommodate trees of different 
sizes. These images served as input for CNN-based classification, enabling species identification across ALS 
datasets with varying spectral and spatial resolutions. The CNN models were trained and evaluated to classify 
trees into Norway spruce, Scots pine, Deciduous, and a “Noise” class for segmentation errors. The classification 
accuracy varied according to the dataset used, with the dual-wavelength dataset achieving the highest macro-F1 
score (0.896), followed by the VUX dataset (0.894) and miniVUX dataset (0.835). These findings highlight 
spatially explicit HPRs as efficient, high-quality reference data for CNN-based tree species classification with 
minimal annotation effort.

1. Introduction

Precision forestry applications integrate remote sensing technologies 
and estimation techniques to enhance sustainable forest management. 
By providing detailed insights into tree-level attributes like tree health 
and timber quality, they allow informed decision-making and optimal 
resource allocation (Fardusi et al., 2017; Fassnacht et al., 2024). 
Commonly, precision forestry is supported by advanced remote sensing 
technologies, such as Light Detection and Ranging (LiDAR) sensors, and 
high resolution aerial imagery, which are used to collect detailed data on 
forests and enable the retrieval of information at individual tree-level. 

(Holopainen et al., 2014).
A key component of such forest assessments is the accurate estima

tion of tree species composition, which plays a critical role in manage
ment and conservation efforts (Fassnacht et al., 2016; Yu et al., 2017). 
Diverse tree species composition enhances ecosystem resilience, 
providing niches for different organisms, and mitigating the risks asso
ciated with pests and diseases (FAO and UNEP, 2020). In addition to its 
ecological value, tree species composition is of key interest to the forest 
industry as different species are suitable for different end uses due to 
species-specific wood properties, such as fiber length and resistance to 
traction.
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When it comes to mapping forest characteristics, LiDAR is one of the 
most commonly used tools (Coops et al., 2021; Nilsson et al., 2017). 
These sensors can be used to distinguish tree species based on their 
unique structural features, such as branch patterns and shapes 
(Holmgren and Persson, 2004; Terryn et al., 2020; Xi et al., 2020). For 
instance, Terryn et al. (2020) classified five species using branch pat
terns in Terrestrial Laser Scanning (TLS) data, achieving 80 % accuracy. 
Analogously, Qian et al. (2023) achieved 90.9 % accuracy using Aerial 
Laser Scanning (ALS) data to differentiate six species, leveraging vertical 
slices of point clouds to geometric shapes. Beyond structural features, 
multispectral LiDAR sensors offer additional spectral reflectance data 
from forest canopies (Takhtkeshha et al., 2024). The use of such systems 
for tree species identification has been widely explored in the scientific 
literature (Budei et al., 2018; Mielczarek et al., 2023; Yu et al., 2017), 
with some studies pointing out improvements in the retrieval of species- 
specific forest parameters (Kukkonen et al., 2019a, 2019b) and tree 
detection (Huo and Lindberg, 2020) when using multispectral LiDAR 
compared to other remote sensing data sources.

As remote sensing technologies advance, they generate increasingly 
complex datasets that require sophisticated analytical methods. For this 
reason, deep learning – in particular Convolutional Neural Networks 
(CNNs) − has gained prominence in analyzing remote sensing data due 
to its ability to analyze complex spectral and spatial patterns (Mäyrä 
et al., 2021; Sothe et al., 2020), with tree species classification being one 
of the most common tasks performed by CNNs in the fields of forestry 
and forest conservation (Kattenborn et al., 2021). For example, Wu et al. 
(2024) used a CNN for band selection in hyperspectral images, reducing 
data dimensionality for faster processing. Their FAST 3D-CNN P-Net 
classified nine tree species with 97 %-99 % accuracy across different 
areas. In the recent years, deep learning has been used for tree species 
classification in different types of remote sensing data, including RGB 
images (Carvalho et al., 2022; Liu et al., 2019; Onishi and Ise, 2021; 
Schiefer et al., 2020), satellite optical data (Bolyn et al., 2022; Hızal 
et al., 2024), multi- and hyperspectral imagery (Fricker et al., 2019; Ma 
et al., 2024; Sothe et al., 2020; Wang and Jiang, 2024; Xu et al., 2024), 
and LiDAR point clouds (Murray et al., 2024; Seidel et al., 2021).

Despite the success, different challenges arise when using such deep 
neural networks for forestry-related applications. One major bottleneck 
is the need for large datasets during model training, as acquiring high- 
quality, georeferenced annotated data is often time-consuming and 
expensive (Kattenborn et al., 2021). To address this challenge, strategies 
such as data augmentation (He et al., 2023; Oubara et al., 2022) and 
synthetic data generation are employed (Bryson et al., 2023; Xiang et al., 
2023), increasing the training data diversity. Finally, emerging tech
nologies such as UAV-borne laser scanners (UAVLS) and MLSs can be 
used to efficiently measure forest attributes, such as diameter at breast 
height (DBH) and stem volume, over large areas in short times (Hyyppä 
et al., 2022, 2020; Pires et al., 2022; Puliti et al., 2020), generating 
training data in sufficient amounts.

While such methods improve the availability of training data, com
plementary sources can further enhance model performance and reduce 
reliance on field surveys. A promising alternative is the use of spatially 
explicit Harvester Production Reports (HPRs) as training data for esti
mating forest attributes. HPRs are a by-product of mechanized har
vesting, generated in large quantities as a part of routine forestry 
operations. These reports contain detailed georeferenced information on 
each harvested tree, such as taper and species, making them particularly 
valuable for precision forestry applications. When equipped with accu
rate positioning systems, HPRs provide the exact type of annotations 
required by precision forestry – at tree-level, accurate and spatially 
explicit. Thus, they represent a cost-effective way of enhancing remote 
sensing-based inventories, significantly reducing the resources needed 
for field data collection (Lindroos et al., 2015; Söderberg et al., 2021).

Despite their potential, HPRs remain underutilized in the context of 
deep learning applications for tree species classification. Leveraging 
HPRs as large-scale training data could significantly reduce reliance on 

field surveys while improving the accuracy of species classification 
models. In addition, such data source could enhance the estimation of 
continuous forest variables such as DBH and stem volume (Hauglin 
et al., 2018; Karjalainen et al., 2022; Maltamo et al., 2019; Noordermeer 
et al., 2023), and qualitative variables such as different kinds of forest 
damage (Hansen et al., 2023; Jamali et al., 2023).

Given the possibilities introduced by remote sensing, deep learning, 
and new training data sources, our main objective is to propose a 
method for automatically classifying tree species at single-tree level. For 
that, we use HPRs to automatically annotate ALS data at tree-level, and 
use the annotated data to train a tree species classification CNN. In 
addition, we investigate the proposed technique’s performance under 
ALS datasets with different properties, namely different spectral and 
spatial resolutions.

2. Material and methods

2.1. Study area

The study area is located in central Sweden (59◦46́N, 14◦31́E – 
Fig. 1). Altogether, 17 stands were used in the study, with areas varying 
from 3.7 ha to 16.8 ha. The stands were selected according to their 
planned harvesting dates, between 2021 and 2022. On the harvested 
stands (Table 1) the dominant tree species are Norway spruce (Picea 
abies (L.) H. Karst.) – 79 %, Scots pine (Pinus sylvestris L.) – 11 %, and 

Fig. 1. (A) Map of the study area with the 17 harvested stands and their 
respective areas in hectares (ha). (B) Approximate location of the study area in 
Sweden, in red. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)
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Birch (Betula spp.) – 10 %.

2.2. Aerial laser scanning data

The stands were scanned in September 2021 using the Finnish 
Geospatial Institute’s (FGI) dual-wavelength ALS system (Hakula et al., 
2023). This system included two monochromatic LiDAR sensors: the 
Riegl miniVUX-1UAV (905 nm, NIR) and the Riegl VUX-1HA (1550 nm, 
SWIR), mounted on a helicopter flying 100 m above ground at 50 km/h. 
Due to technical issues, the system’s third scanner (green wavelength) 
did not collect data, resulting in a dual-wavelength point cloud.

The point cloud was pre-processed and normalized using the LAS
tools software (Rapidlasso GmbH, Germany). Individual tree crowns 
were segmented using the Holmgren et al. (2022) algorithm, developed 
for boreal forests and achieving an F1 score of 0.86 for trees with DBH ≥
10 cm (Pires et al., 2024). This method, previously used as the tree 
segmentation method for tree species classification studies (Axelsson 
et al., 2023; Persson et al., 2022), requires sample trees for crown 
density model creation. Accordingly, 122 trees were manually 
segmented to calibrate the model. The segmentation produced polygons 
representing individual tree crowns, with the highest point within each 
polygon identified as the treetop. To simulate different ALS systems, 
returns from the two sensors were separated post-segmentation, creating 
three datasets: mini-VUX (NIR), VUX (SWIR), and a dual-wavelength 
dataset combining both. Table 2 summarizes the characteristics of 
these datasets.

2.3. Harvester production reports

Altogether, 69,253 trees from 17 stands were harvested from 
November 2021 to October 2022 using cut-to-length (CTL) harvesters by 
John Deere (Moline, Illinois, United States) equipped with a positioning 
system. The positioning system consisted of two Global Navigation 
Satellite System (GNSS) receivers mounted on the harvester’s cabin in 
order to establish its position and bearing. Built-in sensors enabled the 
recording of the boom angle and boom extension at the time of tree 
felling. However, the extension of the last part of the boom could not be 
recorded. Together, the integrated sensors for boom extension and angle 
and the GNSS on the harvester’s cabin make it possible to calculate the 
position of each tree during felling. The positions of 34 stumps were 

taken with a RTK GNSS and used to assess the accuracy of the positions 
obtained with the harvester system. The distances between the stumps 
and harvester positions ranged from 0.1 to 2.1 m, with a mean of 0.38 m.

From the HPRs we extracted each tree’s position, species, DBH, and 
the log lengths. Subsequently, the hprCM software (Skogforsk, 2022) 
was used to estimate each tree’s volume and total height based on the 
information on the HPR. The HPR files stored four species classes, 
“Norway spruce”, “Scots pine”, “Birch”, and “Other broadleaves”. The 
“Birch” and “Other broadleaves” classes were combined into a single 
“Deciduous” class.

2.4. Linking harvested trees to ALS data

Linking harvested trees to ALS segments was crucial for creating an 
annotated dataset with individual tree point clouds assigned to species 
classes. This was achieved by matching tree positions and heights be
tween harvested trees and ALS-derived segments, using treetops from 
ALS segments as reference positions. For each harvested tree position, 
the product of horizontal distance (d) and height difference (dh) be
tween the tree and neighboring treetops was calculated. If a treetop was 
within 1 m of the harvested tree, the closest treetop was linked to the 
harvested tree. If no treetops were within 1 m, the tree was linked to the 
treetop with the smallest d × dh value. Maximum allowed values were d 
= 3.5 m and dh = 4 m.

Segmented tree crowns, i.e. treetops, that were not linked to har
vested trees were assumed to be trees that remained standing after the 
harvest or to be commission errors from individual tree segmentation. 
Harvested trees that were not linked to a tree crown were assumed 
omission errors from the individual tree segmentation.

Altogether, 45,516 tree positions were linked to an ALS-derived 
segment, representing 65.7 % of all harvested trees. Of those, 36,162 
trees (79.4 %) were Norway spruces, 5,397 trees (11.9 %) Scots pine, 
and 3,957 (8.7 %) were deciduous trees. The proportion of trees linked 
to an ALS-derived segment increases with DBH (Fig. 2). In smaller DBH 
classes, e.g. from 5 – 10 cm, the majority of harvested trees were not 
linked to any ALS-derived segment. Conversely, this proportion de
creases as the DBH increases, with the majority of trees with DBH ≥ 10 
cm being linked to an ALS-derived segment.

2.5. Conversion of point clouds to 2D images

We used a CNN designed for 2D image classification – described 
further in section 2.6. Therefore, the individual tree point clouds were 
converted into images. The general workflow for this conversion 
involved transforming the individual tree point clouds into 2D images 
from four angles by rasterizing them in the X vs. Z plane at 45◦ intervals. 
At that stage, the pixel size was dynamically determined based on point 
density to ensure accurate representation of varying tree sizes and 
shapes, and the pixel values assigned according to the ALS dataset used, 
preserving relevant structural and spectral information. Finally, the 
pixel values were normalized and the images resized to a standard 160 
× 320 pixels for CNN classification.

The rasterization was done in the X vs. Z plane, generating four 2D 
representations per tree by rotating the tree point cloud around the Z- 
axis at 45◦ intervals (0◦, 45◦, 90◦, and 135◦). It was performed inde
pendently for each ALS dataset and tree, producing variable image di
mensions and pixel sizes tailored to tree size and dataset characteristics. 
Using fixed image dimension and pixel size for rasterizing the tree point 
clouds could lead to inaccuracies in their 2D representations. For 
instance, fixed image and pixel sizes could potentially cause trees to be 
cropped, if the number of pixels is not enough to cover their full extent, 
or blurred, if the pixel size is too large relative to the tree’s size. By using 
variable pixel and image sizes, we were able to better represent the 
different tree sizes and shapes. This approach maintained the resolution 
of the original point cloud data, ensuring higher point density datasets 
were represented with higher-resolution images, while lower-density 

Table 1 
Forest areas’ mean characteristics per tree species. DBH = Diameter at breast 
height in cm. SD = standard deviation.

Tree species Mean DBH (±
SD)

Basal area per hectare 
(m2/ha)

Volume per hectare 
(m3/ha)

Scots pine 25.5 (± 6.05) 6.02 59.7
Norway 

spruce
20.1 (± 7.99) 37.3 357

Deciduous 20.9 (± 7.96) 4.38 36.4
All species 20.7 (± 7.99) 47.7 453

Table 2 
Description of the aerial laser scanning (ALS) datasets used for tree species 
classification. PRR: Pulse Repetition Rate.

ALS dataset

Mini-VUX 
(1)

VUX 
(2)

Dual-wavelength (1 þ
2)

Sensor(s) miniVUX- 
1UAV

VUX- 
1HA

miniVUX-1UAV (1) +
VUX-1HA (2)

Footprint (cm) at 100 m 
from the target

16 x 5 5 16 x 5 (1) + 5 (2)

PRR (kHz) 100 1017 100 (1) + 1017 (2)
Scan speed (revolutions/s) 100 143 100 (1) + 143 (2)
Point density (points/m2) 100 875 975 (1 + 2)
Wavelength (nm) 905 1550 905 (1) + 1550 (2)
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datasets retained appropriate detail levels.
Fig. 3 shows how point clouds of trees with different sizes were 

represented in two dimensions. Prior to rasterization, the extent of the 
point cloud for each rotation angle was used to define the area to be 
rasterized, ensuring accommodation of the entire point cloud within the 
raster frame. For each ALS dataset (i), tree (j) and rotation angle (a), the 
pixel size (ps) of the resulting 2D image was calculated according to 
formula 1. In this calculation, the pixel area was determined as the in
verse of the point density in the X vs. Z direction post-rotation, repre
senting the area a single point would occupy if all the returns in the point 
cloud were uniformly distributed within the raster frame. 

psija =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xija*zija)/nij

√

(1) 

where, n is the number of returns in the tree segment.
Once the raster frame and pixel size were established for each i, j and 

a, pixel values were assigned based on the ALS dataset used. In order to 
assess the implication of adding spectral information in the images used 
for classification, the pixel values in mini-VUX- and VUX-derived images 
was set as the number of returns within each pixel considering the full 
depth of a tree’s point cloud. In other words, no intensity values in the 
two monochromatic datasets were used. The pixel values were 
normalized image-wise within the range of 0 to 255, with 0 indicating 
no points in the pixel and 255 corresponding to the 95th percentile of the 
pixel values pre-normalization. Pixels with values greater than or equal 
to the 95th percentile of pixel values were set as 255, resulting in 
grayscale images with 256 shades, ranging from white (0) to black 
(255).

In contrast, the images derived from dual-wavelength ALS data were 
created using an RGB false color composite combining NIR and SWIR. In 
each pixel, the red channel was assigned the mean intensity of the NIR 
points, green as the mean intensity of the SWIR points, and blue as the 
Normalized Near Infrared Index (NDII), calculated using NIR and SWIR 
according to formula 2. For these images, pixels lacking returns from 
either channel were assigned an NDII value of zero. Afterwards, the RGB 
values of each image were normalized to a range between 0 and 255, 
where 0 represented the absence of returns, and 255 indicated the 
highest mean intensity value before normalization. 

NDIIk =
nirk − swiri

niri + swiri
(2) 

where nir is the mean intensity of returns from the miniVUX-1UAV 

sensor, and swir is the mean intensity of returns from the VUX-1HA 
sensor in pixel k.

Finally, all images were resized to the standard dimensions of 160 
(width) by 320 (height) pixels.

2.6. Tree species classification

To ensure an even representation of each tree species class and 
mitigate potential bias towards over-represented classes, the dataset was 
balanced by reducing the number of instances in each class to match the 
smallest class. Thus, the number of trees in the Norway spruce and Scots 
pine classes was reduced to 3,957 trees to match the Deciduous class.

The dataset was visually inspected to create a “Noise” class for 
commission errors from tree segmentation. In this context, an image was 
classified as noise if we could not identify an obvious tree shape on the 
image within the dual-wavelength dataset. This step aimed to classify 
potential commission errors from the tree segmentation process as such, 
increasing the prediction accuracy for the tree species classes. If the 
images of a given segment were considered noise while inspecting the 
dual-wavelength dataset, they were sorted to the “Noise” class in all 
three ALS datasets. During this process, 228 trees were removed from 
the analysis due to being assigned the wrong species class, representing 
0.5 % of all matched trees. These removals could be a result of faulty 
annotations by the harvester operator or errors in the matching pro
cedure. Since species assignment is manually performed by the operator, 
human error is possible. Additionally, mismatches between harvester- 
derived and ALS-derived positions may have contributed to these re
movals. Altogether, 853 trees were sorted out from the other classes and 
allocated in the “Noise” class, resulting in 3772, 3559 and 3459 trees in 
the Pine, Spruce and Deciduous classes, respectively.

We used YOLOv8s-cls, a CNN from the YOLO family, for species 
classification due to its strong performance and user-friendly imple
mentation in PyTorch (Jocher et al., 2023). The YOLOv8s-cls model, 
suitable for small-class problems, was trained for 15 epochs using 
default settings (Appendix A). Each tree was represented by four images 
from different views, resulting in nearly 14,000 images per class. Thirty 
percent of these were reserved for validation at each epoch’s end. YOLO 
networks have demonstrated success in object detection tasks, including 
tree detection and segmentation (Straker et al., 2023) and wood surface 
knot detection (Fang et al., 2021), making YOLOv8 an ideal choice for 
this study.

Fig. 2. Diameter at breast height (DBH) distribution of trees linked and not linked to an aerial laser scanning (ALS)-derived segment. The dashed lines represent the 
mean DBH of each category.
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2.7. Accuracy Assessment

The tree species classification model’s accuracy was assessed by 
comparing observed and predicted species for each tree. Due to the 
limited number of stands (S = 17), we opted for a leave-one-stand-out 
validation approach. For each stand s, the model was trained using 
data from all other stands (S − s) and applied to s. By doing so, we ensure 
that no trees from s are seen during the training process. This process 
was repeated S times, generating predictions for all stands while eval
uating how the model is able to generalize when applied to different 
stands. During validation, the model predicted species independently for 
each tree projection, producing four probability vectors per ALS-derived 
segment. These vectors were averaged to create a single probability 
vector per segment, assigning the class with the highest probability to 
the segment. The leave-one-stand-out results are shown in a confusion 
matrix together with evaluation metrics such as user’s and producer’s 
accuracy (UA and PA as in formulas 3 and 4, respectively), the F1 score 
(formula 5), and overall accuracy (formula 6). Complementarily, the 
macroF1 represents the mean of the F1 score across all classes. 

UAC = TPc/(TPc + FPC) (3) 

PAC = TPc/(TPc + FNC) (4) 

F1C = 2 • UAC • PAC/(UAC + PAC) (5) 

OA =
1
N
•
∑C

i
TPi (6) 

where TP is the number of true positives, FP are the false positives, and 
FN are the false negatives of class C. N represents the number of trees 
analyzed in this study.

3. Results

3.1. Conversion of point clouds to 2D images

Fig. 4 shows examples of 2D images generated from different ALS 
datasets for each classification category. Mini-VUX-based images had 
the lowest average resolution (27.6 cm pixel size, Table 3), often lacking 
finer details such as branch structures or visible trunks, which appeared 
blurred or absent. In contrast, images generated with VUX and dual- 
wavelength datasets had higher resolutions, averaging 10.1 cm and 
9.52 cm pixel sizes, respectively, revealing finer details (Fig. 4, Table 3).

Fig. 3. Schematic representation of the rasterization of two trees with different point densities and sizes. Tree A: Norway spruce. Tree B: Deciduous tree. Tree C: Scots 
pine. Tree D: Pine tree under wrong segmentation, i.e. noise. The different shades of gray in the 2D image represent the number of points in each pixel. X and Z are 
in meters.
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In average, the Deciduous class had the largest pixel sizes of the tree 
species classes regardless of the dataset being used to generate the im
ages (Table 3). This can be at least partially explained by the fact that the 
ALS data was collected in the beginning of the Autumn season, when the 
deciduous trees start shedding leaves, thus, intercepting less laser pulses 
then the other tree classes.

3.2. Tree species classification

Tables 4, 5 and 6 show the confusion matrixes and accuracy metrics 

for the classifications performed on the mini-VUX, VUX and dual- 
wavelength datasets, respectivelly. Fig. 5 shows an example of a a 
stand point cloud with all detected trees classified. The highest overall 
accuracies and macro-F1 obtained while using the dual-wavelength data 
for classification (Table 6), followed by the classification performed on 
the VUX data (Table 5). The classification done using the mini-VUX data 
showed the lowest F1 score for the three species classes and noise class, 
resulting in a macro F1 of 0.835 (Table 4).

The tree species classes showed the highest F1 score when using 
dual-wavelength images for classification, ranging from 0.923 to 0.942 

Fig. 4. Two dimensional representations of individual tree point clouds produced with different aerial laser scanning datasets.
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from Spruce to Decidous, resulting in a macro-F1 of 0.934 when not 
considering the Noise class. Analogously, when using VUX-based im
ages, the F1 scores ranged from 0.914 (Spruce) to 0.937 (Pine), resulting 
in a macro-F1 of 0.926 when disregarding the Noise class. Finally, the 
lowest classification accuracy for the tree species classes was obtained 
while using mini-VUX-based images (Table 4). With this dataset, the F1 
scores ranged from 0.84 for the Deciduous class to 0.876 for the Spruce 
class, with a macro F1 of 0.861 when considering only the tree species 
classes. The F1 scores were the lowest for the Noise class regardless of 
the ALS dataset used for modelling and inference. For this class, the F1 
scores were 0.756, 0.798 and 0.783 when using the mini-VUX, VUX and 
dual-wavelength datasets, respectively.

Even though improvements in the classification accuracy were 
observed across all classes when using ALS datasets with higher spatial 
and spectral resolutions, some classes benefited more from the higher 
resolution datasets than others. For example, when using the mini-VUX 
dataset for classification, the Deciduous class exhibited the lowest ac
curacy among the tree species classes (F1 = 0.840). However, this class 
showed intermediate classification accuracy when using VUX (F1 =
0.928) and the highest accuracy of all species groups when using the 
dual-wavelength dataset (F1 = 0.942), representing more an improve
ment of 12.1 % on the F1 score. In contrast, the Pine class’ F1 score 

improved 8.07 % and Spruce class’ 5.37 % when comparing the classi
fication done using mini-VUX and dual-wavelength data.

We also examined the relationship between classification accuracy 
and stand conditions such as tree density, basal area and species mixture 
measures. However, no meaningful correlation was observed (R2 < 0.1), 
suggesting that classification performance was not strongly influenced 
by these factors.

4. Discussion

4.1. Using HPRs for tree species classification

In this study, we used harvester production reports to automatically 
annotate three ALS datasets, with different spatial and spectral resolu
tions. With this approach, 45,516 ALS-derived individual tree segments 
were labeled with tree species information by matching spatially explicit 
information from HPRs to the ALS-derived single tree positions, repre
senting 65.7 % of the trees harvested in the study area. This proportions 
align with other studies reporting rates form from 42.8 % (Mäyrä et al., 
2021) to 69.3 % (Hamraz et al., 2019).

Despite links being established across all DBH classes, many har
vested trees remained unlinked (Fig. 2). In this study, we could not 
determine the exact reasons for this, as not all trees in the study area 
were harvested. Common forestry practices, such as leaving shelter 
wood or partially harvesting stands, may explain some missing links. 
Additionally, the tree segmentation method used has shown reduced 
detection rates for smaller trees (Holmgren et al., 2022; Pires et al., 
2024), suggesting that improved detection of small trees in ALS data 
could enhance linking rates.

This is a known limitation of ALS-based tree detection and segmen
tation, as smaller individuals in the understory that are often occluded. 
In this study, many of the harvested trees that were not linked to ALS- 
derived segments fell within lower DBH classes (Fig. 2), suggesting 

Table 3 
Average pixel size (cm) for the tree species classes and noise class (± standard 
deviation). Different letters in the last row denote statistically significant dif
ferences according to Student’s t-test at a 95 % confidence level.

Class Mini-VUX VUX Dual-wavelength

Pine 26.7 (± 5.88) 9.23 (± 2.1) 8.76 (± 1.98)
Spruce 27 (± 6.04) 9.61 (± 2.3) 9.11 (± 2.17)
Deciduous 27.5 (± 6.43) 10.5 (± 2.83) 9.88 (± 2.62)
Noise 38.9 (± 11.8) 16.4 (± 5.57) 15.4 (± 5.14)
All classes 27.6 a (± 7.04) 10.1b (± 3.07) 9.52c (± 2.86)

Table 4 
Confusion matrix of predictions made using the mini-VUX-based images. OA = Overall accuracy.

Observed Species User’s accuracy F1 score

Pine Spruce Deciduous Noise

Predicted Species Pine 3190 137 292 17 87.7 % 0.867
Spruce 245 3233 206 97 89.8 % 0.876

Deciduous 257 158 2886 114 84.5 % 0.840
Noise 30 71 75 625 78 % 0.756

Producer’s accuracy 85.7 % 87.6 % 83.4 % 73.3 % OA ¼ 85.4 % macroF1 ¼ 0.835

Table 5 
Confusion matrix of predictions made using the VUX-based images. OA = Overall accuracy.

Observed Species User’s accuracy F1 score

Pine Spruce Deciduous Noise

Predicted Species Pine 3409 85 57 5 95.9 % 0.937
Spruce 203 3362 109 80 89.6 % 0.914

Deciduous 94 76 3207 85 92.6 % 0.928
Noise 16 76 86 686 79.4 % 0.798

Producer’s accuracy 91.6 % 93.4 % 92.7 % 80.1 % OA ¼ 91.6 % macroF1 ¼ 0.894

Table 6 
Confusion matrix of predictions made using the dual-wavelength images. OA = Overall accuracy.

Observed Species User’s accuracy F1 score

Pine Spruce Deciduous Noise

Predicted Species Pine 3455 103 87 9 94.6 % 0.937
Spruce 198 3392 60 100 90.4 % 0.923

Deciduous 45 43 3242 97 94.6 % 0.942
Noise 24 61 70 650 80.8 % 0.783

Producer’s accuracy 92.8 % 94.2 % 93.7 % 75.9 % OA ¼ 92.3 % macroF1 ¼ 0.896
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that suppressed trees were underrepresented in the annotated dataset. 
The omission of these trees introduces a potential source of bias, as the 
classification model is predominantly trained on dominant and co- 
dominant individuals. Similar issues have been reported in previous 
studies, which found that small or suppressed trees are frequently 
missing from ALS-derived individual tree-level inventories (Xu et al., 
2014a, 2014b).

To mitigate this limitation, future research could explore strategies 
such as targeted data augmentation for suppressed trees to increase their 
representation during model training. Alternatively, the integration of 
complementary datasets, such as benchmark datasets (Puliti et al., 
2023b) from structurally heterogeneous stands or synthetic point clouds 
that simulate occluded understory trees, may help models learn features 
of suppressed individuals more effectively. These approaches can pro
vide a partial workaround to underrepresentation by enriching the 
training data, even when direct segmentation of suppressed trees is not 
feasible.

Nevertheless, the annotation effort required in this study was 
significantly lower compared to manual interpretation of LiDAR point 
clouds or traditional field data collection. Annotation remains a major 
challenge for training deep learning models, which often require a large 
number of annotated instances (Hamedianfar et al., 2022). Hence, HPRs 
can simplify this process and provide additional tree size attributes such 
as DBH, height, and volume, which are important for various modeling 
tasks (Hauglin et al., 2018; Karjalainen et al., 2022; Maltamo et al., 
2019; Noordermeer et al., 2023).

4.2. Conversion of point clouds to 2D images

Conversion of three-dimensional point clouds to two-dimensional 
representations is a common approach to detection, segmentation and 
classification problems when using deep learning on point clouds 
(Kattenborn et al., 2021), either by using a single- or multi-view 2D- 
CNNs (Zhang et al., 2023). With such approach, users are able to 
apply well-established deep learning architectures and frameworks used 
for 2D data processing also on data originally acquired in three di
mensions. For instance, Persson et al. (2022) converted individual tree 
ALS point clouds to 2D images from different views in order to use a CNN 
for tree species classification. Puliti et al. (2023a) used UAVLS data to 
create 2D vertical projections of Norway spruce trees’ and train a whorl 
detector using the YOLOv5 framework (Jocher, 2020). In addition, 
Hamraz et al. (2019) estimated the conifer and deciduous proportions at 

area-level using either a LiDAR-based Digital Surface Model (DSM) or 
projections of the LiDAR point cloud from different viewpoints. More
over, Straker et al. (2023) performed instance segmentation of indi
vidual trees using YOLOv5 and UAVLS-based Canopy Height Models 
(CHM).

When it comes to tree species classification at tree-level, Briechle 
et al. (2021) converted UAVLS point clouds with approximately 53 
points/m2 to 2D side view projections. In their study, the pixel size was 
set to 10 cm and the image size was set to accommodate the largest tree 
in the dataset without cropping it, which resulted in a considerable loss 
of detail when projecting smaller trees. In a simpler conversion 
approach, Hell et al. (2022) generated side-view images of tree-level ALS 
point clouds (with approximately 80 points/m2) by producing scatter
plots with the point locations in the vertical direction. These scatterplots 
were written as 150 x 150 pixel images and used as input for a CNN. 
However, in order to avoid smaller trees being represented with more 
details than bigger trees, only adult forest trees were included in the 
analysis.

We were able to avoid shortcomings related to projecting point 
clouds with different dimensions by using variable pixel sizes and image 
dimensions while projecting the ALS-derived segments into 2D images 
and, later, resizing all the images to the standard 320x160 pixel reso
lution to be used by the CNN. This allowed us to use the state-of-the-art 
YOLOv8 framework for classification (Jocher et al., 2023), which is 
known for its user friendliness, speed and accuracy. In addition, the 
memory required to store 2D images of 320x160 pixels was considerably 
smaller than the one that would be required if storing point clouds, 
especially when considering that the average point density was nearly 
1000 points/m2.

4.3. Tree species classification using ALS data

Tree species classification accuracies varied with the ALS dataset 
used. Using the dual-wavelength dataset (NIR and SWIR returns), the 
macro-F1 score was 0.896, and overall accuracy (OA) reached 92.3 %. 
Similar performance was achieved with VUX dataset images (macro-F1 
= 0.894, OA = 91.6 %), while mini-VUX dataset predictions yielded 
lower accuracy (macro-F1 = 0.835, OA = 85.4 %). The VUX dataset’s 
higher spatial resolution resulted in a 6.2 % OA increase over mini-VUX, 
with the macro-F1 rising from 0.835 to 0.894. Conversely, using dual- 
wavelength data only slightly improved OA (from 91.6 % to 92.3 %) 
and macro-F1 (from 0.892 to 0.893). This discrepancy may be attributed 

Fig. 5. Example of a stand’s point cloud after tree species classification under the proposed methodology.
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to differences in point density and laser beam footprint: the VUX dataset 
had footprints of nearly 20 cm2 at 100 m, while mini-VUX footprints 
were approximately 63 cm2, reducing visibility of smaller features like 
fine branches in mini-VUX-derived images. In other words, similar tree 
species classification accuracies were obtained when using the mono
chromatic VUX dataset and the dual-wavelength dataset under the 
proposed methodology. This result can be at least partially explained by 
the fact that CNNs such as the one used in this study are designed to 
learn from local patterns in images (Hamedianfar et al., 2022; Katten
born et al., 2021), such as the different tree shapes and branches. 
Consequently, when classifying Pine, Spruce, Deciduous, and Noise, 
which differ substantially in shape (Figs. 3 and 4), point density and 
small footprint scanning might have been more determinant than 
spectral information.

The observed differences in classification accuracy across tree spe
cies highlight the role of the tree crowns’ structural complexity and 
spectral information in species differentiation (Nauber et al., 2024; Qian 
et al., 2023; Terryn et al., 2020). The Deciduous class, which exhibit 
more variable and heterogeneous crown structures, benefited the most 
from the VUX and dual-wavelength datasets likely due to the increased 
spatial resolution capturing finer details necessary for accurate classi
fication. The further improvement observed with dual-wavelength data 
suggests that spectral information enhances species differentiation by 
capturing variations in foliage properties (Shi et al., 2018a, 2018b). In 
contrast, Pine and Spruce classes showed smaller accuracy gains, indi
cating that their more uniform crowns are more easily distinguishable 
even with lower-resolution datasets. However, this study is limited to a 
single geographical region and a few species groups. Hence, it was not 
possible to access how the spectral information from dual-wavelength 
LiDAR point cloud would influence tree species classification accuracy 
when classifying more species groups or trees from different biomes.

Yet, the classification accuracies obtained are in-line with other 
studies that have attempted tree species classification using either sin
gle- or multi-wavelength LiDAR data in similar forest types. For 
example, Axelsson et al. (2023) used a dual-wavelength ALS system 
(532 nm and 1064 nm) and k-nn imputation to classify Pine, Spruce, and 
Deciduous trees, obtaining OA of 91.1 % and macro-F1 of 0.861. Hakula 
et al. (2023) used multispectral ALS (532 nm, 905 nm and 1550 nm) and 
random forest for classifying similar species, obtaining OA of 90.8 % and 
macro-F1 of 0.901.

Regarding deep learning approaches, our CNN-based method using 
2D projections aligns with similar methodologies that have shown high 
classification accuracy. Mäyrä et al. (2021) used 3D-CNNs with ALS and 
hyperspectral images, obtaining OA of 87 % and macro F1 equal to 0.86 
for four species groups. Briechle et al. (2021) achieved high accuracy 
(OA = 96.1 % and macro–F1 = 0.96) when combining LiDAR-derived 
side views and multispectral images in a 2D-CNN but noted reduced 
accuracy using LiDAR alone (OA = 80.4 %, macro-F1 = 0.8). Finally, 
Hell et al. (2022), used side-view 2D projections of individual trees from 
LiDAR data to classify seven tree species in temperate forests, reaching 
an overall accuracy of 87 %.

In addition to using 2D images or point cloud projections, authors 
have used deep learning models for classification directly in 3D point 
clouds. For example, Liu et al. (2022) benchmarked six point cloud- 
based deep learning models to classify eight species classes in dense 
MLS point clouds, achieving F1 scores ranging from 0.718 to 0.996. 
Murray et al. (2024) obtained weighted F1 scores of 0.63 when classi
fying the leading tree species and 0.85 when differentiating between 
coniferous- and broadleaf-dominated forest plots by using point-based 
deep learning in ALS data with approximately 40 points/m2. These 
studies highlight that deep learning approaches are highly effective for 
tree species classification, particularly when incorporating high- 
resolution data. While point cloud-based methods provide a more 
direct way of processing LiDAR data, they typically require higher 
computational power. Our approach, using 2D projections with CNNs 
provides a simpler alternative while maintaining competitive accuracy.

Regardless of the architecture or type of model chosen, the automatic 
annotation used in our analysis can significantly affect how deep 
learning models are trained by eliminating the bottleneck of training 
data collection and manual annotation, enabling more scalable and 
efficient model development. By leveraging HPRs for species labeling, 
this approach enhances the feasibility of large-scale tree species classi
fication efforts and opens new possibilities for integrating operational 
forestry data into remote sensing applications.

The classification method’s performance could be improved by 
refining tree segmentation techniques, particularly for smaller trees. 
This could lead to an increase in the proportion of linked trees and 
improve dataset completeness. Apart from tree species classification, 
harvester data could be valuable for estimating other forest attributes, 
such as tree health, wood quality, or growth rates, by leveraging the 
recorded DBH, height, and volume measurements and expanding the 
usage of harvester data in remote sensing-based analyses.

5. Conclusion

This study proposes a method for automatically classifying tree 
species at the single-tree level using ALS data, deep learning, and 
harvester production reports. By using the HPRs to annotate ALS data, 
we effectively trained a tree species classification CNN, achieving 
macroF1 scores ranging from 0.835 to 0.896. The results indicate that 
spatially explicit HPRs are a promising data source for tree species 
identification at the single-tree level. Moreover, the best classification 
performance was achieved when using the dual-wavelength ALS dataset 
under the proposed methodology, closely followed by VUX dataset. The 
worst classification performance was obtained when using the mini-VUX 
data for classification. Future research should focus on implementing 
similar methodologies for diverse species groups, such as different de
ciduous trees.
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Appendix A. Yolov8s-cls hyperparameters

task: classify; mode: train; model: yolov8s-cls.yaml; epochs: 15; 
patience: 3; batch: 16; imgsz: 320; save: true; save_period: − 1; cache: 
true; device: 0; workers: 8; exist_ok: false; pretrained: false; opti
mizer: auto; verbose: true; seed: 27; deterministic: true; single_cls: 
false; rect: true; cos_lr: false; close_mosaic: 10; resume: false; amp: 
false; fraction: 1.0; profile: false; freeze: null; overlap_mask: truema
sk_ratio: 4; dropout: 0.25; val: true; split: val; save_json: false; save_
hybrid: false; conf: null; iou: 0.7; max_det: 300; half: false; dnn: false; 
plots: true; source: null; show: false; save_txt: false; save_conf: false; 
save_crop: false; show_labels: true; show_conf: true; vid_stride: 1; 
stream_buffer: false; line_width: null; visualize: false; augment: false; 
agnostic_nms: false; classes: null; retina_masks: false; boxes: true; 
format: torchscript; keras: false; optimize: false; int8: false; dynamic: 
false; simplify: false; opset: null; workspace: 4; nms: false; lr0: 0.01; 
lrf: 0.01; momentum: 0.937; weight_decay: 0.0005; warmup_epochs: 
3.0; warmup_momentum: 0.8; warmup_bias_lr: 0.1; box: 7.5; cls: 0.5; 
dfl: 1.5; pose: 12.0; kobj: 1.0; label_smoothing: 0.0; nbs: 64; hsv_h: 
0.015; hsv_s: 0.7; hsv_v: 0.4; degrees: 0.0; translate: 0.1; scale: 0.5; 
shear: 0.0; perspective: 0.0; flipud: 0.0; fliplr: 0.5; mosaic: 1.0; 
mixup: 0.0; copy_paste: 0.0; cfg: null; tracker: botsort.yaml.
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