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Abstract

Ensuring the sustainability of fisheries worldwide requires that scientific advice remain
effective even when data and capacity are limited. To address these challenges, we propose
a hierarchical assessment framework (HAF) capable of integrating auxiliary information,
such as empirical indicators for fishing pressure, within a Bayesian state-space biomass
dynamic modelling framework. The aim is to provide risk-equivalent advice to ensure that
management does not penalise data-limited fisheries with undue precaution (and loss of
potential yield), nor expose them to a higher risk of overexploitation. To achieve this, we
evaluated performance using classification skill metrics, such as true skill, for stock status
relative to maximum sustainable yield (MSY)-based reference points. Results demonstrate
that incorporating auxiliary data, particularly fishing mortality indices from periods of high
exploitation, substantially improves the accuracy of stock status classification. Adoption of
hierarchical assessment frameworks will support targeted data collection and evidence-
based, adaptive fisheries management.

Keywords: Bayesian stock assessment; biomass-based; calibration; classification;
length-based indicators; prediction skill; validation

1. Introduction
To ensure sustainability, fishery management must prevent overfishing and recover

overfished stocks [1]. This requires assessing stock biomass and exploitation rates against
objective relative to reference points and then predicting and monitoring the response
of stocks to management. Where reference points provide targets, limits, thresholds, or
baselines [2], targets are intended to be achieved on average, and limits are to be avoided
with high probability. Similarly, while thresholds serve as triggers for management action,
baselines correspond to historical periods when a stock was considered healthy. To assess
the success of long-term management plans and monitor rebuilding [3,4], reference levels
must be set and can be derived from models [5] or empirical indicators [6,7].

A primary management objective is sustainability. Limits identify when a stock’s
productivity is impaired, e.g., the level of spawning stock biomass (SSB) at which recruit-
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ment is reduced. A key objective in many fisheries management advice frameworks is to
achieve the maximum sustainable yield (MSY) [8]. For instance, the European Union’s
Common Fisheries Policy [9] mandated the achievement of MSY by 2020. The tuna regional
fisheries management organisation’s advice is based on the Kobe framework, which reports
stock status relative to MSY-based reference points. Additionally, the Marine Stewardship
Council (MSC) requires certified fisheries to demonstrate management strategies based on
MSY objectives. Therefore, target reference points are generally based on MSY, and can be
fractiles or multipliers [10].

Derivation of model-based reference points for BMSY (biomass at maximum sustainable
yield) or FMSY (fishing mortality at MSY) is not always possible due to data limitations or
model uncertainty. In such situations, proxy reference points may be used as alternatives,
for example, setting FMSY corresponding to a value of spawning potential ratio [11] or
relative to natural mortality [12]. However, even in data-rich situations M is difficult
to estimate.

Ideally the risk of breaching biological limits should not be dictated by the quantity
or quality of available information. In other words, risks should be equivalent across
the data spectrum [13]. This means maintaining an acceptable probability of achieving
objectives, such as safeguarding stock productivity, even when data are limited or uncertain.
Data-limited fisheries should neither be penalised by excessive precaution (resulting in
unnecessarily forgone yield) nor be exposed to a higher risk of stock depletion simply
because of gaps in information and data. Therefore, assessment and management should
provide risk-equivalent status determination to ensure that the level of risk tolerated is
consistent and transparent, regardless of data quality or methodological complexity.

A challenge in fisheries advice frameworks is that biomass and exploitation rates are
inherently unobservable and, therefore, are estimated by models. Stock assessment models
depend on assumptions which are uncertain, e.g., about natural mortality, recruitment
dynamics, vulnerability to fishing (selectivity), and stock structure. Therefore, even in
data-rich situations, stock assessment models often rely on generic parameterisations or
expert judgement.

Various issues have been identified, namely, overparameterized models resulting
in bias and a lack of reproducibility, and limited access to model inputs, outputs, and
code hindering independent verification [14]. Complex stock assessment models do not
automatically yield more robust advice than simpler models, especially when data are
limited, noisy, or not sufficiently informative, due to the risk of overfitting and model mis-
specification [15–18]. Some have advocated for simplification by replacing age-structured
with biomass-based assessment models [19], which for fitting require time series of total
catch and an index of abundance. When choosing models the selection must balance data
availability, knowledge, and management needs with the risks of under and overfitting,
favouring simplicity and transparency unless complexity is genuinely required for robust
inference [20].

Biomass dynamic assessment models model the exploitable biomass of the stock based
on a production function (with parameters for productivity and carrying capacity) and
removals by fishing, assuming that the vulnerable biomass selected by the fishing gear is
equivalent to the reproductive potential of the stock. Reducing the number of parameters
by not accounting explicitly for any age-specific processes, such as size- (or age) dependent
fishing mortality and lags between spawning and recruitment into the fishery, makes
biomass dynamic models easier to fit and less prone to overfitting. However, estimates
of status and reference points will still be biassed if the underlying assumptions do not
reflect the population and fisheries’ dynamics. For example, biomass dynamic model stock
status estimates can be biassed in the presence of strongly dome-shaped selectivity due
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to differences between vulnerable and spawning biomass [21], and failing to account for
lags between reproduction and recruitment into the fishery may overestimate the rate of
rebuilding from low stock levels.

Biomass dynamic models are widely used when the information required for age- or
size-structured methods is lacking. When indices of abundance are unavailable, biomass
dynamic models have been run as catch-only models. However, such implementations
are susceptible to bias due to reliance on generic assumptions and the lack of data for
fitting and validation [22,23]. Catch-only models were originally intended for broad, global
stock status assessments. Catch-only models require priors for current state and so cannot
be run with default priors or without additional data to catch for fitting, as required for
monitoring and adapting management interventions, which require updating with new
data to estimate current state. An alternative in data-limited situations are length-based
approaches [24,25], which can provide estimates of fishing mortality and offer the potential
to calibrate biomass dynamic models.

The continuum of stock assessment methods available, from data-limited biomass
dynamic models to data-rich age- and size-structured models, is explicitly recognised
in hierarchical assessment frameworks [26,27]. For example, the Food and Agriculture
Organisation of the United Nations (FAO) biennial reporting on the state of world marine
fishery resources [28] defines three tiers, namely, Tier one: Stocks with formal numerical
assessments conducted at national or regional levels. Tier two: Stocks without formal
stock assessments, but for which enough data and information are available to infer status
using surplus production model approaches. Tier three: Data-poor stocks, whose assess-
ments can only be determined by applying weight-of-evidence methods and approaches.
Hierarchical assessment frameworks provide a structured way to integrate alternative
assessment approaches. Such frameworks are based on tier systems, where tiers represent
different data limitations, and tier-specific stock assessment methods are defined, aiming
for risk equivalence across tiers. It is essential that the risk of misclassifying stock status, i.e.,
overestimating biomass and inadvertently allowing overfishing or foregoing yield, remains
equivalent across all tiers of data availability. Achieving risk equivalence requires calibra-
tion so that management decisions offer consistent levels of precaution and classification
skill, irrespective of the underlying data quality.

Hierarchical assessment frameworks should also explicitly recognise that moving
between tiers by increasing data quantity and quality, particularly through fisheries-
independent surveys, can significantly reduce uncertainty in stock assessments; while
adding low-quality or redundant data may offer little benefit or even increase uncer-
tainty [29]. This allows for the consideration of the value of information to ensure that data
collection is cost-effective [30], by identifying which types of data improve management
outcomes and ensuring that limited resources are allocated efficiently [31,32].

Integrating auxiliary information, such as indices of fishing effort or length-based
indicators, into biomass dynamic models provides a practical pathway for moving between
data-limited and data-rich assessment tiers. In this context, it is required that management
advice is reliable; defined as being robust, reproducible, and scientifically sound, such
that the likelihood of failing to achieve management objectives remains acceptably low
regardless of uncertainties in model assumptions or the quantity and quality of available
data. Achieving reliability requires verification, validation, and calibration. Verification
ensures that assessment methods are implemented correctly in accordance with the in-
tended mathematical formulations. Validation tests whether the model, under reasonable
assumptions, could plausibly have generated the observed data [33], thereby supporting
the credibility of the advice [34]. Plausibility is the degree to which a model or scenario
appears reasonable and is consistent with observed evidence and known processes. Calibra-
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tion, often conducted through Management Strategy Evaluation (MSE), involves adjusting
operational reference points in harvest control rules based on empirical indices to account
for potential methodological biases and to ensure that management decisions are both
defensible and effective across varying data and assessment contexts [13].

This study evaluates how biomass dynamic models can be integrated into hierar-
chical assessment frameworks to provide risk-equivalent, evidence-based management
advice across a continuum of data- and capacity-limited fisheries. Using simulation test-
ing for an Operating Model, conditioned on 82 data-rich Northeast Atlantic stocks that
span a range of life histories, we evaluate a biomass dynamic model fitted with vary-
ing combinations of catch, abundance indices, and auxiliary fishing mortality indicators
derived from length-based approaches. We quantify the performance of these methods
by their ability to correctly classify stock status relative to MSY-based reference points
(BMSY and FMSY) and show how the use of auxiliary data can improve classification skill.
The intention is to provide practical guidance for implementing hierarchical assessment
frameworks to ensure transparent, robust, and risk-equivalent status determination in data-
limited contexts and to support the FAO’s Ecosystem Approach to Fisheries by demon-
strating how to operationalise these principles within a simulation-tested hierarchical
assessment framework.

2. Materials and Methods
Hierarchical assessment frameworks provide a structured approach for selecting stock

assessment methods based on data availability (Table 1) by guiding the selection of as-
sessment methods based on available data, i.e., from length samples through catch time
series to abundance indices and highlighting where additional information may benefit
management advice. The hierarchical assessment framework presented here is based
on a Bayesian state-space model. In data-limited situations, there may be auxiliary data
that can be used to formulate informative priors or constraints when long time series
of catch or abundance are missing or incomplete. We use the term auxiliary data to re-
fer to any additional information that can supplement the primary input data used in
the stock assessment model. Auxiliary data can include indices of fishing effort, fishing
mortality, length-based indicators, fishery-independent surveys, industry-science partner-
ships [35], and citizen science, which are collected by alternative means to the main catch or
abundance data.

Table 1. Hierarchical assessment framework for biomass dynamic model to guide the selection of
assessment methods based on available data.

Tier Data Methods Benefit

Robust quantitative assessment Reliable abundance indices and
catch data

Bayesian state-space biomass
dynamic modelling (JABBA),

reference point estimation

Integrates available data for
robust estimation of status relative
to reference points. Uncertainty

based on priors; can be validated
using goodness of fit diagnostics.

Preliminary quantitative
assessment

Partial or short time series of
abundance indices, catches. or

landings

JABBA with limited time series,
may require alternative scenarios

and sensitivity analysis

Allows explicit simulation of
reduced data quality and

knowledge, and advice based on
reference points

Auxiliary data, e.g., length,
fishing mortality, effort

Auxiliary indices, catch or
landings

Auxiliary data (length-based
indicators), scenario testing

Provides priors or time series of
exploitation

Data-limited Catch or landings, minimal or no
indices of abundance

Catch-only models (COM),
predictive priors, scenario

approaches

Provides a framework for
evaluating risk, even when only

catch data is available; highlights
limits of catch-only model and

value of information.
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Hierarchical assessment frameworks provide a structured approach for selecting
stock assessment methods based on the available data and information. For instance,
length-based approaches are valuable for inferring exploitation rates. When historical
catch data exist but abundance indices are unavailable, biomass dynamic models with
priors are commonly applied [22] (e.g., CMSY+, SRA+). If a comprehensive dataset is
available, i.e., catches, abundance indices, and composition data, integrated assessments
may be used [36]. By explicitly linking the choice of assessment method to data availability,
the hierarchical assessment framework enables a systematic evaluation of the value of
information; showing how additional data can improve the classification of stock status
relative to reference points.

Matching model complexity to the quality and quantity of available data is required
to achieve risk equivalence. Use of a hierarchical assessment framework approach ensures
that management advice delivers consistent protection and sustainability in both data-rich
and data-limited situations, without unfairly penalising fisheries with limited data, either
through excessive precaution or by exposing them to a higher risk of stock depletion. It
also creates an incentive to improve data collection, as reducing uncertainty allows for
less restrictive, more tailored management responses, thereby advancing adaptive and
evidence-based fisheries management.

Ensuring that management advice is scientifically defensible across this continuum
requires validation and calibration of assessment models. Within a hierarchical assessment
framework, the calibration of the different assessment approaches, measured by their
accuracy in classifying stock status relative to targets and limits, ensures that the probability
of misclassification remains consistent across all assessment tiers. However, traditional
validation tools, such as cross-validation, are often infeasible in data-limited contexts
due to the scarcity of observations. We therefore apply a simulation-based approach that
uses an Operating Model conditioned on a database of data-rich assessments to generate
pseudo-data that may be available in a range of real-world data scenarios. This enables
us to systematically evaluate the performance of alternative data sources, and model
specifications and prior knowledge by quantifying their skill in classifying stock status
relative to BMSY and FMSY.

2.1. Operating Model

Simulations allow a systematic comparison of the value of alternative data sources
for classifying stock status. To do this, we used an Operating Model conditioned on
82 data-rich Northeast Atlantic stocks that span a range of dynamics. Scenarios considered
uncertainty about the stock-recruitment relationship, and biological reference points (BMSY,
FMSY) were derived for each stock to evaluate sensitivity to biological uncertainty. Full
details are given in Supplementary Materials (Tables S1–S3).

The database of stock assessment inputs and outputs for 82 stocks covering the entire
Northeast Atlantic was used to condition the Operating Model; referred to as the ICES
FLR stock assessment database. The database is composed of objects of the ‘FLStock’ class,
as defined in the FLR framework [37]. All 82 stocks are classified and assessed by ICES
as Category 1 stocks (i.e., age-structured analytical stock assessments) and have a final
assessment year of 2019 (n = 12), 2020 (n = 63), 2021 (n = 6), and 2022 (n = 1). The database
contains 25 bony fish species (representative of 12 taxonomic families and nine taxonomic
orders), as well as one crustacean, Pandalus borealis (pra.27.3a4a) (Figure 1). The database
comprises harmonised assessment inputs and outputs from 12 different age-structure stock
assessment frameworks, of which SAM [38] (n = 35) and Stock Synthesis [39] (SS3; n = 14)
are the most frequent (Table S3).
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Figure 1. Overview of ICES Category 1 stocks used as the Operating Model; 82 Northeast Atlantic
stocks classified by species and region. The stocks, assessed with age-structured models, provide
the basis for generating pseudo-data and evaluating the performance of alternative assessment
approaches; summaries of (a) species, (b) assessment method, and (c) area.

Statistical catch-at-age models, which use a combination of age, catch, and survey data
to model stock dynamics, are also used (i.e., SSCA, ASAP, AMISH, NF-ADAPT, and APA).

The majority of the stocks occur in the North Sea (n = 19) and surrounding areas (e.g.,
Celtic Seas (n = 8) and Irish Sea (n = 7)); however, some stocks have a wide spatial distribu-
tion that spans multiple ICES ecoregions (e.g., Blue whiting, Micromesistius poutassou, in the
Northeast Atlantic and adjacent waters; whb.27.1-91214).

For each stock in the ICES database, unfished spawner-per-recruit potential (SPR0)
was calculated, and a steepness prior was obtained from FishLife [40]. Stock–recruitment
relationships were then fitted as functions of steepness and virgin biomass, and reference
points were derived by combining the stock-recruitment and spawner- and yield-per-recruit
relationships [5]. To assess the robustness of management advice to uncertainty in the
stock-recruitment relationship within the Operating Model, both Beverton and Holt and
Ricker models were fitted for each stock. This allowed for the derivation of MSY reference
points consistent with the recruitment dynamics and associated uncertainties for each stock.

2.2. Stock Assessment

The stock assessment method used in this study is a Bayesian state-space biomass
dynamic surplus production model (JABBA), developed for flexible and reproducible
stock assessments in data-limited fisheries contexts [41]. The model represents population
dynamics by a biomass-based production function rather than age-specific dynamics. The
production functions by stock are summarised in the Appendix A; Figure A1. The approach
replaces explicit modelling of stock-recruitment, individual growth, natural mortality, and
selectivity with exploitable biomass, catch, and catch per unit effort (CPUE). Exploitable
biomass (B) represents the fraction of total biomass vulnerable to fishing and is calculated
as follows:

Bt =
p

∑
a=0

Na,tSa,tWa,t
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where:

Na,t is the number of individuals at age a and time t,
Sa,t is fleet selectivity at age a and time t,
Wa,t is catch weight at age a and time t,
p is the maximum age.

The general form of the biomass dynamics in JABBA is:

Bt+1 = Bt + P(Bt)− Ct · eϵt−0.5σ2
p

where:

Bt is the biomass at time t,
P(Bt) is the surplus production at time t,
Ct is the catch in the interval time tt + 1,

ϵt ∼ N
(

0, σ2
p

)
is the process error.

Alternative production functions can be specified, depending on assumptions about
the relationship between biomass and productivity, namely:

Schaefer Model (symmetric parabolic curve):

P(Bt) = rBt

(
1 − Bt

K

)
Fox Model (asymmetric curve):

P(Bt) = rBt

(
1 − ln(Bt)

ln(K)

)
Pella—Tomlinson Model (flexible shape):

P(Bt) =
r

m − 1
Bt

(
1 −

(
Bt

K

)m−1
)

where m determines the curve’s skewness (m = 2 reduces to the Schaefer model).
The model incorporates process error, estimated within the model, allowing for

stochasticity in population dynamics.
Process Equation (Biomass Dynamics):

ln(Bt+1) = ln(Bt + P(Bt)− Ct) + ϵt

and observation error to account for uncertainty due to sampling:
Observation Equation (Abundance Index):

It = qBt · eδt−0.5σ2
o

where It is the abundance index at time t, q is catchability, and δt ∼ N
(
0, σ2

o
)

is
observation error.

The JABBA framework was extended to allow auxiliary data, such as indices of
fishing pressure (e.g., F/FMSY), to be incorporated as priors or direct observations. These
indices may be derived from length-based indicators or other sources, providing additional
information to improve assessment performance, which is particularly valuable in data-
limited situations.
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Model Fitting

Bayesian inference is used to estimate posterior distributions of key stock status
indicators, such as B/BMSY and F/FMSY. Priors for key parameters, including intrinsic
population growth rate (r), initial depletion (B0/K), and the shape parameter (m), were
derived from the Operating Model stocks by fitting a Pella—Tomlinson production function
to the equilibrium estimates of exploitable biomass and yield. The prior was either at the
stock specific or taxonomic order level (average of stock values), to represent different
levels of prior knowledge. In catch-only models a prior for current depletion was also
included. In all cases a ratio between BMSY and virgin biomass of 0.4 (corresponding to
a Fox production function) was assumed. For scenarios with auxiliary data, priors were
informed by exploitable biomass rather than spawning stock biomass to reduce bias.

Prior Predictive Modelling (PPM) is the first step in Bayesian analysis, and particularly
valuable when data are limited. Prior Predictive Modelling involves specifying prior distri-
butions for the model parameters and then generating posterior estimates without data [42].
The aim is to simulate outcomes based on default settings or expert knowledge without
data as a “reality check”. This helps to identify the impact of assumptions, numerical insta-
bilities, and model misspecifications before fitting the data. Simulations produce a prior
predictive distribution for the range of plausible observations given the priors. This is of
particular importance in data-limited situations since priors may have a large influence on
outcomes. Prior Predictive Modelling therefore ensures that the impacts of the priors agree
with stakeholder knowledge, prevents cherry picking, or late-stage discovery of model
flaws. Thereby ensuring transparency and strengthening the credibility of subsequent
Bayesian inference.

For each stock, the model was run across all relevant scenarios, and outputs were
extracted for further evaluation. JABBA was fitted using Markov Chain Monte Carlo
(MCMC) simulations to estimate posterior distributions of stock status indicators (e.g.,
B/BMSY, F/FMSY). For each assessment scenario, 90,000 MCMC iterations were run, with a
burn-in of 15,000 and a thinning interval of 15, to ensure adequate mixing and convergence.
All model fitting was performed in R, using the JABBA package and custom wrapper
functions to automate data preparation, prior specification, and post-processing of results.

2.3. Observation Error Model

The Observation Error Model generates pseudo-data from the Operating Model to be
used by the stock assessment. Datasets are time series of total catch, where the index of
abundance based on exploitable biomass, and an auxiliary index representing historical
exploitation levels (i.e., F/FMSY) are proportional to the Operating Model values, and priors
for r and initial stock state (B0/K). In the case of catch-only models, a prior for current
depletion is also required. Priors were generated either for each stock or by taxonomic
order, e.g., the average value of Gadiformes was used for cod.

Observation error was incorporated for all abundance indices using a log-normal
distribution with a standard deviation of 0.3, reflecting measurement uncertainty in survey
and CPUE data. A lognormal observation error standard deviation (SD) of 0.3 was assumed
for all stock indices, as this is consistent with published CVs for survey and CPUE data,
and widely used practice in fisheries simulation studies [23]. The value of 0.3 represents
a typical level of measurement error and allows comparison across stocks. Sensitivity
analyses confirmed that the comparative findings related to method performance are
robust to variation around this level.

An unbiased estimate of the biomass of landings and discards and an index for
exploitation level in the form of F/FMSY were provided. The latter can potentially be
derived, for example, from length-based methods and indicators.
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In data-limited situations, priors are used for key parameters [43] and are generally de-
veloped based on assumptions about life-history relationships and spawning stock biomass
(SSB). However, in biomass dynamic models the state variable is exploitable biomass, the
portion of the stock that is vulnerable to fishing, rather than SSB. The relationship between
SSB and exploitable biomass varies depending on selectivity patterns, maturity schedules,
and the timing of fishing relative to spawning. Therefore, using priors derived from SSB in
models based on exploitable biomass can introduce bias.

The values of r, FMSY, the ratio between BMSY/K, and initial depletion (y) derived
for the Operating Model assume either Ricker or Beverton and Holt stock-recruitment
relationships. FMSY is the proportion of the exploitable biomass at BMSY that produces MSY.
Furthermore, values based on SSB and exploitable biomass are compared in Figure 2 to
priors derived from FishLife. There is little difference in r regardless of the assumed stock-
recruitment relationship or the specification of biomass. The biggest difference is seen in the
shape (BMSY/K), as the form of the stock-recruitment relationship determines the density
dependence at large stock sizes. Most of the stocks have been exploited at levels below
BMSY, so the value of K, and hence BMSY/K, is uncertain. FMSY is equal to the population
growth rate at BMSY but does not to depend on the stock-recruitment relationship. There
are large differences, however, between the priors from FishBase and those based on the
stock data. This suggests that priors should be developed on a case-by-case basis.

Figure 2. Comparison of prior distributions for key parameters in the assessment models. Distribu-
tions of priors for population growth rate (r), initial depletion, and shape parameter (m) used in the
Bayesian biomass dynamic models. Priors are derived from the ICES database, either stock specific
or by taxonomic order, and are critical for informing assessments in data-limited situations.

2.4. Scenarios

Three specifications for the biomass dynamic model were specified: (1) catch-only
model (COM), (2) catch and abundance index models (IDX), and (3) catch and short index
of the last 5 years model, fitted with additional auxiliary data (AUX). Each of these was
fitted for alternative treatments related to quality of prior knowledge, either case specific or
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generic, based on taxonomic order. For catch-only models, we followed common practice
and developed priors using SSB and the Beverton and Holt stock-recruitment relationship.
For the shape, we assumed a Fox production function, i.e., BMSY/K = 0.4. To evaluate
improved prior information, i.e., the value of information, we used (i) priors based on
taxonomic order (COM generic) or stock specific values with low CVs (COM specific). For
the index (IDX) and F/FMSY (AUX) scenarios, we used shape = 0.4 and priors based on
exploitable biomass, since the values of r were similar for SSB and EB, it makes it easier to
compare across scenarios, removing any bias due to using SSB. The scenarios, therefore,
reflect different data availability and auxiliary information (Table 2). Assessment scenarios
were compared to Operating Models conditioned on both Beverton and Holt and Ricker
recruitment assumptions.

Table 2. Assessment Scenarios.

Scenario Data Priors Description

COM PPM Catch history r, m, y

Prior predictive model with
catch-only. Priors based on

SSB assuming a Beverton and
Holt SRR, with the shape of

the production function (ratio
of BMSY/K) equal to 0.4

COM Generic Catch-only r, m, y, current depletion
Catch, BMSY/K = 0.4, priors
from B-H and SSB based on

taxonomic order

COM Specific Catch-only r, m, y, current depletion
Catch, BMSY/K = 0.4, priors
from B-H and SSB and stock

specific

Index Catch + full abundance index r, m, y

Catch, BMSY/K = 0.4, priors
from B-H and SSB, and stock

specific full-time series of
abundance indices

Index 5 Catch + 5-year abundance
index r, m, y

Catch, BMSY/K = 0.4, priors
from B-H and SSB, and stock
specific, 5 most recent years

for abundance indices

AUX Catch + auxiliary F/FFMSY
index r, m, y

As Index 5, but also
incorporates auxiliary fishing
mortality indices (e.g., from

length-based indicators)

AUX 5 Catch + 5-year auxiliary
F/FFMSY index r, m, y

As Index 5, but also uses only
the last 5 years of auxiliary F

data

AUX High Catch + F/FFMSY index from
high exploitation periods r, m, y

As Index 5, but also uses
5-year period of high

exploitation for auxiliary F
data

AUX Low Catch + F/FFMSY index from
the low exploitation period r, m, y

As Index 5, but also uses
5-year period of low

exploitation for auxiliary F
data

AUX High-Low Catch + F/FFMSY index from
high and low periods r, m, y

As Index 5, but also uses
5-year periods of high and low

periods for auxiliary F data
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3. Verification, Validation, and Calibration
To evaluate assessment performance, we used maximum sustainable yield (MSY)

as the management objective, reflecting its status as a global standard in fisheries policy.
Validation was conducted by comparing stock status estimates from JABBA (expressed
as B/BMSY and F/FMSY) with the “true” values from the OM scenarios. To compare
performance, we used two classification skill metrics: the area under the receiver operating
characteristic curve [44,45] (AUC) and the true skill statistic [46,47] (true skill score). The
AUC summarises classification skill across all possible thresholds, providing a measure of
classification skill. The true skill score measures a model’s ability to correctly classify stock
status relative to a reference level.

For each scenario, assessment model estimates were compared with true stock trajecto-
ries and reference points derived from the OM. Verification ensured that model algorithms
correctly captured the intended population and fishery dynamics. Validation was con-
ducted by comparing model estimates with the OM values. Calibration is performed by
adjusting reference levels, i.e., classification thresholds, to maximise the true skill score
(i.e., probability of correct stock classification) and can ensure that risk equivalence is
maintained across hierarchical assessment framework tiers by setting thresholds (i.e., pre-
cautionary buffers) before limits are breached. These metrics provide an objective way
to evaluate how alternative datasets, model configurations, and prior assumptions con-
tribute to the reliability and consistency of management advice within a hierarchical, risk-
equivalent framework.

3.1. True Skill Score

True skill score (true skill score) measures the ability to correctly classify stock status
and is calculated as follows:

TSS = sensitivity + specificity − 1

where sensitivity is the proportion of correctly classified positive cases (true positives), and
specificity is the proportion of correctly classified negative cases (true negatives). True skill
score values range from −1 to 1, with 1 indicating perfect classification skill (all stocks
correctly classified), 0 indicating no skill beyond random chance (equivalent to a coin toss),
and negative values indicating performance worse than random.

True skill score was calculated for each assessment model scenario by comparing
the model’s estimated stock status classifications relative to BMSY and FMSY against the
“true” status from the Operating Model. This four-quadrant classification framework
follows the standard Kobe plot approach used in fisheries management, where stocks are
categorised as follows: not overfished nor experiencing overfishing (B ≥ BMSY & F ≤ FMSY,
green); not overfished but experiencing overfishing (B ≥ BMSY & F > FMSY &, orange); both
overfished and experiencing overfishing (B < BMSY & F > FMSY &, red) or; overfished but
not experiencing overfishing (B < BMSY & F ≤ FMSY, yellow).

True skill score can be calculated for the estimates of BMSY and FMSY, or after calibra-
tion, where the reference level is chosen to maximise true skill score. An alternative is to use
the balanced success score (BSS), which provides an alternative measure of classification
performance that balances sensitivity and specificity as it gives equal weight to both the
correct classification of positive and negative outcomes, which is valuable if the prevalence
of positive and negative cases in the dataset is uneven.

3.2. Area Under the Curve (AUC)

The Area Under the Curve (AUC) metric, quantifies the overall discriminatory ability
of the assessment model across different classification thresholds. The AUC is derived
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from receiver operating characteristic curves that plot sensitivity against 1-specificity across
varying threshold values. AUC values range from 0 to 1, with

• 0.5, indicating no discriminative ability (equivalent to random guessing)
• 0.7 ≤ AUC < 0.8, indicating acceptable discrimination
• 0.8 ≤ AUC < 0.9, indicating excellent discrimination
• AUC ≥ 0.9, indicating outstanding discrimination

4. Results
Stock status in the final year of the Operating Model is summarised as a phase plot in

Figure 3, which plots the terminal year values of F/FMSY against SSB/BMSY; SSB and
F are from the ICES database, and the reference points depend on the choice of the
stock-recruitment relationship. Points represent stocks, colours indicate the assumed
stock-recruitment relationship (purple is Ricker), and the quadrants indicate stock status,
B/BMSY ≥ 1, F/FMSY ≤ 1 (green), B/BMSY < 1, F/FMSY ≤ 1 (yellow), B/BMSY < 1, F/FMSY >
1 (red), and B/BMSY ≥ 1, F/FMSY > 1 (orange). Also shown are the distributions of F/FMSY

and SSB/BMSY.

Figure 3. Kobe phase plot showing the joint distribution of fishing mortality and spawning stock
biomass relative to MSY reference points indicated by quadrants. Green: sustainable (SSB ≥ BMSY

and F < FMSY), yellow: rebuilding (SSB < BMSY and F ≤ FMSY), orange: overfishing (SSB ≥ BMSY

and F > FMSY), and red: overfished and subject to overfishing (SSB < BMSY and F > FMSY). Points
represent stocks, with colours indicating stock-recruitment assumption; Ricker (blue) and Beverton
and Holt (yellow).

The proportion of stocks classified as subject to overfishing (F > FMSY) is not that
sensitive to the choice of stock-recruitment relationship, while the probability of being
overfished (SSB < BMSY) is greater when a Ricker relationship is assumed, as estimates of
BMSY are generally higher for the Ricker stock-recruitment relationship (Figure A1). This
means that management advice based on FMSY is robust to the assumed stock-recruitment
relationship, but advice based on BMSY is not.
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Historical status for the Operating Model is summarised in Figure 4, trends are similar
for the two stock-recruitment relationships, but the status is more optimistic under the
Beverton and Holt stock relationship assumption.

Figure 4. Stock status of Operating Model stocks relative to reference points (BMSY and FMSY) under
two stock-recruitment relationships. Proportion of stocks in each Kobe quadrant: green: sustainable
(SSB ≥ BMSY and F < FMSY), yellow: rebuilding (SSB < BMSY and F ≤ FMSY), orange: overfishing (SSB
≥ BMSY and F > FMSY), and red: overfished and subject to overfishing (SSB < BMSY and F > FMSY).
The thick orange line denotes the boundary between overfished stocks (B < BMSY).

Historically stocks in the Northeast Atlantic have been overexploited but following
the implementation of the ICES advice rule in 2008 stock have started to recover. However,
there is no explicit BMSY target, as advice is based on F targets and biomass limits. So, while
F has been reduced many stocks are still below BMSY. Recently, while the proportion of
stock F < FMSY has declined many have not recovered above BMSY.

The estimated historical status is summarised in Figure 5; the orange line corresponds
to the Operating Model values from the previous figure. The quantities in the prior predic-
tive model and index runs provide reference cases against which the alternative assessment
specifications can be compared. The catch-only models provide the “current state-of-the-
art” for data-poor methods, which we aim to improve by using auxiliary information.
Without data for fitting the prior predictive models overestimates the proportion of stocks
where B/BMSY < 1; i.e., large stocks can explain the observed catches. The data-moderate
assessment with an index of abundance captures trends, but classification by Kobe quad-
rant. This is because the Operating Model is based on SSB and the biomass dynamic model
on exploitable biomass. Using an index for the last five years shows little improvement
over the prior predictive model run. For the catch-only method with a stock specific (COM
Specific) prior, current status is unsurprisingly well estimated; however, historical estimates
do not capture the trend, i.e., a skipping rope effect where the terminal points are fixed
but intermediate values can be anywhere. Using a generic depletion prior (COM Generic)
results in performance that is only slightly better than the prior predictive model run,
i.e., the model is only informed by the priors and cannot be formally validated based
on observations.
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Figure 5. Stock status classification by assessment scenario relative to BMSY and FMSY. For the
Operating Model these are based on SSB and instantaneous fishing mortality. For the biomass
dynamic model estimates these are based on exploitable biomass and harvest rate. Proportion of
stocks in each Kobe quadrant for alternative assessment scenarios: prior predictive model (PPM),
data-moderate (full index), data-limited (5-year index), two catch-only models (COM Generic and
COM Specific) and catch and short index of the last 5 years model, fitted with additional auxiliary
data (AUX). The orange thick line indicates the “true” proportion of stocks for which B > BMSY of the
operating model. The figure highlights the influence of priors, catch history, and auxiliary data on
classification performance, with colour coding as in Figure 4, with the thick orange line denoting the
“true” boundary between overfished stocks (B < BMSY) of the Operating model.
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An example of using classification skill to evaluate indicators (or model estimates) is
provided in Figure 6. For the Operating Model these are based on SSB and instantaneous
fishing mortality. For the biomass dynamic model estimates these are based on exploitable
biomass and harvest rate, since values are relative to MSY-based reference points quantities
are dimensionless and so comparable. This evaluates how well an auxiliary indicator (in
this case, an index proportional to F/FMSY) can classify true stock status, represented by the
Operating Model. The indicators compared are estimates from the biomass dynamic model
fitted with the auxiliary indicator (upper panels) and the prior predictive model (lower
panels). The first panel shows the distributions of the indicator values (blue) and Operating
Model values (red), revealing bias in the indicator relative to the Operating Model values.
The second panel provides a visual representation of classification by plotting estimates
against Operating Model values. The quadrants show the number of True Positives (cor-
rectly identified stocks that are above B/BMSY), False Positives (incorrectly classified as
being above B/BMSY), True Negatives (correctly identified stocks below B/BMSY), and False
Negatives (incorrectly classified as being below B/BMSY).

Figure 6. Illustration of classification performance for two assessment methods: Index (top) and prior
predictive model (bottom). (Left): Distributions of indicator values (blue) and true Operating Model
values (red). (Centre): Confusion matrices showing correct and incorrect classifications. (Right):
receiver operating characteristic curves, with Area Under the Curve (AUC) and true skill statistic
(true skill score) values. The blue point indicates the default reference level (B/BMSY = 1), and the red
point indicates the improvement in the true skill score by calibrating the reference level.

The third panel plots the receiver operating characteristic (ROC) curves. The receiver
operating characteristic curve plots the true positive rate (sensitivity) against the false posi-
tive rate (1-specificity). The Area Under the Curve (AUC) serves as a metric of classification
performance. The biomass dynamic model conditioned with an Index achieved an AUC of
0.86, compared to 0.64 for the Prior predictive model. This shows the superior classification
of the biomass dynamic model with the auxiliary index. The true skill statistic (true skill
score) is calculated as sensitivity plus specificity-1. The Index achieves a true skill score
of 0.55, indicating moderate classification skill, while the Prior predictive model’s true
skill score of only 0.12 suggests poor discriminatory ability. The best skill score represents
the optimal classification threshold after calibration, which improved from 0.34 to 0.55
for the Index, demonstrating the value of adjusting reference levels and how calibration
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can substantially enhance the performance of assessment methods. The receiver operating
characteristic analysis quantifies model performance and allows calibration by choosing a
reference level with the best true skill score, providing a means to improve classification
accuracy even when working with biassed methods.

The AUC and true skill score metrics allow for comparisons of the performance of the
methods across the tiers of the hierarchical assessment framework for all the Operating
Model stocks. The AUC indicates whether a model estimate has good discriminatory
power, for predicting whether SSB or F is increasing or decreasing, but it ignores the choice
of threshold. Uncalibrated models can yield a high AUC but poor true skill score, since true
skill score depends on the choice of threshold and BMSY or FMSY may be biassed. Therefore,
we first summarise the AUC metric across methods (Figure 7), true skill score (Figure 8), and
then the calibrated true skill score (Figure 9). The distributions for biomass and harvest rate
are summarised by assessment scenarios and stock-recruitment relationships. Scenarios
are grouped by benchmark, catch-only model and AUX; the benchmark scenarios provide
the potential range of outcomes, i.e., from the worst (prior predictive model without data)
to the best (with an index of relative abundance). In addition to scenarios using the full
time series of standardised abundance indices (“Index”), there is an additional scenario
(“Index 5”) in which only the most recent five years of CPUE data were used. This scenario
is designed to simulate data-limited conditions where only recent CPUE information is
available, such as in newly monitored fisheries or cases where incomplete historical data is
available. Catch-only model evaluates the performance of the data-limited assessments
with only catch; and AUX evaluates the value of different auxiliary relative F datasets
(AUX, AUX 5, AUX Low, AUX High, and AUX High-Low).

Figure 7. Area Under the Curve (AUC) distributions for biomass and harvest status classification
across assessment scenarios. AUC values for the prior predictive model, Index, catch-only models,
and models using auxiliary F/FMSY data (including full time series and targeted historical periods),
are shown for both Beverton and Holt (red) and Ricker (green) stock-recruitment relationships.
Higher AUC values indicate better overall classification skill, with F-based indicators showing strong
performance for harvest status. The results are robust to the assumed stock-recruitment relationship.
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Figure 8. True skill statistic (true skill score) for each assessment method and status category across all
stocks. True skill score values for classifying stocks into Kobe quadrants (green: sustainable, yellow:
rebuilding, orange: growth overfishing, red: overfished/overfishing), are evaluated for the final year
(2019), all years, and relative to a historical reference period. Coloured backgrounds indicate skill
quality from negative (red) to high (green). The figure demonstrates the comparative skill of Index
and F-based methods, and the impact of data scenario and stock-recruitment assumption.

Figure 9. Calibrated best skill score for each assessment method and status category. Violin plots
of best skill score values across stocks show the improvement in classification skill after calibrat-
ing reference levels using receiver operating characteristic analysis. Results are presented for
both Beverton and Holt as well as Ricker stock-recruitment relationships, and for all status cat-
egories. Calibration enhances performance, especially for F-based methods and in rebuilding and
sustainable categories.
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Classification skill (true skill score) achieved under each scenario, is summarised in
Figure 7. For biomass status (left panels), the full Index scenario (using all available CPUE
years) typically achieves “Moderate” to “High” skill. The full series of auxiliary data (Aux)
perform as well as the index, five years of recent data (Aux 5) perform better than five years
of CPUE. Historical auxiliary data, e.g., obtained from five years of archived data, improved
skill. The summary of the AUC shows that assessments that incorporate full-time series
(indices or auxiliary) data achieve high AUC values and so exhibit “good” or “excellent”
performance. In contrast, catch-only models and the prior predictive model scenario show
highly variable performance (i.e., random), particularly for biomass classification. Models
using auxiliary data from periods of high exploitation (Aux High) perform nearly as well
as those using the full-time series. Using indices of fishing mortality substantially improves
the reliability of stock status classification compared to catch-only approaches.

True skill score for the model estimates of FMSY and BMSY is summarised in Figure 8.
Assessment with high classification skill will have a distribution skewed to the right. The
prior predictive model has no skill, as true skill score is close to 0. Using an abundance index
improves the true skill score, as the median moderate skill shows. Although for some stocks,
skill is still low. Patterns are found across the methods and stock-recruitment assumptions.
For biomass classification (left panels), the full Index method achieves “Moderate” to
“High” skill (green-shaded regions). The F-based methods perform better for harvest than
for biomass, and AUX High consistently perform the best, with skill levels comparable to
the full Index. The AUX 5 method (using only five years of fishing mortality data) shows
the weakest performance among the F-based approaches; however, it still outperforms the
prior predictive model and catch-only model scenarios. The stock-recruitment relationship
has a bigger impact on performance for biomass than for harvest classification. Even
limited time series of F data, from periods of high exploitation can provide classification
skills comparable to full time series approaches.

Reference levels can be calibrated using the receiver operating characteristic curves
to maximise true skill score by selecting thresholds, i.e., a point on the receiver operating
characteristic curve that minimise the Euclidean distance to the perfect classification point
(TPR = 1, FPR = 0). The calibrated true skill scores are shown in Figure 9. Auxiliary data
with indices from low and high periods of exploitation perform nearly as well as full time
series approaches. Short-term indices from the recent periods (AUX 5) show more limited
improvement through calibration and appear to be case specific. This shows again that even
limited historical information about fishing mortality, particularly from high-exploitation
periods, can provide robust classification when calibrated.

After calibration using receiver operating characteristic curve thresholds (Figure 9),
the Index 5 scenario maintains intermediate classification skill—demonstrating that even
limited contemporary CPUE data can meaningfully inform status classification. However,
the highest skill is consistently observed when longer data series or auxiliary indices from
informative exploitation periods are available.

Skill for classifying stock into the four states is summarised in Figure 10, which
evaluates the ability of each assessment scenario to classify stock status into the four Kobe
states (green, yellow, orange, red), both historically and in the most recent year. This
provides a comparison across data and knowledge availability.

Incorporating auxiliary information, particularly indices of fishing mortality from
periods of high exploitation, substantially improves classification skill. Methods that
include full time series of abundance or F indices consistently achieve a higher true skill
statistic (true skill score) compared to catch-only models. Even when only limited historical
F data are available, classification skill remains comparable to that achieved with the full
time series.
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Figure 10. True skill score for the reference level historical baseline (2020) across all assessment
methods. Comparison of true skill score values when using a historical baseline as the reference
level, highlighting how skill varies by method and status category. The figure underscores the value
of historical F data (Aux High, Aux High-Low) and the importance of calibration for achieving
risk-equivalent classification in data-limited contexts.

The ability to correctly classify varies by method. F-based and index-based approaches
show the highest skill in distinguishing green and red states, with moderate to high true
skill score values. In contrast, catch-only and prior predictive model scenarios frequently
misclassify stocks, particularly in the yellow and orange states, reflecting limited discrimi-
natory power when only catch data or generic priors are used.

In the terminal year, methods using auxiliary data maintain high classification skill. For
historical stock status, auxiliary data methods continue to outperform catch-only and prior-
based approaches. Models using the auxiliary time series can track transitions between
Kobe states over time, capturing periods of overexploitation and recovery. Catch-only
models, however, tend to underestimate historical trends and often fail to detect changes in
stock status, leading to poor skill in reconstructing the historical trajectory of stocks.

Assuming the correct production function shape, rather than defaulting to the Fox
model, does not have much effect. Integrating auxiliary data, i.e., indices of fishing mortality
from periods of high exploitation, improves the ability to classify stock status across all
Kobe states, both historically and in the most recent year.

Integration of auxiliary data can substantially improve the classification skill of
biomass dynamic models in data-limited contexts. Methods incorporating full time series
of abundance or F/FMSY indices consistently outperformed catch-only and prior-based
approaches, achieving moderate to high true skill score and the best (i.e., calibrated) skill
score values for both biomass and harvest status classification. Even when only a limited
period of F data from high exploitation was available, classification skill approached that
observed in data-moderate scenarios.
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5. Discussion
The aim was to develop a framework capable of delivering robust, risk-equivalent, and

transparent advice across varying levels of data availability [48]. To do this, we proposed
a hierarchical assessment framework based on quantitative biomass dynamic models,
which can also integrate a broad array of qualitative and semi-quantitative data, expert
knowledge, and other information [49].

Simulation testing was conducted to evaluate methods for inclusion within the hierar-
chical assessment framework by conducting a systematic comparison of the performance
of approaches ranging from prior-only-based methods [50] to those integrating empirical
auxiliary information (e.g., indices of effort or fishing mortality derived from length-based
indicators) to data-moderate alternatives. To ensure that bias is not increased with uncer-
tainty [51,52], we implemented rigorous tools for verification, validation, and calibration.

It was demonstrated that incorporating historical auxiliary data on fishing mortality
(F), especially from periods of high exploitation, can substantially improve the classification
skill of stock status when integrated into biomass dynamic models.

Although not evaluated here using auxiliary data with long time series of catch and
CPUE may improve model fits, this could be evaluated using appropriate model diagnostics
and we recommend future research in this area.

Calibration further enhances the reliability of stock status classification and helps
overcome the limitations of short time series, supporting robust advice even when only
limited information is available. These findings demonstrate the value of using auxiliary
data for F in biomass dynamic models as an alternative to catch-only methods when relative
abundance indices are unavailable.

FMSY estimates tend to be relatively consistent across the assumed stock-recruitment
relationships. In contrast, BMSY is highly sensitive to the assumed form of the stock-
recruitment function, with Ricker-type recruitment usually resulting in higher BMSY es-
timates compared to Beverton and Holt. Therefore, advice based on fishing mortality
will provide more robust management advice than that based on biomass-based reference
points, especially when recruitment dynamics are not well established. Harvest control
rules based on F and trends in biomass are likely to perform better than those using BMSY

as a limit or target in the absence of reliable recruitment information.
Maintaining consistent probabilities of achieving management objectives across data-

limited, moderate, and rich contexts, i.e., ensuring risk equivalence, is challenging. Hierar-
chical assessment frameworks can help achieve comparable risk levels despite differences
in data quality, allowing yield cost trade-offs to be evaluated. For example, if higher un-
certainty requires more precautionary management action, then there will be a value of
information as collecting data will have value by increasing catch. Calibration of biological
reference points (such as FMSY and BMSY) or application of precautionary buffers where
uncertainty is high will help ensure that management advice remains both effective and
consistent, irrespective of underlying data richness.

Uncertainty in stock status assessments tends to increase as data availability de-
creases, and the application of generic data-limited models can introduce substantial risk
of misclassification compared to data-rich approaches [53]. Benchmarking using data-
rich assessments [54], via simulation testing, cross-validation, or retrospective analysis,
assumes that data-rich assessments provide the gold standard, i.e., the most reliable and
accurate estimates of true stock status available [55]. However, Edgar highlighted critical
limitations and biases in current fisheries stock assessment, models used for advice should
be formally validated against empirical observations or independent datasets to enable
the acceptance, rejection, or weighting of alternative modelling hypotheses. Therefore,
future research should systematically compare the classification skill and misclassification
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risks of alternative assessment methods using a consistent set of stocks and datasets using
validation against observations. Such comparative benchmarking will identify scenarios
where specific methods underperform, guiding model selection, and supporting the design
of adaptive management procedures that uphold risk equivalence across the data spectrum.

Maintaining a constant risk tolerance across data-rich and data-limited fisheries is
implicit within precautionary management approaches. This requires that the probability
of exceeding biological limits does not increase due to lower data availability or added
uncertainty, precaution can be applied through control rules with buffers or thresholds or
both to ensure limits are not breached. This helps to guarantee that all fisheries, regardless
of assessment quality, are given the same level of protection against depletion, in line with
international best practices and the foundational principles of the precautionary approach

5.1. Auxiliary Data

It was shown that use of auxiliary data can substantially improve the classification
skill of biomass dynamic models in data-limited contexts. Methods incorporating full
time series of abundance or F/FMSY indices consistently outperformed catch-only and
prior-based approaches, achieving moderate to high true skill score for both biomass
and harvest status classification. Even when only a limited period of F data from high
exploitation was available, classification skill approached that observed in data-moderate
scenarios. This underscores the value of targeted auxiliary data collection for improving
fisheries assessments.

5.2. Limitations

The chief limitations of this study were the use of a simulation framework conditioned
on ICES data-rich stocks, which may not capture the diversity of data-limited fisheries
globally, and the simplifications in the Operating Models based on data-rich assessments
that, although realistic, cannot fully represent the complexity of ecological and fishery
processes. However, the approach provides a basis for the verification, validation, and
calibration of assessment methods as well as practical guide for the prioritisation of data
collection and monitoring.

Robust decision-making involves five key stages: (1) defining the problem;
(2) assigning values to possible courses of action; (3) taking action; (4) reviewing the
outcomes and the value of the decision taken; and (5) extracting lessons to inform fu-
ture management cycles [56]. We used open loop simulation by comparing assessment
estimates to Operating Model values, concentrating on steps one and two. We did not
conduct closed loop simulation Management Strategy Evaluation (MSE) to account for
feedback between the assessment, management procedure, and implementation. MSE
frameworks primarily concentrate on one, two, and three. Effective fisheries management
also depends on performing implementation reviews and adaptive learning. Hierarchical
assessment frameworks can not only help in the initial choice of assessment approach to
match available data to reference points and harvest control rules (stages 1–3) but also
provide an operational framework for empirically evaluating performance (stage 4) and
adapting advice or management strategies over time (stage 5).

By embedding verification, validation, and calibration as part of skill-based evaluation
of model performance within a tiered system, hierarchical assessment frameworks enable
transparent, evidence-based implementation reviews. This ensures that management ad-
vice is continually refined as new data, methods, and lessons emerge, supporting adaptive
fisheries management and the operationalisation of learning-by-doing in complex and
evolving resource systems.
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6. Conclusions
Providing assessments for data-limited fisheries is a challenge, particularly given the

potential bias of catch-only methods. There is a need for alternatives that can incorpo-
rate auxiliary information. Therefore, we evaluated the use of a hierarchical assessment
frameworks using classification skill metrics to objectively evaluate the improvement in the
estimation of stock status when auxiliary data are available. The performance of biomass
dynamic models that rely solely on priors was poor; however, adding auxiliary data in
the form of indices of relative abundance or exploitation rates significantly improved
classification skill. Testing different types of auxiliary data for use in a hierarchical as-
sessment framework can help identify the costs and benefits of collecting or data-mining
different datasets.
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ICES Divisions and ecoregions. Tax-onomic information (Family and Order) for each species were
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Abbreviation Definition
AUC Area Under the Curve
BDM Biomass Dynamic Model
BMSY Biomass at Maximum Sustainable Yield
COM Catch-Only Model
CPUE Catch Per Unit Effort
CV Coefficient of Variation
FAO Food and Agriculture Organisation
FMSY Fishing Mortality at Maximum Sustainable Yield

https://www.mdpi.com/article/10.3390/su17219383/s1
https://www.mdpi.com/article/10.3390/su17219383/s1
https://github.com/laurieKell/haf
https://github.com/laurieKell/haf


Sustainability 2025, 17, 9383 23 of 26

FLR Fisheries Library in R (R-based assessment toolbox)
HAF Hierarchical Assessment Framework
ICES International Council for the Exploration of the Sea
JABBA Just Another Bayesian Biomass Assessment
MSE Management Strategy Evaluation
MSY Maximum Sustainable Yield
OM Operating Model
PPM Prior Predictive Model
SPR0 Unfished Spawner-Per-Recruit Potential
SSB Spawning Stock Biomass
SRR Stock-Recruitment Relationship
SS3 Stock Synthesis (assessment framework)

Appendix A

Figure A1. Production functions for the ICES stock database, derived from spawning stock biomass and
exploitable biomass, assuming either a Beverton and Holt or Ricker stock-recruitment relationship.
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