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ABSTRACT
Biogas inocula with distinct taxonomic compositions often converge to similar communities when fed the same substrate, indi-
cating strong substrate-driven deterministic assembly. Nevertheless, stochastic processes have also been suggested as a critical 
element for microbial assembly in biogas systems. To date, assembly processes have mainly been investigated with undefined, 
non-sterile substrates, making it difficult to exclude the influence of external microorganisms. The aim of the present study was 
to investigate whether three taxonomically distinct anaerobic digestion (AD) communities would converge when exposed to 
uniform growth conditions during semi-continuous operation with a sterilised defined medium. The inocula originated from 
mesophilic processes using different substrates (food waste, sludge, and manure) and total ammonia levels (0.5–7.2 g/L). The 
medium was formulated to support all four main metabolic steps of AD: hydrolysis, fermentation, anaerobic oxidation, and meth-
anogenesis. Taxonomic, phylogenetic, and functional analyses conducted via 16S and metagenomic sequencing showed that the 
substrate had no deterministic effect on microbial community taxonomic composition. Instead, the final community structure 
was dictated primarily by the initial inoculum, regardless of changes in substrate composition or ammonia levels. Despite taxo-
nomic divergence, broad-level functionality and operational performance remained similar between communities.

1   |   Introduction

Anaerobic digestion (AD) is a proven technology for convert-
ing organic waste into biogas and nutrient-rich digestate, use-
ful as fertiliser (Kougias and Angelidaki  2018). The process 
involves four main microbial steps: hydrolysis, fermentation, 
anaerobic oxidation and methanogenesis, each carried out by 
different microbial groups (Schnürer  2016). The first three 
steps are performed mainly by different bacterial taxa, while 
methanogenesis is performed exclusively by archaea. The bac-
terial community is comparably more diverse, both phyloge-
netically and functionally, while methanogens include three 

functional groups: acetoclastic (utilises acetate), hydrogeno-
trophic (utilises H2, CO2, formate) and methylotrophic (uti-
lises methylated compounds like methanol or methylamines) 
(Enzmann et al. 2018). The assembly of the AD microbiome is 
mediated by parameters which can be categorised as either de-
terministic (e.g., abiotic environmental parameters, interspe-
cies interactions) or stochastic (e.g., cell deaths and divisions, 
random dispersal of individual cells). In the environment, 
stochasticity and determinism have been shown to exist on 
a continuous spectrum, with various ecological factors mod-
ulating their relative contributions to community structure 
(Chase and Myers  2011; Yuan et  al.  2019). In line with this, 
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studies on various bioprocesses, including AD, have also high-
lighted both the importance of stochastic processes in shap-
ing microbial communities (Ayarza and Erijman 2011; Zhou 
et al. 2013), as well as deterministic factors (Peces et al. 2018; 
Vanwonterghem et al. 2014). Factors known to strongly influ-
ence the microbial community structure in anaerobic digestion 
systems include process temperature, substrate characteris-
tics and inoculum source (De Vrieze, Saunders, et  al.  2015; 
Westerholm and Schnürer  2019). Substrate physicochemical 
characteristics have been shown to assert a deterministic 
effect on the composition of AD communities, both when 
using natural feedstocks (De Vrieze, Gildemyn, et  al.  2015; 
Duan et  al.  2021; Liu et  al.  2017) and defined media (Peces 
et al. 2018). However, a few studies suggest that initial com-
munity structure, not type of substrate, is the main deciding 
factor for the makeup of the AD community (Han et al. 2016; 
Liu et al. 2018), highlighting stochasticity as a critical element 
for microbial community structure in biogas systems.

A specific aspect of substrate composition which has a strong 
deterministic effect on AD community makeup is its protein 
and ammonia (NH3) content. Ammonia, released during 
the degradation of proteins, is a well-known inhibitor of AD 
processes and is associated with changes to the AD micro-
bial community and loss of microbial diversity (De Vrieze, 
Saunders, et al. 2015; Li et al. 2015). Acetoclastic methanogens 
are known to be specifically inhibited by ammonia (Capson-
Tojo et  al.  2020), while inhibition of acetate and propionate 
oxidation has also been reported (Bonk et  al.  2018; Wang 
et al. 2015). However, functioning biogas-producing systems 
with high ammonia concentrations can be achieved (Borja 
et al. 1996; Morozova et al. 2020). In these systems a microbial 
shift occurs, whereby acetoclastic methanogens are replaced 
by syntrophic acetate oxidizers and ammonia-tolerant hy-
drogenotrophic methanogens (Müller et al. 2016; Westerholm 
et al. 2016).

As mentioned above, previous studies have not been able to 
reach a consensus on the relative influence of the initial micro-
bial community and substrate characteristics on the structure 
of the microbial community in biogas processes, motivating 
further investigation. The aim of this study was to investigate 
whether taxonomically different biogas microbial communities 
would converge to similar taxonomy or not when cultivated 
under the same conditions using a sterile defined medium. For 
this, three AD microbial communities were selected to be as 
taxonomically distinct as possible. The inocula were taken from 

well-functioning biogas processes based on complex feedstocks 
(manure, sludge and food waste), with different total ammoni-
acal nitrogen (TAN) concentrations. These cultures were ax-
enically grown in lab-scale bioreactors under either native (1, 
2 and 7 g/L) or experimental (4 g/L) TAN concentrations. The 
changes in microbial community structure were monitored 
during 12 weeks in order to ascertain whether the change in 
TAN concentration and substrate composition would cause a 
convergence of the microbial communities.

2   |   Experimental Procedures

2.1   |   Experimental Design and Reactor Operation

Three pairs of laboratory-scale continuous stirred-tank reactors 
(Belach Bioteknik, Sweden) were used in this study. Each pair of 
reactors was inoculated with inoculum from different sources, 
which were selected to represent different categories of biogas 
processes: wastewater sludge (SL), manure (MN) and food waste 
(FW)-based. These processes were separated not only by their 
substrate composition but also by different TAN levels: 0.5, 1.5 
and 7 g/L, respectively. Inocula were taken from full-scale pro-
cesses except for FW, which was taken from an experimental 
reactor fed with food waste and extra albumin (reactor DTE37 
from Westerholm et al. (2015)). All processes were operated at 
mesophilic temperature (37°C). Additional information on the 
inocula is presented in Table 1.

Each reactor (total volume 4 L) was filled with 1.5 L of inoculum 
while flushing with N2 gas. The SL and FW inocula were added 
intact, while the MN inoculum was passed through a 2 mm sieve 
to remove larger fibre fractions. Continuous feeding of the reac-
tors with defined medium was initiated at inoculation. The reac-
tors were operated at 37°C and a hydraulic retention time (HRT) 
of approximately 28 days, with gas bags attached for collection 
of the produced gas. Within each pair of reactors, one was being 
fed with medium with TAN levels that matched its inoculum 
source (reference reactor), while the other was fed with medium 
with 4 g/L TAN (experimental reactor). In this way, there were 
three experimental reactors (SL-exp, MN-exp, FW-exp) and 
three reference reactors (SL-ref, MN-ref, FW-ref). Thus, there 
was an increase in TAN in the SL and MN experimental reactors 
and a decrease in the FW experimental reactor. The total run 
time was approximately 3 HRT, approximately 3 months, to give 
a sufficient amount of time for the establishment and adjust-
ment of the microbiological community to the new conditions.

TABLE 1    |    Characteristics of biogas inocula used for initiation of bioreactors.

Name Substrate pH TAN (g/L) NH3 (g/L)
Acetate 

(g/L)
Total VFA 

(g/L) TS (%) VS (%) COD (g/L)

SL Wastewater sludge 7.22 0.51 0.01 0.04 0.04 3.95 2.66 10.50

MN Manure and straw 7.87 1.48 0.13 0.03 0.24 4.51 3.18 46.40

FW Food waste 
and albumin

8.02 7.17 0.85 2.44 3.87 2.11 1.15 23.80

Note: TAN, total ammoniacal nitrogen, COD, chemical oxygen demand; VFA, volatile fatty acid, also including: for MN 0.02 g/L lactate, 0.19 g/L propionate; for 
FW 0.04 g/L lactate, 0.88 g/L propionate, 0.11 g/L isobutyrate, 0.08 g/L butyrate, 0.25 g/L isovalerate and 0.06 g/L valerate. TS, total solids; VS, volatile solids, both 
expressed as a percentage of wet weight.
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2.2   |   Analytical Methods

Operational parameters were monitored weekly. pH was 
measured with a standard pH meter (Jenway 3510). Methane 
concentration in the reactor headspace was analysed using 
gas chromatography, as described previously (Westerholm 
et  al.  2010). Total gas volume was measured every few days 
by emptying the gas bags with a Ritter Drum-type Gas Meter 
(TG05/5).

Six volatile fatty acids (VFAs; acetic, propionic, butyric, isobu-
tyric, valeric and isovaleric acid), and lactic acid were quanti-
fied using high-performance liquid chromatography (HPLC). 
These seven organic acids were all included in the VFA term 
for the purposes of this study. Samples taken directly from the 
reactor liquid were centrifuged (15 min at 11,500 g) and 700 μL 
of supernatant was collected. 70 μL of 5 M H2SO4 was added and 
samples were frozen at −20°C. After thawing, samples were cen-
trifuged (11,500 g for 10 min), after which the supernatant was 
filtered using a 0.2 μm syringe filter. The filtered supernatant 
was analysed by  HPLC on a Shimadzu 2050 Series equipped 
with an ion exclusion column (Rezex ROA Organic Acids H+, 
300 × 7.80 mm, Phenomenex) and detected by a UV detector at a 
wavelength of 210 nm. The mobile phase used was 5 mM H2SO4 
and the flow rate was 0.6 mL/min.

TAN was measured using Hach LCK302 Ammonium Cuvette 
tests and chemical oxygen demand (COD) was measured using 
Hach LCK514 Cuvette tests. Total solids (TS) and volatile solids 
(VS) of the inocula were measured according to international 
standard methods (A.P.H.A. 1998).

2.3   |   Growth Medium

The defined medium used in the reactor experiments was a 
basal medium prepared according to Westerholm et al. (2010), 
with additional substrates added based on Speda et al. (2016), 
and with varying TAN levels (Table  2). TAN levels were 1, 
2 and 7 g/L for the reference SL, MN and FW reactors, and 
4 g/L for all the experimental reactors, and were achieved by 
addition of NH4Cl before autoclaving. Most substrates were 
added to the autoclaved basal medium from stock solutions. 
Glucose, sucrose, cellobiose and tryptone were added directly 
to the medium since their solubilities did not allow for making 
of stock solutions.

The medium was concocted to include substrates for all the 
biochemical steps of anaerobic digestion (hydrolysis, aci-
dogenesis, acetogenesis and methanogenesis). The recipe was 
based on Speda et al. 2016, but replacing half of the amount 
of carbon provided by glucose with cellobiose, and half the 
amount of acid-hydrolyzed casein by tryptone. The reactors 
were also supplemented with oleic acid by direct injection. 
The additions were done when the previous injection had 
visibly disappeared, as long-chain fatty acids are known to 
cause inhibition to methanogenic communities (Kougias 
et  al.  2016). In total, approx. 0.40 mL was added as an aver-
age weekly dose. SL and MN reactors were fed with oleic acid 
every 15–20 days for a total of 6 oleic acid injections each. FW 
reactors were fed only 3 times in the early phase of the study 

(the first 6 weeks) but were later not fed with more oleic acid 
due to incomplete degradation.

For the purpose of troubleshooting low reactor pH, after week 
8 an altered version of the medium was used which contained 
only half of solution A (Westerholm et al. 2010) and replaced 
the N2/CO2 gas phase with only N2. This led to an increase in 
pH in the medium to almost 8.0, from the previous approxi-
mate 7.2.

2.4   |   Calculations and Statistical Analysis

Calculation of the maximum theoretical gas production was 
done using the Buswell formula (Buswell and Mueller 1952). 
For any calculations concerning tryptone and acid-hydrolyzed 
casein, the molecular weight 133.13 g/mol was used, as the 
calculated average of the amino acid composition of casein 
(Labatut et al. 2022). The free ammonia (NH3) fraction of TAN 
was calculated according to the equation presented by Jiang 
et al. (2019).

Reactor pairs (SL, MN and FW) and reactor groups (refer-
ence and experimental) were compared on a multivariate 
basis using permutational multivariate analysis of variance 
(PERMANOVA). The operational parameters used for this 
comparison were: pH, ml of gas produced per ml substrate 
fed, % methane in the gas, acetate concentration and sum of 
other VFAs. PERMANOVA was conducted in R 4.4.2 (R Core 
Team 2024) using vegan 2.6.6.1 (Oksanen et al. 2024) and pair-
wiseAdonis 0.4.1 (Martinez Arbizu  2020). The distance ma-
trix needed was calculated with the vegdist function using the 
Euclidean method. Homogeneity of multivariate dispersion 
was checked using the betadisper function. In all the com-
parisons made, multivariate dispersion was not significantly 
different (p > 0.05) between the compared groups except in 
one case (MN-exp vs. MN-ref). PERMANOVA was conducted 
using the adonis2 function with 104 permutations. Further 
pairwise multilevel analysis in the case of a significant p value 

TABLE 2    |    Substrates and their final concentrations in the defined 
growth medium used as feed for the bioreactors.

Substrate Final concentration (mM)

Acetic acid 11

Propionic acid 17

Butyric acid 0.7

Formic acid 1.4

Methanol 20

Ethanol 13

Glucose 62

Sucrose 26

Cellobiose 31

Acid-hydrolyzed casein 8

Tryptone 8
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was done using the pairwise.adonis function, with 104 permu-
tations and using the Holm method (Holm  1979) for adjust-
ment of p values due to multiple comparisons.

Normalised Stochasticity Ratio (NST) was calculated in R using 
the NST package 3.1.10 (Ning et al. 2019). For NST calculations, 
each reactor pair was treated as a separate metacommunity. 
Both taxonomic and phylogenetic NST values were calculated 
using the functions tNST and pNST (using default parameter 
values), and comparisons and descriptive statistics were calcu-
lated using the nst.boot function with 1000 random draws.

2.5   |   Microbial Community Profiling

DNA was extracted weekly from reactor samples (single repli-
cates) with the FastDNA SPIN kit for Soil by MP Biochemicals 
as described by Danielsson et al. 2017. Triplicate DNA samples 
were also extracted from the inoculum material used for reac-
tor start-up. The extracted DNA samples were sent to Novogene 
(Cambridge, UK), which conducted library preparation and 
sequencing of the V4 region of the 16S rRNA gene using the 
Illumina Novaseq platform. The resulting sequences (primers 
and barcodes already removed) were analysed with the DADA2 
pipeline (Callahan et al. 2016), via dada2 1.16.0 in R. Forward 
and reverse sequences were truncated at positions 180 and 
220, based on the quality profiles generated by the pipeline. 
Sequencing reads that did not meet the filter criteria (maxN = 0, 
maxEE = c(2, 2), truncQ = 2) were not included in the following 
steps. Taxonomy was assigned using the Silva database 138.1 
(Quast et al. 2012). Using the neighbour-joining method, a phy-
logenetic tree of all the sample sequences was constructed using 
phangorn 2.11.1 (Schliep et al. 2017). The tree was used to gen-
erate a Principal Coordinate Analysis (PCoA) plot to study the 
dissimilarity of the reactor samples through the weeks of their 
operation. The weighted UniFrac method was used for calculat-
ing sample distances for the PCoA plot. Alpha diversity of the 
samples was estimated with the Shannon index, calculated in R 
using the plot_richness function in phyloseq 1.41.1 (McMurdie 
and Holmes  2013). Abundance analysis, visualisation, and 
graphic illustration of the results was done in R using phyloseq 
and ggplot2 3.5.1 (Wickham  2016). Results from a few of the 
DNA samples were removed from the analysis of the microbial 
community because they were presenting aberrant microbial 
composition compared to their vicinal samples. The removed 
samples were FW-exp week 1, MN-ref weeks 8 and 11, MN-exp 
weeks 9 and 11, SL-ref week 11 and SL-exp week 11.

In addition to 16S rDNA analysis, taxonomic profiling based 
on complete metagenomic reads was performed on a subset of 
the samples. Metagenomic reads were processed using fastp 
0.20.0 to remove poor quality bases (<Q20), and adapters were 
removed using the same software (Chen  2023). After these 
preprocessing steps, 22–150 M raw reads were kept per sam-
ple. For taxonomic profiling, remaining reads were classified 
using Kraken2 2.1.2 (Wood et  al.  2019) using the GTDB r95 
database (Parks et al. 2022) prepared by De La Cuesta-Zuluaga 
et al. (2020). Species abundance was calculated using Bracken 
2.6.2 (Lu et al. 2017). A phylogenetic tree was constructed using 
the bac120 taxonomy and tree files provided by GTDB using 
gracken, a tool which was custom-developed for this purpose 

(Ohlsson 2025). Briefly, the GTDB tree was loaded using ETE 
3.1.3 (Huerta-Cepas et al. 2016) and pruned to only contain the 
type genomes for the species present in the Bracken report files. 
A similar tree was constructed for the archaeal (ar122) species, 
and the two trees were then combined. The combined tree was 
loaded into R using ape 5.8 (Paradis and Schliep 2019). PCoA 
plots of the microbial communities were generated using phy-
loseq 1.50.0 using the weighted UniFrac distance metric. Krona 
plots (Ondov et al. 2011) of species abundance were generated 
using KrakenTools (commit hash d4a2fbe) (Lu et  al.  2022) 
after filtering out species below 0.01% abundance. Sankey di-
agrams were generated using Pavian 1.2.1 (Breitwieser and 
Salzberg 2020).

For functional analysis, SUPER-FOCUS 1.4.1 (Silva et al. 2016) 
was used for mapping metagenomic reads to their correspond-
ing SEED subsystems. The DB_100 UniRef database was used, 
with DIAMOND 2.0.15 (Buchfink et al. 2021) as the aligner, and 
using the default normalisation, which distributes reads equally 
over matching subsystems in the case of multiple matches. 
Results were visualised using ggplot2 and pheatmap 1.0.13 
(Kolde 2025), using the complete linkage method for clustering.

3   |   Results

3.1   |   Reactor Operation

Six different reactors were inoculated with 3 different inocula 
(Table 1) and operated for a total of 12 weeks (3 HRT). TAN lev-
els at the end of the operation of all reactors were close to their 
intended values. Chemical parameters for all reactors during the 
final 5 weeks of operation are presented in Table 3.

All reactors showed fairly stable gas production over the op-
eration period, reaching 74%–92% of the theoretical amounts 
(Table 3). The SL and MN reactors showed some VFA accumula-
tion after 60 days of operation, but concentration never exceeded 
1.2 g/L, and the levels decreased towards the end of the 12 weeks 
of operation (Figure  S1). Although pH for these four reactors 
was slowly decreasing over the course of the experiment, this 
was not associated with VFA accumulation (Figure S1). FW-exp 
experienced an acidification event (days 28–35) with a sudden 
decrease in pH and a concomitant increase in VFAs (mainly ace-
tate), consequently resulting in inhibition of methanogenesis. To 
allow for VFA degradation, feeding was stopped for 6 days. This 
allowed the process to recover its gas production, and no further 
accumulation of VFAs was observed (Figure  S1). Overall, the 
FW reactors exhibited more acidification and lower pH levels 
compared to the other reactors and showed higher VFA levels.

Multivariate comparison of the reactors using PERMANOVA 
was done to evaluate differences in the reactors' operational 
performance, using the operational values of the last 5 weeks 
of the study (Table 3, Tables S1–S2). There were no statistically 
significant differences in the performance of the reference re-
actors (p = 0.084), while the experimental reactors differed 
significantly (p = 0.046). Post hoc testing revealed significant 
differences only between FW and MN in the experimental 
group (Table S1), with the difference mostly being higher gas 
production and VFA accumulation in FW-exp. Significant 
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differences in the operation of each reactor pair were also 
investigated on a multivariate basis using PERMANOVA, 
finding no statistically significant changes within the pairs 
(Table S2).

3.2   |   Microbial Community Profile

The microbial communities of the inocula and the weekly re-
actor samples were taxonomically profiled by 16S rRNA and 
metagenomic sequencing, and the metagenomic sequences were 
functionally profiled on multiple levels of functional resolution 
(Figures  1 and S4–S10). Taxonomically, reactor communities 
were clearly separated based on their respective inocula, but 
irrespective of TAN concentrations. According to the 16S taxo-
nomic profile, SL reactor communities clustered closely to their 
inocula, compared with the FW and MN reactor communities, 
which presented somewhat more dispersed clusters, showcasing 
some variation throughout their operation (Figure 1A). In the 
taxonomic metagenome analyses, SL and FW reactor samples 
clustered near their respective inocula, with FW-exp and FW-
ref diverging a bit more from their inoculum community than 
SL-exp and SL-ref from SL inoculum, while MN-ref and MN-
exp diverged significantly from MN inoculum, while remaining 
fairly similar to one another.

Despite taxonomic differences, only small functional differ-
ences could be seen at the broadest functional classification level 
(SEED subsystem level 1; Figure 1C). Differences in functional 
profiles of the reactor communities largely reflected changes in 
taxonomy, with SL communities diverging the least, and MN the 
most, from their inocula (Figures  1D and S8–S10). Clustering 
was similar between taxonomic and functional results, with 
PCA plots of the functional composition (Figure  S10) largely 
mirroring taxonomic PCoA plots (Figure 1A,B). Taken together, 
the microbial communities of all experimental reactors were 
decidedly more similar to those of their respective reference re-
actors than to those of the experimental reactors of the other in-
ocula, despite similar growth conditions, feeding substrate, and 
TAN concentrations. Variation in community composition be-
tween reference and experimental reactors within each pair was 

minimal. Final microbial community composition appeared to 
be more strongly influenced by the inoculum source than by the 
applied treatment conditions, including substrate type and TAN 
concentration.

3.3   |   Microbial Community Development

The three microbial community pairs in our study exhibited 
varying degrees of divergence from their original composition. 
The following section provides a summary of the most promi-
nent taxonomic changes observed between the inocula and their 
descendant communities.

The SL reactors differentiated minimally from their inoculum 
community. Along with SL inoculum, they exhibited a relatively 
equal abundance of several different bacterial phyla (Figures 2, 
S2 and S4), such as Firmicutes, Cloacimonadota, Bacteroidota, 
Halobacterota and Chloroflexi. Over the course of their op-
eration, both SL reactors experienced an increase in relative 
abundance in genera of the phylum Actinobacteriota and in 
the genus Syner-01 (family Synergistaceae) and a decrease in 
the genus Smithella (Figure  2). The methanogenic population 
in the SL reactors was dominated, according to 16S analy-
sis, by the genera Methanosaeta and Methanolinea (Figure 3). 
During the final weeks of the study, the genus Methanoculleus 
increased in abundance in both SL reactors (although with rel-
ative abundance < 4%). The metagenomic analysis proposed a 
more marked increase of the genus Methanoculleus, from 0.4% 
in the inoculum to 10% in SL-ref and 12% in SL-exp (Figures S4 
and S5; File S2).

The minor dissimilarities seen in the composition between FW 
reactors and inoculum, according to the 16S analysis, could 
be attributed to various genera in the phylum Firmicutes, the 
genera Aminobacterium and Proteiniphilum, and the phylum 
Cloacimonadota (Figures  2 and S2). However, larger differ-
ences were observed in the taxonomic analysis of the metage-
nome, reflected in the somewhat higher degree of divergence 
seen in the metagenome PCoA (Figure 1B). According to this 
analysis, genera Aminobacterium and Tepidanaerobacter 

TABLE 3    |    Operational data for the 6 reactors included in the study during their last 5 weeks of their operation, presented as the mean value and 
its standard deviation.

SL MN FW

Reference Experimental Reference Experimental Reference Experimental

pH 6.97 ± 0.06 6.87 ± 0.02 7.01 ± 0.06 6.90 ± 0.13 6.71 ± 0.24 7.11 ± 0.16

Total VFA (g/L) 0.06 ± 0.04 0.51 ± 0.36 0.17 ± 0.15 0.32 ± 0.22 3.66 ± 1.13 2.12 ± 0.64

Acetate (g/L) 0.03 ± 0.01 0.26 ± 0.19 0.07 ± 0.10 0.24 ± 0.19 2.36 ± 0.99 1.19 ± 0.48

TAN (g/L) 1.02 ± 0.04 3.85 ± 0.13 1.97 ± 0.07 3.71 ± 0.09 7.13 ± 0.52 4.63 ± 0.27

Gas production (mL/mL 
added substrate)

25.01 ± 1.50 23.79 ± 3.05 22.54 ± 2.73 21.83 ± 1.29 22.91 ± 3.93 26.78 ± 2.76

CH4 in biogas (%) 49.70 ± 2.26 47.83 ± 3.07 46.08 ± 3.27 46.39 ± 1.26 40.72 ± 9.02 48.71 ± 3.33

% of theoretical gas yield 85.3 ± 5.10 81.1 ± 10.4 76.9 ± 9.30 74.4 ± 4.40 78.1 ± 13.4 91.3 ± 9.40

Note: Gas production was measured weekly, and periods of no feeding are excluded from the measurement. Oleic acid is not included in the calculation of the 
theoretical amount of gas, based on the Buswell formula. Total VFA includes acetic, propionic, butyric, isobutyric, valeric, isovaleric and lactic acid.
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exhibited a marked increase in both FW-exp and FW-ref com-
pared to the inoculum (Figures S4 and S7; File S2). The meth-
anogenic community of the FW reactors remained stable over 

the course of the study and was comprised mainly of the genus 
Methanoculleus and the genus Candidatus Methanoplasma 
(family Methanomethylophilaceae; Figure 3).

FIGURE 1    |    Taxonomic and functional composition of reactor samples and inocula. PCoA plots of phylogenetic distances between all the reactor 
samples and the samples from the inoculum material, based on the Weighted UniFrac method on the 16S (A) or metagenomic (B) sequencing data. 
Numbers top left of each point indicate weeks since inoculation. Inoculum samples are labelled as 0. (C) Functional profiles of reactor communities 
and inocula classified at SEED subsystem level 1 visualised using relative abundances. (D) Row-scaled heatmap visualising the functional composi-
tion of the reactor samples using the 15 most abundant SEED subsystem level 1 categories. Samples are either reference (ref), experimental (exp), or 
corresponding inocula, optionally suffixed with weeks since inoculation.
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The majority of the bacterial abundance of the MN inocu-
lum was represented by various members of different phyla, 
namely Bacteroidota, Cloacimonadota, Firmicutes and 
Spirochaerotota (Figures  2, S4 and S6; File S2). Based on 
16S analysis, MN reactors demonstrated minor taxonomic 
divergence from their inoculum, with a dominance of genus 
Spirochaeta. However, a large increase in relative abun-
dance of the genus Defluviitoga was observed during the 

final 4 weeks, rising to 17%–60% of sequence reads (below 
1% initially) (Figure 2). The metagenomic analysis showed a 
greater divergence between MN inoculum and reactors, but 
in line with the 16S analysis, Defluviitoga tunisiensis (phylum 
Thermotogota) was the most dominant species of the MN reac-
tors, representing approximately 60%–80% of all metagenomic 
sequence reads. Regarding the methanogenic community, the 
16S analysis demonstrated an even and stable distribution of 

FIGURE 2    |    Relative abundance of different bacterial genera in reactor samples over the course of their operation, coloured based on their re-
spective phyla. The size of each point is representative of the relative abundance of this genus in the sample. Each panel represents a reactor, labelled 
based on its inoculum (FW, MN and SL), and the TAN concentration they were subjected to (reference or experimental). There is one replicate of 
each reactor sample. The composition of the inocula is presented in a column to the left, where triplicate samples were averaged out and presented 
as one. On the x axis, each sample is represented by the number of weeks from the start of their operation (1–12). The genera shown have more than 
1% relative abundance. Genera with lower than 1% relative abundance are not shown.
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8 of 13 Microbial Biotechnology, 2025

abundances between genera of three phyla: Euryarchaeota, 
Halobacterota and Thermoplasmatota (Figure  3). The 
metagenome analysis attributed approximately half of the 
archaeal relative abundance to the genus Methanoculleus 
and revealed a substantial increase in genera of the family 
Methanomassiliicoccaceae in both MN reactors compared to 
their inoculum (Figures S4 and S6; File S2).

3.4   |   Microbial Community Assembly Processes

The assembly processes that possibly influenced the devel-
opment of the microbial communities were characterised 
using the normalised stochasticity ratio (Figure 4). When the 
similarity of the reactor communities was assessed based on 
taxonomy (Figure  4a), the metacommunities exhibited NST 
values equal to 70% (FW), 65% (SL) and 68% (MN), all greater 
than 50%. This indicated that stochastic processes played a 
more significant role in the assembly of the reactor commu-
nities than deterministic processes. When phylogeny was also 
taken into account for assessing community similarity, the 
metacommunities exhibited NST values equal to 70% (FW), 
79% (SL) and 50% (MN). In the case of FW and SL, once again 
it was indicated that community structure was shaped pre-
dominantly by stochastic rather than deterministic forces. 
The NST value for the MN metacommunity in this compari-
son demonstrated that determinism and stochasticity possibly 
participated equally in the assembly process.

4   |   Discussion

4.1   |   Taxonomic Distribution of the Microbial 
Communities in the Different Inocula

The taxonomic compositions of the inocula chosen for the pres-
ent study were distinctly different, as was previously reported 
for AD communities operating with different substrates and 
ammonia concentrations (Calusinska et  al.  2018; De Vrieze, 
Saunders, et  al.  2015). The FW inoculum had significantly 
lower microbial diversity, as indicated by its Shannon index 
(Figure  S3), while having the highest TAN concentration at 
7.17 g/L. A negative correlation between microbial diversity and 
ammonium/free ammonia concentrations has been reported 
previously (Calusinska et al. 2018; Li et al. 2015). The distribu-
tion of microbial phyla observed in the inocula was also consis-
tent with earlier studies. Firmicutes and Bacteroidota are often 
dominant phyla in manure-based bacterial communities (Li 
et al. 2015), with Firmicutes being more prevalent in manure-
based than in sludge-based processes. Chloroflexi has also been 
previously found in mesophilic sludge communities (Sundberg 
et al. 2013). In reactors with high-TAN concentrations operating 
on food waste, Firmicutes has been shown to dominate the mi-
crobial population, with up to 80% relative abundance (Müller 
et al. 2016).

The distribution of methanogenic genera in the inocula was 
consistent with their respective TAN concentrations (Figures 3 

FIGURE 3    |    Relative abundance of different archaeal genera in reactor samples over the course of their operation, coloured based on their respec-
tive phyla. The size of each point is representative of the relative abundance of this genus in the sample. Each panel represents a reactor, labelled 
based on its inoculum (FW, MN and SL), and the TAN concentration they were subjected to (reference or experimental). There is one replicate of each 
reactor sample. The composition of the inocula is presented in a column to the left, where triplicate samples were averaged out and presented as one. 
On the x axis, each sample is represented by the number of weeks from the start of their operation (1–12).
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and S4). The SL and MN inocula contained a range of hydrog-
enotrophic, methylotrophic and acetoclastic methanogenic 
genera, whereas the high-TAN FW inoculum was dominated 
by the hydrogenotrophic genus Methanoculleus, a key metha-
nogen in high-ammonia AD systems (reviewed in Capson-Tojo 
et al. 2020). Candidatus Methanoplasma, a member of the meth-
ylotrophic Methanomassiliicoccales order (Adam et  al.  2017), 
was also present in the FW inoculum, consistent with other 
studies that have found this genus enriched in high-ammonia 
reactors (Lendormi et al. 2022).

4.2   |   Substrate Did Not Deterministically 
Influence Final Community Structure

Some previous studies have reported that microbial communi-
ties in AD converge taxonomically and functionally when pro-
vided with the same substrate (De Vrieze, Gildemyn, et al. 2015; 
Duan et al. 2021; Liu et al. 2017; Peces et al. 2018), and others 
have found taxonomically similar inocula to diverge when 
given different substrates (De Francisci et  al.  2015; Eliasson 
et al. 2023). These findings have supported the view that sub-
strate composition is a key deterministic factor in shaping com-
munity structure.

In contrast, we found no evidence for taxonomic convergence 
when different inocula were provided with the same defined 
medium. Null-model analysis (NST) indicated that stochas-
tic processes dominated community assembly, and we found 
final community composition to be primarily determined by 

inoculum composition. This aligns with Han et  al.  2016, who 
also observed a lack of convergence in reactors fed with a de-
fined medium, and, highlighting stochastic processes, found 
only ~30% similarity between replicate reactors.

One explanation for the discrepancy with earlier studies may 
lie in the absence of strong selective pressures in our system. 
Convergence is often reported under conditions with potent 
drivers of community composition, such as thermophilic tem-
perature or high free ammonia, which select for highly spe-
cialised organisms (De Vrieze, Saunders, et  al.  2015; Duan 
et al. 2021). Our medium contained a variety of substrates and 
no dominant inhibitory or selective agent, with free ammonia 
levels similarly low across reactors, leaving a broad metabolic 
niche for taxonomic changes to occur within. In our study, 
stochastic events most likely led to the prevailing of some 
microorganisms over others. For example, D. tunisiensis was 
detected through metagenomic analysis in all the inoculum 
communities (relative abundance 0.03%–0.2%, Figure S5), but 
was enriched only in the MN reactors. Thus, the overrepre-
sentation of D. tunisiensis in MN reactors could not be solely 
explained by a possible deterministic influence of the chemi-
cal characteristics of the medium but might rather have been 
caused by stochastic events.

4.3   |   Ecological Pressures Conserve Functionality 
Rather Than Taxonomy

Comparing the functional composition of the communities, cer-
tain metabolic functions were universally reduced in abundance 
compared to the inocula over the course of the experiment (e.g., 
sulfur metabolism, protein metabolism), reflecting changes to 
the metabolic environment compared to native conditions. At 
higher classification resolution, more specific shifts were ob-
served; for example, the SL inoculum was enriched in metabolic 
traits specific to its native milieu (e.g., anaerobic degradation 
of aromatic compounds, hydrocarbon metabolism; Figure  S9), 
traits that were considerably less abundant at the end of the 
experiment.

Despite only small differences in functional profiles, taxonomic 
differences between reactor pairs were pronounced. This is con-
sistent with findings in other ecosystems, such as the human mi-
crobiome (Huttenhower et al. 2012; Turnbaugh et al. 2009) and 
bromeliad central cavities (Louca et  al.  2016). Given the com-
parable reactor performances, this suggests that selection pres-
sures acted more strongly on maintaining functional potential 
than on conserving specific taxa in the thermodynamically con-
strained environment. This also helps explain the strong domi-
nance of D. tunisiensis in the MN reactors, despite the absence of 
major functional or operational shifts. Owing to its versatile car-
bohydrate metabolism and its acetogenic and hydrogenogenic 
capabilities (Ben Hania et al. 2012; Maus et al. 2016), this species 
is capable of carrying out nearly all steps of anaerobic digestion, 
except methanogenesis, on many of the supplied substrates.

Although the communities were taxonomically distinct yet 
broadly similar in function, principal component analysis 
of their functional profiles produced ordinations closely re-
sembling the taxonomic PCoA plots, indicating a strong link 

FIGURE 4    |    Descriptive statistics of Normalised stochasticity ratio 
(NST) values of the study's three metacommunities SL, FW and MN, 
derived from bootstrapping. Community similarity was assessed us-
ing taxonomic dissimilarity (A) and phylogenetic beta diversity (B). 
Boxplots show the median (line) and 1st/3rd quartiles (hinges), with 
whiskers extending to non-outlier values. Circles signify outlier values 
(> 1.5 * IQR).
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between taxonomy and function at finer classification lev-
els. This apparent paradox might stem from high-resolution 
functional classifications effectively acting as genomic fin-
gerprints. In the MN samples, for example, the high relative 
abundance of D. tunisiensis exerts a disproportionate influ-
ence on apparent community-level functionality through its 
versatile carbohydrate metabolism (e.g., bottom left corner of 
Figure  S9). This may partly explain why functional annota-
tion often is no better than taxonomic data for classification 
accuracy of microbial communities (Boers et  al.  2025; Xu 
et al. 2014).

4.4   |   TAN Concentration Had Limited Impact on 
the Progression of Microbial Communities

In contrast to many other studies (reviewed in Capson-Tojo 
et  al.  2020), the concentration of TAN had limited impact on 
the separation of each reactor pair (Figure  1). Inhibition by 
TAN has been well characterised and shown to primarily im-
pact the composition of the methanogenic community (Hardy 
et al. 2021; Schnürer and Nordberg 2008). It has been suggested 
that the shift from acetoclastic to hydrogenotrophic methano-
genesis, known to occur under ammonia inhibition conditions, 
is primarily driven by free ammonia and not TAN concentra-
tion (Capson-Tojo et  al.  2020; Jiang et  al.  2019; Schnürer and 
Nordberg  2008). Conversely, there is also evidence for NH4

+ 
concentration making the major contributions to inhibition in-
stead of free ammonia, in environments with pH lower than 7 
(Astals et  al.  2018). In the present study, all reactors operated 
at neutral pH (6.8–7), which kept free ammonia concentrations 
well below 0.1 g/L, a concentration mostly accepted as non-
inhibitory (Capson-Tojo et al. 2020). This level of free ammonia 
concentration is unlikely to have driven the changes observed 
in the methanogenic communities of the SL and MN reactors. 
Additionally, TAN concentration (and therefore also NH4

+ con-
centration) could also be ruled out as the major determinant for 
the changes in the methanogenic communities, as the changes 
happened symmetrically in the reference reactors compared to 
their respective experimental reactors. Regardless, the SL reac-
tors showed an increase in the relative abundance of the hydrog-
enotrophic methanogen Methanoculleus, despite free ammonia 
concentration well below 0.1 g/L, and with no apparent oper-
ational inhibition. Other factors, e.g., substrate composition, 
degree of conversion, and/or low pH (relative to common AD 
processes), might have been more important for the increase of 
this hydrogenotrophic methanogen. Acetate has been suggested 
to account for approx. 70% of methane produced in sludge-based 
biogas processes, which are consequently typically enriched 
with acetoclastic methanogens, specifically Methanosaeta 
(Jiang et al. 2018). The decrease of Methanosaeta and concom-
itant increase of Methanoculleus in SL reactors suggests either 
a decreased production of acetate as compared to the sludge 
process from which the inoculum was taken, or, alternatively, 
SAOB outcompeting acetoclastic methanogens. The relative 
abundance of bacterial genus Syner-01 (family Synergistaceae) 
increased in both SL reactors. Members within this family and 
genus have been proposed to perform syntrophic acetate oxida-
tion in sludge-based processes and to be more competitive for 
acetate over Methanosaeta at high acetate concentrations (2.5–
10 mM) (Ito et  al.  2011; Zhang et  al.  2022). Increasing acetate 

concentrations combined with low pH (Figure  S1) could have 
contributed to a diversification of acetate-degrading pathways 
in these reactors.

The FW reactors started with elevated concentrations of free 
ammonia (0.85 g/L) and slowly transitioned to levels below 
0.1 g/L. Interestingly, this did not induce a “reversal” of the 
shift from acetoclastic to hydrogenotrophic methanogenesis. 
Additionally, the decrease in TAN levels in FW-exp also ap-
peared to have no effect on its methanogenic community. This 
might be evidence that once the shift to SAO has occurred, 
it is not easily reversed, even if the free ammonia concentra-
tion returns to non-inhibitory levels. The regime shift and 
stability of microbial communities exposed to increasing 
ammonia levels in biogas processes have been extensively 
studied; however, the resilience of ammonia-inhibited com-
munities to low ammonia conditions has, to our knowledge, 
not been studied before. However, the results are in line with 
studies of soil communities, revealing that microbial com-
munities affected by stress disturbances generally do not re-
cover their pre-disturbance composition (Shade et  al.  2012). 
Additionally, the acidification of the FW reactors suggested 
that despite the stable hydrogenotrophic methanogenic popu-
lation, acetate utilisers in the community were not performing 
well. It is possible that the SAOB present in the FW reactors, 
Syntrophaceticus and Tepidanaerobacter, which have been 
suggested to be positively impacted by high free ammonia 
concentrations (Manzoor et al. 2018; Westerholm et al. 2019), 
were hampered in low free ammonia conditions.

5   |   Conclusions

The findings of this study propose that inoculum source, and 
not substrate composition, was the main contributing factor 
for the microbial community assembly in lab-scale biogas re-
actors. In contrast with previous studies, the chemical char-
acteristics of the feeding substrate failed to cause a taxonomic 
convergence in a deterministic manner in three cultures de-
rived from different biogas inocula. Additionally, TAN con-
centration appeared to not influence community structure, 
since taxonomic shifts occurred symmetrically in reactors 
differing in TAN concentrations. The observation that taxo-
nomically divergent communities remained largely function-
ally similar suggests that ecological pressures were exerted 
more strongly on function than taxonomy. Moreover, a micro-
bial community initially adapted to high TAN, and apparently 
operating with syntrophic acetate oxidation-driven methano-
genesis, appeared “locked in” and did not change as expected 
with decreasing TAN levels. A null model investigation of the 
microbial assembly process of the study's microbial commu-
nities suggested that stochastic processes, rather than deter-
ministic ones, played a more significant role in shaping their 
composition over time.
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