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ABSTRACT: The characterization of transformation products Prediction Confidence
(TPs) is crucial for understanding chemical fate and potential
environmental hazards. TPs form through (a)biotic processes and
can be detected in environmental concentrations comparable to or
even exceeding their parent compounds, indicating toxicological
relevance. However, identifying them is challenging due to the
complexity of transformation processes and insufficient data. In
silico methods for predicting TP formation and toxicity are efficient
and support prioritization for chemical risk assessment, yet require
sufficient data for improved results. This perspective article
explores the role of computational approaches in assessing TPs
and their potential effects, including rule-based models, machine
learning-based methods, and QSAR-based toxicity predictions,
focusing on openly available tools. While integrating these approaches into computational workflows can support regulatory
decision-making and prioritization strategies, predictive models can face limitations related to applicability domains, data biases, and
mechanistic uncertainties. To better communicate the results of in silico predictions, a framework of four distinct levels of confidence
is proposed to support the integration of TP prediction and toxicity assessment into computational pipelines. This article highlights
current advances, challenges, and future directions in applying in silico methodologies for TP evaluation, emphasizing the need for
more data and expert interpretation to enhance model reliability and regulatory applicability.

KEYWORDS: environmental fate, computational (eco)toxicology, chemical prioritization, risk assessment, QSAR modeling,
rule-based models, machine learning, organic micropollutants

1. INTRODUCTION methods. The former involves exposure of a chemical to
specific enzymes in laboratory-scale experiments, while the
later refers to the analysis of biological matrices, such as blood,
tissue, or excreta, following exposure to a chemical.
Complicating factors in these methods include ethical
considerations and the variability across different organisms
and environmental contexts.">~"? TPs formed through abiotic
reactions such as photolysis or treatment processes can be
determined through laboratory experiments or pilot plants,
with sophisticated setups.”*”*° The analytical method of
choice for identifying and discovering new TPs is high-

The importance of characterizing transformation products
(TPs) potentially affecting the receiving aquatic environments
has been increasingly emphasized,'~* with many TPs found in
similar or even higher environmental concentrations than their
respective parent compound.”” For example, Kolecka et al.
quantified two diclofenac TPs in effluent wastewater with
concentration levels almost double than diclofenac itself.®
However, discovering all possible TPs is challenging. Several
Organization for Economic Co-operation and Development
(OECD) guidelines exist to investigate environmental (e.g,
photo, microbial) transformation of chemicals in aquatic

ecosystems.”~ > This perspective considers TPs from multiple Received: May 20, 2025 Eg«!!nﬁnue%%_
transformation pathways, including abiotic processes such as Revised:  August 13, 2025 o M
photolysis or water treatment, and biotic processes such as Accepted:  August 14, 2025 :

environmental biotransformation and human metabolism. TPs Published: September 2, 2025

formed within living organisms (ie, metabolites or bio-
transformation products) can be identified via in vitro or in vivo
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resolution mass spectrometry (HRMS), generating extensive
datasets that require careful investigation to accurately identify
each TP, with many features remaining unidentified or only
tentatively identified.”””*® Several TPs have been shown to
contribute to the overall hazard and risk profile in the
environment.””™*° For example, fluoxetine,”” propranolol,*®
and acyclovir’ TPs have been suggested to exhibit (eco-
)toxicological effects. Recently, 6PPD-quinone, the TP of the
tire additive 6PPD (4-N-(4-methylpentan-2-yl)-1-N-phenyl-
benzene-1,4-diamine) that can enter environmental waters
through for example urban runoff, was shown to exhibit toxic
effects to multiple fish species, with toxicity levels several
orders of magnitude higher than 6PPD itself.””**~* Given the
established contribution of several TPs to the overall hazard
and risk profile of environmental samples, a holistic risk
assessment aims at covering as much of the chemical space as
possible. However, it is neither practical nor realistic to assess
risks of all potential chemicals and their TPs individually
through HRMS and ecotoxicological studies.

Combining chemical with effect-based methods and in silico
approaches has been suggested to investigate combined effects
and mechanisms of toxicity.**~** In silico methodologies can
help to fill knowledge gaps and support screening or
prioritization. Computational approaches can predict how
chemicals would behave in the environment and their potential
toxic effects, including quantitative structure activity relation-
ships (QSARs) and read-across methods.*”*® Additionally,
molecular docking and molecular dynamics simulations, widely
used in medicinal chemistry, are increasingly considered for
chemical safety assessments, offering potential insights into
toxic action mechanisms.*® Comprehensive workflows can now
predict TPs and key toxicological endpoints from just the
initial chemical structure. Such approaches could serve as
essential safety measures, for example, in early assessment
stages for regulatory and drug design purposes, enabling more
informed decision-making in chemical production. Addition-
ally, these methodologies allow for the integration of TP
assessments, aiding environmental scientists and other stake-
holders in managing chemical impacts effectively.

This perspective article explores how in silico methodologies
can enhance the risk assessment process for TPs in order to
facilitate the development of computational workflows that
integrate TP formation and toxicity assessments. This could be
beneficial to various fields, including pharmaceutical develop-
ment and environmental sciences, by enabling proactive
evaluations of chemical safety and environmental impacts.
The motivation stems from recent recommendations within
the scientific community for early integration of persistence
and toxicity measures into management frameworks to
implement a more proactive approach.*’™>' This article
focuses on broadly applicable open access in silico approaches
for predicting TPs and toxicological impacts. Tools are
compared based on their functionality, input requirements,
applicability domain, interpretability, and validation strategies.
This work also highlights emerging computational approaches,
current challenges, and research needs in TP prediction and
toxicological assessment.

2. FOUNDATIONS OF PREDICTIVE APPROACHES

There are two primary computational approaches: rule-based
models and machine learning-based models, each with
strengths and limitations, offering complementary insights
into chemical behavior and risks.

2.1. Rule-Based Models. Rule-based models are grounded
in mechanistic evidence derived from experimental studies.
They rely on predefined rules or structural alerts, molecular
substructures or patterns associated with specific biological
activities, transformations, or toxicological endpoints. In TP
prediction, rule-based models apply expert-curated reaction
rules to forecast transformations such as hydroxylation or
oxidation. In toxicology, the presence of a structural alert, such
as a nitro group linked to mutagenicity,”” can serve as indicator
for hazard identification. The interpretability of rule-based
models is one of their key strengths, as they are built on well-
defined reaction pathways or mechanistic insights. However,
they are inherently constrained by the width and depth of their
underlying libraries. This means they can only predict
behaviors and transformations/mode of actions that have
already been characterized, limiting their utility for novel
chemicals or uncharted mechanisms.

2.2. Machine Learning Models. Machine learning (ML)
models are data-driven and particularly effective in capturing
complex, nonlinear relationships. By analyzing large datasets of
chemical properties, structures, and biological activities, these
models can uncover patterns and make predictions that extend
beyond existing mechanistic knowledge.”” In TP prediction,
ML algorithms can predict potential transformation pathways
based on chemical descriptors and environmental factors. In
toxicological assessment, ML models can estimate effects like
bioaccumulation or endocrine activity by learning from
extensive experimental datasets. While ML models are
powerful and flexible, their reliability depends on the quality,
diversity, and size of the training datasets. They also face
challenges like overfitting, where the model performs well on
training data but poorly on unseen data. Additionally, the
black-box nature of many ML methods can hinder
interpretability, making it difficult to trace predictions back
to mechanistic insights.

2.3. Integration and Complementarity. Rule-based and
ML models are not mutually exclusive but complementary.
Workflows and approaches that integrate both these
approaches combine the reliability of expert knowledge with
the adaptability of data-driven insights. QSAR models serve as
a bridge between rule-based and ML approaches, as they can
be developed using expert-defined descriptors rooted in
mechanistic knowledge or trained on large datasets using
statistical learning methods. Similarly, read-across approaches,
which involve predicting properties of a target chemical using
data from structurally similar, well-studied analogues, are
increasingly enhanced by ML to improve predictive
accuracy.””® This combined approach forms the foundation
of predictive methodologies discussed in the following
sections, illustrating how these techniques are applied.

3. FINDING DATA ON KNOWN TRANSFORMATION
PRODUCTS

Datasets of known TPs are the starting point for most
investigations and form the basis for developing rule-based and
ML approaches discussed above. Systematic literature
searching (e.g., predefining specific search strings and using
multiple scientific databases) usually results in a large number
of articles that need to be screened. Multiple text-mining
tools>® ™ assist and facilitate this work, including chemical
data extraction pipelines.*”®* ShinyTPs was specifically
designed to curate TP information derived from text-minin§
of hand-selected text snippets integrated within PubChem.’
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With increased contribution to and awareness of open access
TP resources, such as enviPath®*®* and suspect lists on the
NORMAN Suspect List Exchange (NORMAN-SLE),*®
screenin§ existing databases® or shared suspect lists for
TPs®”~* has become more common. Several lists with parent-
TP mappings on the NORMAN-SLE® have been mapped up
into transformations templates,” added into PubChem in the
“Transformations” section and archived as an (updatable) data
set on Zenodo.”® This enables both public display (in
PubChem) to raise awareness of the data, and integration
into TP identification workflows, such as those integrated
within patRoon.”"***> This collaborative community effort
currently includes 9152 unique reactions involving 9267
unique compounds. Of the chemicals included, 3724 are
classified as parents and 7331 as TPs (some are both parent
and TPs in different reactions). Although these numbers have
grown considerably in the last years and are now triple what
was used to train BioTransformer®®’ (detailed further below),
this is still a tiny fraction (<0.1%) of the currently >131 000
compounds in the NORMAN-SLE,”® and an even smaller
fraction (<0.0001%) of the chemicals in PubChem. The lack of
sufficiently documented open data on TPs is a huge challenge
for establishing reliable computational methods, as the current
knowledge focuses on only certain chemical classes in great
detail, yet does not cover many other classes that are known to
be present in these databases.

While it is feasible that large language models (LLMs), such
as ChatGPT, can be prompted to propose lists of possible TPs,
they should be treated with caution, as their outputs are not
based on curated chemical reaction rules or mechanistic
understanding, and assessing their applicability domain is
currently not feasible. To date, systematic exploration or
scientific validation of LLMs for TP prediction is lacking. In-
depth analysis and prediction using LLMs is therefore not
recommended, as they can often generate plausible-sounding
but false or unverifiable information.®**° In contrast, databases
documenting known TP reactions offer a higher level of
reliability and transparency, as they provide carefully curated
data by experts following strict criteria for data inclusion and
referencing protocols for verification, ensuring a more
trustworthy source of information.

4. PREDICTION OF TRANSFORMATION PRODUCTS

In silico strategies that predict TPs using expert knowledge or
pattern recognition for the creation of suspect lists for
improved screening in HRMS experiments have gained
attention.”® These computational tools are valued for their
ability to generate novel chemical structures, whether plausible
or not. The in silico TP prediction tools discussed in this work
incorporate a comprehensive array of underlying trans-
formation rules and models, tailored for diverse processes
such as phase I or phase II metabolism, and environmental
microbial degradation. With increasing attention to advanced
treatment technologies, it is feasible that these approaches
could be expanded to cover such transformation reactions as
more data on TPs from advanced treatment processes becomes
available. To support these advancements, it is crucial that
researchers share experimental data on transformation
reactions, to enhance model development and validation.
The ACS author guidelines for several environmental journals
have recently been updated to provide some instructions and
suggestions to authors how to share this information.”” Unless
otherwise specified, the tools discussed below are limited to

organic compounds under ~1000—1500 Da, and do not
support polymers, nanomaterials, or highly fluorinated
substances due to a lack of representative training data or rules.

BioTransformer, an open source tool, includes eight models
of metabolic transformation prediction, including phase I
(cytochrome P450), promiscuous enzymatic, phase II, human
gut microbial, environmental microbial transformations and
different combinations of the above known as AllHuman,
SuperBio and MultiBio.*®” Users can submit molecular
structures as Simplified Molecular-Input Line-Entry System
(SMILES), a line notation describing chemical structures, or as
a Structured Data File (SDF), a standard format for storing
molecule structure information and associated data. BioTrans-
former is available as command-line tool and through a web
server at www.biotransformer.ca. While it supports batch
processing of chemicals, it does not allow for batch mode
across multiple models. However, this limitation can be
overcome using the command line version and a bash script
(example file and explanation can be found here: https://
github.com/paloefler/biotrans_multiprompt) that loops over
all the models of interest. The web tool outputs an interactive
table of the predicted TPs. An example of antimicrobial TPs
generated via BioTransformer and the mentioned script is
published online in NORMAN suspect list S114.%” BioTrans-
former integrates rule-based and ML approaches, and its
underlying data, including biotransformation rules and a
curated database (MetXBioDB), are openly accessible through
a web service, as a downloadable Java Library’' and on the
NORMAN-SLE.”* A major update, BioTransformer 4.0, is
expected soon but is not officially released at the time of
writing. It introduces over 130 new reaction rules, a validation
module that filters unrealistic metabolites based on similarity
to known human metabolites, and a new abiotic metabolism
module covering photolysis, chlorination, and ozonation
reactions, partly derived from the CTS database. In the
environmental metabolism module, the update improves
SMIRKS string handling and fixes incorrect transformation
rules that previously produced invalid metabolites.

A second option offering a variety of transformation
algorithms is the Reaction Pathway Simulator module in the
Chemical Transformation Simulator (CTS) by the U.S. EPA.”
It integrates various tools, such as EPISuite, the Toxicity
Estimation Software Tool (T.E.S.T.), ChemAxon and OPEn
structure—activity/property Relationship App (OPERA). CTS
offers flexible input options (Name, SMILES, CAS, sketcher
input). CTS employs defined reaction libraries that include
generalized reaction schemes, specifying how a molecular
fragment is modified by a particular transformation process.
When a molecule is submitted, CTS compares its structure to
the reactant side of these schemes in the libraries. If a match is
found, the tool modifies the matched fragment while leaving
the rest of the molecule unchanged. This mechanism is not
unique to CTS, but rather the general principle of rule-based
approaches. CTS prioritizes predicted TPs by ranking them
based on transformation rates reported in scientific literature.
Currently, CTS provides reaction libraries for abiotic
hydrolysis, abiotic reduction, direct photolysis, spontaneous
reactions (e.g., dehydration of geminal diols), human phase I
metabolism, and both environmental and metabolic reactions
of per- and polyfluoroalkyl substances (PFAS). Each reaction
library includes schematic reactions and references to the
scientific rules underlying the predictions. Additionally, CTS
offers integration with other tools such as BioTransformer and
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Table 1. Overview of the In Silico Tools Described in This Article, Their Included Models/Endpoints, Data Accessibility and
Applicability Domain Estimation (Further Details Are Given in the Main Text)

Training dataset  Applicability domain

Tool Main focus Included models accessible provided
EPISuite”” physicochemical properties, ecotoxicology multiple QSARs and ECOSAR limited not for all models
ToxTree' ™ toxicological hazard screening cramer rules, verhaar scheme, yes rule-based

Benigni/Bossa rules
T.ES.T.'" ecotoxicology, human toxicity QSARs yes (ECOTOX yes
database)
OPERA'” physicochemical properties, human endocrine activity CERAPP, CoOMPARA, CATMoS yes yes
VEGA-QSAR'”  physicochemical properties, ecotoxicology, toxicology, >100 models from CAESAR, OPERA,  yes yes
environmental fate ECOSAR, etc.
TRIDENT'** ecotoxicology deep learning transformer model yes (Github) yes
NR-ToxPred'®®  human endocrine activity 9 receptor models yes yes

enviPath Pathway Predictions, accessible through their
respective APIs. While CTS has a GitHub repository
(https://github.com/quanted/cts_app), much of its code
relies on licensed software, limiting the creation of a fully
independent clone. However, users can incorporate CTS into
individual workflows via its REST API (https://qed.epa.gov/
cts/rest/).

Another option to present here for TP prediction is the
EAWAG-Biocatalysis/Biodegradation Database (BBD) Path-
way Prediction System (PPS), which is also a rule-based,
substructure searching, and atom-to-atom mapping prediction
algorithm based on the biodegradation/biocatalysis database of
the University of Minnesota.”””* The 249 biotransformation
rules are publicly accessible (http://eawag—bbd.ethz.ch/
servlets/pageservlet?ptype=allrules) and typically include a
scientific reference for each reaction. Reaction rules are also
prioritized based on likelihood assigned by an expert panel to
each reaction. This ranges from very likely and likely (e.g,
spontaneous hydrolysis in water), possible for reactions that
are common but not certain to occur in every system (e.g.,
transformation of a secondary alcohol to a ketone), to unlikely
and very unlikely for reactions only very rarely catalyzed in
bacteria or fungi (e.g,, reductive dehalogenation). The BBD-
PPS terminate its prediction once certain small compounds are
reached (http ://eawag-bbd.ethz.ch/servlets/
pageservlet?ptypeztermcompsview). These terminal com-
pounds include two categories: (1) small, readily degraded
molecules that do not undergo further transformation, and (2)
dead-end compounds, often larger or halogenated, that are
known to persist in the environment due to their resistance to
microbial degradation. If a compound in category (1) is
encountered, its biodegradation is not predicted further, but
instead a link to a relevant Kyoto Encyclopedia of Genes and
Genomes (KEGG)”® metabolic pathway is given. For
compounds in category (2), no further transformation or
KEGG pathway is offered. enviPath (envipath.org) expands the
capabilities of the BBD-PPS with updated and more
comprehensive reaction rules, an enhanced user interface,
and integrated links to additional biochemical pathway
databases, offering a more robust and user-friendly experience
for exploring biotransformation pathways.”> While BBD-PPS
advised caution with molecules over 1000 Da and excluded
PFAS and highly fluorinated chemicals due to limited rule
coverage, enviPath addresses these limitations. A recent
addition is a dedicated PFAS (per- and polyfluoroalkyl
substances) package,% which includes curated microbial
transformation pathways and trained reaction rules for selected
fluorinated precursors. This targeted effort extends enviPath’s

predictive reach toward highly persistent and environmentally
relevant contaminants. Furthermore, enviPath’s open access
database supports user contributions, enabling the continuous
evolution of its predictive capabilities and the inclusion of
diverse environmental conditions. This approach broadens the
scope of chemicals that can be analyzed and improves the
selectivity and reliability of the predictions.

Recently, the open-source platform patRoon, inte-
grated several of these predictive techniques into a pipeline
connecting in silico predictions with HRMS data. Alongside the
tools already discussed, patRoon includes the PubChem/
NORMAN-SLE transformation datasets as well," allowing
users to systematically screen and annotate known and
predicted TPs in their experimental data. This modular and
extensible workflow enables researchers to efficiently prioritize
and confirm TPs. Functionality for photolysis-related TP
prediction and screening was added in 2025, further expanding
patRoon’s ability to capture both biotic and abiotic trans-
formation pathways.”' Through this integration, patRoon
enhances the efliciency, reproducibility, and transparency of
nontarget and suspect screening workflows.

As described above, enviPath is a highly curated predictive
system specifically for environmental use cases, whereas CTS
and BioTransformer offer environmental and additional
metabolism functions. CTS also integrates abiotic reactions
covering advanced treatment processes (functionality that is
currently being developed in BioTransformer). Both CTS and
BioTransformer integrate enviPath, while patRoon (a HRMS
processing software) integrates all approaches and more. Thus,
each approach offers significant overlap and the choice of
which is the best in various scenarios may come down to user
preferences.

21,84,85

5. TOXICOLOGICAL ASSESSMENT TOOLS

Unless otherwise specified, all tools discussed in this section
(Table 1) are designed for organic compounds with well-
defined molecular structures and do not support mixtures,
substances of unknown or variable composition, nanomaterials,
or polymers. These are general limitations of current QSAR
and ML models due to the lack of consistent structural
representation and training data for such complex substances.

A widely recognized predictive toxicity tool is the Estimation
Program Interface, or EPISuite.”” EPISuite integrates various
models to estimate physicochemical properties and the
Ecological Structure Activity Relationships (ECOSAR) pre-
dictive models, which are also available separately. ECOSAR
models estimate aquatic ecotoxicity based on equations
derived from experimental data, allowing for the evaluation

https://doi.org/10.1021/acs.est.5c06790
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of several endpoints across multiple organisms within the
aquatic food chain. These include green algae (72 or 96 h
tests), Daphnia (48 h tests), and fish (96 h tests) for both
acute lethality and chronic values. The user interface supports
batch mode processing. While EPISuite results are validated
internally, limited availability of the training and validation
datasets hamper independent assessment of the applicability
domains (Table 1). Recent studies highlighted limitations for
phytotoxins’® and those with atypical functional groups,
particularly for fluorinated and phosphorus-containing com-
pounds.”

A free open-source rule-based tool to (Predict the
toxicological hazard of chemicals is ToxTree.'” It applies
various decision tree models incorporated into the concept of
threshold of toxicological concern to assess the so-called
Cramer class of a chemical substance to estimate its relative
toxic hazard. ToxTree evaluates chemical structures against a
set of predefined rules or structural alerts to determine
potential hazards, which is useful for initial hazard assessment
in chemical safety evaluation. ToxTree offers multiple
classification schemes, including Cramer decision tree for
oral toxicity classification, Verhaar scheme for mode of toxic
action of organic chemicals, Benigni/Bossa rule-based
mutagenicity and carcinogenicity alerts. The tool provides
transparent and interpretable results, as each classification
follows explicit mechanistically relevant rules. ToxTree
supports batch processing and accepts SMILES, MOL, and
SDF files as input formats.

The Toxicity Estimation Software Tool (T.E.S.T.) incorpo-
rates the Computer Assisted Evaluation of industrial chemical
Substances According to Regulations (CAESAR) model for
developmental toxicity as well as carcinogenicity and
mutagenicity models, also implemented in VEGA-QSAR.
The open-access tool also incorporates models for the
prediction of endpoints for fathead minnow LCy, (96 h),
Daphnia magna LCs, (48 h), tetrahymena pyroformis 1GCsy,
oral rat toxicity (LDsy), and bioaccumulation factor for
fish.'°"""% TES.T. uses several ML models along with
conventional QSAR methods and accepts CAS, SMILES,
name, InChl, InChIKey, DTXSID, or sketcher input. Batch
mode processing is supported (txt, SMILES, SDF). Com-
pounds must have defined structures and fall within the
model’s molecular weight range (<2000 Da). The outputs are
offered in different formats (csv, excel or html). The batch
mode processes multiple chemicals for only a single end point
at one time. Model specific validation results for T.E.S.T. are
documented in the User’'s Guide, while all experimental
toxicity data used for model development originates from the
publicly available ECOTOX database, allowing for independ-
ent evaluation and further analysis.

The OPEn gsaR App (OPERA) includes predictions for
estrogenic activity from the Collaborative Estrogen Receptor
Activity Prediction Project (CERAPP),""" Androgenic activity
from the Collaborative Modeling project for Androgen
Receptor Activity (COMPARA),"'” as well as the acute oral
systematic toxicity from the Collaborative Acute Toxicity
Modeling Suite (CATMoS),'"” and predictions of physico-
chemical properties such as acid dissociation constant,
octanol—water partitioning coefficient and distribution con-
stant for nonionizable compounds.''*”''® OPERA is open
source (https://github.com/kmansouri/OPERA) and can be
used locally with or without graphical user interface. It is
included in several open resources, including the U.S. EPA

CompTox Chemicals Dashboard''” and as extension in the
QSAR Toolbox."'*""” OPERA allows batch mode processing
with various input formats (SMILES, SDF, MOL, CASRN,
DTXSID, DTXCID, InChIKey) and returns a list of molecule
IDs, predictions, the applicability domain and an accuracy
assessment.'*>'*° One of OPERA’s key strengths is its
applicability domain assessment, based on structural similarity
measures, leverage-based methods, and distance-to-model
calculations, to assess how closely a given compound aligns
with its training data set.

VEGA-QSAR is an open-access tool integrating over 100
predictive models, combining various QSAR-based toxicolog-
ical, environmental, and physicochemical assessments. It
incorporates models from CAESAR,"*"'** OPERA, EPI
Suite,'*>"**"** and others,'*”'** supporting regulatory and
environmental applications. VEGA has put emphasis on
ensuring that the models generate transparent and reprodu-
cible results, providing model guides, test and training datasets
accessible in the standalone application (Figure 1), facilitating

A) EcoTox

ToxTree Trident

B) EndocrineTox
CoMPARA NR-ToxPred

Figure 1. Number of compounds included in the training and test
datasets for (A) ecotoxicological endpoints (EcoTox) and (B)
endocrine endpoints (EndocrineTox). For VEGA in A), the datasets
used were fish acute LCyy SarPy/IRFMN, Daphnia magna LCs,
IRFMN, and algae acute EC;, IRFMN. For VEGA in B), the
datasets used were androgen receptor-mediated effect (IRFMN/
CoMPARA), estrogen receptor-mediated effect (IRFMN/CERAPP),
and estrogen receptor relative binding affinity (IRFMN). Datasets
were merged using SMILES and CAS numbers when available.

screening of these datasets and checking the applicability of the
respective model. It supports different standard formats used in
the chemical domain, including SMILES and SDF. Batch mode
is available, including multiple model selection. VEGA can also
be used for read-across approaches without involving QSAR
models."*°

A recent model for ecotoxicological end point prediction is
the deep learning model TRIDENT,'®* which is based on the
transformer architecture. TRIDENT predicts two toxicity
endpoints, ECs, and EC,,, for three species groups (algae,
aquatic invertebrates and fish) and a variety of effects. The
web-service version uses SMILES (https://trident.serve.
scilifelab.se/) and allows, depending on the combination of
end point and species group, predictions for mortality,
intoxication, population, reproduction, and growth. The
code, full model and data set used to develop the model,
consisting of almost 150 000 experimental data for 6657
unique chemicals (Figure 1), are available online (https://
github.com/StyrbjornKall/TRIDENT). The training data set
includes a large fraction of charged chemicals (~25%),
including inorganic compounds such as NiF,, FeCl;, Fe,0;,
PbSO, and PdO. While most tools exclude such compounds,
TRIDENT’s training data include a number of organometallics
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like hydroxy-methylmercury, expanding its coverage slightly
beyond typical mode. TRIDENT outperformed three existing
models (ECOSAR, VEGA, and T.E.S.T.) for most endpoints,
except algae ECyo.'"*

In addition to OPERA, the ML model NR-ToxPred offers in
silico predictions of endocrine activity by assessing ligand
binding to nine human nuclear receptors (e.g, androgen,
estrogen a/f}, progesterone). Based on a public data set of
~15,000 entries (Figure 1), the model provides binary
predictions (active/inactive, binding/nonbinding) along with
sensitivity, specificity, and applicabilitg domain estimates using
the Tanimoto similarity measure.'””” Unlike OPERA, NR-
ToxPred does not distinguish between agonists and antago-
nists, lacks uncertainty quantification, and is limited to organic
compounds. Although the model code is not public, the tool is
accessible via a user-friendly web interface (http://nr-toxpred.
cchem.berkeley.edu/) and supports batch prediction with CSV
input and receptor binding site visualization.

There are numerous other toxicity prediction models
available, targeting sll)eciﬁc orsganisms, endpoints, or effects,
as detailed elsewhere.''”"**'*> The online chemical modeling
environment (OCHEM) can be used to run available models
to screen compounds for structural alerts for (eco)toxicological
endpoints, and also provides the opportunity to create new
QSAR models based on the experimental data in the
database.'**™"* Two research groups have recently developed
algorithms to estimate ecotoxicity endpoints from HRMS
fragment data."*>"*' Such approaches could facilitate chemical
risk assessment from chemical screening data and provide
further insights into mixture toxicity assessment. Additionally,
conventional dose—response models may fall short in
accounting for continuous low-level exposure or the specific
toxicokinetic behavior of highly persistent or bioaccumulative
substances.'** For example, differences in compound distribu-
tion, such as accumulation in fatty tissues versus protein
binding, can significantly affect internal exposure and
toxicodynamics. The integration of pharmacokinetic-pharma-
codynamic modeling, which assesses the relationship between
chemical exposure and biological response over time, could
enhance prediction accuracy by incorporating absorption,
distribution, metabolism, and excretion dynamics. These
models are particularly relevant for widespread contaminants
and extremely persistent chemicals, where chronic exposure
scenarios may be more representative of real-world environ-
mental conditions. In cases where a hypothesis of the specific
mode of toxic actions exists, this can be confirmed and its
understanding deepened via in silico tools, such as molecular
docking or molecular dynamic simulations with free energy
perturbations, as discussed recently.® These techniques
require more bioinformatics and command line skills than
the previously described approaches, but could initiate the
development of adverse outcome pathways and by that
contribute for example to a computational ecotoxicity assay.**

6. REMARKS FOR FUTURE

In silico approaches for TP and toxicity predictions are
beneficial to researchers and legislators in providing additional
acquisition of toxicity-related information on TPs. Advances in
ML and computational power have made it easier to develop
predictive models; however, meaningful improvements in
prediction accuracy depend on robust validation methods
and well-defined criteria. While models are becoming more
sophisticated, many suffer from overfitting, heavy bias, or poor

generalizability due to for example limited and biased training
datasets. A clear understanding of estimation methods and
their appropriate application is therefore critical. Beyond
. . . . . . 143—146
ensuring alignment with best-practice guidelines, we
propose four distinct levels of confidence (Figure 2) to be
reported for enhancing both interpretability and reliability of

TP predictions.

Extensive validation
Minimal bias

Two independent
models

A

Single validated model
Within applicability
domain

Robust validation

Within applicability
domain

Less comprehensive
validation

Poorly-defined

applicability domain LOW Insufficient validation

Figure 2. Schematic visualization of the confidence levels including
defining criteria.

1. High confidence (validated and reliable)

Two or more independent models with well-defined
applicability domains and extensive validation across diverse
datasets. Minimal bias, strong generalization across chemical
classes, and mechanistic support from rule-based models with
literature backing up.

Example: Prediction of acute fish toxicity for 4-nitrophenol
using VEGA-QSAR and TRIDENT. The compound falls within
the applicability domain of both models and is included in their
training datasets. This direct inclusion greatly enhances the
reliability and confidence in the predicted toxicity values.

2. Moderately high confidence (reliable but less broadly
validated)

Single validated model with a well-defined applicability
domain, robust validation, and transparent methodology (e.g.,
public datasets). Rule-based models supported by mechanistic
plausibility but lacking experimental confirmation for similar
chemical compounds.

Example: Prediction of estrogen binding potential of bisphenol S
using the OPERA platform (CEARPP model for estrogenicity).
The prediction is within the model’s applicability domain and
supported by robust validation and clear mechanistic relevance.
Although no experimental data for bisphenol S are present in the
model’s training data set, its close analogue bisphenol A is well
represented, providing additional support and resulting in
moderately high confidence in the prediction.

3. Moderate confidence (limited generalization)

Predictions within the applicability domain but with less
comprehensive validation or uncertain generalization beyond
specific datasets. Rule-based models relying on mechanistic
assumptions but lacking empirical validation for the relevant
chemical class.

Example: Prediction of acute Daphnia toxicity for ciprofloxacin
using the VEGA-QSAR model is of moderate confidence. While the
compound’s broad structure may be technically within the model’s
applicability domain, ciprofloxacin and related fluoroquinolone
antibiotics are not represented in the VEGA training set, and the
model has not been comprehensively validated for this chemical
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class. Therefore, there is uncertainty in the prediction’s reliability
for antibiotics with ionizable and zwitterionic properties.

4. Low confidence (uncertain or limited reliability)

Predictions from models with poorly defined applicability
domains, insufficient validation, or high uncertainty in
extrapolation.

Example: Prediction of acute algal toxicity for novel silicon-
containing compound using T.E.S.T model. However, because
organosilicons are not represented in the training data and the
applicability domain for this class is poorly defined, the reliability
of the prediction is considered low confidence.

Following the European Food Safety Authority (EFSA)
guidelines, the use of two independent QSAR models
confirming predictions is recommended,'*”'*® where inde-
pendence refers to differing training datasets or algorithms
(rule-based vs statistical). Both models should be of high to
moderate-high confidence. Most models do not account for
mixture toxicity effects (e.g., additive or synergistic effects of
chemicals)."*  Furthermore, environmental conditions can
vary and should be considered for ionic and ionizable
chemicals, as these factors can govern e.g, the partitioning in
environmental systems.'*>'>' The validation of most predictive
toxicology models using novel compounds (not included in
any test or training data set) with different modes of action is
of high interest to experimentally validate accuracy and
precision of the models.

While this article highlights the potential for computational
TP and toxicity prediction methodologies to support research
and enhance risk assessments of TPs, predictive reliability
remains variable across different chemical classes due to
uneven data coverage. A concerted community effort on
generating and sharing relevant data for greater portions of the
“chemical space”, rather than generating yet more data for
compounds very similar to existing data, would help expand
the applicability domains—and thus increasing the usefulness
of these computational approaches immensely. Additionally,
TPs formed during water treatment processes (e.g., advanced
oxidation processes like ozonation) are gaining attention,
especially in light of the recast EU wastewater treatment
directive (EU 2024/3019)."* Despite their growing environ-
mental relevance, these treatment-derived TPs are often
underrepresented or unsupported in current in silico tools,
although recent developments are striving to cover this gap.
Expanding the underlying experimental data collections as well
as model rules/coverage to include these TPs would help align
computational assessments more closely with real-world
transformation pathways and support regulatory needs.
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