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Abstract

Camera trapping has become crucial in wildlife research, enabling detailed

observations of elusive and nocturnal species with limited human interference.

The use of occupancy modeling to analyze camera trap data is rapidly increas-

ing, aiding in the assessment of species distribution, multispecies dynamics,

and the presence of different states of a species (e.g., reproducing or

non-reproducing), while considering imperfect detection. Multistate occu-

pancy models, which capture these different states, are particularly effective

tools. However, the design of camera trap studies—typically involving large

grids with a limited number of cameras and animal observations—often

results in sparse data and low detection probabilities, impacting model

performance (e.g., convergence) and inference reliability (e.g., accuracy and

precision) in basic occupancy models. The effect of these factors on more

complex models (e.g., multistate occupancy models) remains largely

unexplored. Here, we conducted a series of simulations with varying detec-

tion probabilities, numbers of sites, and survey periods for both single- and

multistate occupancy models, to evaluate the impact of these factors on

model performance and reliability. Our results revealed that multistate

models require higher detection probabilities compared to the single-state

models. Additionally, minimum needed detection probabilities decreased as

the number of surveys increased for all models. Furthermore, the number of

sites required was substantially higher for multistate models compared to

single-state models. We conclude that when detection probabilities are low,

occupancy models encounter difficulties in fitting and produce unreliable

results. Strategies such as deploying clustered cameras, targeted camera

placement (e.g., at frequent wildlife paths) or using bait to increase detection
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rates could be used to address these issues but may introduce other biases.

The gained model performance from higher detection probabilities might

outweigh these biases. Moreover, different data aggregation strategies in

combination with increasing the length of the study can increase detection

probabilities, addressing reliability issues; however, this is not always feasible

due to time constraints (e.g., season-based research questions). This study

highlights key thresholds and considerations for improving the use of multi-

state occupancy models using camera trap data, aiding in the design of more

effective wildlife research studies.
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INTRODUCTION

Camera trapping has become a common technology in
wildlife research, enabling detailed observations of spe-
cies in their natural habitats without the need for direct
human interaction (Delisle et al., 2021; Fisher, 2023).
This technology has proven particularly valuable in the
study of elusive and nocturnal species, where traditional
observation methods fall short or are too cost-prohibitive
(Wearn & Glover-Kapfer, 2019). Camera trap data are
often used to estimate species abundances, distribu-
tions, and to analyze habitat selection. However, key
challenges arise when using these data, primarily due
to imperfect detection. Imperfect detection occurs
when not all animals present at a location are captured
by the camera traps. This issue typically arises from
low survey efforts, where a limited number of camera
traps with short deployment durations, narrow view
angles, and restricted detection distances sample only
small parts of the spatial landscape (Burton et al., 2015;
McIntyre et al., 2020; O’Connor et al., 2017). Not prop-
erly accounting for imperfect detection could lead to
biased inference and thus faulty conclusions (Burton
et al., 2015).

Occupancy modeling has gained popularity as a
solution, as it explicitly accounts for imperfect detection,
thereby allowing for more accurate estimates of species
abundance and distribution (Burton et al., 2015;
Rovero & Zimmerman, 2016). However, parameteriza-
tion of occupancy models using camera trap data could
be hindered by the data sparsity that results from the
combined influence of imperfect detection and low sur-
vey effort. In these studies, camera traps are distributed
across larger grid cells (hereafter “sites”), each
containing one or more sampling locations (Burton
et al., 2015). Grid cell sizes are often arbitrarily chosen
because they do not correspond well to the actual field

of view of the camera, which is often much smaller than
the grid cell (as discussed in Efford & Dawson, 2012;
Steenweg et al., 2018). This leads to sparse datasets with
infrequent repeated detections at occupied sites and
across survey periods (Survey period is defined as the
discrete time interval [e.g., hours, days, or weeks] across
the total survey duration/length, during which detec-
tion/non-detection data are collected). Additionally, for
species with larger home ranges, this results in high
occupancy estimates and low detection probabilities
(the likelihood of detecting a species during a survey
period, conditional upon the site being used) because
occupancy is interpreted as the “use” of a site, and these
species use multiple sites, albeit rarely (MacKenzie
et al., 2017; Mackenzie & Royle, 2005; Steenweg
et al., 2018). Consequently, the resulting low detection
probabilities in combination with a limited number of
sites affect the accuracy of occupancy estimates of species
(Kéry & Royle, 2020; Pautrel et al., 2024; Steenweg
et al., 2019). Namely, data sparsity could lead to biased
and unstable parameter estimates and put constraints on
the number of parameters that can reliably be estimated
(Guillera-Arroita et al., 2010; Royle & Dorazio, 2008).
Low detection probabilities are a well-documented chal-
lenge in occupancy modeling; detection probabilities
below 0.2 often lead to significant biases and convergence
issues, even in the simplest single-state models (Delisle
et al., 2023; Guillera-Arroita et al., 2010; Kéry &
Royle, 2015; Mckann et al., 2013; Pautrel et al., 2024;
Steenweg et al., 2019). These issues highlight the impor-
tance of understanding how study design (e.g., survey
length, size of a site, number of cameras, and number of
sites) and model complexity (e.g., number of identifiable
parameters) influence the statistical power of occupancy
modeling, the reliability of parameterization and thus the
robustness of the ecological inferences that can be drawn
from such studies.
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Expanding basic occupancy models (i.e., single-season
two-state [presence–absence] models sensu MacKenzie
et al., 2017) to more complex specifications, such as mul-
tistate, multispecies, or community models (e.g., Fidino
et al., 2019; Nichols et al., 2007; Rota et al., 2016) introduces
additional layers of complexity. These models capture
more nuanced ecological patterns than basic occupancy
models by accounting for various occupancy states
(e.g., unoccupied, non-reproducing, reproducing; Nichols
et al., 2007) or analyzing spatiotemporal patterns
(e.g., unoccupied, occupied by day, occupied by night, or
occupied in both; Rivera et al., 2022). However, the
increased complexity of these models can elevate the
existing issues associated with occupancy models.
Multistate models require the estimation of additional
parameters for each state, such as those accounting for
potential misclassification in the detection process between
different states (Nichols et al., 2007). Additionally, estimat-
ing habitat relationships through covariates, a practice
almost always employed when using occupancy models,
can become complicated in multistate models. Covariates
help explain the variations in detection and occupancy
across sites and can also be used to predict occupancy in
unsampled locations. However, in multistate models, where
different occupancy states are often conditional upon one
another, the inclusion of covariates can complicate
parameter estimations. For basic occupancy models,
Kays et al. (2020) suggested that with 60 sites, most
covariate relationships could reliably be estimated.
However, for multistate models, similar information is
lacking. This added complexity of multistate models,
both for the detection process and covariate relation-
ships, may make estimating detection probabilities and
habitat associations more challenging.

In most basic occupancy models, the detection prob-
ability parameter is estimated based on individual
survey periods. Simulation studies for basic occupancy
models have shown that detection probabilities above
0.2 are required for reliable model estimation
(i.e., consistency of accurate results across multiple ana-
lyses; Kéry & Royle, 2015). However, detection probabil-
ities based solely on individual survey periods are not
the only factor influencing model reliability.
Guillera-Arroita et al. (2010) revealed that increasing
the overall survey length, while keeping survey period
constant, can still result in reliable basic models with
detection probabilities below 0.2. This is reflected by the
cumulative detection probability (p*), which reflects the
likelihood for detecting a species at least once over the
entire survey length. Consequently, this means that the
required survey length is directly related to the chance
of detecting an individual during a survey period. For
basic occupancy models, p* should be >0.9 for

maximum reduction in bias (Guillera-Arroita
et al., 2010; Mckann et al., 2013). In basic models, p* is
calculated by 1− 1− pð ÞJ , where p represents the detec-
tion probability, and J represents the number of survey
periods. However, in multistate models, the calculation
of p* becomes less straightforward, as detection probabili-
ties are subdivided into a complex conditional matrix
reflecting the various states of occupancy (MacKenzie
et al., 2017; Nichols et al., 2007). The current knowledge
of model functioning given detection probability thresh-
olds, number of sites, and required survey length is based
on various parameterizations of basic occupancy models,
but for more complex model specifications (e.g., multistate
or multispecies models), this is yet to be explored (but see
recent efforts of Cowans et al., 2024 exploring similar
issues for co-occurrence occupancy models). Given that
these more advanced models are increasingly applied in
wildlife research (Rozylowicz et al., 2024), and given
increased model complexity can hamper model perfor-
mance and affect the accuracy and precision of resulting
inferences, addressing this knowledge gap is important for
assuring the performance and reliability of these methods
in real-world ecological studies.

Given the complexity introduced by multistate
models, we hypothesize that, everything else being
equal, (1) multistate occupancy models require higher
detection probabilities than basic occupancy models to
produce reliable estimates; (2) the number of sites
needed to accurately estimate habitat relationships is
substantially higher for multistate models due to the
additional parameters and conditional dependencies;
and (3) increasing the number of survey periods
reduces the required minimum detection probabilities
for both basic and multistate models. To address these
hypotheses, we conducted a series of simulations with
varying detection probabilities, numbers of sites, and
survey periods. These simulations were analyzed using
both multistate and basic occupancy models, with and
without a covariate, to evaluate the impact of these fac-
tors on model accuracy and reliability. Accuracy was
assessed as the bias in parameter estimates relative to
the known values from the simulated “true” system,
while reliability was measured by the consistency of
these estimates both across replicates and across detec-
tion probability scenarios. By comparing the perfor-
mance of multistate and basic models under different
scenarios, we aim to provide a clearer understanding of
the required data that are necessary for applying these
models in wildlife research. This study serves as a refer-
ence for designing future studies using camera traps to
model occupancy for multiple states while highlighting
key considerations for obtaining reliable ecological
inferences.
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METHODS

Multi state occupancy modeling
framework

Model structure

For this simulation study, we used both a hierarchical
basic occupancy model as described by MacKenzie et al.
(2002) and a multistate model that was structured as a
hierarchical, multistate occupancy model with four
states, akin to the model described by Nichols et al.
(2007) and implemented in BUGS by adjusting code from
a three-state model by Kéry and Royle (2020, Volume 2;
Chapter 6). For this simulation study, we used the
Eurasian moose (Alces alces) as an example species that
can produce twins to focus on multiple states,

particularly multiple reproductive states. However, this
model can be applied to various study systems, including
other wildlife species, such as birds with different nesting
stages or amphibians with multiple developmental stages
(Kéry & Royle, 2020; MacKenzie et al., 2017). The multi-
state model we use for this simulation is a single-season
multistate model with four states. The multistate model
is detailed below (Figure 1), while the basic model is
implemented directly from Kéry and Royle (2020,
Volume 1; Chapter 10). All models used for simulation,
along with the code and implementation details, can be
found in a repository for further reference (Osinga
et al., 2025).

The multistate model considers a total of four states,
with one state representing unoccupied sites and the
other three representing occupied sites with varying
reproductive outcomes. The probability of site occupancy

F I GURE 1 The structure of the multistate occupancy model used in this study, indicating dependencies and probability parameters. Ψ
indicates the probability of site occupancy, whereas 1−Ψ indicates the probability of a site not being occupied. The formulas (at state 2–4)
indicate the probability of each of the states (see text and Equation 1 for elaboration). Image credit: Tim Hofmeester.
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ðΨÞ is the foundational layer, upon which the reproductive
states are conditional. These states are represented as Ωs m½ �,
where m indexes the specific state. The R coefficients deter-
mine the relationship between the states (Equation 1).

Ψs ¼ Pr Occupiedð Þ¼Ωs 2½ �+Ωs 3½ �+Ωs 4½ �: ð1Þ

Ωs m½ � :Probability of each state mð Þper site:

Ωs 1½ � ¼ Pr Not occupiedð Þ¼ 1−Ψs:

Ωs 2½ � ¼ Pr Occupied without calvesð Þ¼Ψs 1−R1
s

� �
:

Ωs 3½ � ¼ Pr Occupied with 1 calfð Þ¼Ψs R
1
s 1−R2

s

� �
:

Ωs 4½ � ¼ Pr Occupied with> 1 calfð Þ¼ΨsR
1
s R

2
s :

In this simulation study, we modeled the occurrence of a
species (in this case moose) across a network of camera
traps sampled over a specified timeframe to understand
the distribution of multiple states and detection patterns.
Specifically, we conducted a series of surveys across dis-
tinct sites to collect categorical data (i.e., the state;
Equation 1). For each site s, ranging from 1 to S sites, we
carried out J surveys, where j spans from 1 to J and stored
the observations in an S by J matrix Y. The latent true
state Zs, was modeled at each site during each survey
using a categorical distribution, with the probabilities of
each state defined by Ωs (Equations 2 and 3).

Ωs ¼ 1−Ψsð Þ,Ψs 1−R1
s

� �
, Ψs R

1
s 1−R2

s

� �
,ΨsR

1
s R

2
s

� �
: ð2Þ

Zs � Categorical Ωsð Þ: ð3Þ

As part of our simulation, we also included a covari-
ate in our models. Specifically, we modeled the influence
of an environmental and site-specific covariate on state
occupancy (Ωs) using hierarchical multinomial logit
functions (Equations 4–6). In the models with a covari-
ate, the relationships were represented by the following
equations:

logit Ψsð Þ¼ βΨ,0 + βΨ,1 ×X1,s +…+ βΨ,r ×Xr,s ð4Þ

logit R1sð Þ¼ βR1,0 + βR1,1 ×X1,s +…+ βR1,r ×Xr,s ð5Þ

logit R2sð Þ¼ βR2,0 + βR2,1 ×X1,s +…+ βR2,r ×Xr,s ð6Þ

where Xr,s represents the covariate matrix and r indicates
the specific covariate for each site s. βr,s represent the

slopes of the relationship with these covariates, β0,r is the
intercept for each model providing a baseline of state
occupancy.

To account for missing detections and misclassifica-
tions, the model incorporates detection probability Θð Þ,
which reflects the likelihoods of detecting an observed
state given the true latent state. The detection probabili-
ties were kept constant across sites and surveys for sim-
plicity. The detection matrix (Equation 7) presents the
probability of detection based on the latent state z s½ �,
where each row represents an observed state ðjÞ, and
each column corresponds to a modeled latent state (z);
both ordered from state 1 to state 4. The values within
the matrix indicate the probability of detecting an
observed state given the modeled latent state.

Θ¼

1 0 0 0

1− p1,1 p1,1 0 0

1− p2,1 + p2,2
� �

p2,1 p2,2 0

1− p3,1 + p3,2 + p3,3
� �

p3,1 p3,2 p3,3

2
6664

3
7775: ð7Þ

Here, pz,j represents the probability of detection of an
observed state j given the latent true state z.

ys,j � Categorical Θ, z s½ �
� �

: ð8Þ

The latent state z s½ � and the accompanying detection
probabilities Θð Þ are then combined to model the obser-
vation state through Equation (8).

The full commented model codes can be found in our
repository (Osinga et al., 2025).

Simulation and power analysis

Simulation design

In this simulation study, we varied the number of sites
and survey periods for both basic and multistate occu-
pancy models to test what minimum detection probabili-
ties were required to derive estimates of occupancy close
to the true state, as well as estimate accurate covariate
relationships. The simulations were conducted both
with and without a covariate, depending on the sce-
nario. For the models where we varied the number of
sites, we included covariate models and models with
no covariates, while for the models where we varied
the number of surveys, we focused only on models
without covariates.

We simulated data for five different numbers of sites
between 60 and 1000 (Table 1), to assess how the number

ECOSPHERE 5 of 14

 21508925, 2025, 9, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.70402 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [06/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



of sites impacts model performance, especially in the con-
text of multistate models, which we hypothesize require
more data to detect covariate relationships accurately. The
number of survey periods varied across six levels, between
7 and 280 surveys (Table 1), to evaluate how an increasing
number of surveys influences detection probability and
occupancy estimates. We followed recommendations from
Kays et al. (2020) for our minimum values for both the
number of sites and the number of surveys (where we
assumed the grouping of multiple days into single surveys
often used in camera trapping studies), as these should
ensure reliable covariate relationships and accurate occu-
pancy estimates for the basic model.

For the covariate model, we simulated occupancy states
across a landscape gradient, using the covariate to predict
occupancy probabilities for each state. The landscape covar-
iate was uniformly distributed and scaled between −2 and
+2, applied using a linear model on the logit scale with
fixed regression coefficients. For the basic model without
covariates, we set the baseline occupancy ðΨÞ at 0.6. In the
multistate models without covariates, occupancy proba-
bilities were determined by fixed parameters for Ψ (0.6),
R1
s (0.5), and R2

s (0.2; see Equation 1). Each simulation
retained the same sequence of ‘true states’ across differ-
ent detection probability settings to ensure consistency.

We modeled 10 different detection probabilities rang-
ing from 0.001 to 0.9 (p1,1, p2,2, p3,3; Table 1) for all
models. In the multistate models the misclassification prob-
abilities were held constant at 0.05 (p2,1, p3,1, p3,2). For each
detection probability scenario, we generated at least
100 datasets for the simulations without a covariate, and
260 datasets for the simulations with one covariate, each
sampled from the occupancy matrix Ωs,state (Equation 1)
and the detection matrix Θp i½ � (Equations 7 and 8).

Statistical modeling

The simulation data were analyzed using JAGS (Just
Another Gibbs Sampler; ver. 4.3.2; Plummer, 2003) in R
(ver. 4.4.1; R Core Team, 2024) utilizing the jagsUI pack-
age (ver. 1.6.2, Kellner, 2024). We applied Bayesian occu-
pancy models in JAGS to estimate the multiple states of
occupancy, accounting for both direct detections and

misclassification errors. For covariate models, we exam-
ined the relationship between a landscape covariate and
the occupancy state(s). For basic occupancy models, we
estimated posterior distributions of the parameters over
25,000 iterations, with the first 12,500 discarded as
burn-in. Since multistate models are hard to fit, we ran
50,000 iterations discarding the first 32,500 iterations as
burn-in. Each model was run across three chains, and a
thinning rate of five was applied to avoid autocorrelation.
Convergence of the occupancy models was assessed using
the Gelman–Rubin statistic (bR). Models were considered
to converge if bR ≥ 1.1 for all parameters. Model specifica-
tions, including priors for the fixed effects (i.e., intercept
and slope for the landscape covariate) and the detection
probabilities, are fully detailed in the model script avail-
able in the repository (Osinga et al., 2025).

Model performance was assessed using three metrics:
(1) the detection probability at which the model reached
stability, (2) the bias at that point, and (3) the SD at that
point. Stability was defined, for each parameter across all
replications, as the point at which both the bias and the
SD of the posterior summary changed by no more than
10% or 0.05 between successive detection probability sce-
narios, relative to their respective values at a detection
probability of 0.9. For example, if the final model
(p = 0.9) had a bias and SD of 1, stability was considered
reached when two consecutive model scenarios produced
bias and SD values between 0.9 and 1.1. The absolute
threshold (0.05) was included to prevent declaring insta-
bility based on very small values, where even minor
numerical differences could exceed the 10% criterion.

RESULTS

Simulation results

The effect of survey length

As expected, increasing the number of surveys decreases
the required detection probabilities for reliable inference
(Figure 2). Basic and multistate models behaved similarly
with increasing detection probabilities and number of
survey periods. Most parameters for both models reached

TAB L E 1 Summarizing model scenarios run; combination of these scenarios resulted in a total of 380 distinct model parameterizations.

Model type No. sites No. surveys Covariate Detection probability
No. model
scenarios

Basic 60, 120, 240, 500, 1000 7, 14, 35 Yes 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9 150

Basic 60 35, 70, 140, 280 No 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9 40

Multistate 60, 120, 240, 500, 1000 7, 14, 35 Yes 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9 150

Multistate 60 35, 70, 140, 280 No 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9 40

6 of 14 OSINGA ET AL.
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model stability at detection probabilities between 0.2 and
0.5 with 7 surveys, decreasing to between 0.01 and 0.001
with 280 surveys. Notably, multistate occupancy models
required higher detection probabilities to obtain reliable
results compared to basic models, particularly for multi-
state parameters (e.g., R2 and p3,3; Figure 2). These trends
were consistent across most fitted parameters
(Appendix S1: Section S1). Once basic models without
covariates reached stability, they exhibited minimal bias
(bias <0.003) and low SD (<0.06). For multistate models,
these were higher for both metrics (bias <0.04, SD<0.1;
Appendix S2: Table S1).

Multistate models were generally more unstable in their
detection estimates compared to basic models, particularly
at lower detection probabilities, but especially detection
parameters associated with occupancy state 4 (p3,1, p3,2,
p3,3). These were unstable even at the highest detection
probability (0.9) for several simulations (Appendix S1:
Figure S2).

Model convergence in terms of MCMC diagnostics
was generally robust, with fewer than 5% of models

failing to converge, even at the detection probabilities as
low as 0.001 in models without covariates (Appendix S1:
Figures S1 and S2). This indicates that the MCMC chains
generally mixed well and reached stationarity, even at
low detection probabilities. Importantly, this suggests
that the biases observed at low detection probabilities
were not due to a lack of iterations within the MCMC algo-
rithm but instead arose from high uncertainty in the esti-
mates (large variation between simulations; see Appendix S1)
and potential parameter non-identifiability under simula-
tion scenarios with low detection probabilities.

The effect of the number of sites

The simulation of the covariate models produced similar
results to the simulation without covariates regarding detec-
tion and occupancy estimates. Both basic and multistate
models reached stability at a detection probability of 0.2
(Figure 3). Once the basic models stabilized, they showed
minimal bias in occupancy estimates for 60 sites (bias <0.01,

F I GURE 2 The average posterior estimates for the means and 95% credible intervals across 260 simulations from both the multistate and

basic models (without covariates) are shown for a selection of fitted parameter (y-axis). These simulations were conducted across six different

numbers of survey periods (7, 14, 35, 70, 140, and 280; rows) with 60 sites. The x-axis represents 10 different simulation scenarios with varying

detection probabilities. The gray dashed lines indicate the average upper and lower credible intervals, while the solid black lines show the

average mean posterior estimates. Horizontal red lines represent the true parameter values used in the simulations. The vertical lines indicate

where the model converged to a stable average estimate. See the model description inMethods for an explanation of the different parameters.
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SD < 0.8), which decreased further when the number of sites
increased to 1000 sites (bias <0.002, SD < 0.2), thus aligning
closely with the values of the simulated “true” system
(Appendix S2: Table S2). Credible intervals for basic models
were narrow for all parameters when model stability was
reached, indicating a high degree of confidence in the param-
eter estimates (Appendix S2: Table S2).

However, when multistate models stabilized at a
detection probability of 0.2, notable bias remained in
the regression coefficients, with a positive bias of
3.2 for βR2

at 60 sites (SD= 3.24), which decreased to
0.13 for 1000 sites (SD< 0.5; Figure 3; Appendix S2:
Table S2). This highlights that increasing the number of
sites reduces the bias and SD of these parameters.
While all multistate models that reached stability cor-
rectly identified the direction of the covariate effect,
the magnitude of the effect sizes had significant bias
and uncertainty. Importantly, once stabilized, the
true values did fall within the 95% credible
intervals, indicating that despite the overestimation in

the posterior means, the uncertainty was appropriately
captured.

Model convergence in terms of MCMC diagnostics was
substantially worse for covariate models. Basic models
performed well with detection probabilities of >0.05.
However, multistate covariate models with detection proba-
bilities <0.1 had over 50% convergence failure (Appendix S1:
Section S2). Multistate covariate models with detection prob-
abilities >0.1 were generally robust with fewer than 5% of
the models failing to converge (Appendix S1: Section S2).
Increasing the number of iterations from 50.000 to 70.000
resulted in little improvement in convergence and no reduc-
tion in bias; it only resulted in several very uncertain simula-
tions to reach MCMC convergence.

Combined effect of sites and surveys

Increasing the number of sites to 500 or 1000 slightly
reduced the minimum detection probability required for

F I GURE 3 The average posterior estimates for the mean and 95% credible intervals across 260 simulations from the multistate and

basic covariate models for 60, 120, 240, 500, and 1000 sites (rows) with 35 surveys shown for a selection of fitted parameter (y-axis) across

10 different simulation scenarios with varying detection probabilities (x-axis). The gray dashed lines represent the average upper and lower

credible intervals, while the solid black line represents a smooth function through the mean posterior estimates. The horizontal red line

indicates the true parameter values used in the simulations. The vertical dashed lines indicate when the model converged to a stable average

estimate. See the model description in Methods for an explanation of the different parameters.
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parameter stability (Figure 3), likely due to improved
model fit. In some cases, models with 35 survey periods
showed parameter stabilization at detection probabilities
as low as 0.1 (Figure 4), rather than the previously
observed threshold of 0.2 (Figure 3). However, this effect
was not consistent across all parameters. Importantly,
reducing the number of survey periods continued to
necessitate higher detection probabilities, often exceeding
0.5, to achieve reliable parameter estimates.

DISCUSSION

Multistate occupancy models are increasingly used in
ecological studies using camera traps to study, for exam-
ple, patterns in reproductive status and spatiotemporal
patterns in species occurrence. However, simulation stud-
ies identifying the sampling effort needed to achieve

reliable estimation in these complex models are currently
lacking. We therefore simulated a variety of scenarios to
examine the combined impact of detection probabilities,
ranging from low to high, and varying numbers of survey
periods and sites on the fitting of basic and multistate
occupancy models. These simulations aimed to establish
the minimum detection probability, number of sites, and
surveys required to ensure reliable model performance.
Our findings suggest that detection probabilities must
exceed 0.2 for multistate occupancy models to perform
well when using around 35 survey periods. Increasing
the number of survey periods decreased the required
detection probability; with 280 survey periods, a detection
probability of 0.05 was required for obtaining reliable
results. As hypothesized, when holding the number of
sites constant, more complex multistate models require a
higher detection probability compared to the simpler,
basic models (Figure 2). Additionally, our second

F I GURE 4 The average posterior estimates for the mean and 95% credible intervals across 260 simulations from the multistate and

basic covariate models for 500 and 1000 sites (columns) with 7, 14, 35 survey periods (rows) shown for a selection of fitted parameter (y-axis)

across 10 different simulation scenarios with varying detection probabilities (x-axis). The gray dashed lines represent the average upper and

lower credible intervals, while the solid black line represents a smooth function through the mean posterior estimates. The horizontal red

line indicates the true parameter values used in the simulations. The vertical dashed lines indicate when the model converged to a stable

average estimate. See the model description in Methods for an explanation of the different parameters.
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hypothesis was supported: multistate occupancy models
need significantly more sites compared to basic models to
accurately estimate covariate relationships (Figure 3).
Furthermore, the compensating effect of the increased
number of surveys resulted in a lower minimum detec-
tion probability needed in multistate models, similarly to
what we hypothesized. This effect was less explicit in
basic models, as for detection parameters these models
already functioned at lower detection probabilities
(Figure 2). Furthermore, all models with detection proba-
bilities <0.05 did not give reliable results even with
280 survey periods. Given that achieving a high number
of sites and a high number of survey periods or high
detection probabilities can be challenging in camera trap
studies, we suggest that all mentioned aspects should be
carefully considered during the design of multistate occu-
pancy studies.

It is important to note that the required detection
probability can be influenced by the occupancy probabil-
ity (Guillera-Arroita et al., 2010; Mackenzie &
Royle, 2005), which was held constant at around 0.6 in
this study, a value commonly observed for many species

detected by camera traps (e.g., Hofmeester et al., 2021;
Rich et al., 2016; Steenweg et al., 2019; Wevers
et al., 2021). Contrary to what one might expect, when
occupancy increases in basic models, a higher detection
probability is required to get confident estimates
(Mackenzie & Royle, 2005; Steenweg et al., 2019). We ran
some initial simulations testing the effect of occupancy
on multistate model functioning and noticed that, con-
trary to what is known about basic occupancy models,
lower occupancy values (Ψ¼ 0:1− 0:3Þ substantially
reduced model precision, especially for multistate param-
eters (e.g., R1 and R2); results not shown, but see reposi-
tory (Osinga et al., 2025). This might be the result of data
scarcity as detections are spread across multiple states,
making the number of sites the factor limiting perfor-
mance rather than detection. Furthermore, we expect
that fitting covariate relationships for models with low
occupancy will be even more challenging for areas with
low occupancy without many sampling sites (>1000). We
encourage further studies on the relationship between
occupancy probabilities, detection probabilities and
model performance for rare species, especially for

F I GURE 4 (Continued)
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multistate covariate models. Additionally, we strongly
recommend researchers planning multistate occupancy
studies to conduct pilot studies and perform simulations
based on these pilot data. This approach can provide tai-
lored information to their specific case, thereby determin-
ing the necessary number of sites and the required study
period to ensure that their questions can be effectively
addressed using these complex models.

In occupancy studies that are not bound by time, low
detection probabilities might not substantially limit the
analysis. Namely, our results demonstrate that by
increasing the survey duration and consequently the
number of survey periods, you can partly compensate for
lower detection probabilities. This is in accordance with
previous studies on basic occupancy models and
capture–recapture models, which show that when the
cumulative probability of detecting a species at least once
during the study period (p*) exceeds 0.8 or 0.9, occupancy
estimates remain reliable even when detection probabili-
ties are low (Guillera-Arroita et al., 2010; Smith
et al., 2009; Steenweg, 2016; Steenweg et al., 2019).
However, achieving a cumulative detection probability of
>0.8 can be challenging for elusive species or species
with low abundance, especially in studies with time con-
straints (e.g., due to season-bound research questions).
Furthermore, while basic occupancy models only need
to account for detection probability (MacKenzie
et al., 2002), multistate models must address the detec-
tion probability of each state and address the potential
misclassification of states (MacKenzie et al., 2017;
Nichols et al., 2007). Consequently, we found that the
more complex multistate models require larger datasets
to achieve reliable estimates and that with covariate
models this is aggravated (Appendix S1: Section S2). This
need for extensive data presents a challenge when deal-
ing with rare or elusive species. Consequently, while
multistate models offer potential advantages for ecologi-
cal studies, their successful application requires careful
consideration of data availability, as well as specific chal-
lenges of detecting and correctly classifying different
states within wildlife populations.

One strategy for increasing detection probability is to
adjust the segmentation strategy of camera trap data. For
instance, reducing the number of survey periods
(by aggregating camera trap data into larger intervals,
e.g., weekly) can boost detection probabilities and poten-
tially enhance model performance. However, finding the
right balance between the number of surveys and detec-
tion probability is a delicate task. We found no published
literature that tried to optimize this balance; however,
Pautrel et al. (2024) and Guillera-Arroita et al. (2010)
show that when detection probability increases (e.g., by
aggregating your camera trap data into fewer survey

periods) a shorter study duration can achieve reliable
models for basic occupancy models. This is in line with
our results: when detection probabilities are low, models
often fail to fit, even with a high number of surveys.
Increasing detection probabilities makes these models fit
with a relatively low number of surveys. However, aggre-
gating data results in data loss, decreasing precision in
final occupancy estimates. Therefore, the correct segmen-
tation strategy should be carefully chosen based on the
data, balancing between achieving higher detection prob-
abilities and minimizing the loss of information that
comes with data aggregation.

A potential solution for study areas or species with
low detection probabilities is to extend the duration of
the study, thereby allowing for larger aggregation of cam-
era trap data to enhance detection probabilities.
However, this approach should be undertaken with cau-
tion, as longer study durations increase the risk of violat-
ing the closure assumption in occupancy models. The
closure assumption posits that the occupancy status of a
site remains constant throughout the study period. To
address this, one could adjust the interpretation of the
occupancy parameter. Specifically, occupancy can be
redefined as “the probability of site use by any number of
individuals at any point during the study period,” rather
than an instantaneous snapshot (see Efford &
Dawson, 2012; Steenweg et al., 2018 for further discus-
sion on this topic). This reinterpretation aligns the occu-
pancy parameter with the dynamic nature of longer
study periods, thereby maintaining model validity despite
potential violations of the closure assumption.
Nonetheless, we are cautious about recommending >200
daily detection periods for most camera trap studies with-
out explicitly modeling seasonal changes (e.g., through
dynamic occupancy models) as the prolonged duration
likely exceeds the timeframe within which the drivers of
occupancy (“probability of use”) remains stable for most
species.

While increasing the study period and segmentation
strategies can enhance detection probabilities, practical
strategies like using bait (e.g., salt licks, peanut butter, or
sardines; Sebasti�an-Gonz�alez et al., 2020), or positioning
cameras in favorable spots like along animal trails
(Burton et al., 2015) are also widely employed to increase
detection probability. However, these approaches can
introduce biases that may compromise model assump-
tions, unlike segmentation, which primarily affects
uncertainty in detection estimates (Hofmeester et al.,
2019; MacKenzie et al., 2017). Deploying multiple cam-
eras per site is another strategy to increase detection
probability without necessarily violating model assump-
tions (Evans et al., 2019; Hofmeester et al., 2021), but this
approach is often impractical due to the limited
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availability of cameras in many study designs
(Hofmeester et al., 2021). While using bait or strategically
placing cameras is effective in increasing detection rates,
they often compromise the model’s assumption of ran-
dom sampling (Braczkowski et al., 2016; Wearn
et al., 2013). Despite these drawbacks, such strategies
may be required to collect adequate data for functional
models, especially when studying elusive species or in
areas with low population densities. The extent to which
these biases affect the validity of the model is not entirely
clear. However, when a grid-based study design is used
and the bait only attracts animals from within the desig-
nated grid cell, the resulting data can still support robust
models. These models are effective for addressing ques-
tions on a larger scale, such as landscape and geographi-
cal habitat selection (Gilbert et al., 2021; Hofmeester
et al., 2021). It is important to balance the need for higher
detection probabilities while adhering to the model
assumptions. When possible, increasing the number of
survey periods, survey duration, or employing multiple
cameras per site is preferred to avoid bias, but other strat-
egies may be justified if they substantially improve data
quantity and model functionality. Thus, these methods
could provide valuable opportunities to enhance the
understanding of wildlife ecology and inform conserva-
tion efforts.

In addition to the balance between detection proba-
bilities and survey segmentation, the number of sites
plays a crucial role in study design, particularly when
incorporating covariates. Previous research suggested
that 60 sites is sufficient to establish covariate relation-
ships using basic occupancy models (Kays et al., 2020).
However, our findings show that this is not the case for
multistate models; none of the models based on 60 or
120 sites in this study accurately estimated the beta coef-
ficients. Our simulation using 240 sites shows great
improvement in beta estimates, but estimates, even at
high detection probabilities, are still not always without
bias (Figure 3). This is consistent with findings by Kéry
and Royle (2020), who were unable to fit the simplest
form of a multispecies model with a subsample of
140 sites from an original dataset of 1400 sites, despite
finding clear relationships with the full dataset.
Additionally, successful modeling efforts involving multi-
state, species, or community occupancy models incorpo-
rating covariates typically involve between 100 and 2000
sites (e.g. Fidino et al., 2019; Hepler & Erhardt, 2021;
Pautrel et al., 2024; Rota et al., 2016; Wohner
et al., 2023). Further, even multistate models without
covariates show high uncertainty in occupancy predic-
tions (Appendix S1: Figure S1). The added complexity of
multistate and multispecies models, which involve esti-
mating additional parameters, likely explains the

increased data demand compared to simpler occupancy
models.

Our study emphasizes the importance of achieving
adequate sampling effort for reliable multistate occu-
pancy modeling. We recommend that researchers plan-
ning to apply multistate occupancy models to camera
trap data conduct a pilot study and an accompanied sim-
ulation study to ensure that detection probabilities exceed
the required thresholds for the number of survey
periods one can run. Researchers should also carefully
consider data segmentation strategies to balance detec-
tion probabilities with the need for enough survey
periods. Methods such as deploying multiple cameras
per site, targeted placement, or baiting can enhance
detection probabilities and improve model performance,
but they may introduce biases that compromise model
assumptions. Furthermore, our results indicate that
multistate models require significantly more sites than
basic occupancy models to accurately estimate covariate
relationships. Overall, these recommendations and find-
ings are crucial for designing robust wildlife research
studies that can reliably incorporate covariates and pro-
duce meaningful ecological inferences.
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