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A B S T R A C T

Cervid browsing influences forest ecosystems worldwide, stressing the need for wildlife management founded in 
accurate estimates of available forage. In this study, we developed the first national-scale models for Sweden to 
estimate the abundance of cervid forage by combining data from the National Forest Inventory (NFI) and 
different remote sensing (RS) datasets. We focused on six key forage tree species for cervids in Sweden: Scots pine 
(Pinus sylvestris), birch (Betula spp.), European aspen (Populus tremula), rowan (Sorbus aucuparia), oak (Quercus 
spp.), and goat willow (Salix caprea).

We combined airborne laser scanning and other auxiliary RS data with NFI data from 2016 to 2022 to model 
small tree abundance from 19 461 plots across Sweden in an area-based approach. We fitted generalized linear 
mixed models using likelihood-ratio tests to predict species-specific forage availability. Models were validated 
using an independent dataset of NFI data collected in 2023. Our models demonstrated moderate to strong 
predictive performance, with marginal R2 values ranging from 0.226 to 0.973. Model validation suggested higher 
RMSE and rRMSE values for tree species that are scarce throughout the country than for more abundant species.

We provide maps for all six modelled tree species, both at a 1 ha and a 1 km2 spatial scale, with the aim for 
them to be used in wildlife management, forestry planning, and ecological research. Our map products can for 
example help stakeholders assess a region’s spatial distribution of cervid forage and thus inform habitat man
agement and potentially mitigate browsing-related economic losses in forestry.

1. Introduction

Worldwide, members of the deer family (Cervidae) are influencing 
ecosystems and ecosystem processes through consumption of plant 
biomass (Apollonio et al., 2017; Forbes et al., 2019). In many parts of the 
world, the influence of cervid species on vegetation has grown due to 
increasing population densities over the past century (Apollonio et al., 
2017; Côté et al., 2004). In forest ecosystems, cervids may limit repro
duction and growth rates of young trees through browsing (De Vriendt 
et al., 2023; De Vriendt et al., 2021). In production forests, damage 
induced by cervids can reduce wood quality and induce long-term 
changes in canopy structure, for example through bark stripping or 
top shoot browsing (Gill, 1992; Widén et al., 2022), thereby affecting the 
timber production (Cukor et al., 2019). Due to the major impacts cervids 
can have on forest ecosystem services (i.e., timber production or carbon 
sequestration), forestry often requires management of cervid pop
ulations (Apollonio et al., 2010). The amount of browsing damage 

however may depend on other factors in addition to their population 
density, such as the amount of locally available forage (Felton et al., 
2022; Widén et al., 2024), silvicultural practices (Domisch et al., 2024), 
as well as forest and landscape composition (Nikula et al., 2021).

In the boreal biome, cervid diets are often composed of small trees, 
shrubs and herbs (Spitzer, 2019). In Scandinavia for example, moose 
(Alces alces) and other cervids feed on the common species Scots pine 
(Pinus sylvestris) and birch (Betula spp.), as well as the preferred, but 
rarer European aspen (Populus tremula), rowan (Sorbus aucuparia), oak 
(Quercus spp.), goat willow (Salix caprea), from here on abbreviated 
AROW. It is the cervids’ browsing on the top shoots of young Scots pine 
that causes the largest economic loss for Scandinavian forestry (Wam 
and Hofstad, 2007). Moose cause the majority of this damage, and a 
conclusion in many studies is that the amount of damage in Scots pine 
plantations is influenced by the availability of Scots pine and other 
forage plants, in addition to the density of the local moose population 
(Felton et al., 2022; Herfindal et al., 2015; Månsson, 2009). Despite this 
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knowledge, large-scale estimates of the availability of forage plant 
species are scarce. Instead, management decisions are based upon a 
coarse measure of alternative forage, in Sweden namely the area of 
young forest estimated to be within browsing height (Swedish Forest 
Agency, 2024). This successional stage of the forest has the highest 
concentration of trees within browsing height of moose (Bergqvist et al., 
2018; Wam et al., 2010). However, this areal measure lacks fine-scaled 
information on tree species composition and abundance, which is 
crucial for predicting browsing damage. For example, damage on Scots 
pine is negatively related to abundance of AROW at the landscape level 
(Felton et al., 2022), making specific estimates of these tree species 
disproportionately valuable for forest planning and wildlife manage
ment. Additionally, about 50 % of the tree forage ingested by moose is 
consumed in older forests (Bergqvist et al., 2018), stressing the need for 
complementary datasets on available forage (Apollonio et al., 2017).

Efficient wildlife and forest management requires precise estimates 
of available forage, and the development of remote sensing (RS) based 

forest maps (Mensah et al., 2023; Nilsson et al. 2017) facilitates op
portunities for management to obtain these across large landscapes 
(Borowik et al., 2013; Lone et al., 2014). Field data from large scale 
campaigns such as the Swedish National Forest Inventory (NFI) data can 
be successfully combined with different remote sensing sources, e.g. 
satellite images and airborne laser scanning (ALS), to link forest attri
butes measured to various remote sensing metrics for national predic
tion models (Bohlin et al., 2017; Herfindal et al., 2015; Nilsson et al., 
2017). Although not often used to map understory, low density ALS data 
appears to be a promising data source to model cervid forage within 
browsing height (here: 0.5–4 m), as it allows to derive metrics (Bohlin 
et al., 2021; Maltamo et al., 2014; Melin et al., 2016a) that approximate 
forest structure and have been used to model understory vegetation 
(Barber et al., 2016; Lucas et al., 2010; Nijland et al., 2014). In Sweden, 
many ALS based map products for the forest sector are currently 
developed yet maps with detailed information on forage availability or 
understory composition are missing. The ALS data collected in Sweden 

Fig. 1. Overview on the data collection design in this study. a) The location of Sweden on the inset Europe map and the distribution of the clusters of the NFI in 
Sweden (black points). The colored squares in the background delineate the scanning blocks of the second Swedish Laser Scanning Survey used in this study. b) An 
example of an NFI cluster. The sizes of the clusters vary between regions in Sweden and the length of the cluster sides increase towards the north from 300 m to 1800 
m. c) the individual plot design of NFI. The red square indicates the center of the plot, the two red circles (located at 45◦ and 225◦ from the center) indicate the 1 m 
radius subplots (3.14 m2 per plot) in which our response variable has been measured. We also show the 3.5 m, 7 m (temporary) and 10 m (permanent) radii in which 
the NFI collects further variables. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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are used to create, for example, the national forest attribute map 
(Nilsson et al., 2017), the soil moisture map (Ågren et al., 2021) or to 
map site indices (Mensah et al., 2023), while the National land use map 
and tree species maps are combining ALS and Sentinel 2 satellite images 
(SLU Skogsdata, 2019; Swedish Land Survey, 2020).

In this study we developed the first national models for Sweden to 
estimate the availability of forage trees (as the abundance of Scots pine, 
birch and AROW) within browsing height, by using data from the NFI in 
combination with wall-to-wall RS based auxiliary data. Finally, we 
provide species-specific maps of cervid forage and discuss the potential 
application of the underlying models in forest and cervid management 
as well as in further research.

2. Methods

2.1. The Swedish national forest inventory

The Swedish NFI has collected nation-wide data (Fig. 1a) on the state 
of the forest for over 100 years (Fridman et al., 2014; Tomppo et al., 
2010). Within this monitoring program, data are collected on forest 
attributes such as standing tree volume and tree species composition, as 
well as composition of the shrub layer and amount of tree regeneration 
(SLU Riksinventering, 2023). Data are collected in circular sampling 
plots from May until October, that are either permanent (r = 10 m) or 
temporary (r = 7 m) and a GPS position with float-level accuracy of the 
center of the plot is recorded (SLU Riksinventering, 2023). The perma
nent plots are re-inventoried every fifth year, while the temporary plots 
are inventoried only once. The NFI plots are nested in clusters of several 
plots (Fig. 1b). The sampling intensity decreases towards the north with 
increasing distances between clusters and between plots in the clusters.

In this study we used Swedish NFI data from 2016 to 2022 on both 
temporary and permanent plots on productive forest land, correspond
ing to the collection years of ALS data (see below) to model the abun
dance of small trees that are available for browsing by large ungulates. 
Productive forest land is defined by a capacity for stem wood production 
>1 m3 year− 1 ha− 1. In two 3.14 m2 subplots (r = 1 m) per main plot 
(Fig. 1c), the NFI counts the number of small trees with a minimum 
height of 10 cm and a maximal diameter at breast height of 4 cm. We 
expected this to reflect the browsing height window, i.e. the height 
window in which most of browsing occurs, which normally is defined as 
trees between 0.5 and 4 m. The two 3.14 m2 subplots are placed 2.5 m 
from the center of each main NFI plot, at a 45- and 225-degree place
ment (Fig. 1c). We only used data from non-divided NFI plots, i.e. where 
the whole plot fell in a single forest stand. In total, we used data from 
19,461 NFI plots. The mean number of small trees per main plot was 
highest for birch (mean = 0.912, SD = 3.15, ntotal = 21135), followed by 
pine (mean = 0.516, SD = 1.81, ntotal = 11965), rowan (mean = 0.351, 
SD = 1.28, ntotal = 8136), aspen (mean = 0.174, SD = 1.13, ntotal =

4032), oak (mean = 0.070, SD = 0.712, ntotal = 1615) and willow (mean 
= 0.056, SD = 0.487, ntotal = 1299, Fig. A1). Pine, birch, rowan and 
aspen are common throughout the country, while oak is mostly 
concentrated in the southern parts of Sweden. Willow abundance is low 
throughout the country. We used the sum of small trees recorded in the 
two subplots (small trees per 6.28 m2) for the six different species 
(AROW, pine and birch) as our response variables in the modelling 
process.

2.2. Remote sensing data and predictor variables

2.2.1. ALS data
ALS data used in this study was collected from 2018 to 2022, using 

with the ALS80-HP, City Mapper, City Mapper 2 and Terrain Mapper 
ALS scanners by the second Swedish Laser Scanning Survey (SLSS) in 
25x50 km laser blocks (Fig. 1a). At the end of 2022, the SLSS covered 
about 70.4 % of the country. Flight heights were at approximately 3000 
m, scanning angles were at a maximum of ± 20◦. Point densities in the 

data were 1.392 ± 0.513 points per m2 (Lantmäteriet, 2022), with a 
positional accuracy a standard error of 0.1 m in height and 0.3 m in the 
plane (Lantmäteriet, 2022). The national digital elevation model (DEM) 
was used as a reference when normalizing the above ground heights of 
ALS returns (Lantmäteriet, 2020). Points have been classified into 
ground, water, bridge, low point (noise) and high noise (e.g., cloud), as 
well as an unclassified class. As we only use data from plots that fell onto 
forested land, we did not further filter ALS point clouds based on these 
criteria but based on NFI data and landuse classes. ALS returns above 40 
m are excluded in this dataset, as they likely refer to outliers such as 
clouds or birds. Phenological mismatches due to seasonality between 
acquisition of ALS data and NFI data were largely neglectable, as the NFI 
data is only collected in the summer throughout the entire country and 
the number of trees can be assessed without consideration of 
seasonality.

Using low density ALS data prohibited us from directly measuring 
the abundance of forage (in terms of trees per plot) on the plot level, 
especially in older forests with dense canopy cover it is impossible to 
detect small trees using low density ALS data. Instead, we aimed to use 
an area-based approach to indirectly model the abundance of trees, i.e. 
derive information on forest structure from the ALS point clouds and link 
it to abundance of small trees. Therefore, we calculated point cloud 
metrics describing canopy cover, small tree cover and canopy height for 
each plot. Although up to seven returns were theoretically available 
(Lantmäteriet 2022), we decided to use first returns only, to obtain more 
robust estimates for height values and more consistent values across all 
plots and scanning blocks. We considered these variables to reflect forest 
structure (together with information regarding the main tree species 
present, from other Swedish mapping products), and therefore serve as 
predictors of young trees within browsing height, based on previous 
studies (Barber et al., 2016; Bohlin et al., 2021; Lucas et al., 2010; Melin 
et al., 2016a).

We first calculated canopy cover as the percentage of the ground 
covered by the tree canopy (see Eq. (1)). 

nfirstreturnsabove5m

nallfirstreturns
*100 (1) 

Next, we calculated the cover of potential small trees, which we called 
“small tree cover” (see Eq. (2)). 
(

%all first returns below 4m

%all first returns below 0.5m

)/

%all first returns below 4m
*100 (2) 

Canopy height in meters above ground was calculated as the 95 % 
quantile where all first returns were accumulated (commonly referred to 
as 95 % height quantile) (Bohlin et al., 2021; Melin et al., 2016b). In 
Sweden the SLSS scans forests during different phenological conditions 
of trees i.e. leaf-on (north of Sweden) and leaf-off (south of Sweden), 
which can affect the ALS point cloud characteristics, especially in de
ciduous and mixed forests. To take that into account we also created the 
metric leaf-on/leaf-off canopy cover (Imangholiloo et al., 2019), which 
we set to zero if the scanning was done during the leaf-off season (see 
section: Land use data and tree species proportions for definitions). If the 
ALS data was collected during the leaf-on period, this metric is equal to 
canopy cover. All ALS based point cloud metrics were calculated by 
clipping the point clouds to a 7 m buffer (corresponding to temporary 
plots) around the center of the NFI plots using the LidR-package (Roussel 
et al., 2020) using the cloud_metrics() − function. A detailed overview of 
all calculated predictor variables can be found in Table 1.

2.2.2. Climatic data
In Sweden, climate strongly influences forest structure and tree 

species distributions (Lenoir and Svenning, 2014; Walck et al., 2011), 
which motivated us to include bioclimatic variables into our dataset. We 
extracted two bioclimatic variables from datasets available from worldcl 
im.org (Fick and Hijmans, 2017). We extracted mean annual 

L. Graf et al.                                                                                                                                                                                                                                     International Journal of Applied Earth Observation and Geoinformation 144 (2025) 104850 

3 

http://worldclim.org
http://worldclim.org


temperature, and the mean annual precipitation sum based on the years 
1970 to 2000. Data from worldclim.org is available at a 1 km x 1 km 
spatial resolution. Data was extracted using 7 m-radius buffers around 
the center of the NFI plot. In case a plot fell into several raster cells, we 
calculated the mean values of the cells (Fick and Hijmans, 2017).

2.2.3. Terrain data
We extracted data from the ALS derived digital elevation model 

(DEM) (Lantmäteriet, 2020) for Sweden and SLU soil wetness (SW) map 
(Ågren et al., 2021), which is partially modelled using the DEM. Both 
have a 2x2m spatial resolution and have previously been used to model 
NFI data with ALS data (Bohlin et al., 2021). We extracted elevation 
from the DEM and soil wetness from the SW map using a 7 m radius 
buffer around the NFI plot and calculated mean elevation and SW of all 
raster cells intersecting the buffer. We further calculated the mean slope 
from the DEM inside the 7 m buffer.

2.2.4. Land use data and tree species proportions
Lastly, to account for the effect of forest type, we extracted data from 

the National Land Cover map using pointwise extractions (Swedish Land 
Survey, 2020), that we reclassified (see details on the reclassification in 
Table A1). We only included land-cover data that overlapped with NFI 
plots that fell on forested land or clear-cuts (defined as temporary non- 
forested areas). We also calculated the proportion of coniferous and 
deciduous tree species, as well as Norway spruce (Picea abies) pro
portions, by overlapping NFI plots using species specific volume maps 
with a 12.5 x 12.5 m spatial resolution (SLU Skogsdata, 2019). All 
proportions were calculated using the mean of all cells intersecting a 7 m 
buffer around the NFI plot.

2.2.5. Matching the NFI and remote sensing data
We included NFI plots that were inventoried within three years 

before or after ALS data collection (see Bohlin et al. (2021) for further 

details). Further, to remove outliers or NFI plots with mismatches be
tween ALS data and field inventory data from the NFI (caused by time 
difference in data collection) and thus ensure high agreement between 
NFI and RS data, we used Mahalanobis distance to quantify how volume 
and tree height from laser based National forest attribute maps deviate 
from those measured in the field, taking into account the covariance 
structure of the dataset to ensure scale- and correlation-aware compar
isons (Leys et al., 2018). Tree height and volume raster are based on the 
same laser data as our laser metrics. We removed all plots from further 
analysis that were outside the upper 95 % quantile of the calculated 
Mahalanobis distance. Further, we only used plots with a minimum 
mean point density of 1 point per m2 to ensure that ALS based metrics 
had sufficient data to represent the forest characteristics during the scan. 
Our final dataset consisted of data from 19,461 NFI plots in 4736 clus
ters and 252 scanning blocks. Due to the small size of the small tree 
subplots (2 x 1 m radius circular plots) in relation to the pulse density of 
the ALS data, it is impossible to count the small trees directly using low 
density ALS data. Therefore, we applied an area-based approach as an 
indirect way to model the number of small trees based on the correlation 
between the RS data and the measured number of small trees from the 
NFI (see e.g. Bohlin et al. (2021) for a similar application of this 
approach).

2.3. Statistical analysis

2.3.1. Modelling small tree abundance
We applied generalized linear mixed effect models (GLMMs) with a 

negative binomial error distribution and log link-function, using the 
species-specific aggregated number of small trees in the two NFI sub
plots (number of small trees per 6.28 m2) as the response variable and RS 
variables (Table 1) as predictor variables. We used the glmmTMB() 
function in the R package glmmTMB (Brooks et al., 2017). See Fig. A1 in 
Supplementary Materials A for species specific distributions of the 

Table 1 
Variables used in the modelling process with definitions, ranges, dataset source, and motivation for inclusion. The column range gives the range in the data, mean and 
one standard deviation around the mean. The range of and SD of the second order polynomials are in Table A2.

Variable Definition Range Data source Motivation

canopy height Calculated as the 95 % quantile of first 
echoes

0–31.5 m 
(13.9 ± 6.23 m)

SLSS by National 
Land survey

Reflects stand development stage and light availability

canopy cover Canopy cover as the proportion of 
echoes over 5 m from all first echoes

0–99.6 % 
(50 ± 27.4 %)

Affects understory light availability and degree of 
amensalism from larger trees

leaf on/leaf off 
canopy cover

Canopy cover with specification on 
scanning time

0–99.6 % 
(41.6 ± 31.3 %)

Accounts for structural differences between scanning 
dates (summer/spring/autumn)

small tree cover Proportion of first echoes between 0.5 
and 4 m

0–100 % (26.8 ± 19.7 %) Reflects a direct ALS based structural metric for the 
response variable

annual mean 
temperature

Mean annual temperature at the plot − 2.17 ◦C–7.97 ◦C(3.80 ±
2.28 ◦C)

Worldclim.org Temperature limits reproduction, survival and growth of 
plants

annual 
precipitation

Mean annual precipitation at the plot 436–1198 mm 
(676 ± 119.0 mm)

Precipitation limits reproduction, survival and growth of 
plants

land use class Categorical with 4 classes clear cut, deciduous forest, 
coniferous forest, 
mixed forest

Swedish 
Landcover Map

Provides information on the dominant vegetation

soil moisture Soil moisture in % 0–100 % (32.9 ± 33.4 %) SLU Soil Moisture 
Map

Soil moisture limits reproduction, survival and growth of 
plants

elevation Height above sea level 0.4 m–812 m a.s.l. (217 ±
143 m)

SLSS by National 
Land survey 

Elevation limits plant distribution due to larger variation 
in temperature

slope Elevation change to surrounding pixels 0.3–42◦ (5.61 ± 4.7◦) Slope impacts light availability and soil conditions
deciduous/conifer 

proportion
Proportion of coniferous/deciduous 
volume from total estimated volume

0–100 % (18.9 ± 23 % 
deciduous proportion)/ 
(81.1 ± 23 % conifer 
proportion)

SLU species map Tree species composition influences the effect of canopy 
cover on understory light availability and seed 
availability

Spruce proportion Proportion of spruce from total 
estimated volume

0–100 % 
(34.8 ± 26.6 %)

Second order polynomial terms We included second order polynomial terms to account for non-linear responses 
to predictor variables

Two-way interactions We included two-way interactions between land use classes as well as all ALS 
based data and their second order polynomials to account for non-linear 
gradients in our response variable in relation to the predictor

Final model The final model formulations can be found in supplementary materials A
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response variable. We fitted separate sets of models for each tree species. 
We chose the cluster of the NFI data as well as the laser scanning block as 
random intercepts to account for non-independence and hierarchy of the 
NFI data and the ALS data. Willow was observed in few plots and these 
plots were distributed among an almost equal number of clusters and 
scanning blocks which led to non-convergence and singularity issues in 
the GLMM structure described above. Instead, we fitted a generalized 
linear model (GLM) with a negative binomial distribution using the 
MASS package for willow (Ripley et al., 2013).

To account for non-linear relationships between our response vari
able and the underlying Gaussian process, we included first- and second- 
order polynomial terms of all numerical variables (Table 1) except leaf- 
on/leaf-off canopy cover into the modelling process. We included 
various two-way interactions between our predictor variables (e.g., 
canopy cover x canopy cover2, canopy cover x canopy height and canopy 
cover x canopy height2). We included interactions between landcover 
and all numerical covariates (e.g., land use x canopy height and land use 
x canopy height2) and between second order polynomials (e.g., canopy 
cover2 x spruce proportion2). We used z-score transformation to bring 
variables to similar scales and ease model convergence. We z-score 
transformed first and second order polynomial terms separately to 
ensure independence between variables and prevent strong outliers in 
the scaled data.

We first identified a global, maximal model for each tree species that 
contained as many variables as possible while ensuring convergence. For 
deciduous tree species, we used coniferous proportion as a covariate, 
whereas we used deciduous proportion as a covariate for Scots pine. 
Next, we refitted the model with removed terms and used Likelihood- 
ratio tests to compare goodness of fit between models to stepwise 
reduce model complexity based on significant contribution of predictors 
and interactions to the model, using the buildglmmTMB() function in the 
buildmer package (Voeten, 2021) (see Supplementary Materials A for 
more information). This was done to avoid overfitting and ensure that 
the model only contains terms and interactions that are important to 
model the abundance of our target species. In the elimination phase of 
the terms, we fitted models using restricted maximum likelihood. After 
the best model had been found we refitted the model using maximum 
likelihood.

2.3.2. Model assessment and validation
We validated our models with a new data set from temporary NFI 

plots and SLSS collected in 2023 (Fig. A2). Based on the model pre
dictions on this new data, we calculated root mean squared errors 
(RMSE) and relative RMSE (rRMSE) as metrics of model performance. As 
they are only inventoried once, we only used temporary plots for model 
validation. The validation dataset contained 1324 temporary NFI plots, 
and we applied the same temporal thresholds as for the training data (i. 
e. a maximal temporal mismatch of three years between data acquisition 
and NFI measurement; Fig. A2). Further, to assess overall model fit, we 
calculated Nakagawas R2 (Nakagawa et al., 2017) and Nagelkerkes R2 

(willow only) (Nagelkerke, 1991) using the performance package 
(version 0.10.6) (Lüdecke et al., 2021). As we found strong effects of the 
climatic variables on oak abundance, we further refitted the final oak 
model without these to estimate the importance of the other, non- 
climatic, variables.

2.3.3. Mapping and spatial uncertainty
Prediction of forage availability map products was done for 10x10m 

(the same spatial grain of the training unit) grids over whole Sweden, 
which corresponds to the size of the NFI plots. We applied the predict() 
function of the glmmTMB and MASS packages and predicted the mean 
estimate. We accounted for spatial autocorrelation of the prediction 
error during aggregation by following section 4.1 of Wadoux and Heu
velink (2023) and showcased this in one moose management area by 
further predicting the standard error estimated by the models on the 
maps. We then fitted variograms with a spherical function to the residual 

error of the validation dataset using the gstat package (Pebesma, 2004). 
We accounted for spatial autocorrelation of the predicted standard er
rors by applying Formula 7 in Wadoux and Heuvelink (2023) to calcu
late the average aggregated standard error, using 100 random samples 
per hectare (the maximum amount of cells available per hectare) and 
calculated the upper and lower 95 % confidence limits of the pre
dictions. The map products are presented as aggregated versions of 1 ha 
grids for moose management areas, and 1 km2 grids for the whole 
nation. For more details on map demonstration see Supplementary 
Materials A, section “Mapping and model demonstration” and Fig. A3. 
All statistical analysis was conducted in R version 4.4.1 (R Core Team, 
2024).

3. Results

3.1. Best models for small tree abundance

The best models after model selection had a marginal (fixed effects 
only) R2 ranging from 0.226 to 0.973 and a conditional (full model, 
including random effects) R2 ranging from 0.432 to 0.979 (Table 2). Pine 
abundance was strongly related to metrics derived from ALS data, 
namely small tree cover, canopy cover and their second order poly
nomials, and interactions between these (Fig. A4, Supplementary Ma
terials B Table B1). Birch abundance was strongly related to canopy 
height, canopy cover and interactions between the first and second order 
polynomials of them (Fig. A5, Table B2). We found strong effects of 
mean annual temperature on oak abundance (Fig. A6, Table B3), but 
also of canopy height, canopy cover and land use class. The refitted oak 
model without an annual mean temperature had a conditional R2 =

0.872 and a marginal R2 = 0.053, suggesting that a large amount of 
variation in oak abundance is explained by climatic variables. The 
abundance of willow was strongly linked to canopy cover, and to conifer 
proportion, as well as their first and second order polynomials (Fig. A7, 
Table B4). Likewise, rowan abundance showed a strong correlation with 
canopy cover, canopy height as well as interactions with conifer pro
portion, canopy height and cover (Fig. A8, Table B5). Abundance of 
aspen was influenced by land use class, canopy cover and height, as well 
as interactions between land use class and canopy cover, and between 
land use class and canopy height (Fig. A9, Table B6). Table 2 shows the 
overview of rRMSE and R2 for all models.

Fig. 2a–f shows the spatial predictions to illustrate the differing 
distributions of small trees of our six target species across Sweden at a 1 
km2 resolution, while Fig. 3 a-f shows the same spatial predictions in a 
specific MMA, but aggregated to a 1 ha spatial resolution. We further 
provide upper and lower 95 % confidence intervals in model predictions 
for the aggregated map products for Fig. 3. Note for example the clear 
geographical trend in Fig. 2c for oak as well as the tendency for subtle 
south-north gradients in Figs. 2d and f for pine and willow.

Table 2 
Overview on conditional and marginal Nakagawa R2 of the final GLMMs to 
predict the abundance of aspen, birch, oak, pine, rowan and willow, as well as 
root mean squared error (RMSE) and relative RMSE (rRMSE) for the predicted 
amount of small trees per plot (6.28 m2) on the independent test dataset of the 
National Forest Inventory (NFI) from 2023. For willow, we fit a GLM and report 
Nagelkerkes R2 (marked with an *) instead.

Species Conditional R2 Marginal R2 RMSEtest rRMSEtest

Aspen 0.515 0.317 1.228 7.818
Birch 0.550 0.421 2.395 3.280
Oak 0.979 0.973 0.325 6.337
Pine 0.630 0.481 1.391 3.174
Rowan 0.432 0.247 1.034 3.516
Willow − 0.226* 0.371 11.983
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Fig. 2. Predicted abundance of the final models of six tree species (aspen (Populus tremula) (a), birch (Betulus spp.) (b), oak (Quercus spp.) (c), pine (Pinus sylvestris) 
(d), rowan (Sorbus aucuparia) (e) and goat willow (Salix caprea) (f)) across Sweden at a 1 km2 spatial resolution. Grey areas indicate parts with missing ALS data from 
the SLSS. The extent of the predictions differs between this figure and the extent of the ALS – scanning blocks in Fig. 1a), as we added the data collected by the SLSS in 
2023 into the prediction besides the SLSS data that were used to build the models. We calculated the mean estimated number of small trees per km2 (trees within the 
NFI subplots from 0.1 m height to 4 cm diameter at breast height) by aggregating the cells to a 1 km2 spatial resolution and upscaling the predicted number of trees 
from plot level (6.28 m2) to 1 km2 by multiplying the mean predicted number of trees by 1 km2/6.28 m2. Note the difference in scale among the six tree species.
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3.2. Model accuracy and performance

Model validation using independent data collected by the NFI in 
2023 showed that RMSE was lowest for willow, oak and rowan 
(Table 2). rRMSE however was highest for willow, aspen and oak, the 
least abundant tree species in the dataset. Models tended to underesti
mate large amounts of trees but were moderately accurate in predicting 
small amounts of small trees (Table A3).

Residual prediction error varied by species and height class, canopy 
cover class and small tree cover class (binned, in incremental 25 % 
groups, see Table 3). In the lowest ALS based height class (0–5 m), most 
species showed negative residual error, indicating underestimation, 
with the exception of pine, which had a consistent positive residual 
error. Birch showed the strongest underestimation at this height. As 
canopy height increased, residual error generally became smaller in 
magnitude, with many species showing near-zero bias in the 10–15 m 
and +15 m ALS based height classes. Pine maintained a consistent 
positive bias across all height classes, while oak showed minimal bias 
throughout. These trends suggest that model accuracy improved with 

increasing canopy height.
At low canopy cover (0–25 %), most species exhibited a slight 

negative residual error, with birch showing the strongest negative bias. 
Pine consistently had a positive mean error across all cover classes, 
indicating a tendency for overestimation. As canopy cover increased, 
mean errors for most species moved closer to zero, suggesting improved 
model performance. Oak displayed minimal bias across all cover classes, 
while birch showed a decrease in residual error the higher canopy cover 
became. Overall, residual error was smallest at the highest canopy cover 
class (75–100 %), indicating better model accuracy with higher canopy 
cover.

For aspen and birch, the residual error showed a negative trend with 
increasing small tree cover, indicating underestimation in denser un
derstories. In contrast, oak exhibited minimal and relatively stable mean 
errors across all classes, suggesting consistent model performance. Pine 
consistently showed positive residual error up to 50–75 % small tree 
cover, shifting slightly negative at the highest class (75–100 %). Rowan 
showed a mixed pattern, while willow had modest but consistently 
negative errors that became slightly more pronounced at higher small 

Fig. 3. Lower 95 % Confidence Limits (CL), mean estimates, and upper 95 % CL for the six tree species (aspen (Populus tremula) (a), birch (Betulus spp.) (b), oak 
(Quercus spp.) (c), pine (Pinus sylvestris) (d), rowan (Sorbus aucuparia) (e) and goat willow (Salix caprea) (f)) at a 1 ha spatial resolution in the Moose Management 
Area (MMA) Kinda Östergötland 5. This specific MMA is 129.104 ha in size. We calculated the mean estimated number of small trees per 1 ha by aggregating the cells 
from a 10x10m spatial resolution to a 100x100m spatial resolution and upscaling the predicted number of trees from plot level (6.28 m2) to 1 ha by multiplying the 
mean predicted number of trees by 1 ha/6.28 m2. We calculated the upper and lower 95 % CL by following Wadeux and Heuvelink (2023).
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tree cover. Overall, model accuracy declined with increasing small tree 
cover for most species, particularly birch and aspen.

Lastly, the histograms presented in Fig. 4 show how presence and 
absence of small trees are related to common ALS based variables 
(canopy height, canopy cover and small tree cover), indicating the 
variability in tree abundance in relation to these metrics. Especially for 
canopy height and canopy cover, these differences in the distributions 
were visible, highlighting the importance of including these datasets 
into the models.

4. Discussion

4.1. Modelling small vegetation as forage abundance with NFI data and 
remote sensing

In this study, we combined NFI data and several wall-to-wall remote 
sensing-based datasets to model the abundance of tree species important 
as cervid forage. To our knowledge, studies focusing on the abundance 
of small trees within a small height window are scarce. The models we 
created enabled us to produce nationwide and region-specific forage 
abundance maps for these species (Figs. 2-3), with the aim to use them in 
future research and wildlife management in Sweden. Most of the pre
vious studies combining large NFI datasets with RS data have predicted 
traditional forest variables, such as volume and tree height of dominant 
tree layer, above ground biomass, or tree species (e.g. Bohlin et al. 
(2017) and Nilsson et al. (2017)), whereas the shrub – and small tree 
layer has been largely neglected in these studies. Additionally, often 
young forests are excluded in these applications because of low pre
diction accuracy. Recently, other variables have been modelled using 
low density ALS data, such as fuel load (0.5 first returns per m2) 
(Gonzalez-Ferreiro et al., 2017), age (0.5–1.5 pulses per m2) (Maltamo 
et al., 2020) and berry yields (Bohlin et al., 2021), same dataset as this 
work) or visibility (30 points per m2) (Zong et al., 2021a; Zong et al., 
2021b), while other studies have focused on predicting combined 
biomass indices of cervid forage, e.g., Borowik et al. (2013) or species 
independent abundance (Lone et al. 2014). With regards to this, our 

study is unique and novel as it aims to separately predict the abundance 
of low stature trees of six species with great importance as forage for 
cervids, using an area-based approach.

Our model for abundance of oak had a high predictive power 
(marginal R2 = 0.973). The Scots pine and birch models had moderately 
high predictive power (marginal R2 = 0.481 and marginal R2 = 0.421, 
respectively). For aspen, rowan and willow, marginal R2 were below 0.4 
(0.317, 0.247 and 0.226 respectively), suggesting that these models 
could not catch variation as successfully as for pine, oak and birch, but 
still have relatively high R2 values. One reason for the low explained 
deviance for some models may be that the abundance of these species is 
determined by environmental drivers that were not accounted for in our 
models, like for example soil nutrient availability (De Deyn et al., 2004). 
Further, our dataset does not discriminate between Sweden’s two major 
Betula species (B. pubescens and B. pendula) which vary in their ecolog
ical niches (Maliouchenko et al., 2007). When applying the models to 
new data, the willow model had the highest rRMSE followed by aspen. 
High error rates for these two species are not surprising, for two reasons. 
First, we modelled small scale data on 6.28 m2 using coarser remote 
sensing data that cannot be used to identify trees directly, leading us to 
use an area-based approach. Second, willow and aspen are scarce in our 
data, and other Salix species than S. caprea were not included in this 
dataset. Further, the distribution of willow and aspen also lack a clear 
geographical trend (compared to oak), which may contribute to the 
higher rRMSE. In contrast, oak has a distinct southern distribution range 
in Sweden and climatic variables (here: annual mean temperature and 
precipitation) accounted for most of the variation in oak abundance, 
which might explain the comparatively low rRMSE. By including cli
matic variables in our models, we further facilitate future extrapolation 
of forage abundance for cervids under given climate change scenarios. 
This is especially interesting for the oak model, considering that it may 
expand its distribution northward with increasing temperatures. Such 
predictions will be of value, not only for understanding cervid forage 
availability, but also how a changing climate may influence tree 
regeneration in a broader sense in this region.

Table 3 
Overview on mean residual prediction error (small trees per 6.28 m2 subplot of the NFI data) by the Airborne Laser Scanning (ALS) based canopy height class (in 5 m 
increments), canopy cover (in 25 % increments) and small tree cover (in 25 % increments) of the validation dataset of the NFI collected in 2023, which contained 
information on the number of small trees per 6.28 m2 on an independent set of plots. We provide, for each group, the mean residual error (mean) as well as one standard 
deviation (SD) of the residual error after prediction.

Canopy height Canopy cover Small tree cover

Species class mean SD class mean SD class mean SD

Aspen 0–5 m − 0.084 1.448 0–25 % − 0.081 1.138 0–25 % − 0.057 1.307
5–10 m − 0.004 0.570 25–50 % − 0.006 0.989 25–50 % 0.033 1.156
10–15 m − 0.010 0.709 50–75 % − 0.003 1.782 50–75 % − 0.005 1.173
+15 m − 0.038 1.531 75–100 % − 0.032 0.373 75–100 % − 0.218 0.727

Birch 0–5 m − 0.107 4.682 0–25 % − 0.277 3.849 0–25 % 0.055 2.552
5–10 m − 0.480 2.110 25–50 % − 0.296 1.232 25–50 % − 0.140 2.174
10–15 m − 0.059 1.757 50–75 % 0.086 1.914 50–75 % − 0.413 2.183
+15 m 0.044 1.577 75–100 % 0.069 1.110 75–100 % − 0.631 2.147

Oak 0–5 m − 0.005 0.279 0–25 % − 0.010 0.238 0–25 % 0.003 0.303
5–10 m − 0.006 0.178 25–50 % 0.039 0.495 25–50 % − 0.001 0.281
10–15 m 0.019 0.425 50–75 % − 0.001 0.303 50–75 % 0.033 0.541
+15 m 0.001 0.311 75–100 % >0.001 0.278 75–100 % − 0.020 0.056

Pine 0–5 m 0.204 1.765 0–25 % 0.201 2.194 0–25 % 0.108 1.370
5–10 m 0.112 1.955 25–50 % 0.204 1.534 25–50 % 0.128 1.567
10–15 m 0.149 1.237 50–75 % 0.036 0.733 50–75 % 0.080 1.204
+15 m 0.043 1.055 75–100 % 0.012 0.327 75–100 % − 0.025 0.559

Rowan 0–5 m − 0.044 0.867 0–25 % 0.018 0.965 0–25 % 0.033 0.930
5–10 m 0.134 1.091 25–50 % 0.113 0.994 25–50 % − 0.035 0.802
10–15 m − 0.005 0.591 50–75 % − 0.008 1.211 50–75 % 0.076 1.893
+15 m − 0.004 1.251 75–100 % − 0.046 0.898 75–100 % − 0.098 0.461

Willow 0–5 m − 0.078 0.294 0–25 % − 0.066 0.273 0–25 % − 0.021 0.201
5–10 m − 0.086 0.258 25–50 % − 0.052 0.221 25–50 % − 0.014 0.591
10–15 m − 0.059 0.117 50–75 % − 0.026 0.215 50–75 % − 0.098 0.276
+15 m 0.017 0.498 75–100 % 0.010 0.611 75–100 % − 0.123 0.246
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Fig. 4. Density distributions of plots with no small trees (trees within the subplots from 0.1 m height to 4 cm diameter at breast height) (red) and small trees present 
(blue) across all plots used to train the models (n = 19.461) from the NFI data against three common forest structural metrics based on Airborne Laser Scanning data 
(canopy height, canopy cover and small tree cover) for all tree species. Panels labeled with capital A show histograms of canopy cover for aspen (Populus tremula) (a), 
birch (Betulus spp.) (b), oak (Quercus spp.) (c), pine (Pinus sylvestris) (d), rowan (Sorbus aucuparia) (e) and goat willow (Salix caprea) (f). Likewise, panels labelled with 
B show distributions of canopy cover, and panels labelled with C show the distribution of small tree cover in the data used to train the models. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4.2. Inclusion of ALS metrics into the models

ALS data has many applications in ecological research (Davies and 
Asner, 2014; Simonson et al., 2014; Vierling et al., 2008). ALS based 
metrics ranked amongst the strongest predictors for abundance of most 
tree species, except for oak, in our study. This highlights that structural 
forest metrics derived from ALS data provide a suitable data source to 
model distributions of small trees within the browsing window. Lone 
et al. (2014) modelled and predicted rowan, oak and willow biomass 
with correspondingly high accuracy using LiDAR data at a similar low 
point density, but at a coarser spatial scale (50x50m) than ours 
(10x10m). One important step forward would be to estimate (tree spe
cific) forage biomass (Johnson et al., 2022) or even to model macro
nutrient content, as food choice and thus browsing damage may depend 
on such variables (Felton et al., 2016; Felton et al., 2020).

4.3. Management implications

Holistic and efficient wildlife management needs to consider a wide 
landscape scale context (Beguin et al., 2016). We provide wall-to-wall 
remote sensing-based models and spatially explicit maps (Figs. 2–3) 
that can be used in forest and wildlife management to provide, after 
testing their usability for management, much needed input for decision 
making. Within this context, it is important to note that our models or 
approach to model forage abundance could be applicable, after re- 
parameterization, in many countries in the boreal zone, and poten
tially outside of it, to support forest and wildlife management. Further, 
our modelling approach could be combined with, for example, space
borne LiDAR data and satellite imagery to provide homogenized maps 
for larger ecoregions or even continents (May et al., 2024; Potapov et al., 
2021; Ziegler et al., 2023).

Since 2012, Sweden has an ecosystem-based and adaptive manage
ment strategy for moose management. This means that temporal and 
spatial changes in key factors need to be continuously monitored, and 
the data should be fed into the management cycle in order for decisions 
to be adaptive and contributing to reaching set management goals 
(Bjärstig et al., 2014). Decision makers within Swedish moose man
agement areas (MMA) are currently provided with information from the 
Swedish Forest Agency regarding the area of young forest within the 
browsing window (0.5 m–4 m), and a prognosis of how this areal esti
mate will change in the next few years. Our maps may provide suitable 
complimentary data for this prognosis, as the maps not only show forage 
availability across all forest land regardless of forest age or height class, 
but also because they provide information for each of the six key forage 
species specifically (AROW, birch, pine). Although novel and tailored 
towards usage in wildlife management, the suitability of this dataset to 
inform wildlife management is not given and data should be used with 
its limitations in mind. Although young forests normally contain higher 
densities of forage compared to older forests, they often only cover a 
small fraction of the available landscape for cervids and moose may 
consume up to 50 % of their tree forage in older forests, further high
lighting the importance of considering all forested land in forage esti
mates (Bergqvist et al., 2018). Which tree species that are available also 
matters, as some have a stronger influence on mitigating damage on e.g. 
Scots pine than others (Bergqvist et al., 2014; Felton et al., 2022; Felton 
et al., 2020; Wallgren et al., 2013; Widén et al., 2024). The next step is to 
apply our models to see how they improve our understanding of the 
driving factors behind damage on production trees in Sweden, using 
national scale monitoring data available for forest management. Further 
research might also aim to test the models’ suitability to help explain 
variation among moose populations in terms of performance indicators 
used in regular game monitoring, such as calf body mass and 
reproduction.

4.4. Outlook

Our models and maps may be directly used in assessments of cervid 
ecology, for example regarding the spatial variation of cervid space use 
and browsing damage. For future research, we now have estimates of the 
amount of available tree forage for cervid species in forest landscapes on 
a much finer scale than before, which we believe will help disentangle 
further questions about the roles of alternative forage on browsing 
damage on Scots pine posed in many studies (Bergqvist et al., 2014; 
Felton et al., 2022; Felton et al., 2020; Wallgren et al., 2013; Widén 
et al., 2024). Note however, that for management our maps may be 
unsuitable for usage at their native resolution (10x10m) for many 
questions, but instead more suitable if used when aggregated to a 1 ha or 
1 km2 spatial resolution (Figs. 2–3). Further, Lone et al. (2014) showed 
that their local predictions of forage improved modelling of moose 
space-use significantly. Therefore, we look forward to the implementa
tion of our high-resolution maps into, for example, future research on 
the spatiotemporal behavior of moose and other cervids.

To further enhance our understanding of the foodscape for cervids, 
and how browsing damage on Scots pine occurs within the Fenno
scandian context, we need models of available forage on non-forested 
land (e.g. mires), e.g. as in Borowik et al. (2013). It is important to 
note that our maps only consider forested land. Therefore, the landscape 
level accuracy of forage availability of our maps heavily depends on the 
proportion of the landscape that is non-forested land. Lastly, in Sweden 
new national airborne laser scanning data for the same area is collected 
every 5–10 years. Considering forest growth and disturbances (natural 
and manmade), we recommend that our maps should be updated with 
every new round of the Swedish laser scanning survey. With this in 
mind, it is important to note that Swedish ALS data has a moderately low 
density (1–2 points per m2) and an increased point cloud density could 
help model understory vegetation better.

5. Conclusion

We provide the first national level models and maps of abundance of 
aspen, birch, oak, Scots pine, rowan and goat willow within the 
browsing height window, using an extensive dataset from the Swedish 
National Forest Inventory. These tree species are important in the 
foraging ecology for many cervid species, especially moose. Therefore, 
our maps should become a helpful tool to support informed decision 
making in wildlife management in Sweden. In addition, the models we 
provide can be applied by forest and wildlife management directly on 
new data as well. Further, the use of ALS data in the modelling process 
often revealed strong responses of small tree abundance to the ALS based 
structural metrics of the first and second order polynomials, as well as 
their interactions with other variables. This highlights the importance of 
including the ALS based forest structural metrics into models for small 
tree abundance. With this in mind, the models we provided in this study 
showcase an example of how to indirectly model natural resources that 
cannot be sensed directly through, for example, low density ALS data, 
but still can provide insights into distributions of forage abundance 
when modelled appropriately.

CRediT authorship contribution statement

Lukas Graf: Writing – review & editing, Writing – original draft, 
Visualization, Validation, Software, Methodology, Investigation, Formal 
analysis, Data curation. Inka Bohlin: Writing – original draft, Valida
tion, Supervision, Resources, Project administration, Methodology, 
Conceptualization. Per-Ola Hedwall: Writing – review & editing, 
Writing – original draft, Visualization, Validation, Supervision, Meth
odology, Investigation, Funding acquisition, Conceptualization. Jonas 

L. Graf et al.                                                                                                                                                                                                                                     International Journal of Applied Earth Observation and Geoinformation 144 (2025) 104850 

10 



Dahlgren: Writing – review & editing, Resources, Project administra
tion, Data curation. Annika M. Felton: Writing – review & editing, 
Writing – original draft, Visualization, Validation, Resources, Project 
administration, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgments

We would like to thank Jonas Jonzen and Mikael Egberth for their 
support. Further, thanks to Cesko Voeten with his help while fitting the 
models with the buildmer package. We also thank Ronny Löfstrand and 
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Borowik, T., Pettorelli, N., Sönnichsen, L., Jędrzejewska, B., 2013. Normalized difference 
vegetation index (NDVI) as a predictor of forage availability for ungulates in forest 

and field habitats. Eur. K. Wildl. Res. 59, 675–682. https://doi.org/10.1007/s10344- 
013-0720-0.

Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., 
Skaug, H.J., Machler, M., Bolker, B.M., 2017. glmmTMB balances speed and 
flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 
9, 378–400. https://doi.org/10.32614/RJ-2017-066.
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Honkavaara, E., Holopainen, M., Hyyppä, J., Vastaranta, M., 2019. Characterizing 
seedling stands using leaf-off and leaf-on photogrammetric point clouds and 
hyperspectral imagery acquired from unmanned aerial vehicle. Forests 10, 415. 
https://doi.org/10.3390/f10050415.

Johnson, L.K., Mahoney, M.J., Bevilacqua, E., Stehman, S.V., Domke, G.M., Beier, C.M., 
2022. Fine-resolution landscape-scale biomass mapping using a spatiotemporal 
patchwork of LiDAR coverages. Int. J. Appl. Earth Obs. Geoinf. 114, 103059. https:// 
doi.org/10.1016/j.jag.2022.103059.
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