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A B S T R A C T

Physiologically based kinetic (PBK) models are becoming increasingly important in chemical risk assessment, 
helping in linking external and internal exposure concentrations, thereby supporting the development of regu
latory health-based limits for chemicals with exposure from environmental, occupational, and consumer sources. 
To increase confidence in PBK models for regulatory purposes, the OECD published a guidance document in 2021 
outlining the characterization, validation and reporting of PBK models. However, its use remains limited in 
chemical toxicology as reflected by the few publications that have applied it during model development. The aim 
of this study was to evaluate several published PBK models for Per- and polyfluoroalkyl substances (PFASs) as 
proof of concept to assess their validity and credibility for regulatory purposes, based on the OECD guidance. Out 
of 28 published PFASs human PBK models considered, 11 were selected for evaluation. The assessment used the 
OECD guidance document, encompassing two main areas: i) documentation (context/implementation, docu
mentation, software implementation, verification, and peer engagement) and ii) assessment of model validity 
(biological basis, theoretical basis of model equations, input parameter’s reliability, uncertainty and sensitivity 
analysis, goodness-of-fit and predictivity). To standardize this process, an online evaluation system based on the 
OECD guidance was developed and used for this model evaluation exercise. The collected data were analysed to 
assess the overall quality of published models and identify limitations in the current PFAS model landscape. Our 
analysis revealed opportunities for improvement in the biological representation within current PFAS models, 
particularly regarding the inclusion of diverse population groups. Currently, PFAS models primarily focus on 
only four compounds, highlighting an opportunity to extend coverage to other PFASs using read-across ap
proaches for data-poor chemicals. Furthermore, our findings show that a harmonized approach for PBK model 
reporting is needed. To facilitate broader adoption of the OECD guidance, we developed and hosted an R Shiny 
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template on our group’s web server (https://app.shiny.insilicohub.org/Evaluation_PBPK/). This template can act 
as valuable tool for researchers evaluating PBK models according to the OECD guidance.

GitHub: PBPK-OECD-EVALUATION.

1. Introduction

Physiologically based kinetic (PBK) models are increasingly used in 
pharmaceuticals and toxicology to evaluate the safety and toxicity of 
compounds. Over the years, these models have become an integral part 
of drug development and chemical risk assessment [1,2]. In general, PBK 
modeling is applied in multiple contexts including inter- and intraspe
cies translation, in-vitro to in-vivo extrapolations (IVIVE), route-to-route 
extrapolation, target dose estimations, and daily intake calculations for 
both general and sensitive populations [3]. Despite the substantial in
crease in published PBK models over last 30 years with potential to 
predict kinetic of compounds (drugs and chemicals), their application in 
regulatory context remains limited (Fig. 1). The major reason for this 
limited regulatory acceptance includes a lack of modeling expertise 
within regulatory agencies to review submitted models, insufficient 
experimental kinetic data for model development, the absence of − user- 
friendly platforms for reviewers to test models, and variations in 
acceptance criteria across agencies and countries [4].

Regulatory bodies such as the OECD (Organisation for Economic Co- 
operation and Development), EMA (European Medicines Agency), 
USEPA (U.S. Environmental Protection Agency), and WHO (World 
Health Organization) have published multiple guidance documents to 
establish a harmonized approach for the characterization, validation 
and reporting of PBK models for regulatory use as well as to foster 
effective communication among key stakeholders [2,4–6]. Over time, 
these guidelines have been updated to include new approach method
ologies (NAM), particularly those supporting the use of high-throughput 
in-vitro and in-silico data for PBK model development. In addition to 
model construction and validation, a complete reporting framework is 
also essential to aid modelers in reproducing results and building con
fidence in decision-making, and ultimately enabling the development of 
robust PBK models that can assist scientists and regulators in assessing 
and effectively regulating compound-specific toxicity [1,7,8]. Recently, 
Kirman et al. has evaluated PBK models for metal nanoparticles using 
OECD guidance document for inhalational exposure [9]. However, no 
such assessment using OECD framework has been conducted for PBK 

model developed for environmental chemicals.
The aim of this study was to apply the PBK OECD reporting template 

[2] to check whether published PBK models adhere to OECD criteria for 
model development and reporting, using perfluoroalkyl substances 
(PFAS) as a proof-of-concept case study. The template facilitated the 
identification of major limitations and challenges of such existing 
models, providing opportunities to improve them for regulatory use. 
PFAS are persistent man-made compounds regularly detected in the 
environment and in human biomonitoring samples, with the potential to 
bioaccumulate and cause adverse health effects [10]. They were selected 
as a case study because regulatory agencies regard them as a significant 
health concern. To predict the toxicokinetic profiles of PFAS in adult and 
vulnerable populations, multiple PBK models have been developed over 
the past decade for four PFAS compounds [11]. In this work, we eval
uated models for PFOS (perfluorooctanesulfonic acid), PFOA (per
fluorooctanoic acid), PFNA (perfluorononanoic acid) and PFHxS 
(perfluorohexanesulfonic acid) and identified key challenges that could 
help facilitate their use in improved risk assessment. The evaluation 
presented here can be extended to other chemicals to ensure the quality, 
reliability and robustness of PBK models.

2. Methodology

For evaluating the PFAS PBK model with OECD criteria (explained 
below, Fig. 2), the following strategy was adopted: 

1) Selection of PFASs PBK models
2) Preparation of PBK model evaluation checklist template and 

assigning a categorial and scoring system
3) Formation of expert panel, including both developers and users
4) Model evaluation

2.1. Selection of the published PFAS PBK models

Initially to choose the existing PFAS PBK model, PubMed advanced 

Fig. 1. Published PBK models over the last 30 years searched using PubMed advanced search (Keyword: PBPK (Physiologically based Pharmacokinetic) Model or 
PBK (Physiologically based Kinetic) Model or PBTK (Physiologically based Toxicokinetic) (Model search done on 05 March 2025).
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search criteria were used with the following keywords: “PFAS” and 
“PBPK”, “PBK” or “PBTK”. A total of 28 articles were found (search made 
in April 2023). Exclusion criteria included articles not retrievable via 
PubMed, review, semi review, reports, and PBK models developed for 
species other than humans. In case if multiple PFAS PBK models were 
published from the same corresponding author then the most recent 
model was considered for the evaluation. PBK model for PFAS published 
by EFSA was not included since it is based on model from Locissano et al. 
which was already a part of the evaluation [12,13]. Also, the scientific 
opinion published by EFSA cannot be found through PubMed which was 
one of exclusion criteria. PBK models considering different life stages/ 
aspects were selected, e.g., pregnancy, age-dependent, sex-specific, 
gestational and lactational models. Out of 28 articles, 11 were further 
shortlisted for the evaluation based on these criteria (Table 1). All the 
selected articles were published between 2011 and 2023.

2.2. PBK model evaluation checklist with categorial and scoring system

We developed an online tool using a standardized questionnaire 
template to facilitate the harmonized evaluation of selected PFAS PBK 
models by the expert panel. The questionnaire was derived from the 
OECD guidance document checklist and reformatted into a structured 
template (Fig. 3). The evaluation template was organized into six major 
steps: Step 1) scope and purpose of the model (problem formulation), 
step 2) model conceptualization (model structure and mathematical 
representation), step 3) model parameterization (parameter estimation 
and analysis), step 4) computer implementation (solving the equations), 
step 5) model performance (validation, sensitivity, variability and un
certainty analysis) and step 6) model reporting and dissemination 
(Fig. 3). The checklist consisted of multiple-choice questions, each fol
lowed by a section where experts could provide justification for their 
responses. Questions concerning model characterization used a cate
gorical system (Yes, No, Partially, I cannot answer, Not applicable), 
followed by a scoring system (1–5, plus I cannot answer) to rate the 
degree of confidence in each characteristic section. This structure 
enabled a more consistent and quantitative evaluation rather than 
relying solely on qualitative feedback. Further details on the checklist 
and its application are provided in Section 5 and the supplementary 
material.

2.3. Formation of expert panel and Assignment of PBK models

The expert panel consisted of PBK model developers and users with 

expertise in chemical risk assessment. A total of 12 experts were selected 
for the evaluation, representing institutions across Europe. The panel 
included members from academia (10 experts), and regulatory institutes 
(2 experts), with varying years of experience (Table S1). PBK models 
were randomly assigned to panel members regardless of their institu
tional affiliation; however, care was taken to avoid assigning models to 
experts with a conflict of interest (co-author of published model or 
coming from same lab). Each article was evaluated by at least two in
dependent experts.

2.4. Model evaluation

The evaluation of PBK model was conducted by panel members using 
the checklist described in Section 2.2. Additional questions were 
incorporated to address model-specific aspects such as population age 
groups, geographical relevance, and biological mechanisms underlying 
the long half-life of PFAS. A scoring system was applied to facilitate a 
more quantitative assessment, while allowing evaluators discretion in 
assign scores. Confidence in a model was considered higher when it 
demonstrated a well-defined structure, strong parameterization, vali
dation against toxicokinetic data, robust uncertainty and sensitivity 
analyses, and comprehensive documentation (Fig. 4). Experts were able 
to justify their responses after each question, ensuring transparency in 
the evaluation process. The finalized questionnaire was implemented on 
an RShiny platform, as described in Section 5. The complete checklist, 
including scoring responses, is provided in the supplementary material
(Fig. S9).

3. Results and discussion

The OECD guidelines outline an assessment framework for the 
evaluation of PBK models based on biological basis, uncertainty and 
sensitivity analysis, and model prediction. The OECD assessment is not 
quantitative but purely qualitative, intended to provide assessors and 
regulators with an overview of the evidence presented by model de
velopers. In addition, the guidelines are broadly applicable to all com
pounds including nanoforms, biologicals, macromolecules and peptides 
with the aim of building relative confidence in the model. For this study, 
PFAS were selected as the case study chemical due to their widespread 
occurrence, persistence, accumulation potential, and toxicity. As a 
consequence of the health threat posed by PFAS, regulators at the Eu
ropean level have reduced the tolerable weekly intake (TWI) of PFAS 
from microgram to nanogram per kg body weight, incorporating new 

Fig. 2. Framework for evaluating the existing PFAS PBK model using OECD published PBK guidance document.
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scientific evidence. The most recent TWI values for four PFAS (PFOS, 
PFOA, PFNA and PFHxS) were derived using PBK model predictions, 
which accounted for infants as a sensitive population and immunotox
icity as the critical end point. Hence, PFAS PBK models were considered 
for our case study with the goal of guiding modelers and developers in 
improving existing models by addressing current limitations and chal
lenges. We adapted the evaluation framework to make it quantitative, 
facilitating the weighing of overall evidence and providing a structured 
framework for model development.

Standardization of PBK modeling plays a crucial role in improving 
model transparency, reproducibility, and regulatory acceptance. In this 
study, we evaluated aspects related to implementation and model val
idity to support the harmonization of PBK models across regulatory 
contexts. Satisfying these criteria can enhance confidence in the model, 
particularly regarding its applicability and predictive performance. We 
also emphasized the refinement of the evaluation checklist as a means to 
support regulatory acceptance of PBK model submissions. Alignment of 
the model structure and parameters with the biological basis, evaluation 
of predictive performance using biokinetic data in the species of interest 

and the use of sensitivity analysis to determine the uncertainty of the 
predicted dose metrics can strengthen confidence in PBK models. Our 
findings highlight the importance of following the framework proposed 
by the OECD during PBK model development to enhance scientific and 
regulatory validity. Furthermore, we proposed that the model evalua
tions should be quantitative rather than purely qualitative and stress the 
importance of considering case-specific contexts when developing or 
evaluating PBK models for chemical risk assessment and drug develop
ment. The implications of these findings are explored in detail below.

3.1. Implementation and documentation of the model

This section covers the general documentation of the PFAS PBK 
models.

3.1.1. Consideration of different age groups
Consideration of age groups plays a critical role in PBK modeling 

since different age groups show variation in physiological and 
biochemical processes affecting tissue dosimetry of compounds [14]. 
The current PFAS PBK models mostly focus on human adults, pregnant 
females, and fetus, predicting adult, maternal and pre- and postnatal 
exposure contributions to body burden. These vulnerable populations 
are at potential health risk due to exposure to environmental toxins. 
Almost 40 % of the models do not include teenagers and other pediatric 
populations, thus limiting their applicability to specific age groups 
(Fig. S1). However, since most PFAS are long-acting chemicals with half- 
lives of several years [15] predicting lifetime exposure provides insights 
into PFAS toxicokinetics, especially in the first years of life. To date, 
adult PBK models can be considered the gold standard for PFAS, since 
PFASs are stable chemicals and PBK models can be extended relatively 
by using a classical body weight and ontogeny based scaling approach to 
predict concentrations for other age groups such as pediatric and geri
atric populations [16] However, significant uncertainty may arise due to 
variation in fraction unbound and renal resorption over time across 
different age groups [17–19]. EFSA has highlighted these uncertainties 
when extrapolating adult toxicokinetics to children, due to age-specific 
physiological differences, exposure variability, and potential underes
timation of health risks. The EFSA assessment on PFASs illustrates these 
challenges, emphasizing the need for refined models incorporating 
child-specific parameters, long-term accumulation data, and develop
mental toxicokinetics to improve regulatory decision-making and risk 
assessment accuracy. With these considerations, a TWI of 4.4 ng/Kg 
BW/week was established for the sum of all four PFASs (PFOA, PFNA, 
PFHxS and PFOS) with no additional uncertainty factor applied to it 
[20]. Additionally, in its scientific opinion document, EFSA highlighted 
that PFAS exposure to toddlers and ‘other children’ was approximately 
twice that of adolescents and adult age groups due to higher food intake 
relative to their body weight. Through model extrapolation, it has been 
deduced that maternal exposure of 1.16 ng/day resulted in a serum level 
of 31.9 ng/ml in one-year old children. Lower bound exposure estimates 
and measured serum PFAS levels suggest that some segments of the 
European population exceed the TWI [12].

3.1.2. Consideration of geography demographics
The inclusion of geographic demographics in any PBK model in

corporates the parameters influenced by ethnicity, such as the preva
lence of genetic variants and hepatic characteristics. Studies have 
highlighted the effect of geography and demographic variability on 
serum PFAS concentration, which helps the regulatory bodies in expo
sure mapping [21]. Almost 44.4 % of the evaluated models have covered 
more than one continental population, with 27.8 % including the Eu
ropean population, but PBK models have less representation in terms of 
Asian population (Fig. S1). This may be due to fewer epidemiological 
studies conducted for PFAS analysis in humans in Asia. However 
recently high PFAS levels have been detected in China, Japan and South 
Korea [22]. For instance, Chou and Lin., 2021 used toxicokinetic data 

Table 1 
Details of the models considered for evaluation.

S. 
No.

Title of the article Year Reference (DOI)

1 Evaluation and prediction of 
pharmacokinetics in the monkey and 
human using a PBPK model.

2011 https://doi.org/10.1016/ 
j.yrtph.2010.12.004

2 Development of PBPK Models for 
PFOA and PFOS for Human 
Pregnancy and Lactation Life Stages.

2013 https://doi.org/10.1080 
/15287394.2012.722523

3 Sex-specific risk assessment of PFHxS 
using a physiologically based 
pharmacokinetic model.

2018 https://doi.org 
/10.1007/s 
00204-017–2116-5

4 Prediction of maternal and foetal 
exposures to perfluoroalkyl 
compounds in a Spanish birth cohort 
using toxicokinetic modelling.

2019 https://doi.org/10.1016 
/j.taap.2019.114640

5 Prenatal exposure to PFOS and PFOA 
in a pregnant women cohort of 
Catalonia, Spain.

2019 https://doi.org/10.1016/j 
.envres.2019.05.040

6 Bayesian evaluation of a 
physiologically based 
pharmacokinetic (PBPK) model for 
perfluorooctane sulfonate (PFOS) to 
characterize the interspecies 
uncertainty between mice, rats, 
monkeys, and humans: Development 
and performance verification.

2019 https://doi.org/10.1016/j 
.envint.2019.03.058

7 Exploring sex differences in human 
health risk assessment for PFNA and 
PFDA using a PBPK model.

2019 https://doi.org 
/10.1007/s 
00204-018–2365-y

8 Development of a Gestational and 
Lactational Physiologically Based 
Pharmacokinetic (PBPK) Model for 
Perfluorooctane Sulfonate (PFOS) in 
Rats and Humans and Its Implications 
in the Derivation of Health-Based 
Toxicity Values.

2021 https://doi.org/10.128 
9/EHP7671

9 Risk Assessment of Perfluorooctane 
Sulfonate (PFOS) using Dynamic Age 
Dependent Physiologically based 
Pharmacokinetic Model (PBPK) 
across Human Lifetime.

2021 https://doi.org/10.1016/j 
.envres.2021.111287

10 Physiologically based 
pharmacokinetic (PBPK) modeling of 
perfluorohexane sulfonate (PFHxS) 
in humans

2022 https://doi.org/10.1016/ 
j.yrtph.2021.105099

​ Comparison of aggregated exposure 
to perfluorooctanoic acid (PFOA) 
from diet and personal care products 
with concentrations in blood using a 
PBPK model − Results from the 
Norwegian biomonitoring study in 
EuroMix.

2023 https://doi.org/10.1016/j 
.envres.2023.117341
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Fig. 3. Assessment of PBK model building, evaluation and validation as per OECD guidance ([]
adapted from OECD guidelines) 2.

Fig. 4. None to high confidence level for PBK Model depending on multiple attributes like biological basis, model simulation and uncertainty and sensitivity for 
different input and output parameters ([]
adapted from OECD guidance document) 2.
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from multiple populations, including Japanese, Danish, American, 
Chinese, Swedish, German, Norwegian, South Korean, and French 
populations [23]. However, Sweeney et al., 2022 considered only the 
general American population [11]. Deepika et al., 2021 included the 
Chinese and Australian and Norwegian population [24]. Loccisano et al., 
2013 used referenced data from Denmark, Germany, Canada, Korea, 
Japan and South Africa [13]. This factor is important since inclusion of 
populations from different geographies further strengthens the model. In 
the future, with more data available, physiological parameters such as 
organ blood flow, organ volume, body weight and height of different 
populations can be incorporated [22].

3.2. PBK model structure

The structure of the PBK model is very important and depends on the 
use-case scenario and data availability and can vary from being 
simplistic to complex. Most PFAS PBK models (82.4 %) currently 
consider the renal resorption (RR) process to explain the long half-life of 
PFAS. However, models including both RR and enterohepatic recircu
lation (EHR) are limited (17.6 %) even though EHR is a common 
disposition mechanism for PFAS and can help in strengthening the 
biological basis of the model (Fig. S1) [24,25]. Adding EHR has the 
additional advantage of reducing dependency on animal data since its 
parameterization can be achieved using in-vitro data through in-vitro to 
in-vivo extrapolation (IVIVE). However, it is worth noting that EHR may 
not be a sensitive parameter and can increase the complexity of the 
model, but this is something which can be analyzed only after its 
incorporation in the model.

3.3. Documentation of the model

In terms of documentation, 90 % of the models have provided a clear 
indication of the chemical for which they were being developed. For 
instance, Husoy et al. 2023 has clearly stated that the model is specif
ically for PFOA [25]. In some models, explanations of the equations are 
lacking, with only equations given for uptake, elimination and transport 
in the kidney compartment [26]. Rovira et al., 2019 has mentioned a few 
important equations related to exposure assessment in pregnant women 
through different routes and adapted other standard equations from a 
pre-published article [27,28]. Currently PFAS models are limited to 4 
compounds viz. PFOA, PFOS, PFNA and PFHxS due to limitation of data 
availability. Eighty percent of the models developed are for similar 
scientific purposes while 20 % are repurposed for other chemicals. A 
clear mention of the plausibility of the model assumptions is very crucial 
for building a robust model. For instance, consideration of a filtrate sub- 
compartment in the kidney or inclusion of a delay compartment for 
PFAS provided by Loccisano et al. (2011) provided justification to 
explain the longer half-life of the chemical [29]. In 55 % of the selected 
papers the model assumptions were clearly described (Fig. S2).

Publishing PBK model code is still not widely practiced within the 
modeler community which leads to difficulties in reproducing models by 
other developers and regulators. Only 60 % of the papers have published 
their model codes [11,23,25,26,29,30]. The PBK community should 
consider publishing their code on GitHub, Zenodo, FAIRDOM or other 
open access repositories to make the model findable, accessible, inter
operable and reusable (FAIR). The unavailability or partial availability 
of code in 40 % of the models is a major limitation, often making it 
difficult to evaluate the assumptions.

Representation of the mode of action for any PBK model is a very 
important step that helps in exposure predictions and increasing the 
confidence among regulators and the scientific community [31]. Only 
15 % of the models have graphical representation of the proposed mode 
of action [26,29,30]. Sometimes for PBK models, the model structure 
itself represents the mode of action, hence a separate graphical repre
sentation may not be necessary [32]. Graphical representation of the 
conceptual model has been demonstrated by 80 % of the models 

showing the general structure of the model. Most of the models include 
gut, liver, kidney, adipose, plasma and the rest of the body as com
partments. Some models have included the brain compartment as well 
[24,27,30,33]. Models focusing on sex specific risk assessment have 
considered the loss of menstrual blood in the model structure [33,34]. 
The models where the objective was to predict the maternal and fetal 
exposure of PFAS included the placenta, mammary gland and a separate 
fetal compartment [13,23,27,30]. Compartments like lung, bone, adre
nal, thyroid, skin and bone marrow were also considered depending on 
the model requirements [24,27,30].

An important aspect of PBK model documentation is the tabulation 
of parameters with their relevance and reliability clearly described. 
Currently, almost 60 % of the papers have presented the parameters in a 
proper structured way [13,23–27,29,30,34]. However, the method of 
presentation varies from paper to paper necessitating the need for a 
structured format to do so. For instance, some authors did not provide 
the standard deviation or range considered for the parameters [24,25] 
while others did not consider the variability and uncertainty of the pa
rameters [30]. Some authors presented the mean value along with 
posterior distributions for mean and variance. Relevance and reliability 
in the reported parameters were found to be a little less with 45 % of the 
papers having partial reliability (including some parameters but not all) 
while 35 % of the papers having properly mentioned the parameters 
[11,23,24,26,29].

Uncertainty and sensitivity analysis are important pillars for building 
confidence in PBK model especially to take into account variation in 
experimental data [35]. Approximately 55 % of the selected papers re
ported conducting uncertainty and sensitivity analysis. Among these, 
local sensitivity analysis (LSA) was the most commonly used approach, 
performed in 65 % of the papers [13,23,25,26,29,33,34], while global 
sensitivity analysis was performed in 25 % of the papers [11,24,25]. For 
instance, Deepika et al., 2021 performed a global sensitivity analysis 
(GSA) using the pksensi R-package [24], whereas other studies imple
mented LSA. A summary of the responses given by the expert panel can 
be seen in figure S2.

3.4. Software implementation and verification

The code availability is one of the contextual factors which influence 
the degree of confidence in the model. In general, providing model code 
ensures correctness of syntax, parameter values, unit consistency, mass 
and blood flow balance, and the absence of numerical errors. If code is 
provided, it can be reviewed by the model developer and regulators to 
check the accuracy of the computational implementation [2]. Almost 55 
% of the model codes express the mathematical model [11,23,25,26,30] 
while almost 40 % of model codes were free from syntactic and math
ematical errors [11,23,25,26,29,30]. This question remains a limitation 
since many times the code is not provided or is present in a format that 
cannot be replicated and reapplied. About 45 % of PBK models have 
units of both input and output parameters correctly reported 
[11,23,25–27,30] (Fig. S3). Often, the mass balance was not clearly 
mentioned while reporting the model by the authors. Similarly, for 
physiological parameters, mass balance for blood flow and tissue vol
ume was not reported properly. However, in general, almost all models 
achieve mass balance but reporting it can improve confidence in the 
model.

All models use well established algorithms for solving ordinary dif
ferential equations (ODE) ranging from deSolve to other solvers, which 
converge on the solution without numerical errors. A detailed list of PBK 
modelling software, applications and mathematical modeling software 
was provided by Madden et al. 2019 [36] which is also recommended in 
the OECD guidelines [2].

3.5. Peer engagement (input/review)

65 % of the models have not been used for regulatory purposes with 
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only 10 % contributing to regulatory relevance [29]. 50 % of the models 
require additional review, with the major limitation being the lack of 
code or understanding of the code. Additional review by reviewers in 
terms of replication of code can sometime be important for building 
confidence in the model which is currently a limitation for the existing 
papers published on modeling. In the future, an option could be included 
to provide executable files for the model which reviewers can run to 
check the output. Overall, 5 % of the models have the highest degree of 
confidence in peer engagement of the model, followed by 20 % having 
the second highest and 40 % having moderate confidence in peer 
engagement (Fig. S4).

3.6. Assessment of model validity

3.6.1. Biological basis of model (model structure and parameters)
Almost 80 % of the models have implemented biological mechanisms 

including reabsorption [29] and relevant compartments. However, 
PFAS models mostly included a hypothetical delay compartment, which 
needs to be modified in the future to increase the biological relevance of 
the model. The addition of a “delay compartment” was introduced 
initially by Loccisano et al., 2011 to get a better fit for the urine data 
since the rate of appearance of PFOA in urine was slower than its rate of 
disappearance from the plasma [29]. Over time, more data have become 
available for PFAS kidney transporters, and hence this delay compart
ment can be removed by including permeability limited transporters. 
About 45 % of the models have shown sufficient complexity of the model 
structure, making them relevant for regulatory application (Fig. S5). 
However, the OECD guidelines suggest that model parsimony should be 
followed in the context of regulatory application, while the proposed 
model should still be able to represent the complexity of the human body 
[2]. The model should have the number of compartments which are 
required to mimic the condition of the target population. For instance, 
Rovira et al., 2019 added the fetal compartment since the target popu
lation was pregnant women [27]. The point worth mentioning is that 
most of the models lack organs needed to capture developmental and 
reproductive toxicity and immune system effects. Since immunotoxicity 
is considered as a major toxicity for PFAS exposure [37,38], adding 
compartments related to this can further help link PBK model with 
toxicodynamic models for predicting PFAS effects over time.

Almost 80 % of the models provided full or partial details about 
model structure and physiological parameters. More than 65 % of the 
models also accounted for absorption, distribution, metabolism, and 
excretion (ADME) specific parameters, but some articles did not provide 
all parameters in the text. Almost all models accounted for saturable 
transport in the kidney compartment, thus supporting almost 45 % of 
models with a high degree of confidence in their structural basis.

3.6.2. Theoretical basis of model equations
For model equations like Michaelis-Menten kinetics, 70 % of models 

have provided enough information to increase confidence in the model. 
For PFAS, Michaelis-Menten kinetics was applied to describe reabsorp
tion from the filtrate compartment to the kidney, for which enough 
explanation was provided with 55 % of models having a higher degree of 
confidence (Fig. S6).

3.6.3. Reliability of input parameters
The uncertainty in input parameters, especially individual vari

ability, reproducibility and reliability was missing in 50 % of the models, 
with only 10 % of models accounting for uncertainty in input parameters 
(Fig. S6). For instance, in Chou and Lin (2021), several biomonitoring 
studies have been used to calibrate and evaluate the models by applying 
coefficients of variation to the model parameters. However, there was a 
lack of data on individual exposures levels [23]. The sensitive parame
ters were estimated using the Levenberg–Marquardt algorithm based on 
available in-vivo calibration datasets for each species. Another model 
used Bayesian PBK analysis by updating the prior distribution of 

estimated parameters with experimental data to generate the posterior 
distribution using Markov chain Monte Carlo (MCMC) simulations [26]. 
However, in Deepika et al., 2021, the standard deviation of parameter 
values was missing with some models lacking data on individual expo
sures [24]. In Kim et al. 2019, uncertainty factors were included for risk 
assessment purposes and not for PBK model parameters [34]. Overall, 
20 % of the models got a higher rating for confidence in reliability of 
input parameters with 25 % having a medium rating. Multiple models 
lack uncertainty and variability range in input parameters [13,27,29].

3.6.4. Uncertainty and sensitivity analysis
Sensitivity analysis helps to identify the key sources of uncertainty or 

variability or both when there is simultaneous variation in multiple 
input variables [39]. 30 % of the models accounted for uncertainty and 
sensitivity while 35 % lacked the analysis. For sensitivity analysis, LSA 
was performed in 65 % of models with 25 % models not performing any 
LSA. Most of the authors varied parameters by 1 % to evaluate the 
variation in output. For instance, Chou and Lin., 2019 performed LSA on 
a total of 68 posterior parameters for the model development [26]. GSA 
to identify multiple important contributing factors was not performed in 
70 % of the models, with 25 % conducting of the models doing GSA by 
multiple approaches. For instance, Deepika et al., 2021 included 33 
anthropometric, physiological and biochemical parameters to determine 
the most influential parameters for concentration of PFOS in plasma, fat, 
liver, kidney and bone marrow [24].

40 % of the models included uncertainty and sensitivity for input 
parameters that were reasonable for the intended application, with 
multiple models showing physiological parameters like free fraction, 
blood flow, biliary elimination rate constant, partition coefficient of 
liver and transporter related parameters to be highly sensitive. Overall, 
the lack of appropriate uncertainty and sensitivity analyses leads to 15 % 
of models receiving a lower rating, followed by 35 % with a medium 
rating and only 5 % with a high degree of confidence (Fig. S7) [40,4].

3.6.5. Goodness of fit and predictivity
The goodness of fit and predictivity of a PBK model are key criteria 

for determining the suitability of the model. The goodness of fit metric 
assesses how closely a PBK model’s predictions align with observed 
experimental data [5]. Assessment of model predictive capacity using a 
read-across approach or other methods with PFASs analogues was not 
applicable for our case study since the model parameters and data were 
available for the chosen chemicals in 99 % of the cases. Questions 
related to defining the goodness of fit and predictivity of a source 
chemical based on read-across and other approaches were not relevant 
here. Quantitative comparison was reported in 70 % of cases for model 
predictions along with estimated data with two models providing only 
qualitative comparisons [27,30]. 40 % of models also reported a good
ness of fit metric, with 20 % providing partial descriptions. For instance, 
Sweeney et al., 2022 included average fold error (AFE) and average 
absolute fold error (AAFE) numerically while others presented results 
only graphically lacking numerical estimation [11]. 15 % of models 
received a high degree of confidence [11,24,25] for goodness of fit and 
predictivity for specified chemical, followed by 25 % [13,23,26,30] and 
30 % [24–26,29,33] with a moderate degree of confidence (Fig. S8) 
[11,27,30,33].

4. Discussion on improving PBK reporting

OECD reporting for PBK guidelines focuses on the assessment of 
toxicity testing with emphasis on harmonized approaches to facilitate 
and promote the usage of PBK in regulatory applications. Efforts to 
create a unified reporting template exist, but they have yet to be fully 
adopted. The main challenge is that PBK model suitability is assessed 
case-by-case; hence a recommendation for one chemical might not be 
suitable for another. While developing the questionnaire for PBK eval
uation checklist, we observed that OECD template is merely qualitative 
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which becomes the limitation for selecting good model for regulatory 
usage. As a result, quantitative assessment was included in the checklist 
to improve the reporting framework. Taking this quantitative frame
work into account, a revised OECD template has been created in a user- 
friendly interface (described in detail in section 5).

Another important consideration should be the validation of the 
model. There is often confusion between modelers and regulators or risk 
evaluators about which data was used for optimization, calibration and 
validation of the model. When modeling multiple chemicals, experi
mental data are often limited. In such cases, a clear guideline is required 
where even semi-validation can provide enough confidence for the sci
entific validity of the model and its predictions. The WHO PBK reporting 
guideline states that for validation, the ratio between simulated and 
observed data is acceptable within a factor of 2. If this ratio is not within 
a factor of 2 then the model needs further refinement and updating 
based on the available ADME data [41]. As different chemicals behave 
differently from a toxicity perspective, a generic acceptable limit may 
not apply.

Uncertainty in the model parameters should be clearly stated when 
reporting results, distinguishing between epistemic and aleatoric un
certainty. Often these terms are not clear to modelers, which leads to 
confusion while reporting. Epistemic uncertainty, which arises mainly 
from experimentation, can be reduced, while aleatoric uncertainty, 
which is often called variability, is inherent, i.e., physiological differ
ences among individuals in a population cannot be eliminated, and 
therefore need to be included in the model. Uncertainty is a very 
important aspect of model building and validation and goes hand in 
hand with sensitivity. Most models developed to date lack sensitivity 
analysis, a crucial component for understanding the contribution of a 
particular input parameter to the output [2]. This was also the case with 
PFAS, where multiple models were lacking SA.

Current PBK reporting guidelines lack a concise structure for input 
and output parameter reporting, which was also observed in this case 
study. Researchers often report some parameters but not all. For 
instance, some publications include all the biochemical parameters used 
for building the model, while others report only a few. In addition, units 
and parameter naming conventions need to be harmonized and 
accordingly an appropriate table reporting framework is needed which 
includes parameter values along with included uncertainty (mean, SD, 
average etc.). Additionally, important output parameters like Cmax 
(maximum concentration), AUC (area under the curve), Tmax (time at 
which Cmax was observed), or Css (steady state concentration) for 
persistent chemicals need to be included as a step of model validation. 
We observed that some publications reported output parameters like 
steady state concentration for PFAS in a table format while others 
showed it in a figure format. A harmonized Excel, XML or JSON file 
format needs to be provided that includes concentration–time results to 
help regulators with the evaluation of the models.

Additionally, researchers use different abbreviations for similar ter
minology, thus making reproducibility and application of the model 
challenging. For instance, some publications on PFAS PBK models 
mention fraction unbound as “fu”, while others use the terminology 
“free” for the same parameter. The same situation applies for other pa
rameters like partition coefficient or elimination rate constants. To 
overcome this limitation, a PBK ontology has been developed recently 
(https://github.com/InSilicoVida-Research-Lab/pbpko) which can be 
used for PBK harmonization as well as building machine-readable 
models. Additionally, it is recommended to provide all models in a 
uniform format, for instance systems biology models are often provided 
in a SBML format, developed in the 1990 s which makes them easy to 
understand and reproduce. A very similar format can be applied for PBK 
reporting to make models FAIR.

While this study provides valuable insights into the implementation, 
validity, and current gaps of PBK models based on expert panel evalu
ation, there are certain limitations which need to be acknowledged. The 
panel size was relatively small (12 members) including both developers 

and users, however, the findings may not fully capture the diversity of 
perspectives within the broader PBK modeling community. Limited 
participation from industry and regulatory bodies was another 
constraint of this case study. Consequently, although the results ob
tained from this study highlight key strengths, weaknesses, and oppor
tunities for PBK harmonization, caution should be exercised in 
extrapolating these conclusions to all PBK models as our study was 
limited to four PFAS compounds only. Future work involving broader 
stakeholder participation, and inclusion of a wider range of case studies 
will help strengthen the robustness and general applicability of such 
assessments.

5. A PBK OECD template

Based on this evaluation, we have developed a user-friendly webapp 
that incorporates all OECD evaluation criteria as a template. This tem
plate was designed to make it easier for the PBK community to evaluate 
models and assess overall model strength by generating graphs that 
visualize ratings and confidence in the evaluation. RShiny template is 
hosted on a public web server (https://app.shiny.insilicohub. 
org/Evaluation_PBPK/) and is open access for all users. The evaluation 
template includes all the questions from the OECD model evaluation 
checklist along with additional fields to capture information about the 
model developer, evaluator, and study-specific details such as the 
chemical assessed, population age group, and geographic context. Each 
question provides multiple-choice options enabling evaluators to select 
the most appropriate response. Some questions follow a categorical 
system requiring a simple “Yes,” “No,” or “Partially” answer, while 
others evaluate confidence levels across different aspects of modeling. 
For confidence-based questions, responses are scored on a scale of 1 to 5, 
where 1––2 indicate poor, 3–4 indicate moderate, and 5 represents high 
confidence. To ensure impartiality, every question included an addi
tional option, “I cannot answer”, allowing evaluators to skip questions 
they are uncertain about. A “Not applicable” option is also available for 
the checklist items irrelevant to the chemical under evaluation. 
Furthermore, each response can be accompanied by a written justifica
tion to increase transparency.

This template can serve as a shared platform for the researchers to 
record the results of their evaluations and improve data availability of 
different environmental chemicals. A demonstration of the webapp user- 
interface has been provided in the supplementary file (Fig. S9) to give 
readers an overview of the application. The code for creating Rshiny 
template is openly available on GitHub. The PBK model evaluation 
checklist has been prepared using RShiny using the Shiny package 
(version 1.10.0) in RStudio (version 4.1.2).

6. Conclusion

The PBK model evaluation checklist used in this case study aids in 
application of OECD reporting template, thereby contributing to the 
harmonization of PBK model development and enhancing their use for 
regulatory purposes. This was also the first attempt to evaluate PBK 
models for PFAS family of compounds based on OECD reporting 
guidelines. Overall, this case study allowed us to identify several chal
lenges in existing models, including the need to account for enter
ohepatic recirculation, to replace the delay compartment with a more 
biologically relevant one and many other harmonizing needs in the 
model development. From a model reporting prospective, there is a need 
to harmonize parameter names, abbreviations, and units in the reporting 
guidelines as well as reporting of output predictions. Such an evaluation 
provides direction for future research aimed at both harmonizing future 
PBK model reporting practices and improving existing models. Addi
tionally, this case study shows the relevance of translating OECD guid
ance into a practical tool, as was also done with OECD guidance 211, 
which was translated into Tox Temp [42]. Finally, this evaluation can 
serve as a valuable reference for the PBK community including both 
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developers and regulators and can be extended to a broader class of 
chemicals.
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