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A Base-Mediated Rearrangement of the Benzylic
1,5-Hexadipyridynyl Moiety
Wouter A. Remmerswaal, Thai-Tony Nguyen, Zijian Han, Fedor Krasovski Slobodian,
Ruisheng Xiong, Vadim Kessler, Zhijian Xu, Weiliang Zhu,* and Mate Erdelyi*

A previously unrecognized base-mediated rearrangement of a
benzylic 1,5-hexadipyridynyl moiety is reported. Upon exposure
to base, this structural motif rearranges into a constrained
vinyl-pyridine substituted cyclobutene. Computational modeling
indicates that the rearrangement takes place following a route
involving stepwise deprotonation, shifted reprotonation, and
4π-electrocyclization. The reaction rate and the stereochemical

outcome is consistent with the experimental observations.
Furthermore, nonbase mediates rearrangements, through well-
known Cope-like [3,3]-sigmatropic shifts, are found to be high
in energy, and therefore, take a backseat to the base-mediated
pathway. This rearrangement may provide a novel reactivity
pathway of conjugated systems for synthetic methodology
development.

1. Introduction

In the synthesis toward supramolecular scaffolds,[1] we
observed that the Sonogashira coupling of hexa-1,5-diyne-3,4-
diyldibenzene[2–5] and 2,6-diiodopyridine led to the formation of
unexpected byproducts along with the anticipated di(iodopyridinyl)
building block 1 (Scheme 1). The possibility of building
block 1 undergoing a [3,3]-sigmatropic rearrangement followed
by a 4π-electrocyclization reaction[6,7] to yield byproduct 2 was
expected.[8–15] However, the isolated products were not com-
patible with the expected outcome of the above described

rearrangements, but rather with the isomeric products EZ-3 and
ZZ-3, the structure of which were identified by single crystal
X-ray diffraction and nuclear magnetic resonance (NMR) spectros-
copy. As this type of rearrangement has not yet been reported,
we performed a combined spectroscopic and computational inves-
tigation of its mechanism.

2. Results and Discussion

The benzylic 1,5-hexadipyridynyl moiety 1 (Scheme 2) was
synthesized from 1-phenyl-3-(trimethylsilyl)prop-2-yn-1-ol 4.
Following bromination using PBr3, yielding 5, the chiral build-
ing block 6 was formed by the iron-catalyzed homocoupling
of 5.[16] Subsequently, the trimethylsilyl groups were depro-
tected using KF to yield 7 as a mixture of racemic (rac-7)
and meso-isomers (meso-7). Meso-7 was isolated by crystalli-
zation from the isomeric mixture, simultaneously enriching
rac-7 (1:2 meso to racemate). The Sonogashira coupling of
the di-alkyne building block 7 and 2,6-diiodopyridine yielded
rac-1 and meso-1 (optimization of the reaction protocol is
depicted in Figure S1, Supporting Information) along with
the byproducts EZ-3 and ZZ-3.

When rac-1 was subjected to conditions resembling a
Sonogashira coupling (Scheme 3), EZ-3 and ZZ-3 were formed
in a 1:1.5 ratio, and were isolated by flash column chromatogra-
phy and high-performance liquid chromatography. The EZ-3
isomer crystallized from a mixture of rac/meso-7 (2:1) and
was identified by single crystal X-ray analysis (Scheme 3,
see Figure S27 and Table S1–S8, Supporting Information for fur-
ther details) and NMR spectroscopy. The second stereoisomer
was identified as ZZ-3 with NMR spectroscopy. Upon treatment
of meso-1 under the same reaction conditions, EZ-3 and ZZ-3
formed in a 5:1 ratio (Figure S2, Supporting Information).

The formation of EZ-3 and ZZ-3 over time from rac/meso-1was
monitored with NMR spectroscopy indicating that neither increased
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Scheme 1. Under Sonogashira coupling conditions, a 1,5-hexadiyne moiety containing benzyl and pyridine-ethynyl functionalities isomerizes into a mixture
of [1,3]-proton shifted products EZ-3 and ZZ-3, but not into 2.

Scheme 2. Synthesis of 1, as an isomeric mixture of rac-1 and meso-1. Reagents and conditions: a) PBr3 (1.5 equiv), Et2O, 2 h, 0•°C—RT, 5: used as a crude
mixture in further reactions; b) Mg turnings (1.5 equiv), Fe(acac)3 (2 mol%), dry THF, 17 h, RT, rac-6/meso-6 (2:1): 57% over two steps; c) KF (7 equiv),
MeOH, 17 h, 55 °C, rac-7/meso-7 (2:1): 89%; d) 2,6-Diiodopyridine (2.2 equiv), PdCl2(PPh3)2 (10•mol%), CuI (5 mol%), NEt3 (10 equiv.), dry DMF, 30 min,
40 °C: meso-1/rac-1, 7%, and EZ-3/ZZ�3 in a ratio of 1:2.

Scheme 3. Subjecting rac-1 and meso-1 to conditions resembling a Sonogashira coupling provides EZ-3 and ZZ-3. EZ-3 was crystallized and analyzed with
X-ray crystallography (ellipsoid displacement probability= 30%, CCDC 2,429,445). Reagents and conditions: a) PdCl2(PPh3), CuI, NEt3 (10 equiv), dry DMF,
180 min, 25 °C, quantitative as determined with NMR (Figure S3, Supporting Information).
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temperature, nor the presence of copper(I) iodide or PdCl2(PPh3)2, or
combinations thereof led to any conversion of rac-1–3 (Figure 1b).
A radical mechanism was ruled out by carrying out the reaction in
the presence of TEMPO (Figure S3, Supporting Information). In our

hands, EZ-3 and ZZ-3 were readily formed in the presence of
triethylamine at elevated temperatures (Figure 1a). NMR measure-
ments showed that both rac-1 andmeso-1 converted nearly quan-
titively to EZ-3/ZZ�3 (Figure S4, Supporting Information).

Figure 1. a) Base-driven formation of ZZ-3 and EZ-3 from rac-1, monitored over time with NMR spectroscopy. b) Stability of rac-1 when exposed to
PdCl2(PPh3), CuI, or both at 70 °C for 120 min.
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The mechanism for forming EZ-3 and ZZ-3 from rac-1
was investigated by computing the potential energy surfaces
for possible reaction pathways (Figure 2) at the SMD-
18(DMF)/M06-2X-D3/6-311þþG(d,p)/SDD//PCM(DMF)-M06-2X-
D3/6-31G(d)/SDD[17–22] level of theory using Gaussian 16.[23] This
level of theory has previously provided good experimental
correlation for the rearrangement reactions of unsaturated
nitriles, and is expected to give similarly accurate energies for
our systems.[24]

As experiments (Figure 1) revealed that the rearrangement of
rac-1 into EZ-3 and ZZ-3 is base-dependent, we computed the
potential energy surface for a triethylamine-mediated reaction

route (Scheme 4 and Figure 2). Owing to the formation of
two stereocenters, four analogous pathways are possible. In
the following description, we focus on the key stereochemistry-
and rate-determining steps, whereas give full energy profiles in
Figure 2.

The reaction is initiated by abstraction of a propargylic proton
by triethylamine via transition state TS-1 (ΔG= 19.8 kcal mol–1),
forming the charge-separated intermediate INT-1. This is the
overall-rate-determining step of the base-mediated rearrange-
ment that is facilitated by the acidity of the propargylic
position,[25–28] and further by an alkyne substituent (Table S11,
Supporting Information).

Figure 2. a) The computed reaction profiles for the formation of EZ-3 and ZZ-3 from rac-1 (green path) and for the formation of 2 (red path), and
b) cylview[37] images of transition states critical for the stereochemical outcome. Gibbs free solute energies relative to rac-1 (ΔGDMF) are given in kcal mol–1.
See Table S9 and S10, Supporting Information, for energies and coordinates. Computed stationary points are given relative to the solvent separated
reactants (rac-1 and triethylamine), and were computed at SMD-18(DMF)/M06-2X-D3/6-311þþG(d,p)/SDD//-PCM(DMF)//M06-2X-D3/6-31G(d)/SDD.[17–21]
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The triethylammonium ion then transfers the abstracted proton
toward the terminal end of the alkyn, forming the allenylic position.
At this stage, the E or Z configuration of the first vinylic position
in the final product is defined through TS-Ra-2 and TS-Sa-2.
The lower barrier of TS-Sa-2, ΔΔGTS-Ra-2-TS-Sa-2 = þ1.1 kcal mol–1,
predominantly favors formation of the Z-configured intermediate
INT-Sa-2. The process is then repeated, and hence, the second
propargylic proton is abstracted, followed by allenylic reproto-
nation defining the second stereocenter. The reprotonation
transition states,[29] TS-RaRa-4 and TS-RaSa-4, are near isoenergetic
(ΔΔGTS-RaRa-4-TS-RaSa-4 = þ0.7 kcal mol–1), forming a mixture of
RaRa- and RaSa-configured allenylic intermediates (INT-4) upon
dissociation of the triethylamine complex. These intermediates
are thermodynamically favored (ΔG � �10 kcal mol�1), due to
the electron-withdrawing iodopyridine ring and formation of a

conjugated system. Thus, the thermodynamic driving force of
the reaction is the energy gain, ΔG � �10 kcal mol�1, which
in association with the low energy barrier of the proton
abstraction, ΔG= 19.8 kcal mol�1, and makes the transformation
feasible.

Following formation of dienes INTs-4, conformational rota-
tion to INTs-5 via TSs-5 enables orbital alignment necessary
for the ensuing 4π- electrocyclization via TS-RaRa-6 and
TS-SaRa-6. For the formation of the second stereocenter, these
ring-forming steps are rate-determining (ΔG= 11.0 and
10.0 kcal mol�1, respectively). These energy barriers are in line
with the analogous 4π-electrocyclizations of substituted bis-
allenes, as reported by Pasto and coworkers,[30,31] which occur
readily at room temperature and are involved in the formation
of alkylidenecyclobutenes.[32,33] This cyclization step shows a

Scheme 4. The trimethylamine-mediated formation EZ-3 from rac-1. The analogous formation of EE-3 and ZZ-3 isomers is not shown here, for clarity; how-
ever, it follows the same logic.

Scheme 5. Schematic representation of the computed base-mediated formation of 2 from rac-1.
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computed ΔΔGTS-RaRa-6-TS-Sara-6 = þ1.0 kcal mol–1, suggesting a
mild preference toward formation of EZ-3, but ultimately favors
forming
mixtures of EZ-3 and ZZ-3. The formation of a mixture of isomers
is consistent with the experiment.

Overall, the stereochemistry of 3 is established during the two
allenyl-forming steps TS-2 and TS-4. The first favors the Sa-isomer,
providing a Z-configured vinyl after cyclization, while the latter
shows little stereochemical bias. As a result, the formation of a
mixture of ZZ-3 and EZ-3 isomers is predicted, which is consistent
with the experimental observation (Figure 1). The computed acti-
vation energy, ΔG= 19.8 kcal mol�1, aligns with the multihours
experimental half-life of rac-1 at room temperature.

Finally, we examined the formation of byproduct 2 (Scheme 3),
which could be expected based on literature reports, however, was
not observed. We computed the potential energy surface towards
the formation of 2 via a Cope-like [3,3]-sigmatropic rearrangement
(TS-7, ΔG= 31.8 kcal mol–1) of rac-1 to the highly stable
intermediate INT-6 (ΔG=�13.29 kcal mol–1) (Scheme 5). This
rate-determining step is followed by 4π-electrocyclization via
TS-8 (ΔG= 12.5 kcal mol–1), yielding 2. The high-energy barrier
of TS-7 is consistent with typical pericyclic reaction
energetics.[11,34–36] The rigid structure of propargylic centers, as
in rac-1, hinders the alignment of the alkyne pyridinyl carbons.
To achieve the required orbital overlap for the pericyclic reaction,
the propargylic carbons dissociate en route to TS-8, positioning the
C•••Cpropargylic and C•••Calkyne bonds in a semi-equidistant fashion.
Here, the C•••Cpropargylic and C•••Calkyne distances are 2.23 and
2.30 Å, respectively, similar to those reported for a 1,5-diyne sys-
tems byWu et al.[10] Thus, distorting the geometry of rac-1 to reach
TS-8 is energetically penalized (ΔG= 31.8 kcal mol–1). Comparable
barriers have been reported for the [3,3]-sigmatropic rearrange-
ment of 1,5-hexadiyne by Houk,[36] and experimentally by
Huntsman.[15] Overall, the significantly higher activation energy
of the route leading to 2 as compared to that toward 3,
ΔΔGTS7–TS1 =þ12.0 kcal mol�1, suggests that the former is unlikely
to form. This aligns with our experimental observations (Scheme 3).

3. Conclusions

We have identified a previously unknown rearrangement of
the benzylic 1,5-hexadipyridynyl moiety into a substituted cyclo-
butene. The transformation proceeds through a base-mediated
mechanism, yielding a mixture of the EZ and ZZ stereoisomers.
Computations on the density functional theory level are in
agreement with a base-mediated step-wise mechanism, where
the initial deprotonation of rac/meso-1 is the rate-determining
step. This is followed by protonation and a subsequent
4π-electrocyclization to yield the observed rearrangement prod-
ucts. Computed barriers are consistent with the experimental
reaction rate and stereochemical outcome, that is, the formation
of a EZ/ZZ-mixture and the absence of the EE isomer. The absence
of products resulting from a nonbase-mediated mechanism cor-
relate well with the computed high-energy barrier for a Cope-like
[3,3]-sigmatropic shift. This base-mediated rearrangement

provides a so far unexplored reactivity pathway for a benzylic
1,5-hexadipyridynyl system that may gain applicability in struc-
turally related conjugated systems.
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