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Abstract

GWmodel is an R package for geographically weighted regression. It al-
lows researchers to consider environmental data collected at different ge-
ographic locations and study connections between them. As the number
of observations grow, the time to fit these models increases to the point
where it is no longer practical for the researcher to run it on their own
laptop, instead having to offload the computation to a supercomputer. By
reducing memory copies, vectorising the calculations and using memoiza-
tion the running time is reduced from days to minutes, increasing the size
of data sets that can feasibly be handled on a researcher’s laptop.
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1 Introduction

Identifying relevant drivers for environmental change is crucial to understand
processes and decide adequate countermeasures. In order to be able to connect
prevailing trends to one or several potential drivers there is a need of datasets
that cover a large range of different scenarios, i.e. combinations of different
explanatory variables. However, often when the goal of a monitoring program
is the quantification of trends a smaller number of sites is selected in order
to be able to describe temporal changes well. There are several monitoring
programs in Sweden that have good spatial representation. For example, the
Swedish Lake survey includes 4800 randomly selected lakes within the national
monitoring program and additional 1000 lakes added by regional programs. The
Swedish Forest Soil Inventory includes 20000 plots across Sweden and covers all
land types except urban areas and cultivated land.

While these datasets have good spatial representation and both chemistry
and characteristics of the catchment or surroundings are readily available, the
estimation of temporal trends is not straightforward as both these surveys are
revisit surveys with a revisit time of 6 years (lakes) and 10 years (forest soils),
which means they do not produce typical time series data and the quantification
of temporal trends is difficult to conduct for single sites, due to the sparse
data. To allow a statistical analysis for such spatially dense but temporally
sparse designs geographically weighted regression models (Brunsdon et al., {1998}
Gollini et al.| [2015]) were suggested to provide temporal trends in geographical
windows (von Bromssen et al., 2023)). The suggested procedure can be used to
define where in space temporal trends arise and how strong they are on average
within the window.

In a next step of the analysis, it is interesting to determine if trends are con-
nected to local or regional drivers. A logical expansion would be to include one
or several potential drivers into the geographically weighted regression models,
to study if the trends seen in the response variable change in location or mag-
nitude. Such procedure is sometimes called normalization (often in the context
of removing weather driven variation from observed time series data, |Stalnacke
and Grimvall (2001)). Allowing for additional explanatory variables, beyond
time, in GWRs can be done in several ways. Either the coefficient for the ex-
planatory variable is assumed to have the same spatial scale, i.e. it works on the
same local /regional scale as time, which allows the use of the basic GWR model
(Brunsdon et al.,{1998)), or the coefficient is assumed to be spatially constant, i.e.
only one global estimation of this coefficient is made; mixed GWR (Brunsdon
et al.l (1998} [Mei et al., 2004). A more attractive solution is multiscale GWR,
that allow different bandwidth for different variables (A. Stewart Fotheringham
and Kang, 2017} [Lu et al., 2018} [Yang, |2014). Such bandwidth determination
could be important if drivers work on different spatial scales and would allow
more relevant interpretation of the drivers’ effects and severity.

Multiscale GWR is implemented in the package GWmodel (Gollini et al.,
2015; Binbin Lu and Brunsdon, 2014) in R (R Core Team, [2024)), but proved
to be slow when used with larger datasets such as the Swedish lake and forest



soil surveys. In this article, we describe and test computational changes to
the implementation of multiscale GWR with the goal to decrease computation
time to make these models runnable on standard PCs even for moderately large
datasets. As a consequence, we see that multiscale GWR might become a
standard tool for quantifying environmental change both for revisit designs and
for other types of data, where a regional approach is advantageous.

1.1 Programming languages and GWmodel

The programming language C++ is generally considered to be faster than the
programming language R, since C++ is compiled whereas R is an interpreted
language. The R package Repp (Eddelbuettel et all [2024a; [Eddelbuettel and
Francois, [2011} [Eddelbuettel, 2013} [Eddelbuettel and Balamutal, 2018) enables
programmers to write routines for R in C++. This is how some parts of the
GWmodel package are written.

In C++, there are multiple options to achieve parallelism, a process where
a problem can be distributed across multiple processing cores working to solve
a problem together. The options used in GWmodel are OpenMP and CUDA.
OpenMP is generally used to write parallelised code for the CPU and CUDA is
used to write parallelised code for NVIDIA GPUs.

Two aspects of the gwr .multiscale routine are chosen to be optimised. The
first is reducing the number of times data is copied from the R runtime to the
compiled C++ code, as well as between functions in C++. The second is how
the linear algebra is implemented.

1.2 Measuring performance

The performance of the gwr.multiscale routine depends on what computer
the researcher is using. Users of GWmodel can run their analysis on a wide
range of computers, spanning from their laptops or desktops to supercomputers.
Since our goal is to increase the problem sizes that can be considered on the
researcher’s computer, we constrain our testing to laptops.

Although the routine gwr.multiscale will be the main focus for our work,
some subroutines are shared with other routines. gwr.basic, a routine for
performing geographical weighted regression for a single explanatory variable,
and bw.gwr, a routine for finding the bandwidth for a variable, also benefit from
our optimisations.

2 Method

Performance improvement can be achieved by limiting the number of times data
has to be copied. To achieve this, a sufficiently large part of the gwr .multiscale
routine was implemented in C4++, such that only a single call to the C4++ code
is performed.



To further reduce the number of times data is copied, parameters to functions
were sent by reference as opposed to sending them by value in the C4++ code.
In the case of a matrix being a parameter to a C++ function foo, this would
change the function definition from

double foo (matrix mat);
to
double foo (const matrix &mat);

Another way to speed up computation is to vectorise the computation. By
changing kernel functions to operate on vectors instead of single matrix elements,
the number of function calls is reduced. Additionally, we get some speed up by
being able to leverage SIMD, single instruction, multiple data. This means that
calls to kernel functions went from looking like this

for (int ¢ = 0; ¢ < numcolumns; c++) {
for (int r = 0; r < numrows; r++) {
result (r,c) = kernel func(mat(r,c));

}
}

to instead look like this

for (int ¢ = 0; ¢ < numcolumns; c++) {
result.column(c) = kernel func_ vec(mat.column(c));
}

To reduce the time consumed by linear algebra operations, the linear algebra
library used was swapped from ReppArmadillo (Eddelbuettel et al.), 2024b; [Ed-
delbuettel and Sanderson| [2014)) to ReppEigen (Bates and Eddelbuettel, [2013)).
RcppEigen has support for running on multicore systems and offers some oper-
ations that might speed up the calculations. In addition to this, linear solvers
were used to solve linear systems, as opposed to computing matrix inverses.
Finally, some memoization was performed to avoid repeating computation.

To test how much faster the code had become, the gwr.multiscale routine
was run on a collection of datasets varying in size. The original and new imple-
mentations were run, and running time was measured using the tictoc package
(Izrailevy, [2024). The time needed to read the data from disk and prepare it for
analysis was not included, only the time to fit the model was measured. Three
warm-up runs were done, followed by ten real runs. The mean and the standard
deviation was recorded.

The tests were repeated on different consumer grade laptops, varying the
number of cores on the machine. The machines had different operating systems,
Microsoft Windows and Apple macOS.

The datasets used to perform the analysis were taken from the Swedish Lake
survey and the Swedish Forest Soil Inventory. To vary the size of the dataset,
different cutoffs for the observation z-coordinate were chosen. The number of
explanatory variables varied from two to four.



# observations
Version 100 200 300 401 500 601 702

New  1.70-107' 3.30-10~' 5.10-10~' 8.40-10"!' 1.60-10°  2.40-10°  4.30-10°
Original 4.50-107' 2.10-10°  6.40-10°  1.60-10'  3.10-10*  5.60-10'  9.20-10

Table 1: Execution time in seconds on 6 threads. Limited to 10 iterations on
laptops.

# observations

# threads 100 200 300 401 500 601 702

1 26 39 55 85 96 110 10.1
4 47 135 192 286 312 357 32.3
6 65 133 256 357 40.0 47.6 455

Table 2: Speedup factor of new implementation compared to original imple-
mentation for different problem sizes and number of threads. Limited to 10
iterations run on laptop.

To ensure that the new code produces the same output as the original code,
comparisons between the produced outputs from both versions were performed,
with the maximum relative difference recorded.

3 Results

The running times of the original and the new implementation for different
problem sizes are presented in table [I The speedup factors of the new imple-
mentation compared to the original implementation for different problem sizes
and configurations are presented in tables[2]and[3] The running time for a larger
problem size is presented in table [

The maximum relative difference ranged from 1% to 10 ppm when consid-
ering all but one kernel function. When the kernel function boxzcar was chosen
the largest relative error was 10%.

The running time for the routines gwr.basic and bw.gwr are presented in
tables [B] and [6l

4 Discussion

A substantial speedup was achieved following our modification of the code. The
implications of this speedup are that larger datasets become viable for analysis
and that a larger variety of computer hardware can be used to run the code.
The main reason for the speedup is believed to be reduced copying of mem-
ory, and switching to a library for linear algebra that supports parallel matrix
operations. Along with these changes some other optimisations were performed,



# observations

# variables 301 501 701

2 208 179 385
3 21.3 345 455
4 21.7 40.0 52.6

Table 3: Speedup factor of new implementation compared to original implemen-
tation for different number of explanatory variables on 6 threads. Limited to 10
iterations run on laptops.

Model 1 Model 2
Version I o I o
New 2.04 - 102 1.80 - 10! 2.01 - 102 2.57- 10!
Original  8.92 - 10* - 8.89 - 10% -

Table 4: Average execution time of new implementation on dataset with 4939
observations on 4 threads limited to 10 iterations run on laptops. Both models
use two explanatory variables. Average of 5 runs for new implementation, old
implementation only did a single run.

Adaptive Fixed

Version " o W o)

New 4.41-10° 1.55-10~1  2.05-109 1.53-1071
Original 9.12-10°  3.16-10~' 3.39-10° 1.93-107!

Table 5: Average execution time of gwr.basic on dataset with 11730 observa-
tions on 4 threads limited to 10 iterations run on laptops. Average of 10 runs.

CV & Adaptive CV & Fixed AIC & Adaptive AIC & Fixed

Version m o m o m o I o

New 7.59 - 10° 6.62-1071 1.25-10! 1.77 - 10° 1.82- 10! 1.86 - 10° 2.13-10! 2.49-10°
Original ~ 3.81- 10! 6.42-1071  4.44-10! 9.84-1071  4.80-10! 3.71-1071  3.34-10! 7.23-1071

Table 6: Average execution time of bw.gwr on dataset with 11730 observations
on 4 threads limited to 10 iterations run on laptops. Average of 10 runs.



such as memoizing calculations to avoid repetition. In addition to the quicker
execution time, numerical accuracy has increased by switching to linear solvers
rather than computing matrix inverses.

Some values differed greatly when using the bozcar kernel function. This
is believed to be caused by the increased stability obtained by using linear
solvers rather than computing the matrix inverse. Small numeric differences are
amplified by the use of a kernel function which cuts off any points outside the
bandwidth, thereby giving a large difference in the final result.

4.1 Future work

GWmodel currently supports CUDA, a parallelisation framework that can be
used on NVIDIA GPUs. An alternative to optimising the CUDA implementation
would be to support some other framework for offloading computation to the
GPU, like OpenCL or HIP. Adding this support would remove the requirement
to use GPUs from NVIDIA and enable anyone with a GPU from some other
manufacturer to offload their CPU.

There is however a negative side effect with extending support to include
other frameworks. With the addition of OpenCL or HIP, the number of par-
allelisation frameworks is increased, and so will the burden of maintaining the
package. Extending the OpenMP code to instead support computation on the
GPU might be preferable.

Another avenue to explore is improving the fitting routine by trying other
techniques to find the optimal bandwidth for each variable. This is currently
done using a golden section search. We have not yet ruled out that there might
be a more efficient approach to finding the optimal bandwidth, such as using
the Newton-Raphson method.

When working on a laptop or other personal computer, the amount of avail-
able memory is what limits what problem sizes can be considered. We have
explored performing the computation using single precision (32-bit) rather than
double precision (64-bit). This makes the data take up less space in memory,
but reduces the precision. For some test, the reduced precision leds to routines
producing different outputs, indicating that this might not always be viable.
Exploring ways to determine when to switch to single precision could offer a
reduction in memory footprint.

5 Conclusion

The rewrite has increased the size of datasets that can be analysed by the
routine and made it better suited for parallel systems. The shorter execution
time allows researchers to consider geographically weighted regression in cases
where waiting for model fitting would have previously been prohibitive.
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A Computer specifications

Below is the specifications for the computers used to measure running time.

Processor Cores Mem. size Operating system
Apple M1 Pro 8 (6 perf.) 16 GB macOS 15.5
Intel Core i7 8 16 GB Windows 10
Intel Core Ultra 7 155H 16 (6 perf.) 32 GB Windows 11

Table 7: Computer specifications for laptops.

B OpenMP on macOS computers

As outlined by the OpenMP on macOS with Xcode tools page on the R-project,
enabling OpenMP for packages in R is not as straight forward as it is for Win-
dows or for Linux computers. We followed the instructions on the page when
installing both our new code and the original code. During the testing, we also
validated that both versions of the code used multiple cores.

11



	Introduction
	Programming languages and GWmodel
	Measuring performance

	Method
	Results
	Discussion
	Future work

	Conclusion
	Computer specifications
	OpenMP on macOS computers

