
Adaptation of methanogenic microbial assemblages to antibiotics: The role 
of resistance genes and taxonomic composition☆

Eric Bollinger a,* , Johanna Mayer b, Foon Yin Lai c, Ralf Schulz a,d , Sabine Filker b,1 ,  
Mirco Bundschuh a,1

a iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
b Department of Ecology, RPTU Kaiserslautern-Landau, Germany
c Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Sweden
d Eusserthal Ecosystem Research Station, RPTU Kaiserslautern-Landau, Germany

A R T I C L E  I N F O

Keywords:
Methanogenesis
Sediment
Adaptation
Antibiotic resistance genes
Antibiotics
Prokaroytes
Metabarcoding
Metatranscriptome

A B S T R A C T

Antibiotics are omnipresent contaminants in aquatic systems and can impact key ecosystem processes. Meth
anogenesis by anaerobic Archaea is such a process that has gained attention because antibiotics can increase their 
methane (CH4) production dynamics – a 28-fold more potent greenhouse gas than carbon dioxide. Since such 
effects may depend on assemblage composition and antibiotic resistance, we investigated antibiotic effects on 
methanogenesis in sediments from a negiglibly impacted site (reserve) and downstream of a wastewater treat
ment plant (WWTP). Prior to incubation, short-term pre-treatment with antibiotics aimed to stimulate adaptive 
responses. During incubation, antibiotics reduced methanogenesis speed in WWTP sediment (− 7 %) but 
increased it in the reserve (10 %), with site-specific patterns linked to differences in prokaryotic assemblage 
composition and their gene expression. Methanomicrobia, a key methanogenic group, showed contrasting re
sponses across sites, likely mediated by prokaryotic substrate dynamics, particularly within the acetate pathway. 
Pre-treatment effects on methanogenesis dynamics were minor (maximum Bayesian factor of 3.6), but subtle 
shifts in prokaryotic activity and composition were observed. Elevated antibiotic resistance gene expression in 
WWTP sediments reflected historical exposure but did not mitigate antibiotic impacts on methanogenesis. These 
findings show the vulnerability of methanogenic assemblages to antibiotics despite potential adaptations and 
emphasize the risks posed by pharmaceutical pollution to critical freshwater ecosystem functions.

1. Introduction

Pharmaceuticals are extensively utilized in human and veterinary 
medicine (Klein et al., 2018; Van Boeckel et al., 2014). Despite their long 
history of use, they are recognized as organic micropollutants of 
emerging concern in fresh- and groundwaters (Lapworth et al., 2012). 
Substances enter these ecosystems via various point and non-point 
sources including wastewater treatment plant (WWTP) effluents 
(Parra-Saldivar et al., 2021), manure application (Watanabe et al., 
2010), or aquaculture (Cabello, 2006) and can spread via 
groundwater-surface water exchange (Buerge et al., 2009). Among 
pharmaceuticals, antibiotics are of particular concern due to their 
ubiquity in aquatic environments (Danner et al., 2019), where they 

favour the development and horizontal transfer of antibiotic resistance 
genes (ARGs) (Novo et al., 2013) and induce direct toxicity towards 
microbes (Ding and He, 2010) that may propagate bottom-up 
(Bundschuh et al., 2017, 2009; Maul et al., 2006).

One freshwater process that has recently received growing attention 
– also in the context of antibiotics – is the production of methane (CH4). 
Methane has 28 times the global warming potential of carbon dioxide 
(CO2), contributes ~30 % to the observed global warming (IPCC, 2021) 
and is largely emitted from natural freshwater and wetland systems 
(Saunois et al., 2020). Although aerobic CH4 production is reported 
(Mao et al., 2024), CH4 is mainly synthesized by Archaea in anaerobic 
sediments in a multi-step cascade of hydrolysis, acidogenesis and ace
togenesis involving diverse bacteria (Conrad, 2020). Antibiotics 
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accumulate in freshwater sediments (Kerrigan et al., 2018; Zhou et al., 
2011), exposing these bacteria and methanogenic Archaea directly. 
Despite a limited number of studies, current evidence suggests that an
tibiotics can increase CH4 production by changing chemical conditions 
(Zhang et al., 2023) or directly affecting bacteria that produce meth
anogenic substrates (Bollinger et al., 2021). However, these studies 
often overlook pre-exposure of assemblages which stimulates the 
development and horizontal transfer of ARGs (Koonin et al., 2001; 
Ochman et al., 2000). In addition, toxicants can induce a shift towards 
more tolerant species (Tlili et al., 2016) and can alter the activity of 
assemblage members by inducing metabolic dormancy to withstand 
stressful conditions (Chebotar’ et al., 2021). This in turn can shape the 
underlying functional capacity of communities and consequently also 
CH4 production. These considerations question whether the effects 
observed on methanogenesis in presence of antibiotics are modified in 
direction and magnitude if communities are stress-adapted.

To address this, we compared a negligibly impacted assemblage (i.e., 
no pre-exposure to antibiotics) with one sampled downstream of a 
WWTP (stress-adapted). In the laboratory, both assemblages were either 
cultured with or without an antibiotic mixture for three weeks to pro
voke a short-term adaptation. Subsequently, these communities were 
incubated anaerobically in presence of increasing concentrations of 
antibiotics (three levels including toxicant-free control). We hypoth
esised that, due to pre-existing adaptation, effects of antibiotics on CH4 
production are less pronounced in the WWTP assemblage and that the 
adaptation invoked by the antibiotic pre-treatment is more effective due 
to horizontal transfer of ARGs (Koonin et al., 2001; Ochman et al., 
2000). Mechanistic insights were gained via compound-specific stable 
isotope analysis (i.e., proxy for utilized substrates), 16S rRNA meta
barcoding (i.e., active prokaryotic community) and gene expression 
profiling (i.e., active ARGs and metabolic processes).

2. Material & methods

2.1. Sampling sites and pre-treatment

Sediment was taken from the top ~20 cm layer of a site located in the 
Palatinate Forest-North Vosges Biosphere Reserve within the premises of 
the Eusserthal Ecosystem Research Station upstream from anthropo
genic impacts (49◦25′ N; 7◦96′E, called reserve henceforth) and a site 
~500 m downstream of a WWTP discharge point close to Karlsruhe, 
Germany (49◦4′ N; 8◦20′ E, called WWTP henceforth). Unlike the reserve 
site, the latter site was assumed to have a diverse resistome due to 
constant exposure to antibiotics as shown in an earlier study (Brown 
et al., 2019). In 2 L beakers, 700 g of these sediments (n = 6) were 
pre-treated with 1 L unfiltered pond water (~90 μS cm− 1) from the 
reserve site dosed with 5000 μg L− 1 of a five-component mixture 
(amoxicillin, ciprofloxacin, erythromycin, sulfamethoxazole, and tetra
cycline each at 1000 μg L− 1) (Bollinger et al., 2021). The pre-treatment 
lasted for three weeks in total darkness at 20 ± 1 ◦C with weekly renewal 
of the water while keeping the sediment wet to ensure constant exposure 
to antibiotics. Samples of both old (after a week) and new water were 
stored at − 80 ◦C for chemical analyses (see 2.3). In the following, we 
refer to this antibiotic treatment as “pre-treatment”, while the term 
“treatment” is used to describe antibiotic treatments at different con
centration levels employed during the incubation study (see 2.2).

2.2. Incubation study

For the incubation study, pre-treated sediments were provided with 
fresh organic substrate in form of 20 g dry leaf powder (Alnus glutinosa) 
per kg wet sediment (Bollinger et al., 2021). Subsequently, 10.12 ±
0.46 g of this sediment were transferred to crimp top serum bottles (n =
20, V = 100 mL, ND20, VWR, Avantor Inc., six additional replicates for 
metabarcoding and gene profiling). Thereafter, 30 mL unfiltered pond 
water at pH 7 amended with sum concentrations of 0, 5, and 5000 μg L− 1 

of the same five-component antibiotic mixture at equal mass fractions 
(designated as control, low, and high, respectively, Table S1) were 
added to the test system. This mixture represents five common antibiotic 
classes with relevant substances within these classes and consequently a 
wide range of toxic modes of action. The low concentration aligns 
closely with field-relevant levels (Danner et al., 2019), whereas the high 
concentration simulates more extremely polluted ecosystems (Fick et al., 
2009). The headspace of the serum bottles was flushed with N2 and 
hermetically sealed to warrant near-anaerobic conditions. Incubations 
proceeded in total darkness at 20 ◦C for 56 days. Water samples for 
antibiotic concentration analysis were collected at the start, middle, and 
end of the experiment and stored at − 80 ◦C until further analysis.

2.3. Antibiotic analyses

Antibiotic concentration analysis followed Bollinger et al. (2024). 
Briefly, water samples were centrifuged and aliquots were transferred to 
amber vials, spiked with mass-labeled internal standards and methanol, 
and analyzed as direct injection using an ExionLC™ AD UHPLC coupled 
to a SCIEX Triple Quad™ 6500 tandem mass spectrometer. Quantifica
tion employed calibration standards with linearity of 0.9960–0.9994 
(LOQ 0.4–5.0 μg L− 1, Table S2). Chemical recovery was on average 
94–103 % for amoxicillin, ciprofloxacin, erythromycin, sulfamethoxa
zole, and 50 % for tetracycline, with the relative standard deviations of 
4.2–9.3 % (n = 7, Table S2). Similar results were also obtained in the 
samples of MilliQ water spiked with the target antibiotics (n = 4, 
Table S2). Degradation was significant (51–84 % of initial concentra
tion), with most of the target antibiotics below their respective LOQs by 
mid-to end-experiment (Table S3).

2.4. Greenhouse gases

The greenhouse gas measurements were carried out as described 
previously (Bollinger et al., 2024, 2021). Each week, 100 μL of head
space gas (Vi) from each incubation system was analyzed for CH4 and 
CO2 using a cavity-enhanced laser absorption spectrometer (UGGA, 
model 915-0011, Los Gatos Research Inc., USA) in a closed-loop setup. 
To determine the mole fraction in the headspace (xh), we adjusted the 
equilibrium mole fraction (xe, ppm) of the sample gas and loop gas, 
accounting for the loop volume (Vl, calibrated with certified CH4 and 
CO2 reference gases, Messer Industriegase, Germany) and the mole 
fraction of the background gas (x0): 

xh =

(
Vl

Vi

)

⋅ (xe - x0) + xe (1) 

The amount of dissolved CH4 and CO2 (nw) was then estimated with 
Henry’s law: 

nw =KH ⋅ xh ⋅ Vw⋅f1 (2) 

In this context, Vw represents the water volume, f1 is a conversion factor 
(10− 1 Pa ppm− 1), and KH is the Henry’s law constant adjusted for the test 
temperature of 293.15 K (Lide, 2004; Weiss, 1974): 

ln
(

KHCH4

)
= − 115.6477+155.5756

(
TK

100

)− 1

+65.2553 ⋅ ln
(

TK

100

)

− 6.1698
(

TK

100

)

(3.1) 

ln
(

KHCO2

)
= − 58.0931+90.5069

(
TK

100

)− 1

+22.294⋅ln
(

TK

100

)

(3.2) 

Finally, CH4 and CO2 concentrations were standardized to the sedi
ment dry-weight: 
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c(CH4,CO2)=
nw + (xh ⋅ Vh ⋅ f1)⋅(R ⋅ T)-1

ms ⋅
(
1 + Θg

)− 1 (4) 

where Vh represents the headspace volume, R is the universal gas con
stant, ms is the wet sediment weight, and Θg is the sediment’s gravi
metric water content.

2.5. Stable isotopes

Compound-specific isotope ratios were measured for five replicates 
per treatment on a weekly basis. Headspace gas was injected into a gas 
chromatograph (GC, Trace GC Ultra, Thermo Fisher Scientific, Ger
many) at 32 ◦C and separated on a capillary column (27.5 m length, 
0.32 mm internal diameter, 10 μm film thickness, Agilent J&W Por
aPLOT Q, USA) connected to a ConFlo IV interface, which linked to a 
Delta V Advantage isotope ratio mass spectrometer (IRMS, Thermo 
Fisher Scientific, Germany). Injection volumes were adjusted to CH4 and 
CO2 concentrations in the samples to maintain consistent peak areas. 
Isotope ratios were reported in δ-notation relative to the Vienna Pee Dee 
Belemnite (VPDB) standard: 

δ13C=

(
Rsample

Rreference
- 1

)

⋅1000‰ (5) 

These δ-values were then used to calculate the fractionation factor: 

αc =
δ13C-CO2 + 1000
δ13C-CH4 + 1000

(6) 

CH4 production primarily occurs through hydrogenotrophic meth
anogenesis (HM) from H2 (indicated by higher ɑ) and acetoclastic 
methanogenesis (AM) from acetate (indicated by lower ɑ) (Whiticar, 
1999).

2.6. RNA processing

As previously described (Bollinger et al., 2021), RNA was isolated 
from 2 g of sediment from each of the six replicate samples (see section 
2.1) using the RNeasy PowerSoil Total RNA kit from Qiagen, adhering to 
the manufacturer’s protocol. The RNA concentration was quantified 
with a Nanodrop2000 spectrophotometer (Thermo Fisher Scientific, 
Germany), and the integrity of the RNA was evaluated using the Agilent 
Bioanalyzer 2100 system.

2.7. Metabarcoding

To analyze the prokaryotic community in a comparable fashion, we 
followed our published protocol (Bollinger et al., 2021). Briefly, 2 μL of 
RNA extract from each replicate was converted to cDNA using the iScript 
synthesis kit (BioRad) with random primers. The hypervariable V4 re
gion of the 16S rRNA gene was amplified using primers 515Fm 
(5′-GTGYCAGCMGCCGCGGTAA-3′) and 806Rm (5′-GGACTACNVGG 
GTWTCTAAT-3′, Walters, 2015). For each replicate, 2 μL of cDNA ran 
through a program of initial activation at 98 ◦C for 30 s, followed by 26 
cycles of 98 ◦C for 10 s, 63 ◦C for 30 s, and 72 ◦C for 30 s, and a 5-min 
final extension at 72 ◦C. To reduce PCR bias, three technical replicates 
were pooled afterward, and prepared for sequencing using the Next 
Ultra DNA Library Prep Kit for Illumina (NEB, USA). Library quality was 
checked with an Agilent Bioanalyzer 2100 system, and sequencing was 
performed on an Illumina MiSeq (2x300 nt, StarSeq, Mainz, Germany).

Reads were trimmed with cutadapt v1.18 (Martin, 2011) and then 
processed through the DADA2 pipeline (Callahan et al., 2016) with 
specific parameters: truncLen = c(192, 217), maxEE = 1, maxN = 0, and 
minOverlap = 20. Chimera were removed using vsearch v2.13.7 
(Rognes et al., 2016). Taxonomic classification was assigned to the 
resulting amplicon sequence variants (ASVs) using the SINTAX algo
rithm (Edgar, 2016) against the Greengenes database v13.5 (McDonald 

et al., 2012). ASVs lacking taxonomic classification or with fewer than 
five occurrences across all samples were excluded (to eliminate potential 
artifacts, as per Bokulich et al. (2013)). The final ASV-to-sample matrix 
was used for statistical analyses (see section 2.9).

2.8. Metatranscriptome

Following earlier reports (Bollinger et al., 2024), approximately 2 μg 
of total RNA from each sample was used as the starting material for gene 
expression analysis. rRNA was selectively removed with the NEBNext 
rRNA Depletion Kit for Bacteria, following the manufacturer’s in
structions. The mRNA-enriched samples were then prepared for 
sequencing using the NEBNext Ultra II Directional RNA Library Kit. The 
quality-checked libraries were sequenced on an Illumina NextSeq 2000 
(2x150 nt, StarSeq, Mainz, Germany).

The quality of the raw reads was assessed using FastQC (Andrews, 
2010) and MultiQC (Ewels et al., 2016), then trimmed with Trimmo
matic v0.39 (Bolger et al., 2014), using the following parameters: 
ILLUMINACLIP: NexteraPE-PE.fa:2:30:10, LEADING: 3, TRAILING: 1, 
SLIDINGWINDOW: 4:20 and MINLEN: 50. Residual rRNA were filtered 
using SortMeRNA v4 (Kopylova et al., 2012) with default settings. The 
mRNA reads were then assembled into contigs using Trinity v2.15.1 
(Grabherr et al., 2011). Functional annotation used the SqueezeMeta 
v1.6.3 pipeline (Tamames and Puente-Sánchez, 2019), with assignments 
made to KEGG pathways. To analyze the ARG profile, open reading 
frame sequences were queried using BLAST against the CARD database 
(Alcock et al., 2023).

2.9. Statistics

CH4 production over time was modelled as generalized logistic 
function (Bollinger et al., 2024; Grasset et al., 2021) 

CH4(t)=A +
L − A

(1 + ve− k(t− τ))
1
v

(7) 

where A and L are the initial and final concentrations of CH4, k and τ are 
kinetic parameters and v modulates the symmetry of the curve. 
Following our previous rationale (Bollinger et al., 2024), τ (i.e., time 
until the inflection point is reached) is considered the most relevant 
endpoint of toxicity as it captures the first two successional phases of the 
incubation that involve the most relevant prokaryotic processes. Models 
were fit with the R package “brms” (version 2.20.4, chains: 4, iterations: 
20000, thinning: 10, warmup: 16000)(Bürkner, 2017). Previously 
established priors (Bollinger et al., 2024) were used and sensitivity 
(Fig. S1) as well as validity (Fig. S2) were assessed likewise. For the 
latter, the standard variation (σ) was defined using a scaling factor 
(fscale) determined with nonlinear least squares regression 

σ = fscale⋅
dCH4

dt
(7a) 

The models were 0.53 % inaccurate and 0.67 % imprecise.
Uncertainty in differences in τ between treatments, was assessed via 

contrasts of the posterior distribution as effect percentages. Posterior 
distributions were described using the maximum a posteriori estimate 
(MAP) and the 95 % highest-density credible interval (HDI). The Bayes 
factor (BF) was used to express the posterior odds of treatment effects on 
τ, indicating the likelihood of H1 (e.g., treatment differences) versus H0 
(e.g., no treatment differences) given the data. For clarity and compa
rability, BF values were expressed as ≥1, irrespective of effect direction.

Treatment effects on relative abundances from metabarcoding ana
lyses were normalized to the control (ΔRA) for each treatment combi
nation, allowing for consistent comparison across time points and 
treatments: 
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ΔRA=

∑n

i=1
RATi − RACi

∑n

i=1
RACi

(10) 

where RATi and RACi represent the relative abundance of ASVs in a 
treatment and control, respectively. Non-metric multidimensional 
scaling (NMDS) was performed on Hellinger-transformed relative 
abundances, based on Bray-Curtis dissimilarities, using the R package 
"vegan" (version 2.6–4) (Oksanen et al., 2022). Statistical significance 
was assessed using permutational multivariate analysis of variance 
(PERMANOVA) (Anderson, 2001), while species contributions to 
between-group dissimilarities were determined using SIMPER. Meta
transcriptional data was analyzed as transcripts per million (TPM) with 
the R package "SQMtools" (version 1.6.3) (Puente-Sánchez et al., 2020).

All analyses were conducted in R (4.3.1) (R Core Team, 2023). Data 
and code are publicly available at Zenodo (https://zenodo.org/doi/10.5 
281/zenodo.14679433). Metabarcoding and metatranscriptome 
sequence data have been deposited in the NCBI BioProject database 

(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1207865).

3. Results & discussion

3.1. Site-specific effects of antibiotics on methanogenesis without short- 
term adaptation

In absence of antibiotics, the CH4 production was faster (~44 %) and 
higher (~74 %) at the WWTP site compared to the reserve (Fig. S3). 
While the latter might be driven by the availability of additional sub
strates in the sediment, the former might be a characteristic of groups 
predominant in this local assemblage. Notably, the WWTP sediment had 
a lower proportion of Firmicutes and Bacteroidetes but higher relative 
abundances of Proteobacteria and Acidobacteria (Fig. S4). However, 
these differences were less relevant at test start and thus might be 
evoked during the adaptation process to the anaerobic test system. These 
assemblage differences can also be influential in explaining the observed 
effects of antibiotics discussed in the following.

While the reserve sediment replicated antibiotic-enhanced 

Fig. 1. CH4 concentrations relative to the control (set to 100 %; mean ± 95 % confidence interval, left panels) and posterior density distributions of the kinetic 
parameter τ as effect size relative to the control (τEffect, right panels). Assemblage origin (reserve vs. WWTP) and pre-treatment are indicated by different rows and 
colors, while antibiotic concentration is represented by lightness (light: 0 μg L− 1, medium: 5 μg L− 1, dark: 5000 μg L− 1). The Bayes factor (BF) quantifies the odds 
ratio for the probabilities of τEffect being greater than or less than zero, with values always expressed as ≥1. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.)
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methanogenesis (Bollinger et al., 2024, 2021), the community from the 
WWTP site showed the opposite (Fig. 1). At the high antibiotic con
centration, CH4 production was 10.1 % (6.9–13.8) faster for the reserve 
but − 7.1 % (− 15.8 to 2.8) slower for the WWTP (Fig. 1). Moreover, 
effect dynamics (i.e., CH4 concentration over time) were also inversed 
between sites. The reserve sediment initially showed reductive effects of 
antibiotics (− 12 %) followed by positive effects during the exponential 
phase (33 %). Conversely, the WWTP sediment initially showed higher 
CH4 production at the high concentration (32 %), which could indicate a 
higher initial antibiotic tolerance. Indeed, both expressed transcripts 
and number of ARGs were 1–2 orders of magnitude higher in the WWTP 
assemblage (Fig. 2) most likely as a consequence of their prior exposure 
towards antibiotics selecting for resistant species (Bengtsson-Palme and 
Larsson, 2016). In contrast, the positive effects on methanogenesis dy
namics at the high concentration for the reserve sediment might indicate 
recovery because antibiotics were mostly undetectable in the middle of 
the experiment. The increase might therefore be explained by impaired 
substrate competitors (or competitive metabolic pathways) (McNichol 
et al., 2024) during the initial phase and a higher proportion of available 
substrate turned into CH4. This would be in line with our previous hy
pothesis (Bollinger et al., 2024), that the presumed effect pathway of 
antibiotics on methanogenesis is mainly via bacteria-mediated substrate 
provision, instead of having a considerable direct toxic effect on 
methanogens. This is also underpinned by hydrolysis (mainly carried 
out by bacteria) being considered as rate-limiting step (Gonzalez et al., 
2018). This fact complicates interpretation of the observed opposite 
effect patterns between sites given that hydrolysis is the first step in 
providing substrates for virtually every methanogenic pathway. 
Furthermore, linking structure to function in distant but interconnected 
metabolic systems is not trivial.

Nevertheless, both prokaryotic assemblages were significantly 
affected by antibiotics on structural level (p < 0.0001), while effects on 
the composition within the methanogenic Euryarchaeota were less 
pronounced (i.e., p = 0.216 for reserve and p = 0.645 for WWTP, Fig. 3). 
At the WWTP, contributions to dissimilarity were rather evenly 
distributed, for example, across classes of Proteobacteria (i.e., Alphap
roteobacteria, Betaproteobacteria, and Gammaproteobacteria), while 
the classes Clostridia, Bacteroidia and Methanomicrobia contributed the 
most to assemblage dissimilarities at the reserve. Methanomicrobia, 
despite the lack of a significant assemblage shift within Euryarchaeota, 
were the class with the largest negative effects in the WWTP sediment 

(− 40 %, Fig. 3) and showed the second largest positive effects in the 
reserve (113 %, but only in the pre-treated assemblage). This pattern 
aligns with observations in methanogenesis (i.e., reduction for WWTP 
and increase for reserve, Fig. 1) and thus underpins the hypothesis of 
assemblage-mediated effects on methanogenesis with Methanomicrobia 
as the most important class. Understanding causes of this dissimilar 
response of Methanomicrobia between assemblages is thus a key 
objective for further research and might require physicochemical char
acterization, including concentrations of substrates. However, their 
≤3.3 % dissimilarity contribution is still small compared to more 
abundant classes (e.g., Clostridia and Bacteroidia, Fig. 3), which may 
contribute indirectly to an altered methanogenesis by modifying avail
able substrates.

Given uncertainties in inferring substrates from taxonomy, we 
focused instead on enzymatic activities through gene profiling. For both 
assemblages, methyl-coenzyme M reductase (MCR) was the most 
expressed enzyme of the CH4 pathway which synthesizes but also de
composes CH4 (Fig. 4). Midway through the experiment, the patterns of 
MCR effects closely mirrored those seen in Methanomicrobia. Both MCR 
activity and Methanomicrobia were reduced in the WWTP assemblage, 
while levels remained unchanged in the reserve assemblage (Figs. 3 and 
4). A nearly identical pattern was observed for acetyl-CoA decarbon
ylase/synthase complex (ACDS), highlighting the importance of the 
acetoclastic pathway due to its importance for acetogenesis and acetate 
cleavage (Grahame et al., 2005). In support of this, the expression of 
acetate kinase and phosphate acetyltransferase showed disparate effect 
patterns between sites. While these enzymes were reduced at all time 
points in the WWTP assemblage, effects in both directions were present 
in the reserve. These enzymes catalyze key steps in the conversion of 
acetate into acetyl-CoA (Gorrell et al., 2005; Lipmann, 1944), which is 
subsequently processed into CH4 and CO2 during acetoclastic meth
anogenesis. A reduction in expressions of ACDS, acetate kinase and 
phosphate acetyltransferase, as observed in the WWTP assemblage, 
could indicate a lower acetoclastic methanogenesis, and may be a key 
insight in explaining the observed reductions in overall methane pro
duction. In line with literature (Conrad, 2020), acetate likely dominated 
as substrate for methanogenesis midway through the incubation, which 
is supported by lower fractionation factors of compound-specific δ13C 
values of CH4 and CO2 (Fig. S5). Although differences to the control in 
δ13C were present at the high concentration for both assemblages, these 
differences can also be driven by the different successional stage due to 

Fig. 2. Gene expression in transcripts per million (A) and ARG profile (B). In the left figure (A), vertical dashed lines represent ARG expression at the start of the 
experiment and lines connect to expression levels of the main experiment. In the right figure (B), fill color in the circles indicate different drug classes (for more 
details see Fig. S6) at 0 μg L− 1 (inner), 5000 μg L− 1 (middle), and at test start (outer). Text inside the circle displays the number of unique resistance gene at 0 μg L− 1 

(top), 5000 μg L− 1 (middle), and at test start (bottom). Both figures are faceted by time point, assemblage (i.e., reserve vs. WWTP), and pre-treatment (i.e., with vs. 
without). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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altered dynamics of CH4 production (Bollinger et al., 2021). Taken 
together, this evidence reinforces our hypothesis that the acetate 
pathway is most important for understanding antibiotic effects 
(Bollinger et al., 2024) with gene profile differences helping explain 
site-specific methanogenesis responses.

3.2. Effects of short-term adaptation on antibiotic effects

For both assemblages, pre-treatment with antibiotics only showed 
minor changes in antibiotic effects during the main incubation experi
ment (Fig. 1). Effects on CH4 production dynamics (i.e., time until in
flection point, τ) were slightly increased in the reserve (up to 2.6 %) and 
slightly lower in the WWTP (down to − 1.5 %, Fig. 1). Although this 
pattern could – in line with our hypothesis – suggest a higher adapt
ability of the WWTP assemblage, the effect sizes and statistical support 

were negligible (BF up to 3.6), and the underlying processes are too 
versatile to support this interpretation. In combination with essentially 
unaltered expressions of ARGs between pre-treatments (Fig. 2), this 
suggests a limited capability for short-term adaptation. In contrast, high 
antibiotic treatment in the main incubation experiment nearly always 
elevated ARG expression. The absence of pre-treatment effects could 
therefore, be influenced by a lower number of generations (although 
higher ARGs could be expected within a handful of days) (Gullberg et al., 
2011), a lower antibiotic concentration per gram of sediment, or the 
present prokaryotic assemblage. The latter is founded on assemblage 
filtering induced by the anaerobic conditions (but also substrate addi
tion) which could have indirectly selected for species with greater 
resistance potential.

Although effects on methanogenesis dynamics and ARGs seem 
minor, the pre-treatment still had notable early-phase effects. Without 

Fig. 3. Metabarcoding-based community analyses of all prokaryotes. The left and middle columns display average changes in relative abundance compared to the 
control, normalized to the average relative abundance in the control (expressed as relative change ± SE), for prokaryote classes at the mid (left column) and end 
(middle column) of the experiment. Negative values indicate reductions, while positive values represent increases in relative abundance. Taxonomic levels are ranked 
by their contribution to dissimilarity between the high antibiotic concentration and the control (averaged across both time points), with the contribution value shown 
in parentheses. The right column presents NMDS plots based on Hellinger-transformed relative abundances for prokaryotes. Assemblages from the same site (i.e., 
reserve vs. WWTP) but different pre-treatment and time point (triangle: mid, circle: end) share the same ordination space for better comparability (stress: 0.088 for 
reserve and stress = 0.055 for WWTP). Assemblage origin and pre-treatment are indicated by different rows and colors, while antibiotic concentrations are rep
resented by lightness (light: 0 μg L− 1; medium: 5 μg L− 1; dark: 5000 μg L− 1). (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.)
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pre-treatment, the reserve assemblage initially showed a decreased 
methanogenesis at the high concentration (as discussed above, Fig. 1). 
With antibiotic pre-treatment, however, this effect reversed (13 %). 
Since we previously interpreted this initial reduction as a sign of 
metabolic dormancy due to stress (Chebotar’ et al., 2021), the positive 
effects when pre-treated with antibiotics could indicate an acclimati
zation on the metabolic level. Although effect directions stayed the same 
in the WWTP assemblage, effect sizes were reduced when pre-treated 
with antibiotics (i.e., 12 % instead of 32 % without pre-treatment).

The action of the pre-treatment is also reflected in prokaryotic 
assemblage differences (p < 0.0001) and their interactions with anti
biotic effects (p = 0.0168 for reserve and p = 0.0089 for WWTP). In the 
reserve, Methanomicrobia almost doubled midway through the experi
ment at the high concentration when pre-treated with antibiotics. This is 
in sharp contrast to the unaltered relative abundance when not pre- 
treated. In addition to showing the effectiveness of the pre-treatment 
on the community level, this result also indicates a slight mismatch 
between structure (i.e., same relative abundance of methanogens) and 
function (i.e., increased methanogenesis). Further differences between 

pre-treatments were not only visible in effect direction (e.g., Betapro
teobacteria and Deltaproteobacteria), but also in effect size (e.g., Spi
rochaetes and Alphaproteobacteria) although many taxa showed no 
considerably altered effects (e.g., Bacteroidia and Gammaproteobac
teria). WWTP sediment showed less clear patterns. Differences in effects 
on Methanomicrobia were lower in the WWTP (− 29 and − 40 % with 
and without antibiotic pre-treatment, respectively) compared to the 
reserve assemblage (− 1 and 113 % with and without antibiotic pre- 
treatment, respectively) but matches the patterns observed in meth
anogenesis quite well (i.e., lower relative abundance and reduced 
methanogenesis, Figs. 1 and 3). Even though a community shift is likely 
the key to understanding changes in tolerance towards antibiotics (Tlili 
et al., 2016), generalizing these mechanistically remains a prime chal
lenge in such complex assemblages.

Also, the gene expression profiles indicate pre-treatment modulated 
antibiotic responses. Most notably, MCR increased at the high concen
tration mid-incubation in the pre-treated reserve assemblage, while no 
differences were present when not previously exposed to antibiotics 
(Fig. 4). This aligns with the above-mentioned slightly higher effects on 

Fig. 4. The 10 most expressed transcripts from the KEGG methane metabolism pathway shown as transcripts per million. Transcriptions of subunits were assigned to 
the respective enzyme plotted as mean with bootstrapped 95 %-confidence intervals alongside raw values. Assemblage origin and pre-treatment are indicated by 
different rows and colors, while antibiotic concentrations are represented by lightness (light: 0 μg L− 1; dark: 5000 μg L− 1). (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.)
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methanogenesis dynamics. ACDS, acetate kinase, malate dehydroge
nase, and phosphate acetyltransferase also indicate disparate responses 
in the acetate pathway between pre-adapted and inert assemblages. 
Again, these differences were less apparent in the WWTP assemblage 
and could thus be a hint towards understanding divergent site responses.

In summary, significant impacts on assemblage composition and 
gene expression, did not translate to similarly substantial changes in 
antibiotic effects on CH4 production dynamics after short-term adapta
tion. Along with effects observed in both assemblages (despite opposite 
directions, see 3.1), this suggests a notable susceptibility to antibiotics 
and potentially other chemical stressors, regardless of adaptation level. 
This is further supported by the expression of ARGs, hardly explaining 
any observed pattern in antibiotic effects on methanogenesis. Therefore, 
antibiotic exposure will nonetheless pose a risk even to adapted meth
anogenic assemblages and consequently for CH4 production in future 
scenarios.

3.3. Effects of short-term adaptation on methanogenesis

The pre-treatment also had additional effects beyond changing 
antibiotic sensitivity. Comparing each antibiotic level of the pre-treated 
assemblages in the incubation experiment to its respective counterpart 
in the unexposed assemblage (e.g., control of sediment with pre- 
treatment vs. control of sediment without pre-treatment) revealed pat
terns deviating from the antibiotic action in the main experiment. For 
example, while the reserve and WWTP assemblage showed positive or 
negative effects on methanogenesis dynamics, respectively, the pre- 
treatment mildly accelerated methanogenesis in both assemblages (BF 
up to 4.7, Fig. 5). Apart from the high antibiotic treatment in the WWTP 
assemblage, CH4 concentrations were highly increased in the initial 
stages of the incubation. Since these alterations were induced solely 
during the pre-treatment, it shows that previous antibiotic exposure can 
affect future methanogenesis but also that effect directions are context- 
dependent even in the same assemblage (i.e., given decreases in the 
main incubation for WWTP but increases when comparing pre- 
treatments directly). The absence of oxygen and addition of substrate 
can filter the community and therewith shape responses towards anti
biotics. This could further complicate the generalization of effects, 
especially in natural environments where aerobic and anaerobic sedi
ment layers interact via substrate transport. Moreover, the combination 

of numerous stressors/factors could interact with antibiotic effects on 
methanogenesis. For example, the granularity of the sediment (Du et al., 
2015), presence of oxidizing agents (that promote antibiotic degrada
tion) (He et al., 2021) and temperature (Bollinger et al., 2024) can 
modulate the observed effects. However, the majority of findings stems 
from anaerobic digesters that are barely comparable to natural sedi
ments (e.g., in terms of temperature and antibiotic exposure). Therefore, 
future efforts need to identify circumstances that reinforce increased 
methanogenesis in presence of antibiotics that extend the here taken 
approach with focus on prokaryotic assemblage composition.
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Sources of pharmaceuticals in water. In: Pérez Solsona, S., Montemurro, N., 
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