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ABSTRACT

Antibiotics are omnipresent contaminants in aquatic systems and can impact key ecosystem processes. Meth-
anogenesis by anaerobic Archaea is such a process that has gained attention because antibiotics can increase their
methane (CHy) production dynamics — a 28-fold more potent greenhouse gas than carbon dioxide. Since such
effects may depend on assemblage composition and antibiotic resistance, we investigated antibiotic effects on
methanogenesis in sediments from a negiglibly impacted site (reserve) and downstream of a wastewater treat-
ment plant (WWTP). Prior to incubation, short-term pre-treatment with antibiotics aimed to stimulate adaptive
responses. During incubation, antibiotics reduced methanogenesis speed in WWTP sediment (—7 %) but
increased it in the reserve (10 %), with site-specific patterns linked to differences in prokaryotic assemblage
composition and their gene expression. Methanomicrobia, a key methanogenic group, showed contrasting re-
sponses across sites, likely mediated by prokaryotic substrate dynamics, particularly within the acetate pathway.
Pre-treatment effects on methanogenesis dynamics were minor (maximum Bayesian factor of 3.6), but subtle
shifts in prokaryotic activity and composition were observed. Elevated antibiotic resistance gene expression in
WWTP sediments reflected historical exposure but did not mitigate antibiotic impacts on methanogenesis. These
findings show the vulnerability of methanogenic assemblages to antibiotics despite potential adaptations and

emphasize the risks posed by pharmaceutical pollution to critical freshwater ecosystem functions.

1. Introduction

Pharmaceuticals are extensively utilized in human and veterinary
medicine (Klein et al., 2018; Van Boeckel et al., 2014). Despite their long
history of use, they are recognized as organic micropollutants of
emerging concern in fresh- and groundwaters (Lapworth et al., 2012).
Substances enter these ecosystems via various point and non-point
sources including wastewater treatment plant (WWTP) effluents
(Parra-Saldivar et al., 2021), manure application (Watanabe et al.,
2010), or aquaculture (Cabello, 2006) and can spread via
groundwater-surface water exchange (Buerge et al., 2009). Among
pharmaceuticals, antibiotics are of particular concern due to their
ubiquity in aquatic environments (Danner et al., 2019), where they

* This paper has been recommended for acceptance by Yucheng Feng.

favour the development and horizontal transfer of antibiotic resistance
genes (ARGs) (Novo et al., 2013) and induce direct toxicity towards
microbes (Ding and He, 2010) that may propagate bottom-up
(Bundschuh et al., 2017, 2009; Maul et al., 2006).

One freshwater process that has recently received growing attention
— also in the context of antibiotics - is the production of methane (CHy).
Methane has 28 times the global warming potential of carbon dioxide
(COy), contributes ~30 % to the observed global warming (IPCC, 2021)
and is largely emitted from natural freshwater and wetland systems
(Saunois et al., 2020). Although aerobic CH4 production is reported
(Mao et al., 2024), CHy is mainly synthesized by Archaea in anaerobic
sediments in a multi-step cascade of hydrolysis, acidogenesis and ace-
togenesis involving diverse bacteria (Conrad, 2020). Antibiotics
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accumulate in freshwater sediments (Kerrigan et al., 2018; Zhou et al.,
2011), exposing these bacteria and methanogenic Archaea directly.
Despite a limited number of studies, current evidence suggests that an-
tibiotics can increase CH4 production by changing chemical conditions
(Zhang et al., 2023) or directly affecting bacteria that produce meth-
anogenic substrates (Bollinger et al., 2021). However, these studies
often overlook pre-exposure of assemblages which stimulates the
development and horizontal transfer of ARGs (Koonin et al., 2001;
Ochman et al., 2000). In addition, toxicants can induce a shift towards
more tolerant species (Tlili et al., 2016) and can alter the activity of
assemblage members by inducing metabolic dormancy to withstand
stressful conditions (Chebotar’ et al., 2021). This in turn can shape the
underlying functional capacity of communities and consequently also
CH4 production. These considerations question whether the effects
observed on methanogenesis in presence of antibiotics are modified in
direction and magnitude if communities are stress-adapted.

To address this, we compared a negligibly impacted assemblage (i.e.,
no pre-exposure to antibiotics) with one sampled downstream of a
WWTP (stress-adapted). In the laboratory, both assemblages were either
cultured with or without an antibiotic mixture for three weeks to pro-
voke a short-term adaptation. Subsequently, these communities were
incubated anaerobically in presence of increasing concentrations of
antibiotics (three levels including toxicant-free control). We hypoth-
esised that, due to pre-existing adaptation, effects of antibiotics on CH4
production are less pronounced in the WWTP assemblage and that the
adaptation invoked by the antibiotic pre-treatment is more effective due
to horizontal transfer of ARGs (Koonin et al., 2001; Ochman et al.,
2000). Mechanistic insights were gained via compound-specific stable
isotope analysis (i.e., proxy for utilized substrates), 16S rRNA meta-
barcoding (i.e., active prokaryotic community) and gene expression
profiling (i.e., active ARGs and metabolic processes).

2. Material & methods
2.1. Sampling sites and pre-treatment

Sediment was taken from the top ~20 cm layer of a site located in the
Palatinate Forest-North Vosges Biosphere Reserve within the premises of
the Eusserthal Ecosystem Research Station upstream from anthropo-
genic impacts (49°25' N; 7°96'E, called reserve henceforth) and a site
~500 m downstream of a WWTP discharge point close to Karlsruhe,
Germany (49°4'N; 8°20'E, called WWTP henceforth). Unlike the reserve
site, the latter site was assumed to have a diverse resistome due to
constant exposure to antibiotics as shown in an earlier study (Brown
et al., 2019). In 2 L beakers, 700 g of these sediments (n = 6) were
pre-treated with 1 L unfiltered pond water (~90 pS cm™!) from the
reserve site dosed with 5000 pg L™ of a five-component mixture
(amoxicillin, ciprofloxacin, erythromycin, sulfamethoxazole, and tetra-
cycline each at 1000 pg L’l) (Bollinger et al., 2021). The pre-treatment
lasted for three weeks in total darkness at 20 + 1 °C with weekly renewal
of the water while keeping the sediment wet to ensure constant exposure
to antibiotics. Samples of both old (after a week) and new water were
stored at —80 °C for chemical analyses (see 2.3). In the following, we
refer to this antibiotic treatment as “pre-treatment”, while the term
“treatment” is used to describe antibiotic treatments at different con-
centration levels employed during the incubation study (see 2.2).

2.2. Incubation study

For the incubation study, pre-treated sediments were provided with
fresh organic substrate in form of 20 g dry leaf powder (Alnus glutinosa)
per kg wet sediment (Bollinger et al., 2021). Subsequently, 10.12 +
0.46 g of this sediment were transferred to crimp top serum bottles (n =
20, V = 100 mL, ND20, VWR, Avantor Inc., six additional replicates for
metabarcoding and gene profiling). Thereafter, 30 mL unfiltered pond
water at pH 7 amended with sum concentrations of 0, 5, and 5000 pg L™*
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of the same five-component antibiotic mixture at equal mass fractions
(designated as control, low, and high, respectively, Table S1) were
added to the test system. This mixture represents five common antibiotic
classes with relevant substances within these classes and consequently a
wide range of toxic modes of action. The low concentration aligns
closely with field-relevant levels (Danner et al., 2019), whereas the high
concentration simulates more extremely polluted ecosystems (Fick et al.,
2009). The headspace of the serum bottles was flushed with Ny and
hermetically sealed to warrant near-anaerobic conditions. Incubations
proceeded in total darkness at 20 °C for 56 days. Water samples for
antibiotic concentration analysis were collected at the start, middle, and
end of the experiment and stored at —80 °C until further analysis.

2.3. Antibiotic analyses

Antibiotic concentration analysis followed Bollinger et al. (2024).
Briefly, water samples were centrifuged and aliquots were transferred to
amber vials, spiked with mass-labeled internal standards and methanol,
and analyzed as direct injection using an ExionLC™ AD UHPLC coupled
to a SCIEX Triple Quad™ 6500 tandem mass spectrometer. Quantifica-
tion employed calibration standards with linearity of 0.9960-0.9994
(LOQ 0.4-5.0 pg L7, Table S2). Chemical recovery was on average
94-103 % for amoxicillin, ciprofloxacin, erythromycin, sulfamethoxa-
zole, and 50 % for tetracycline, with the relative standard deviations of
4.2-9.3 % (n = 7, Table S2). Similar results were also obtained in the
samples of MilliQ water spiked with the target antibiotics (n = 4,
Table S2). Degradation was significant (51-84 % of initial concentra-
tion), with most of the target antibiotics below their respective LOQs by
mid-to end-experiment (Table S3).

2.4. Greenhouse gases

The greenhouse gas measurements were carried out as described
previously (Bollinger et al., 2024, 2021). Each week, 100 pL of head-
space gas (V;) from each incubation system was analyzed for CH4 and
CO, using a cavity-enhanced laser absorption spectrometer (UGGA,
model 915-0011, Los Gatos Research Inc., USA) in a closed-loop setup.
To determine the mole fraction in the headspace (xy), we adjusted the
equilibrium mole fraction (xe, ppm) of the sample gas and loop gas,
accounting for the loop volume (Vj, calibrated with certified CH4 and
CO, reference gases, Messer Industriegase, Germany) and the mole
fraction of the background gas (x¢):

V,
X = <7'> " (%e - X0) + Xe m

The amount of dissolved CH4 and CO; (ny,) was then estimated with
Henry’s law:

ny = KH *Xp - Vw'fl (2)
In this context, V, represents the water volume, f; is a conversion factor

(107! Pa ppm 1), and Ky is the Henry’s law constant adjusted for the test
temperature of 293.15 K (Lide, 2004; Weiss, 1974):
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In (KHC,M) = —115.6477 + 155.5756 (ﬁ)

Tk
—6.1698 (m>

1 Te
+65.2553 - 1In (ﬁ)

(CRD)]

Tx

In Ky, ) = —58.0931 +90.5069 ( .

-1
Tk
) +22.294:In <m> (3.2)

Finally, CH4 and CO5 concentrations were standardized to the sedi-
ment dry-weight:
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where V}, represents the headspace volume, R is the universal gas con-
stant, ms is the wet sediment weight, and @y is the sediment’s gravi-
metric water content.

2.5. Stable isotopes

Compound-specific isotope ratios were measured for five replicates
per treatment on a weekly basis. Headspace gas was injected into a gas
chromatograph (GC, Trace GC Ultra, Thermo Fisher Scientific, Ger-
many) at 32 °C and separated on a capillary column (27.5 m length,
0.32 mm internal diameter, 10 pm film thickness, Agilent J&W Por-
aPLOT Q, USA) connected to a ConFlo IV interface, which linked to a
Delta V Advantage isotope ratio mass spectrometer (IRMS, Thermo
Fisher Scientific, Germany). Injection volumes were adjusted to CH4 and
CO4 concentrations in the samples to maintain consistent peak areas.
Isotope ratios were reported in 8-notation relative to the Vienna Pee Dee
Belemnite (VPDB) standard:

613(:: < Rsample _

reference

1) -1000 %o 5

These 5-values were then used to calculate the fractionation factor:

~ 8'*C-CO, + 1000

= 2 6
8'3C-CH,4 + 1000 ©)

e

CH4 production primarily occurs through hydrogenotrophic meth-
anogenesis (HM) from H; (indicated by higher a) and acetoclastic
methanogenesis (AM) from acetate (indicated by lower a) (Whiticar,
1999).

2.6. RNA processing

As previously described (Bollinger et al., 2021), RNA was isolated
from 2 g of sediment from each of the six replicate samples (see section
2.1) using the RNeasy PowerSoil Total RNA kit from Qiagen, adhering to
the manufacturer’s protocol. The RNA concentration was quantified
with a Nanodrop2000 spectrophotometer (Thermo Fisher Scientific,
Germany), and the integrity of the RNA was evaluated using the Agilent
Bioanalyzer 2100 system.

2.7. Metabarcoding

To analyze the prokaryotic community in a comparable fashion, we
followed our published protocol (Bollinger et al., 2021). Briefly, 2 pL of
RNA extract from each replicate was converted to cDNA using the iScript
synthesis kit (BioRad) with random primers. The hypervariable V4 re-
gion of the 16S rRNA gene was amplified using primers 515Fm
(5-GTGYCAGCMGCCGCGGTAA-3) and 806Rm (5-GGACTACNVGG
GTWTCTAAT-3', Walters, 2015). For each replicate, 2 pL of cDNA ran
through a program of initial activation at 98 °C for 30 s, followed by 26
cycles of 98 °C for 10 s, 63 °C for 30 s, and 72 °C for 30 s, and a 5-min
final extension at 72 °C. To reduce PCR bias, three technical replicates
were pooled afterward, and prepared for sequencing using the Next
Ultra DNA Library Prep Kit for lllumina (NEB, USA). Library quality was
checked with an Agilent Bioanalyzer 2100 system, and sequencing was
performed on an Illumina MiSeq (2x300 nt, StarSeq, Mainz, Germany).

Reads were trimmed with cutadapt v1.18 (Martin, 2011) and then
processed through the DADA2 pipeline (Callahan et al., 2016) with
specific parameters: truncLen = ¢(192, 217), maxEE = 1, maxN = 0, and
minOverlap = 20. Chimera were removed using vsearch v2.13.7
(Rognes et al., 2016). Taxonomic classification was assigned to the
resulting amplicon sequence variants (ASVs) using the SINTAX algo-
rithm (Edgar, 2016) against the Greengenes database v13.5 (McDonald
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et al., 2012). ASVs lacking taxonomic classification or with fewer than
five occurrences across all samples were excluded (to eliminate potential
artifacts, as per Bokulich et al. (2013)). The final ASV-to-sample matrix
was used for statistical analyses (see section 2.9).

2.8. Metatranscriptome

Following earlier reports (Bollinger et al., 2024), approximately 2 pug
of total RNA from each sample was used as the starting material for gene
expression analysis. rRNA was selectively removed with the NEBNext
rRNA Depletion Kit for Bacteria, following the manufacturer’s in-
structions. The mRNA-enriched samples were then prepared for
sequencing using the NEBNext Ultra II Directional RNA Library Kit. The
quality-checked libraries were sequenced on an Illumina NextSeq 2000
(2x150 nt, StarSeq, Mainz, Germany).

The quality of the raw reads was assessed using FastQC (Andrews,
2010) and MultiQC (Ewels et al., 2016), then trimmed with Trimmo-
matic v0.39 (Bolger et al., 2014), using the following parameters:
ILLUMINACLIP: NexteraPE-PE.fa:2:30:10, LEADING: 3, TRAILING: 1,
SLIDINGWINDOW: 4:20 and MINLEN: 50. Residual rRNA were filtered
using SortMeRNA v4 (Kopylova et al., 2012) with default settings. The
mRNA reads were then assembled into contigs using Trinity v2.15.1
(Grabherr et al., 2011). Functional annotation used the SqueezeMeta
v1.6.3 pipeline (Tamames and Puente-Sanchez, 2019), with assignments
made to KEGG pathways. To analyze the ARG profile, open reading
frame sequences were queried using BLAST against the CARD database
(Alcock et al., 2023).

2.9. Statistics

CH4 production over time was modelled as generalized logistic
function (Bollinger et al., 2024; Grasset et al., 2021)
L-A
CHy(t)=A+——— 2 %)
(1 + ve kt=2))v

where A and L are the initial and final concentrations of CHy, k and 7 are
kinetic parameters and v modulates the symmetry of the curve.
Following our previous rationale (Bollinger et al., 2024), t (i.e., time
until the inflection point is reached) is considered the most relevant
endpoint of toxicity as it captures the first two successional phases of the
incubation that involve the most relevant prokaryotic processes. Models
were fit with the R package “brms” (version 2.20.4, chains: 4, iterations:
20000, thinning: 10, warmup: 16000)(Biirkner, 2017). Previously
established priors (Bollinger et al., 2024) were used and sensitivity
(Fig. S1) as well as validity (Fig. S2) were assessed likewise. For the
latter, the standard variation (o) was defined using a scaling factor
(fscale) determined with nonlinear least squares regression

dCH,4
Cdt

The models were 0.53 % inaccurate and 0.67 % imprecise.

Uncertainty in differences in T between treatments, was assessed via
contrasts of the posterior distribution as effect percentages. Posterior
distributions were described using the maximum a posteriori estimate
(MAP) and the 95 % highest-density credible interval (HDI). The Bayes
factor (BF) was used to express the posterior odds of treatment effects on
7, indicating the likelihood of H; (e.g., treatment differences) versus Hp
(e.g., no treatment differences) given the data. For clarity and compa-
rability, BF values were expressed as >1, irrespective of effect direction.

Treatment effects on relative abundances from metabarcoding ana-
lyses were normalized to the control (ARA) for each treatment combi-
nation, allowing for consistent comparison across time points and
treatments:

o :fxcale " (73)
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ARA=EL (10)

where RAT; and RAc; represent the relative abundance of ASVs in a
treatment and control, respectively. Non-metric multidimensional
scaling (NMDS) was performed on Hellinger-transformed relative
abundances, based on Bray-Curtis dissimilarities, using the R package
"vegan" (version 2.6-4) (Oksanen et al., 2022). Statistical significance
was assessed using permutational multivariate analysis of variance
(PERMANOVA) (Anderson, 2001), while species contributions to
between-group dissimilarities were determined using SIMPER. Meta-
transcriptional data was analyzed as transcripts per million (TPM) with
the R package "SQMtools" (version 1.6.3) (Puente-Sanchez et al., 2020).

All analyses were conducted in R (4.3.1) (R Core Team, 2023). Data
and code are publicly available at Zenodo (https://zenodo.org/doi/10.5
281/zenodo.14679433). Metabarcoding and metatranscriptome
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(https://www.ncbi.nlm.nih.gov/bioproject/PRINA1207865).
3. Results & discussion

3.1. Site-specific effects of antibiotics on methanogenesis without short-
term adaptation

In absence of antibiotics, the CH4 production was faster (~44 %) and
higher (~74 %) at the WWTP site compared to the reserve (Fig. S3).
While the latter might be driven by the availability of additional sub-
strates in the sediment, the former might be a characteristic of groups
predominant in this local assemblage. Notably, the WWTP sediment had
a lower proportion of Firmicutes and Bacteroidetes but higher relative
abundances of Proteobacteria and Acidobacteria (Fig. S4). However,
these differences were less relevant at test start and thus might be
evoked during the adaptation process to the anaerobic test system. These
assemblage differences can also be influential in explaining the observed
effects of antibiotics discussed in the following.

sequence data have been deposited in the NCBI BioProject database While the reserve sediment replicated antibiotic-enhanced
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methanogenesis (Bollinger et al., 2024, 2021), the community from the
WWTP site showed the opposite (Fig. 1). At the high antibiotic con-
centration, CH4 production was 10.1 % (6.9-13.8) faster for the reserve
but —7.1 % (—15.8 to 2.8) slower for the WWTP (Fig. 1). Moreover,
effect dynamics (i.e., CH4 concentration over time) were also inversed
between sites. The reserve sediment initially showed reductive effects of
antibiotics (—12 %) followed by positive effects during the exponential
phase (33 %). Conversely, the WWTP sediment initially showed higher
CH4 production at the high concentration (32 %), which could indicate a
higher initial antibiotic tolerance. Indeed, both expressed transcripts
and number of ARGs were 1-2 orders of magnitude higher in the WWTP
assemblage (Fig. 2) most likely as a consequence of their prior exposure
towards antibiotics selecting for resistant species (Bengtsson-Palme and
Larsson, 2016). In contrast, the positive effects on methanogenesis dy-
namics at the high concentration for the reserve sediment might indicate
recovery because antibiotics were mostly undetectable in the middle of
the experiment. The increase might therefore be explained by impaired
substrate competitors (or competitive metabolic pathways) (IMcNichol
et al., 2024) during the initial phase and a higher proportion of available
substrate turned into CHy. This would be in line with our previous hy-
pothesis (Bollinger et al., 2024), that the presumed effect pathway of
antibiotics on methanogenesis is mainly via bacteria-mediated substrate
provision, instead of having a considerable direct toxic effect on
methanogens. This is also underpinned by hydrolysis (mainly carried
out by bacteria) being considered as rate-limiting step (Gonzalez et al.,
2018). This fact complicates interpretation of the observed opposite
effect patterns between sites given that hydrolysis is the first step in
providing substrates for virtually every methanogenic pathway.
Furthermore, linking structure to function in distant but interconnected
metabolic systems is not trivial.

Nevertheless, both prokaryotic assemblages were significantly
affected by antibiotics on structural level (p < 0.0001), while effects on
the composition within the methanogenic Euryarchaeota were less
pronounced (i.e., p = 0.216 for reserve and p = 0.645 for WWTP, Fig. 3).
At the WWTP, contributions to dissimilarity were rather evenly
distributed, for example, across classes of Proteobacteria (i.e., Alphap-
roteobacteria, Betaproteobacteria, and Gammaproteobacteria), while
the classes Clostridia, Bacteroidia and Methanomicrobia contributed the
most to assemblage dissimilarities at the reserve. Methanomicrobia,
despite the lack of a significant assemblage shift within Euryarchaeota,
were the class with the largest negative effects in the WWTP sediment
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(—40 %, Fig. 3) and showed the second largest positive effects in the
reserve (113 %, but only in the pre-treated assemblage). This pattern
aligns with observations in methanogenesis (i.e., reduction for WWTP
and increase for reserve, Fig. 1) and thus underpins the hypothesis of
assemblage-mediated effects on methanogenesis with Methanomicrobia
as the most important class. Understanding causes of this dissimilar
response of Methanomicrobia between assemblages is thus a key
objective for further research and might require physicochemical char-
acterization, including concentrations of substrates. However, their
<3.3 % dissimilarity contribution is still small compared to more
abundant classes (e.g., Clostridia and Bacteroidia, Fig. 3), which may
contribute indirectly to an altered methanogenesis by modifying avail-
able substrates.

Given uncertainties in inferring substrates from taxonomy, we
focused instead on enzymatic activities through gene profiling. For both
assemblages, methyl-coenzyme M reductase (MCR) was the most
expressed enzyme of the CH4 pathway which synthesizes but also de-
composes CHy (Fig. 4). Midway through the experiment, the patterns of
MCR effects closely mirrored those seen in Methanomicrobia. Both MCR
activity and Methanomicrobia were reduced in the WWTP assemblage,
while levels remained unchanged in the reserve assemblage (Figs. 3 and
4). A nearly identical pattern was observed for acetyl-CoA decarbon-
ylase/synthase complex (ACDS), highlighting the importance of the
acetoclastic pathway due to its importance for acetogenesis and acetate
cleavage (Grahame et al., 2005). In support of this, the expression of
acetate kinase and phosphate acetyltransferase showed disparate effect
patterns between sites. While these enzymes were reduced at all time
points in the WWTP assemblage, effects in both directions were present
in the reserve. These enzymes catalyze key steps in the conversion of
acetate into acetyl-CoA (Gorrell et al., 2005; Lipmann, 1944), which is
subsequently processed into CH4 and CO2 during acetoclastic meth-
anogenesis. A reduction in expressions of ACDS, acetate kinase and
phosphate acetyltransferase, as observed in the WWTP assemblage,
could indicate a lower acetoclastic methanogenesis, and may be a key
insight in explaining the observed reductions in overall methane pro-
duction. In line with literature (Conrad, 2020), acetate likely dominated
as substrate for methanogenesis midway through the incubation, which
is supported by lower fractionation factors of compound-specific 5'3C
values of CH4 and CO» (Fig. S5). Although differences to the control in
513C were present at the high concentration for both assemblages, these
differences can also be driven by the different successional stage due to
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E. Bollinger et al.

Environmental Pollution 383 (2025) 126828

Mid End NMDS
Clostridia (12.6%) - * » |
Bacteroidia (11.9%) - : 3 & ' 2
Methanomicrobia ( 3.3%) - —— P | 5
Gammaproteobacteria ( 3.1%) 4 == == i 3
t:Unassigned ( 2.4%) 4 —¢— . i P
Betaproteobacteria ( 2.2%) 4 B3 =t — " s
Deltaproteobacteria ( 1.1%) o g ! 8
Spirochaetes ( 1.0%) 4 == = i 3
Bacilli ¢ 0.8%) 4 +— — | S
Alphaproteobacteria ( 0.6%) - == == 7 ! - .
T T T T T T
]
Clostridia (14.4%) - {* & : = s
Bacteroidia (12.2%) Ng o . End =
t:Unassigned ( 2.7%) 4 —*— o - |y | e
Methanomicrobia ( 2.4%) 4 = = = . ! s
Gammaproteobacteria ( 2.2%) 4 —* | ¢ ==y i 3
Betaproteobacteria ( 1.9%) * ae Tl HE L
Spirochaetes ( 1.1%) 41 —* o L3k ! ®
Bacilli ( 0.8%) - *—4 —— 1 i =
Deltaproteobacteria ( @.7%) - 3| o* | 3
Alphaproteobacteria ( @.5%) == o 7 ! 2
T T T T T T T T T T T
Bacteroidia (6.0%) F 4 . i
Clostridia (5.0%) 1 * * [, | 2
Betaproteobacteria (4.2%) - . - ! 5
Deltaproteobacteria (4.1%) - N * ' Mid 3
Gammaproteobacteria (3.5%) - ! ?
Methanomicrobia (2.4%) - *, - -r-bat-t-- 5
Alphaproteobacteria (1.2%) - * ! 8
Anaerolineae (1.2%) 4 1 3
Spirochaetes (1.1%) - i ‘¢ s
t:Unassigned (0.6%) 4 5 ! “ls
T T T T T T
=
-
Bacteroidia (8.0%) - % | 3 I
Clostridia (5.3%) - End ! S
Deltaproteobacteria (4.0%) - * 1 { )
Betaproteobacteria (3.5%) - ! -
Methanomicrobia (3.0%) - w2 1 p
Gammaproteobacteria (2.7%) - +-- -——t- -1 4
Spirochaetes (2.0%) - €2 ! ®
Anaerolineae (1.1%) - * 1 2
Alphaproteobacteria (1.1%) . i 3
t:Unassigned (0.5%) - * ; 2
T T T T T L T T T T
-1 1 2 -1 0 1 2 -0.50-0.25 0.00 0.25 0.50

Relative to control
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the Web version of this article.)

altered dynamics of CH4 production (Bollinger et al., 2021). Taken
together, this evidence reinforces our hypothesis that the acetate
pathway is most important for understanding antibiotic effects
(Bollinger et al., 2024) with gene profile differences helping explain
site-specific methanogenesis responses.

3.2. Effects of short-term adaptation on antibiotic effects

For both assemblages, pre-treatment with antibiotics only showed
minor changes in antibiotic effects during the main incubation experi-
ment (Fig. 1). Effects on CH4 production dynamics (i.e., time until in-
flection point, t) were slightly increased in the reserve (up to 2.6 %) and
slightly lower in the WWTP (down to —1.5 %, Fig. 1). Although this
pattern could - in line with our hypothesis — suggest a higher adapt-
ability of the WWTP assemblage, the effect sizes and statistical support

were negligible (BF up to 3.6), and the underlying processes are too
versatile to support this interpretation. In combination with essentially
unaltered expressions of ARGs between pre-treatments (Fig. 2), this
suggests a limited capability for short-term adaptation. In contrast, high
antibiotic treatment in the main incubation experiment nearly always
elevated ARG expression. The absence of pre-treatment effects could
therefore, be influenced by a lower number of generations (although
higher ARGs could be expected within a handful of days) (Gullberg et al.,
2011), a lower antibiotic concentration per gram of sediment, or the
present prokaryotic assemblage. The latter is founded on assemblage
filtering induced by the anaerobic conditions (but also substrate addi-
tion) which could have indirectly selected for species with greater
resistance potential.

Although effects on methanogenesis dynamics and ARGs seem
minor, the pre-treatment still had notable early-phase effects. Without
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pre-treatment, the reserve assemblage initially showed a decreased
methanogenesis at the high concentration (as discussed above, Fig. 1).
With antibiotic pre-treatment, however, this effect reversed (13 %).
Since we previously interpreted this initial reduction as a sign of
metabolic dormancy due to stress (Chebotar” et al., 2021), the positive
effects when pre-treated with antibiotics could indicate an acclimati-
zation on the metabolic level. Although effect directions stayed the same
in the WWTP assemblage, effect sizes were reduced when pre-treated
with antibiotics (i.e., 12 % instead of 32 % without pre-treatment).
The action of the pre-treatment is also reflected in prokaryotic
assemblage differences (p < 0.0001) and their interactions with anti-
biotic effects (p = 0.0168 for reserve and p = 0.0089 for WWTP). In the
reserve, Methanomicrobia almost doubled midway through the experi-
ment at the high concentration when pre-treated with antibiotics. This is
in sharp contrast to the unaltered relative abundance when not pre-
treated. In addition to showing the effectiveness of the pre-treatment
on the community level, this result also indicates a slight mismatch
between structure (i.e., same relative abundance of methanogens) and
function (i.e., increased methanogenesis). Further differences between

pre-treatments were not only visible in effect direction (e.g., Betapro-
teobacteria and Deltaproteobacteria), but also in effect size (e.g., Spi-
rochaetes and Alphaproteobacteria) although many taxa showed no
considerably altered effects (e.g., Bacteroidia and Gammaproteobac-
teria). WWTP sediment showed less clear patterns. Differences in effects
on Methanomicrobia were lower in the WWTP (—29 and —40 % with
and without antibiotic pre-treatment, respectively) compared to the
reserve assemblage (—1 and 113 % with and without antibiotic pre-
treatment, respectively) but matches the patterns observed in meth-
anogenesis quite well (i.e.,, lower relative abundance and reduced
methanogenesis, Figs. 1 and 3). Even though a community shift is likely
the key to understanding changes in tolerance towards antibiotics (Tlili
et al., 2016), generalizing these mechanistically remains a prime chal-
lenge in such complex assemblages.

Also, the gene expression profiles indicate pre-treatment modulated
antibiotic responses. Most notably, MCR increased at the high concen-
tration mid-incubation in the pre-treated reserve assemblage, while no
differences were present when not previously exposed to antibiotics
(Fig. 4). This aligns with the above-mentioned slightly higher effects on
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methanogenesis dynamics. ACDS, acetate kinase, malate dehydroge-
nase, and phosphate acetyltransferase also indicate disparate responses
in the acetate pathway between pre-adapted and inert assemblages.
Again, these differences were less apparent in the WWTP assemblage
and could thus be a hint towards understanding divergent site responses.

In summary, significant impacts on assemblage composition and
gene expression, did not translate to similarly substantial changes in
antibiotic effects on CH,4 production dynamics after short-term adapta-
tion. Along with effects observed in both assemblages (despite opposite
directions, see 3.1), this suggests a notable susceptibility to antibiotics
and potentially other chemical stressors, regardless of adaptation level.
This is further supported by the expression of ARGs, hardly explaining
any observed pattern in antibiotic effects on methanogenesis. Therefore,
antibiotic exposure will nonetheless pose a risk even to adapted meth-
anogenic assemblages and consequently for CH4 production in future
scenarios.

3.3. Effects of short-term adaptation on methanogenesis

The pre-treatment also had additional effects beyond changing
antibiotic sensitivity. Comparing each antibiotic level of the pre-treated
assemblages in the incubation experiment to its respective counterpart
in the unexposed assemblage (e.g., control of sediment with pre-
treatment vs. control of sediment without pre-treatment) revealed pat-
terns deviating from the antibiotic action in the main experiment. For
example, while the reserve and WWTP assemblage showed positive or
negative effects on methanogenesis dynamics, respectively, the pre-
treatment mildly accelerated methanogenesis in both assemblages (BF
up to 4.7, Fig. 5). Apart from the high antibiotic treatment in the WWTP
assemblage, CH4 concentrations were highly increased in the initial
stages of the incubation. Since these alterations were induced solely
during the pre-treatment, it shows that previous antibiotic exposure can
affect future methanogenesis but also that effect directions are context-
dependent even in the same assemblage (i.e., given decreases in the
main incubation for WWTP but increases when comparing pre-
treatments directly). The absence of oxygen and addition of substrate
can filter the community and therewith shape responses towards anti-
biotics. This could further complicate the generalization of effects,
especially in natural environments where aerobic and anaerobic sedi-
ment layers interact via substrate transport. Moreover, the combination
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of numerous stressors/factors could interact with antibiotic effects on
methanogenesis. For example, the granularity of the sediment (Du et al.,
2015), presence of oxidizing agents (that promote antibiotic degrada-
tion) (He et al., 2021) and temperature (Bollinger et al., 2024) can
modulate the observed effects. However, the majority of findings stems
from anaerobic digesters that are barely comparable to natural sedi-
ments (e.g., in terms of temperature and antibiotic exposure). Therefore,
future efforts need to identify circumstances that reinforce increased
methanogenesis in presence of antibiotics that extend the here taken
approach with focus on prokaryotic assemblage composition.

CRediT authorship contribution statement

Eric Bollinger: Writing — original draft, Visualization, Validation,
Software, Methodology, Investigation, Formal analysis, Conceptualiza-
tion. Johanna Mayer: Writing — review & editing, Investigation. Foon
Yin Lai: Writing - review & editing, Investigation. Ralf Schulz: Writing
— review & editing, Resources, Funding acquisition. Sabine Filker:
Writing — review & editing, Funding acquisition, Formal analysis,
Conceptualization. Mirco Bundschuh: Writing — review & editing, Su-
pervision, Funding acquisition, Conceptualization.

Declaration of generative AI and Al-assisted technologies in the
writing process

During the preparation of this work the author(s) used ChatGPT in
order to evaluate suggestions for the readability and language of the
manuscript in rare individual cases. After using this tool/service, the
author(s) reviewed and edited the content as needed and take(s) full
responsibility for the content of the published article.

Funding sources

The study was funded by the Carl Zeiss Foundation (Project Number:
P2021-00-004). E. Bollinger was associated doctoral researcher of the
RTG SYSTEMLINK, which is funded by the Deutsche For-
schungsgemeinschaft (DFG, German Research Foundation) -
326210499/GRK2360. F. Y. Lai acknowledges funding from FORMAS
(project number: 2019-01161) to perform the antibiotic analysis.

= 200% -
5
o
g BF = 3.6 )
3 « Slower " Faster — o
o 100% - : 8
2 , s
© :

— L 50% 1

O 5 200% -
E BF =25
..(-U- BF = 3.4
= 100% M « Slower I Faster — é
é 00% 1 —
S I b
5 _/\
= 1
E 500/0 1 T T T T } T T

0 20 40 -20% -10% 0% 10% 20%
Day TEffect

Fig. 5. CH,4 concentrations of different test concentrations from pre-treated sediments relative to sediments without pre-treatment (set to 100 %; mean + 95 %
confidence interval, left panels) and posterior density distributions of the kinetic parameter t as effect size relative to sediments without pre-treatment (Tggfec right
panels). Assemblage origin is indicated by different rows and colors, while antibiotic concentration is represented by lightness (light: 0 pg L™!, medium: 5 pg L™},
dark: 5000 pg L™1). The Bayes factor (BF) quantifies the odds ratio for the probabilities of Tg¢ec; being greater than or less than zero, with values always expressed as
>1. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)



E. Bollinger et al.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests:
Mirco Bundschuh & Sabine Filker reports financial support was provided
by Carl Zeiss Foundation. Ralf Schulz reports financial support was
provided by German Research Foundation. Foon Yin Lai reports finan-
cial support was provided by Swedish Research Council Formas. If there
are other authors, they declare that they have no known competing
financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

We are thankful to A. Lorke for access to his laboratory and devices.
We thank D. Bashkir, P. Schwilden for their help in the laboratory, as
well as A. Skrobonja at SLU for sample preparation. A. Hirsch and C.
Bors are acknowledged for their technical assistance. All sequence data
analyses were conducted on the HPC “Elwetritsch” at the RPTU-
Kaiserslautern-Landau under the AHRP-project RPTU-HyPro. Abstract
art created in https://BioRender.com.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.envpol.2025.126828.

Data availability

Link to repository with DOI containing raw data and code is included
in the manuscript

References

Alcock, B.P., Huynh, W., Chalil, R., Smith, K.W., Raphenya, A.R., Wlodarski, M.A.,
Edalatmand, A., Petkau, A., Syed, S.A., Tsang, K.K., Baker, S.J.C., Dave, M.,
McCarthy, M.C., Mukiri, K.M., Nasir, J.A., Golbon, B., Imtiaz, H., Jiang, X., Kaur, K.,
Kwong, M., Liang, Z.C., Niu, K.C., Shan, P., Yang, J.Y.J., Gray, K.L., Hoad, G.R.,
Jia, B., Bhando, T., Carfrae, L.A., Farha, M.A., French, S., Gordzevich, R.,
Rachwalski, K., Tu, M.M., Bordeleau, E., Dooley, D., Griffiths, E., Zubyk, H.L.,
Brown, E.D., Maguire, F., Beiko, R.G., Hsiao, W.W.L., Brinkman, F.S.L., Van
Domselaar, G., McArthur, A.G., 2023. Card 2023: expanded curation, support for
machine learning, and resistome prediction at the comprehensive antibiotic
resistance database. Nucleic Acids Res. 51, D690-D699. https://doi.org/10.1093/
nar/gkac920.

Anderson, M.J., 2001. Permutation tests for univariate or multivariate analysis of
variance and regression. Can. J. Fish. Aquat. Sci. 58, 626-639. https://doi.org/
10.1139/cjfas-58-3-626.

Andrews, S., 2010. FastQC: a Quality Control Tool for High Throughput Sequence Data.

Bengtsson-Palme, J., Larsson, D.G.J., 2016. Concentrations of antibiotics predicted to
select for resistant bacteria: proposed limits for environmental regulation. Environ.
Int. 86, 140-149. https://doi.org/10.1016/j.envint.2015.10.015.

Bokulich, N.A., Subramanian, S., Faith, J.J., Gevers, D., Gordon, J.I., Knight, R., Mills, D.
A., Caporaso, J.G., 2013. Quality-filtering vastly improves diversity estimates from
Illumina amplicon sequencing. Nat. Methods 10, 57-59. https://doi.org/10.1038/
nmeth.2276.

Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics 30, 2114-2120. https://doi.org/10.1093/
bioinformatics/btul70.

Bollinger, E., Schwilden, P., Lai, F.Y., Schulz, R., Bundschuh, M., Filker, S., 2024. Higher
temperatures exacerbate effects of antibiotics on methanogenesis in freshwater
sediment. Commun. Earth Environ. https://doi.org/10.1038/543247-024-01828-3.

Bollinger, E., Zubrod, J.P., Lai, F.Y., Ahrens, L., Filker, S., Lorke, A., Bundschuh, M.,
2021. Antibiotics as a silent driver of climate change? A case study investigating
methane production in freshwater sediments. Ecotoxicol. Environ. Saf. 228, 113025.
https://doi.org/10.1016/j.ecoenv.2021.113025.

Brown, P.C., Borowska, E., Schwartz, T., Horn, H., 2019. Impact of the particulate matter
from wastewater discharge on the abundance of antibiotic resistance genes and
facultative pathogenic bacteria in downstream river sediments. Sci. Total Environ.
649, 1171-1178. https://doi.org/10.1016/j.scitotenv.2018.08.394.

Buerge, 1.J., Buser, H.-R., Kahle, M., Miiller, M.D., Poiger, T., 2009. Ubiquitous
occurrence of the artificial sweetener acesulfame in the aquatic environment: an
ideal chemical marker of domestic wastewater in groundwater. Environ. Sci.
Technol. 43, 4381-4385. https://doi.org/10.1021/es900126x.

Environmental Pollution 383 (2025) 126828

Bundschuh, M., Hahn, T., Gessner, M.O., Schulz, R., 2017. Antibiotic mixture effects on
growth of the leaf-shredding stream detritivore Gammarus fossarum. Ecotoxicology
26, 547-554. https://doi.org/10.1007/s10646-017-1787-2.

Bundschuh, M., Hahn, T., Gessner, M.O., Schulz, R., 2009. Antibiotics as a chemical
stressor affecting an aquatic decomposer—detritivore system. Environ. Toxicol.
Chem. 28, 197-203. https://doi.org/10.1897/08-075.1.

Biirkner, P.-C., 2017. Brms: an R package for bayesian multilevel models using stan.

J. Stat. Software 80, 1-28. https://doi.org/10.18637 /jss.v080.i01.

Cabello, F.C., 2006. Heavy use of prophylactic antibiotics in aquaculture: a growing
problem for human and animal health and for the environment. Environ. Microbiol.
8, 1137-1144. https://doi.org/10.1111/j.1462-2920.2006.01054.x.

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P.,
2016. DADAZ2: high-resolution sample inference from Illumina amplicon data. Nat.
Methods 13, 581-583. https://doi.org/10.1038/nmeth.3869.

Chebotar’, I.V., Emelyanova, M.A., Bocharova, J.A., Mayansky, N.A., Kopantseva, E.E.,
Mikhailovich, V.M., 2021. The classification of bacterial survival strategies in the
presence of antimicrobials. Microb. Pathog. 155, 104901. https://doi.org/10.1016/
j.micpath.2021.104901.

Conrad, R., 2020. Importance of hydrogenotrophic, aceticlastic and methylotrophic
methanogenesis for methane production in terrestrial, aquatic and other anoxic
environments: a mini review. Pedosphere 30, 25-39. https://doi.org/10.1016/
$1002-0160(18)60052-9.

Danner, M.-C., Robertson, A., Behrends, V., Reiss, J., 2019. Antibiotic pollution in
surface fresh waters: occurrence and effects. Sci. Total Environ. 664, 793-804.
https://doi.org/10.1016/j.scitotenv.2019.01.406.

Ding, C., He, J., 2010. Effect of antibiotics in the environment on microbial populations.
Appl. Microbiol. Biotechnol. 87, 925-941. https://doi.org/10.1007/s00253-010-
2649-5.

Du, J., Hu, Y., Qi, W., Zhang, Y., Jing, Z., Norton, M., Li, Y.-Y., 2015. Influence of four
antimicrobials on methane-producing archaea and sulfate-reducing bacteria in
anaerobic granular sludge. Chemosphere 140, 184-190. https://doi.org/10.1016/j.
chemosphere.2014.08.028.

Edgar, R.C., 2016. SINTAX: a simple Non-Bayesian taxonomy classifier for 16S and ITS
sequences. bioRxiv, 074161. https://doi.org/10.1101/074161.

Ewels, P., Magnusson, M., Lundin, S., Kaller, M., 2016. MultiQC: summarize analysis
results for multiple tools and samples in a single report. Bioinformatics 32, 3047.
https://doi.org/10.1093/bioinformatics/btw354.

Fick, J., Soderstrom, H., Lindberg, R.H., Phan, C., Tysklind, M., Larsson, D.G.J., 2009.
Contamination of surface, ground, and drinking water from pharmaceutical
production. Environ. Toxicol. Chem. 28, 2522. https://doi.org/10.1897/09-073.1.

Gonzalez, A., Hendriks, A.T.W.M., Lier, J.B. van, Kreuk, M. de, 2018. Pre-treatments to
enhance the biodegradability of waste activated sludge: elucidating the rate limiting
step. Biotechnol. Adv. 36, 1434-1469. https://doi.org/10.1016/j.
biotechadv.2018.06.001.

Gorrell, A., Lawrence, S.H., Ferry, J.G., 2005. Structural and kinetic analyses of arginine
residues in the active site of the acetate kinase from Methanosarcina thermophila.
J. Biol. Chem. 280, 10731-10742. https://doi.org/10.1074/jbc.M412118200.

Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, 1.,
Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E.,

Hacohen, N., Gnirke, A., Rhind, N., Di Palma, F., Birren, B.W., Nusbaum, C.,
Lindblad-Toh, K., Friedman, N., Regev, A., 2011. Full-length transcriptome assembly
from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644-652.
https://doi.org/10.1038/nbt.1883.

Grahame, D.A., Gencic, S., DeMoll, E., 2005. A single operon-encoded form of the acetyl-
CoA decarbonylase/synthase multienzyme complex responsible for synthesis and
cleavage of acetyl-CoA in Methanosarcina thermophila. Arch. Microbiol. 184, 32-40.
https://doi.org/10.1007/500203-005-0006-3.

Grasset, C., Moras, S., Isidorova, A., Couture, R., Linkhorst, A., Sobek, S., 2021. An
empirical model to predict methane production in inland water sediment from
particular organic matter supply and reactivity. Limnol. Oceanogr. 66, 3643-3655.
https://doi.org/10.1002/1n0.11905.

Gullberg, E., Cao, S., Berg, O.G., Ilback, C., Sandegren, L., Hughes, D., Andersson, D.I.,
2011. Selection of resistant bacteria at very low antibiotic concentrations. PLoS
Pathog. 7, 1-9. https://doi.org/10.1371/journal.ppat.1002158.

He, D, Xiao, J., Wang, D., Liu, X., Li, Y., Fu, Q., Li, C,, Yang, Q., Liu, Y., Ni, B., 2021.
Understanding and regulating the impact of tetracycline to the anaerobic
fermentation of waste activated sludge. J. Clean. Prod. 313, 127929. https://doi.
0rg/10.1016/j.jclepro.2021.127929.

IPCC, 2021. Climate Change 2021 — the Physical Science Basis: Working Group I
Contribution to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, first ed. Cambridge University Press.

Kerrigan, J.F., Sandberg, K.D., Engstrom, D.R., LaPara, T.M., Arnold, W.A., 2018.
Sedimentary record of antibiotic accumulation in Minnesota Lakes. Sci. Total
Environ. 621, 970-979. https://doi.org/10.1016/j.scitotenv.2017.10.130.

Klein, E.Y., Van Boeckel, T.P., Martinez, E.M., Pant, S., Gandra, S., Levin, S.A.,
Goossens, H., Laxminarayan, R., 2018. Global increase and geographic convergence
in antibiotic consumption between 2000 and 2015. In: Proceedings of the National
Academy of Sciences, vol.115, pp. E3463-E3470. https://doi.org/10.1073/
pnas.1717295115.

Koonin, E.V., Makarova, K.S., Aravind, L., 2001. Horizontal gene transfer in prokaryotes:
quantification and classification. Annu. Rev. Microbiol. 55, 709-742.

Kopylova, E., Noé, L., Touzet, H., 2012. SortMeRNA: fast and accurate filtering of
ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211-3217. https://
doi.org/10.1093/bioinformatics/bts611.


https://BioRender.com
https://doi.org/10.1016/j.envpol.2025.126828
https://doi.org/10.1016/j.envpol.2025.126828
https://doi.org/10.1093/nar/gkac920
https://doi.org/10.1093/nar/gkac920
https://doi.org/10.1139/cjfas-58-3-626
https://doi.org/10.1139/cjfas-58-3-626
http://refhub.elsevier.com/S0269-7491(25)01201-1/sref3
https://doi.org/10.1016/j.envint.2015.10.015
https://doi.org/10.1038/nmeth.2276
https://doi.org/10.1038/nmeth.2276
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1038/s43247-024-01828-3
https://doi.org/10.1016/j.ecoenv.2021.113025
https://doi.org/10.1016/j.scitotenv.2018.08.394
https://doi.org/10.1021/es900126x
https://doi.org/10.1007/s10646-017-1787-2
https://doi.org/10.1897/08-075.1
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.1111/j.1462-2920.2006.01054.x
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1016/j.micpath.2021.104901
https://doi.org/10.1016/j.micpath.2021.104901
https://doi.org/10.1016/S1002-0160(18)60052-9
https://doi.org/10.1016/S1002-0160(18)60052-9
https://doi.org/10.1016/j.scitotenv.2019.01.406
https://doi.org/10.1007/s00253-010-2649-5
https://doi.org/10.1007/s00253-010-2649-5
https://doi.org/10.1016/j.chemosphere.2014.08.028
https://doi.org/10.1016/j.chemosphere.2014.08.028
https://doi.org/10.1101/074161
https://doi.org/10.1093/bioinformatics/btw354
https://doi.org/10.1897/09-073.1
https://doi.org/10.1016/j.biotechadv.2018.06.001
https://doi.org/10.1016/j.biotechadv.2018.06.001
https://doi.org/10.1074/jbc.M412118200
https://doi.org/10.1038/nbt.1883
https://doi.org/10.1007/s00203-005-0006-3
https://doi.org/10.1002/lno.11905
https://doi.org/10.1371/journal.ppat.1002158
https://doi.org/10.1016/j.jclepro.2021.127929
https://doi.org/10.1016/j.jclepro.2021.127929
http://refhub.elsevier.com/S0269-7491(25)01201-1/sref31
http://refhub.elsevier.com/S0269-7491(25)01201-1/sref31
http://refhub.elsevier.com/S0269-7491(25)01201-1/sref31
https://doi.org/10.1016/j.scitotenv.2017.10.130
https://doi.org/10.1073/pnas.1717295115
https://doi.org/10.1073/pnas.1717295115
http://refhub.elsevier.com/S0269-7491(25)01201-1/sref34
http://refhub.elsevier.com/S0269-7491(25)01201-1/sref34
https://doi.org/10.1093/bioinformatics/bts611
https://doi.org/10.1093/bioinformatics/bts611

E. Bollinger et al.

Lapworth, D.J., Baran, N., Stuart, M.E., Ward, R.S., 2012. Emerging organic
contaminants in groundwater: a review of sources, fate and occurrence. Environ.
Pollut. 163, 287-303. https://doi.org/10.1016/j.envpol.2011.12.034.

Lide, D.R., 2004. CRC Handbook of Chemistry and Physics, 85. CRC Press.

Lipmann, F., 1944. Enzymatic synthesis of acetyl phosphate. J. Biol. Chem. 155, 55-70.
https://doi.org/10.1016/50021-9258(18)43172-9.

Mao, Y., Lin, T., Li, H,, He, R., Ye, K., Yu, W., He, Q., 2024. Aerobic methane production
by phytoplankton as an important methane source of aquatic ecosystems:
reconsidering the global methane budget. Sci. Total Environ. 907, 167864. https://
doi.org/10.1016/j.scitotenv.2023.167864.

Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet J. 17, 10-12.

Maul, J.D., Schuler, L.J., Belden, J.B., Whiles, M.R., Lydy, M.J., 2006. Effects of the
antibiotic ciprofloxacin on stream microbial communities and detritivorous
macroinvertebrates. Environ. Toxicol. Chem. 25, 1598-1606. https://doi.org/
10.1897/05-441R.1.

McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., DeSantis, T.Z., Probst, A.,
Andersen, G.L., Knight, R., Hugenholtz, P., 2012. An improved greengenes taxonomy
with explicit ranks for ecological and evolutionary analyses of bacteria and archaea.
ISME J. 6, 610-618. https://doi.org/10.1038/ismej.2011.139.

McNichol, S.M., Sanchez-Quete, F., Loeb, S.K., Teske, A.P., Shah Walter, S.R.,
Mahmoudi, N., 2024. Dynamics of carbon substrate competition among
heterotrophic microorganisms. ISME J. 18, wrae018. https://doi.org/10.1093/
ismejo/wrae018.

Novo, A., André, S., Viana, P., Nunes, O.C., Manaia, C.M., 2013. Antibiotic resistance,
antimicrobial residues and bacterial community composition in urban wastewater.
Water Res. 47, 1875-1887. https://doi.org/10.1016/j.watres.2013.01.010.

Ochman, H., Lawrence, J.G., Groisman, E.A., 2000. Lateral gene transfer and the nature
of bacterial innovation. Nature 405, 299-304. https://doi.org/10.1038/35012500.

Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R.,
O’Hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M.,
Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., Caceres, M.D.,
Durand, S., Evangelista, H.B.A., FitzJohn, R., Friendly, M., Furneaux, B.,
Hannigan, G., Hill, M.O., Lahti, L., McGlinn, D., Ouellette, M.-H., Cunha, E.R.,
Smith, T., Stier, A., Braak, C.J.F.T., Weedon, J., 2022. Vegan: Community Ecology
Package.

Parra-Saldivar, R., Castillo-Zacarias, C., Bilal, M., Igbal, H.M.N., Barceld, D., 2021.
Sources of pharmaceuticals in water. In: Pérez Solsona, S., Montemurro, N.,
Chiron, S., Barceld, Damia (Eds.), Interaction and Fate of Pharmaceuticals in Soil-
Crop Systems: the Impact of Reclaimed Wastewater. Springer International
Publishing, Cham, pp. 33-47. https://doi.org/10.1007/698 2020_623.

Puente-Sanchez, Fernando, Garcia-Garcia, Natalia, Tamames, Javier, 2020. SQMtools:
automated processing and visual analysis of omics data with R and anvi’o. BMC
Bioinf. 21, 1-11. https://doi.org/10.1186/512859-020-03703-2.

R Core Team, 2023. R: a Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahé, F., 2016. VSEARCH: a versatile open
source tool for metagenomics. PeerJ 4, e2584. https://doi.org/10.7717 /peerj.2584.

10

Environmental Pollution 383 (2025) 126828

Saunois, M., Stavert, A.R., Poulter, B., Bousquet, P., Canadell, J.G., Jackson, R.B.,
Raymond, P.A., Dlugokencky, E.J., Houweling, S., Patra, P.K., Ciais, P., Arora, V.K.,
Bastviken, D., Bergamaschi, P., Blake, D.R., Brailsford, G., Bruhwiler, L., Carlson, K.
M., Carrol, M., Castaldi, S., Chandra, N., Crevoisier, C., Crill, P.M., Covey, K.,
Curry, C.L., Etiope, G., Frankenberg, C., Gedney, N., Hegglin, M.I., Hoglund-
Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K.M.,
Joos, F., Kleinen, T., Krummel, P.B., Langenfelds, R.L., Laruelle, G.G., Liu, L.,
Machida, T., Maksyutov, S., McDonald, K.C., McNorton, J., Miller, P.A., Melton, J.R.,
Morino, 1., Miiller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O’Doherty, S.,
Parker, R.J., Peng, C., Peng, S., Peters, G.P., Prigent, C., Prinn, R., Ramonet, M.,
Regnier, P., Riley, W.J., Rosentreter, J.A., Segers, A., Simpson, L.J., Shi, H., Smith, S.
J., Steele, L.P., Thornton, B.F., Tian, H., Tohjima, Y., Tubiello, F.N., Tsuruta, A.,
Viovy, N., Voulgarakis, A., Weber, T.S., van Weele, M., van der Werf, G.R., Weiss, R.
F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y.,
Zheng, B., Zhu, Qing, Zhu, Qiuan, Zhuang, Q., 2020. The global methane budget
2000-2017. Earth Syst. Sci. Data 12, 1561-1623. https://doi.org/10.5194/essd-12-
1561-2020.

Tamames, J., Puente-Sanchez, F., 2019. SqueezeMeta, A highly portable, fully automatic
metagenomic analysis pipeline. Front. Microbiol. 9, 3349. https://doi.org/10.3389/
fmicb.2018.03349.

Tlili, A., Berard, A., Blanck, H., Bouchez, A., Cassio, F., Eriksson, K.M., Morin, S.,
Montuelle, B., Navarro, E., Pascoal, C., Pesce, S., Schmitt-Jansen, M., Behra, R.,
2016. Pollution-induced community tolerance (PICT): towards an ecologically
relevant risk assessment of chemicals in aquatic systems. Freshw. Biol. 61,
2141-2151. https://doi.org/10.1111/fwb.12558.

Van Boeckel, T.P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B.T., Levin, S.A.,
Laxminarayan, R., 2014. Global antibiotic consumption 2000 to 2010: an analysis of
national pharmaceutical sales data. Lancet Infect. Dis. 14, 742-750. https://doi.org/
10.1016/51473-3099(14)70780-7.

Walters, E, et al., 2015. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal
internal transcribed spacer marker gene primers for microbial community surveys.
mSystems 1, e00009-15.

Watanabe, N., Bergamaschi, B.A., Loftin, K.A., Meyer, M.T., Harter, T., 2010. Use and
environmental occurrence of antibiotics in freestall dairy farms with manured forage
fields. Environ. Sci. Technol. 44, 6591-6600. https://doi.org/10.1021/es100834s.

Weiss, R.F., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal
gas. Marine Chemistry 2, 203-215. https://doi.org/10.1016/0304-4203(74)90015-
2.

Whiticar, M.J., 1999. Carbon and hydrogen isotope systematics of bacterial formation
and oxidation of methane. Chem. Geol. 161, 291-314. https://doi.org/10.1016/
S0009-2541(99)00092-3.

Zhang, Z., Xu, Z., Wang, X., 2023. The greenhouse effect of antibiotics: the influence
pathways of antibiotics on methane release from freshwater sediment. Environ. Int.
176, 107964. https://doi.org/10.1016/j.envint.2023.107964.

Zhou, L.-J., Ying, G.-G., Zhao, J.-L., Yang, J.-F., Wang, L., Yang, B., Liu, S., 2011. Trends
in the occurrence of human and veterinary antibiotics in the sediments of the Yellow
River, Hai River and Liao River in northern China. Environ. Pollut. 159, 1877-1885.
https://doi.org/10.1016/j.envpol.2011.03.034.


https://doi.org/10.1016/j.envpol.2011.12.034
http://refhub.elsevier.com/S0269-7491(25)01201-1/optD0sJ4VkrVO
https://doi.org/10.1016/S0021-9258(18)43172-9
https://doi.org/10.1016/j.scitotenv.2023.167864
https://doi.org/10.1016/j.scitotenv.2023.167864
http://refhub.elsevier.com/S0269-7491(25)01201-1/sref39
http://refhub.elsevier.com/S0269-7491(25)01201-1/sref39
https://doi.org/10.1897/05-441R.1
https://doi.org/10.1897/05-441R.1
https://doi.org/10.1038/ismej.2011.139
https://doi.org/10.1093/ismejo/wrae018
https://doi.org/10.1093/ismejo/wrae018
https://doi.org/10.1016/j.watres.2013.01.010
https://doi.org/10.1038/35012500
http://refhub.elsevier.com/S0269-7491(25)01201-1/sref45
http://refhub.elsevier.com/S0269-7491(25)01201-1/sref45
http://refhub.elsevier.com/S0269-7491(25)01201-1/sref45
http://refhub.elsevier.com/S0269-7491(25)01201-1/sref45
http://refhub.elsevier.com/S0269-7491(25)01201-1/sref45
http://refhub.elsevier.com/S0269-7491(25)01201-1/sref45
http://refhub.elsevier.com/S0269-7491(25)01201-1/sref45
https://doi.org/10.1007/698_2020_623
https://doi.org/10.1186/s12859-020-03703-2
http://refhub.elsevier.com/S0269-7491(25)01201-1/sref48
http://refhub.elsevier.com/S0269-7491(25)01201-1/sref48
https://doi.org/10.7717/peerj.2584
https://doi.org/10.5194/essd-12-1561-2020
https://doi.org/10.5194/essd-12-1561-2020
https://doi.org/10.3389/fmicb.2018.03349
https://doi.org/10.3389/fmicb.2018.03349
https://doi.org/10.1111/fwb.12558
https://doi.org/10.1016/S1473-3099(14)70780-7
https://doi.org/10.1016/S1473-3099(14)70780-7
http://refhub.elsevier.com/S0269-7491(25)01201-1/optVwRKxpUUdq
http://refhub.elsevier.com/S0269-7491(25)01201-1/optVwRKxpUUdq
http://refhub.elsevier.com/S0269-7491(25)01201-1/optVwRKxpUUdq
https://doi.org/10.1021/es100834s
https://doi.org/10.1016/0304-4203(74)90015-2
https://doi.org/10.1016/0304-4203(74)90015-2
https://doi.org/10.1016/S0009-2541(99)00092-3
https://doi.org/10.1016/S0009-2541(99)00092-3
https://doi.org/10.1016/j.envint.2023.107964
https://doi.org/10.1016/j.envpol.2011.03.034

	Adaptation of methanogenic microbial assemblages to antibiotics: The role of resistance genes and taxonomic composition
	1 Introduction
	2 Material & methods
	2.1 Sampling sites and pre-treatment
	2.2 Incubation study
	2.3 Antibiotic analyses
	2.4 Greenhouse gases
	2.5 Stable isotopes
	2.6 RNA processing
	2.7 Metabarcoding
	2.8 Metatranscriptome
	2.9 Statistics

	3 Results & discussion
	3.1 Site-specific effects of antibiotics on methanogenesis without short-term adaptation
	3.2 Effects of short-term adaptation on antibiotic effects
	3.3 Effects of short-term adaptation on methanogenesis

	CRediT authorship contribution statement
	Declaration of generative AI and AI-assisted technologies in the writing process
	Funding sources
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	Data availability
	References


