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Disentangling dispersion from mean reveals
true heterogeneity-diversity relationships

Cameron Pellett & Rubén Valbuena

Understanding the effect of heterogeneity is fundamental to numerous fields.
In community ecology, classical theory postulates that habitat heterogeneity
determines niche dimensionality and drives biodiversity. However, disparate
heterogeneity-diversity relationships have been empirically observed, gen-
erating increasingly complex theoretical developments. Here we show that
spurious heterogeneity-diversity relationships and subsequent theories arise
as artifacts of heterogeneity measures that are mean-biased for bounded
continuous variables. To solve this, we derive an alternative mean-
independent measure of heterogeneity for beta and gamma distributed vari-
ables that disentangles statistical dispersion from mean. Using the mean-
independent measure of heterogeneity, true monotonic positive
heterogeneity-diversity relationships, consistent with classical theory, are
revealed in data previously presented as evidence for both hump-shaped
heterogeneity-diversity relationships and theories of an area-heterogeneity
trade-off for biodiversity. This work sheds light on the source of conflicting
results that have hindered understanding of heterogeneity relationships in
broader ecology and numerous other fields. The mean-independent measure
of heterogeneity is provided as a solution, essential for understanding true
mean-independent heterogeneity relationships in wider research.

Imagine an environment (or population) whose structures or resour-
ces are dispersed heterogeneously across space (or across units).
Sampling this environment would reveal a distribution with many
niches and high heterogeneity, where heterogeneity can be defined by
any characteristic of variability or diversity of a variable’s distribution
(e.g. statistical dispersion, extent, inequality, information entropy,
etc.). Now consider what would occur if the mean magnitude of a
variable (x) chosen to measure said structures and resources were to
shrink, be it through leaching, degradation, decay, etc. The entire
distribution would move down the number line, though not indefi-
nitely: for increasingly many regions the quantity of resources and
structures would reach their lower boundary, often zero. At this point,
the distribution would become increasingly concentrated at the
boundary, and measures of heterogeneity (variance, range, Gini, etc.)
would change (Fig. 1a, b). The result is the entanglement (i.e. depen-
dence) ofmeasures of heterogeneity and themean,withwide-reaching

implications for evidence and theory regarding heterogeneity and
statistical dispersion in numerous fields, including economics, physics,
medicine and ecology1–6.

Consider another variable (y; e.g. richness of fungi species), that
has a relationship with the meanmagnitude of x (e.g. biomass of dead
matter), but not with the heterogeneity of x (e.g. dispersion in the
spatial distribution of dead matter). Despite the heterogeneity having
no real effect on y, because changes in heterogeneity are entangled
with changes in the mean, the effect of the mean on y would be pro-
jectedonto an apparent effect of heterogeneity on y. Hence, regardless
of the real relationship y has with heterogeneity, this entanglement
inevitably results in an erroneous observed relationship between het-
erogeneity and y (Fig. 1b, c, d). These spurious observed relationships
could subsequently lead to drawing of flawed theory. For this reason,
isolating and removing mean-dependence from measures of hetero-
geneity is essential for understanding trueheterogeneity relationships.
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Biodiversity has gainedmuch interest in the research and political
community given its global decline and its importance for resilient
provision of ecosystem services7–9. Identification and description of
factors contributing to biodiversity decline have become a priority,
where the heterogeneity and mean magnitude of resources and
structures in ecosystems have emerged as influential variables10–18.
Habitat heterogeneity describes niche dimensionality and, by exten-
sion, the diversity of organisms an ecosystem can support18. Mean-
while, the mean magnitude of resources and structures in an
ecosystem describes the available energy and niche area, which dic-
tates the survival of coexisting species with overlapping niches19–22. As
such, the heterogeneity and mean of an ecosystem’s resources and
structures are generally assumed to have ubiquitous positive rela-
tionships with biodiversity, forming the habitat heterogeneity
hypothesis and energy(mean)-richness hypothesis19,23, respectively.
Contrary to classical theory, however, disparate relationships have
been observed depending on the variables assessed and the measures
used to describe heterogeneity1,24–27. This has resulted in increasingly
complex developments in ecological theory arising from and
attempting to explain unexpected observations that are inconsistent
with classical theory.

One of the most persistent new theories, drawn to provide an
explanation for observed hump-shaped heterogeneity-diversity
relationships (HDRs), suggests a trade-off between the positive
effects of increased heterogeneity and the opposing decrease in
individual niche area that must occur with increased niche
dimensionality26–28. The opposing decrease in individual niche area is
suggested to result in fewer niche resources, reduced individual
species abundances, and an increased likelihood of stochastic
extinctions, eventually outweighing the positive effects of hetero-
geneity. Although this area-heterogeneity trade-off hypothesis could
possibly explain a saturation in the capacity of the ecosystem to carry

higher diversity at extreme levels of heterogeneity, the suggested
effect size at even low levels of heterogeneity when niche area is still
large27, is highly unrealistic. Unsurprisingly, the area-heterogeneity
trade-off hypothesis has failed to deliver consistent evidence and
controlled experiments support the contrary24,29,30. Crucially, the
observed relationships depend on the choice of variables assessed
and also on the measures used to describe heterogeneity, high-
lighting clear potential for the combination of mean-biases and
specific mean-diversity relationships (MDRs) to together be gen-
erating spurious observed hump-shaped HDRs1,18,29.

Here, we describe an alternative mean-independent hetero-
geneity measure for bounded continuous variables that disentangles
statistical dispersion from themean. We do this by showing the mean-
dependence for six of the most commonly used measures of hetero-
geneity for continuous variables31,32, including the coefficient of var-
iation (CV) that is widelymisconceived asmean-independent. Then, by
removing the mean-dependence from the variance, we derive a mea-
sure of dispersion (δ) that is unbiased by themean, whichwe prove for
beta and gamma distributed variables and also support with empirical
data. While we can support their mean-independence with any
approximately beta or gamma distributed variable, we focus on
environmental variables (namely land elevation and crop cover) and
on the consequences of mean-bias for theoretical and observed MDRs
and HDRs. With these relationships and derived mean-independent
measures of heterogeneity, we retrieve corrected HDRs from real data
previously used to support the area-heterogeneity trade-off
hypothesis27,30.

Results and discussion
Mean-biased heterogeneity measures
Though the concept of heterogeneity is widely understood and
accepted, a mean-unbiased method of quantification has not yet

Fig. 1 | Hypothesised entanglement of mean and heterogeneity relationships
with other variables. a As the mean of a variable (x; e.g. land elevation, foliage
heights, nitrogen content, etc.) approaches its boundaries thedistributionbecomes
increasingly concentrated. b Depending on the measure used, the observed het-
erogeneity has a positive or negative dependence on the mean that is often non-
linear. c For another variable (y; e.g. bird species richness, Simpson diversity index

of vascular plants, etc.) with any true mean-y relationship and heterogeneity-y
relationship, using mean-biased measures of heterogeneity generates spurious
observed heterogeneity-y relationships (d) due to entanglement with the mean-y
relationship. Range is calculated as the extent between the 0.025 and 0.975 quar-
tiles. The colours of the heterogeneity arrow heads for panel a correspond to the
specific measures of heterogeneity shown in panel b.
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been developed. Most current approaches for continuous variables
describe characteristics of the sampled distribution, such as statis-
tical dispersion, extent, inequality, or information entropy,
where each characteristic represents a distinct and important attri-
bute of the broader definition of heterogeneity31,32. Measures like the
variance, range, Gini coefficient, or Shannon entropy are often
used to describe these characteristics. However, the use of these
measures to assess heterogeneity implies the assumption that
changes in the mean simply shift the distribution up or down the
number line and have no influence on its scale (statistical dispersion)
or shape. This assumption is violated with the introduction of a lower
and/or upper bound for a given variable. This is because populations
with means further from the bounds simply have more space to be
dispersed, whereas populations with means near to the bounds must

become concentrated (Fig. 2a, i), resulting in the mean-dependence
and subsequent bias inherent to commonly used measures of het-
erogeneity (Fig. 2b–f, j–n; see methods for proof for the gamma and
beta distribution). Considering a scenario in ecology, one
could compare the distribution of different species along a gradient,
e.g. elevation above sea level, where some species exist at a
mean elevation close to zero and must have a concentrated dis-
tribution, and others exist at highermean elevations withmore space
to be dispersed (the link to Rapoport’s rule is discussed later in the
text33).

Through simply dividing the standard deviation by the mean, the
CV arose as an attempted solution to the mean-dependence of mea-
sures of dispersion and heterogeneity. For this reason, it is widely
suggested and used without any assessment of dependence on the

Fig. 2 | A solution to attain mean-independence in heterogeneitymeasures for
bounded variables. a–g, i–o Commonly used heterogeneity measures for lower-
bounded and double-bounded continuous variables are dependent on and thus
inherently biased by the mean. b–h, j–p Heterogeneity measures are calculated
based on analytically derived equations for beta and gamma distributed variables,
and correspond exactly to the probability density functions (panels a, i). h, p The
mean-independent measure of heterogeneity (δ) can be derived by isolating and
removing themean-dependence from the variance (σ2) (Equation (1)).q–z Empirical
observations of heterogeneity measures for the lower-bounded variable (land
elevation above sea level [L = 0, ∞); 101,490 samples), and double-bounded (db)

variable (crop cover percentage [L=0,U= 100]; 39,690 samples), closelymatch the
theoretically derived relationships (Two-sided paired-sample T-test comparing
theoretical models with mean model assuming no relationship; Lower-bounded:
t-value > 9.0, df = 101,489, p-value < 10−18; double-bounded: t-value > 6.5, df =
39,689, p-value < 10−10). Land elevation above sea level is surveyed globally at a
resolution of 3 arc-secondsby the shuttle radar topographymission (SRTM).Global
crop cover is derived at a resolution of 3.57 arc-seconds by the Copernicus Land
Monitoring Service using vegetation data collected from the ESA PROBA-V. Source
data are provided for empirical panels (q–t, v–y) as a Source Data file.
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mean23,31,34. The crucial assumption inherent to the calculation of the
CV is that there is a linear dependence between the standard deviation
and the mean. However, this assumption can be easily rejected when
considering a variable with an upper and lower bound (double-boun-
ded hereafter). In the case of a double-bounded variable, the standard
deviation is maximised when the distribution’s mean is centred
between the lower and upper boundaries, because as the mean
increases beyond this centre the distribution must become increas-
ingly concentrated at the upper boundary (Fig. 2i, n). As a result,
dividing the standarddeviationby themeanexacerbates themeasure’s
decrease as the mean increases beyond the centre and towards the
upper boundary (Fig. 2o). The problem is furthered still when one
realises the rate of change in standard deviation increases as themean
approaches the lower boundary, which influences both lower-
bounded and double-bounded variables (Fig. 2f, n). Intuitively this is
expected because when the mean is far from the boundaries the
increased clustering of the tails of the distribution have a smaller effect
on the standard deviation compared to when the mean is close to a
boundary (Fig. 2a, i; see methods for rigorous definitions for gamma-
and beta-distributed variables). As a result, dividing the standard
deviation by the mean creates a nonlinear negative dependence
between the CV and themean for all bounded variables (Fig. 2g, o). See
methods and Supplementary Fig. S1 for demonstration of the CV as a
measure of skewness rather than dispersion, explaining earlier
empirical results showing linear dependence between the CV and
skewness35.

Mean-independent heterogeneity measures
To create a truly mean-independent measure of heterogeneity the
exact relationship between the mean and any measure of hetero-
geneity must be identified and removed. We derived the variance’s
mean-dependence relationship for lower-bounded, double-bounded,
upper bounded, and unbounded variables that are approximately
beta, gamma or normally distributed, where the lower and upper
bounds can be any two real numbers (L and U, respectively). The
nonlinear relationship between the standard deviation and the
mean’s distances from the boundaries (μ − L for the lower boundary,
andU − μ for the upper boundary) can bemade linear by squaring the
standard deviation to give greater weight to the tails of the dis-
tribution, and retrieve the variance (Fig. 2e,m). Thus, normalising the
variance (σ2) by the mean’s distances from the boundaries yields a
mean-independent measure of dispersion (δ). In its generalised for-
mulation, the calculation of δ for any (bounded or unbounded)
continuous variable approximated by the beta, gamma or normal
distributions is given by

δ =
σ2

ðμ� LÞ1RðLÞðU � μÞ1RðUÞ , ð1Þ

where 1RðmÞ is an indicator function with R being the set of all real
numbers, m is the lower (L) or upper (U) bound of the variable, and
1RðmÞ= 1 if m 2 R, otherwise 1RðmÞ=0. Note that any number raised
to the zeroth power is equal to one, such that if the lower or upper
bound does not exist or is not a real number (e.g.1=2R) the boundary
has no influence on thedispersion norδ. Thus, specific cases arise from
this generalised formula as combinations of existing or non-existing
bounds. For double-bounded variables, the variance’s mean-
dependence is influenced simultaneously by the mean’s distance from
the lower and upper bounds, [μ − L][U − μ], yielding

δ2 =
σ2

ðμ� LÞðU � μÞ : ð2Þ

For lower-bounded variables, the variance’s relationshipwith themean
is linear with the distance from the lower bound, μ − L (Fig. 2e), and

thus

δL =
σ2

μ� L
: ð3Þ

For upper-bounded variables, the variance’s relationship with the
mean is linear with the distance from the upper bound, U − μ, giving

δU =
σ2

U � μ
: ð4Þ

All of which arise as mean-independent measures of heterogeneity, as
it canbedemonstrated from the approximationof single-bounded and
double-bounded variables respectively as gamma- and beta-
distributed variables (Fig. 2h, p). Also implicitly included in the
generalised formulation (Equation (1)) is the variance as a mean-
independent measure of dispersion for unbounded continuous
variables, as demonstrated with the normal distribution

δ0 = σ
2: ð5Þ

Hence, δ is valid for bounded and unbounded continuous variables,
where the bounds can be determined conceptually or experimentally.
Bounds should not be determined as the observed minimum or max-
imum from a small sample without conceptual or experimental sup-
port. Examples of potential boundaries include the proportion of land
covered by forest (L = 0 and U = 1), animal mass (L = 0 g), beetle size
limited by oxygen (L =0 cmandU = 16 cm), and biochemical fishdepth
limits (L = 0 m and U = 8200m) (see Supplementary Note 1 for more
details)36–40. Also note that δ is not scale invariant for single-bounded
and unbounded variables. Therefore, variables must have common
units for comparison (e.g. the same currency, or the same unit of
distance).

Applying heterogeneity measures to empirical data
After demonstrating theoretically that δ is mean-independent and that
commonly used heterogeneity measures are biased by the mean, we
proceeded with testing some empirical examples. We tested com-
monly used heterogeneity measures on global empirical datasets to
evaluate correspondence between theoretical and observed mean-
dependence. We assessed a single-bounded variable: land elevation
above sea level, measured globally by the shuttle radar topography
mission (SRTM)41; and a double-bounded variable: crop cover per-
centage, predicted globally using vegetation data collected from the
European Space Agencies (ESA) PROBA-V satellite observations42.
Datasets that covered large areas were essential to emphasise general
effects and to minimise the influence of eventual feature relationships
(e.g. regions with high mean forest cover having been actively mana-
ged to have low heterogeneity) that may conceal mean-heterogeneity
relationships generated by the measures themselves.

Taking a mean-balanced sample of elevation (n = 101,490) and
crop cover (n = 39,690), we observed empirical mean-heterogeneity
relationships (Fig. 2q–z) that better fit models we derived analytically
(Fig. 2a–p) than ameanmodel assuming no relationshipwith themean
(two-sided paired-sample T-test: p-value < 10−10). The CV showed a
nonlinear negative dependence for single- and double-bounded vari-
ables (single-bounded (sb): t-value = 9.0, df = 101,489, p-value < 10−18;
double-bounded (db): t-value = 6.5, df = 39,689, p-value < 10−10). The
standard deviation had a square root relationship with the mean’s
distance to the lower (and upper) boundary (sb: t-value = 60.1, df =
101,489, p-value < 10−99; db: t-value = 83.5, df = 39,689, p-value < 10−99).
The variance had a linear relationship with the mean’s distance to the
boundaries (sb: t-value = 93.7, df = 101,489, p-value < 10−99; db: t-
value = 95.0, df = 39,689, p-value < 10−99). Meanwhile, for δ the alter-
native hypothesis was instead that δ has a negligible relationship with
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the mean. Testing this hypothesis against the null hypotheses of the
three other model forms found for other measures of heterogeneity,
we found δ showed a negligible relationship with the mean and
had less than 1/3 of the absolute coefficient magnitude compared
to other heterogeneity measures (sb: t-value > 9927, df = 101,489,
p-value < 10−99; db: t-value > 3413, df = 39,689, p-value < 10−99),
allowing analyses of heterogeneity relationshipswith thesevariables to
be truly independent from the mean relationships.

Retrieving true heterogeneity-diversity relationships
Understanding the precise effect that mean-bias has had on observed
HDRs will aid in deducing robust ecological theory. When providing
theory and evidence of an area-heterogeneity trade-off causing hump-
shaped HDRs, Allouche et al.27 assessed the relationship between

heterogeneity in land elevation and breeding bird species richness in
Catalonia, Spain. Crucially, however, there does exist a MDR with
respect to bird species richness (D) andmean land elevation above sea
level27,43 (Fig. 3o). The elevation MDR is expected to be hump-shaped
with a negative trenddue to the combinationof three factors. Firstly, at
high altitudes there is a reduction in available energy, resources, and
plant productivity that is expected to result in a negative observed
MDR (falling off rapidly at the tree line at around 2000m to 2300m
above sea level in the Pyrenees)27,43,44. Secondly, anthropogenic influ-
ence has been observed in many regions to create a hump-shaped
relationship driven by land use, with low elevations being dominated
by croplands, mid elevations supporting diverse forests, and higher
elevations becoming dominated by shrubs and conifer forests29,30,43.
Thirdly, due to the geometric boundaries on individual species’

Fig. 3 | Retrieving true heterogeneity-diversity relationships (HDRs) with a
mean-independent measure of statistical dispersion (δ).We used a simplified
species richness (D)model (D = 66.395 + 0.030μ −0.000012μ2 + 0.108δ; Equivalent
to model #5 in Table 1 and Equation (50)) where all variability is described by a
hump-shaped mean relationship (a) and a monotonic positive heterogeneity rela-
tionship (b). With this model, panels c–k showed that erroneous hump-shaped
HDRs arise as artifacts of mean-bias in common heterogeneity measures, where
orange and blue lines were calculated from fixed levels ofmean and heterogeneity,
respectively. The mean-biased warping of the data resulted in erroneous hump-
shaped polynomial relationships being fit (grey lines) (e, h, k). Mean-biased

warping of data were also observed with different species richness models (see
Supplementary Figs. S2–S5). Using data for land elevation above sea level (p) and
for breeding bird species richness in Catalonia (N = 285), empirical mean-biased
HDRs were found (q–v). Alternatively, the mean-independent measure of hetero-
geneity (δ, Equation (1)) retrieved the true underlying monotonic positive HDR in
empirical data (w–x). Note that δ is implicit in the theoretical species richness
model, so panels l–n are included only for comparison with the shape and con-
centration of empirical data. Source data are provided for empirical panels (o, q–x)
as a Source Data file.
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distributions, a greater overlap is expected in the mid-point of
the domain resulting in a greater observed species richness and a
hump-shaped relationship known as the mid-domain effect45,46.
The questions are, therefore, whether the hump-shaped MDR fully
explains the observed hump-shaped HDR when using mean-biased
measures of heterogeneity, andwhether amean-independentmeasure
of heterogeneity would show a different HDR once disentangled from
the MDR.

Using theoretical MDRs (Fig. 3a; panel a Supplementary
Figs. S2–S5) andHDRs (Fig. 3b; panel b Supplementary Figs. S2–S5), we
found that the observed HDRs when using mean-biased measures of
heterogeneity are heavily biased by the MDRs (Fig. 3e, h, k; see Sup-
plementary Figs. S2–S5 for examples with alternative predefined the-
oretical MDRs and HDRs).When the predefinedMDRwasmodelled on
the mean land elevation and breeding bird species richness relation-
ship in Catalonia, we found that observed hump-shaped HDRs can
arise solely as artifacts of mean-biased heterogeneity measures even
when the true HDRs are monotonically positive (Fig. 3a–n). Allouche
et al.27 used the elevation range as their heterogeneity measure when
providing evidence of the area-heterogeneity trade-off. The specific
entanglement caused by the mean-bias of the range (Figs. 2d; 3c)
results in a heavily warped observed HDR (Fig. 3d–e), which generates
a polynomial relationship closely matching the one described as an
area-heterogeneity trade-off 27. Similarly, other commonly used mea-
sures of heterogeneity also fail to retrieve the true HDR underlying the
model (Fig. 3f–k)26,47.

To further support the theoretical findings, we reanalysed the
SRTM land elevation and breeding bird species richness data collected
in Catalonia by the Catalan Institute of Ornithology27,29,30,41,48. Like the
theoretical model (Fig. 3a–n), we found that hump-shaped HDRs arise
as artifacts of mean-biased measures of heterogeneity (Fig. 3o–v), and
that the specific warping of the data matches our theoretical devel-
opments, including the fitted polynomials and expected shape and
concentration of the data. When using elevation range (ρ) as the het-
erogeneity measure27 we found that the significant (p-value < 0.01)
hump-shaped relationship with species richness (Table 1, model #1)
ceased to be significant after accounting for the hump-shaped MDR
(Table 1, model #2). When using δ as themeasure of heterogeneity, on
the other hand, we only found significant (p-value < 0.01) monotonic
positive relationships with species richness, with or without account-
ing for the hump-shaped MDR (Table 1, model #3 and #4). Moreover,
we found that the inclusion of a polynomial coefficient (δ2) to assess a

hump-shaped HDR did not significantly improve the model (Table 1,
model #4 and #5; F-test statistic: 3.05, df = 6, p-value = 0.08). δ eleva-
tion is unaffected by spatial auto-correlation due to having no rela-
tionship with location (Supplementary Fig. S6). Furthermore, when
accounting for MDRs, using δ as a measure of elevation heterogeneity
explains more variability in species richness (Table 1). Nonetheless,
elevation and its heterogeneity accounted for a small portion of the
variability in bird species richness (adjustedR2 = 0.322),wheremuchof
the variability is likely explained by the MDR and HDR of other vari-
ables, including land use and vegetation height, cover, productiv-
ity, etc.

These results provide the first mean-unbiased support for the
classical habitat heterogeneity hypothesis, suggesting there exists a
monotonic positiveHDR.We further support thiswith the reanalysis of
forest foliage height data presented in MacArthur and MacArthur’s
seminal paper on HDRs49, where we found δ retrieved a positive mean-
independent HDR (r =0.67, t-test statistic: 2.98, df = 11, p-value =
0.0125)without bias inmanually selecting height bands for calculating
Shannon entropy (coined foliage height diversity; Supplementary
Fig. S7b). Conversely, we did not find evidence supporting the ener-
gy(mean)-diversity hypothesis, and no significant monotonic positive
MDRs were found for foliage height (r =0.43, t-statistic: 1.58, df = 11, p-
value = 0.14; Supplementary Fig. S7a). These results do, however, raise
uncertainty around past work, including many studies supporting
positive HDRs for other continuous variables50. This uncertainty is
raised because, for many systems, monotonic positive MDRs have
been demonstrated, which will be projected onto the observed HDRs
when using mean-biased measures of heterogeneity, potentially gen-
erating spurious positive relationships. Such positive MDRs have been
shown for many terrestrial ecosystems where greater plant pro-
ductivity, canopy height, and vegetation age correspond with
increased endotherm vertebrate species richness14,51,52, and for marine
ecosystems where chemical energy (organic carbon), kinetic energy
(ocean temperature) and coral biomass correlate positively with spe-
cies richness of marine animals and microbes17,23,53,54. In all of these
systems, even if changes in heterogeneity have no effect on biodi-
versity, the MDR would be projected onto the observed HDR when
using mean-biased heterogeneity measures and spurious positive
relationships would be observed (Supplementary Fig. S5). Due to this,
past meta-analyses have failed to account for all biases18, and through
reanalysis is needed after accounting for the effects of MDRs. For this
reanalysis, we recommend δ (Equation (1)) as the only heterogeneity

Table 1 | Linear models predicting the species richness of breeding birds (D) with elevation mean and heterogeneity in
Catalonia (Spain)

Model Coefficient estimates (standard errors) R2
adj

D =β0 +βμμ+ :: β0 βμ βμ2 βδ βδ2 βρ βρ2

(#1) ::βρρ+βρ2ρ
2 70.8*** -2.0 41.9*** -23.4* 0.229

(1.5) (5.0) (8.3) (9.4)

(#2) ::βμ2μ2 +βρρ +βρ2ρ2 68.5*** 47.9*** -64.7*** 18.0* 3.9 0.319

(1.4) (9.3) (10.4) (8.7) (9.9)

(#3) ::βδδ +βδ2δ2 72.6*** 12.8*** 21.1** -11.6 0.194

(1.2) (2.8) (7.9) (9.3)

(#4) ::βμ2μ2 +βδδ +βδ2δ2 65.9*** 67.2*** -69.3*** 23.8** -14.9 0.327

(1.4) (7.7) (9.2) (7.3) (8.5)

(#5) ::βμ2μ2 + βδδ 67.1*** 67.5*** -68.5*** 11.8*** 0.322

(1.2) (7.7) (9.3) (2.2)

Models #1 and #2 used the elevation range as a measure of heterogeneity (ρ), following Allouche et al.27. Meanwhile, models #3, #4 and #5 used elevation δ as a measure of mean-independent
heterogeneity (Equation (3)). Models #2, #4, and #5 account for a hump-shaped elevation mean (μ) relationship. To aid comparison of effect sizes, independent variables were rescaled to values
between 0 and 1 based on their observedminimum andmaximum. Coefficients were estimated using ordinary least squares. All models (#1 to #5) had significantly (p-value < 0.05) smaller residuals
compared to an intercept model (one-sided F-test, p-values < 10−15). Two-sided t-tests were used to evaluate significance of coefficient estimates.
N = 285; p-value ≤0.001*** 0.01** 0.05*; Intercept (β0); Mean (μ); Range (ρ); Dispersion (δ); Richness (D).

Article https://doi.org/10.1038/s41467-025-64287-0

Nature Communications |         (2025) 16:8532 6

www.nature.com/naturecommunications


measure that finds true HDRs, unbiased by the mean for bounded
continuous variables (Fig. 3l–n and w-x).

Broader applications in ecology
Rapoport’s rule suggests that the range of a species’ distribution
across a biogeographical gradient positively correlates with the
location of that species along the gradient, where latitude6,
elevation33, and depth55 have been suggested as biogeographical
gradients. The rule gained interest as a potential mechanism
for understanding species richness gradients56. However, the valid-
ity of the rule has been heavily debated in the context of biogeo-
graphical gradients with bounds (e.g. edges of land masses on
latitudinal gradients, summits and plateaus on elevation gradients,
or the water’s surface on depth gradients)56,57. This is because the
distribution of a species must become increasingly concentrated as
the mean approaches the boundaries. Therefore, even if Rapoport’s
rule was false and the dispersion of species along a gradient was
independent of the location on the gradient, the observed rela-
tionship for the range would be expected to resemble the relation-
ships shown in either Fig. 2d or l (depending on the number of
bounds)57. Conversely, the δ of a species distribution should be
independent of the mathematical artefacts created by the bounds,
allowing the rule to be falsified or supported, such that if the rule
were true, a positive correlation between δ and the mean would be
present.

It is also worth noting that there are numerous distinct char-
acteristics of heterogeneity other than dispersion, including informa-
tion entropy and inequality or skewness, all with important
applications. For example, diversity indexes (e.g. Shannon diversity
index) are often used in ecology to describe the evenness in abun-
dance between each species49. For which, even though we have shown
that there does exist a positive correlation between dispersion (δ) in
foliage heights and the Shannon diversity index for bird species
(Supplementary Fig. S7b), information entropy is likely a more
descriptive characteristic of this specific variable due to it capturing
the uniformity or measurement uncertainty of the distribution (Sup-
plementary Fig. S7c). Likewise, measures of inequality (or skewness)
are often preferred for evaluation of socio-economic outcomes where
differences between all individuals are of interest58. Disentangling
these other characteristics of heterogeneity from themean (Fig. 2) will
be an important topic of future research.

Methods
In these methods, our objective was to demonstrate that δ is a mean-
independentmeasure of statistical dispersion for bounded continuous
variables, that other commonly used measures of heterogeneity (of
which statistical dispersion is a subset) are dependent on and, thus,
inherently biased by the mean, and that this bias has, in past work,
resulted in spurious observed heterogeneity relationships with other
variables.

Mean-heterogeneity relationships for the standard beta and
gamma distribution
Here we introduce the gamma and beta distributions for modelling
lower- and double-bounded variables, respectively. For both distribu-
tions, the most frequently used heterogeneity measures have analy-
tical derivations based solely on the parameters of the distribution,
which we can use to observe mean-heterogeneity relationships with-
out being subject to feature relationships or chance. Additionally, both
distributions canbe evaluated in termsof a scale/dispersionparameter
that influences the spread of observations in the distribution. A para-
meter is interpreted as a scale/dispersion parameter when, for a con-
stantmean, increases in the parameter always correspond to increases
in the variance59. We can, therefore, fix the dispersion parameter,
modify the mean, and observe the mean-heterogeneity relationships.

We, then, derive a method of retrieving the dispersion parameter of
the gamma and beta distribution, which we denote δL and δ2, respec-
tively (with the subscript referring to the type of bounds, see Equations
(2) and (3)).

Derivation of δ2 from the standard beta distribution. For continuous
variables constrained between the interval [0, 1], the beta distribution
is a flexible model capable of describing a wide array of distribution
shapes, including bell-shaped, left-skewed, right-skewed and multi-
modal (U-shaped) distributions (Fig. 2i). The beta probability density
function (pdf) is typically defined by two positive shape parameters, p
and q both on the open interval (0, ∞), with the function indexed by
continuous values of x constrained between the closed interval [0, 1].
The pdf for the beta distribution is

f ðxÞ= xp�1ð1� xÞq�1 Γðp+ qÞ
ΓðpÞΓðqÞ , ð6Þ

where the two exponential functions, xp−1(1−x)q−1, describe all dis-
tribution shapes modelled by the beta distribution (Fig. 2i), Γ( . ) is the
gamma function, and Γ(p + q)/[Γ(p)Γ(q)] normalises the beta density
function such that the area below the function is equal to 1. Notably, as
p and q diverge from one another and their sum remains fixed (con-
stant), the central tendency of the distribution shifts to the left (p < q)
or to the right (p > q). To be exact, the mean (μ) and 1 − μ can be found
with

μ=
p

p+q
, ð7Þ

and

1� μ=
q

p+ q
, ð8Þ

where μ is constrained between the open interval (0, 1). The interval
constraining μ is found with limits of the interval of p and q as
limp!0, q2ð0,1Þ μ=0 and limq!0, p2ð0,1Þ μ= 1. Note μ = 0.5 when p = q.
Meanwhile, as the sum of p and q decreases the dispersion of the
distribution increases, irrespective of μ. Specifically, the dispersion can
be described with

δ2 =
1

1 +p+q
, ð9Þ

where δ2 is also constrained between the open interval (0, 1). The
interval constraining δ2 is foundwith limits of the interval of p and q as
limp!1,q= ð1=μ�1Þp δ2 =0 and limp!0,q= ð1=μ�1Þp δ = 1. Note that δ2 is
equivalent to the shape parameter described by Damgaard and
Irvine60, which is better interpreted as dispersion and equivalent to the
inverse of the precision parameter described by Ferrari and Cribari-
Neto59,60. It can, thus, be shown that the combination of μ and δ2 are
capableof describing all possible values ofp and q, andby extension all
possible beta distributions, where

p=μð1=δ2 � 1Þ ð10Þ

and

q= ð1� μÞð1=δ2 � 1Þ: ð11Þ
The variance can be calculated for a beta distributed variable with

σ2 =
pq

ðp+qÞ2ð1 +p+qÞ
: ð12Þ
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However, it is clear that as p and q diverge from each other while
keeping their sum fixed the numerator in Equation (12) will shrink,
while the denominator will remain constant. Therefore, because we
know μ changes as p and q diverge from each other, we know that the
variance will simultaneously decrease as μ increases or decreases
from 0.5 (Fig. 2m). This dependence between the variance and the
mean is most apparent at the variance’s maximum limit when
p, q → 0, and the variance is equal to μ(1 − μ) (see Supplemen-
tary Note 2).

The solution to derive amean-independentmeasure of dispersion
for approximately beta distributed variables is to simply retrieve the
distribution’s dispersion parameter, δ2. Recall that the variance was
dependent on the mean due to the numerator in Equation (12). How-
ever, the numerator can be cancelled out with the reciprocal of
μ(1 − μ) = pq/(p+q)2. As such the dispersion parameter of the beta
distribution can be retrieved with

δ2 =
σ2

μð1� μÞ =
1

1 +p+q
, ð13Þ

proving the mean independence of δ2 for beta distributed variables,
where σ2 and μ can be estimated from a sample.

Other commonly used heterogeneity measures for the beta dis-
tribution. The coefficient of variation (CV) is calculated for a beta
distributed random variable, X, using Equations (7), and (12). Resulting
in

CVðX Þ=
ffiffiffiffiffiffi
σ2

p

μ
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pq

ðp+qÞ2ð1 +p+qÞ

s

ðp+ qÞ
p

: ð14Þ

It is, however, clear from this Equation that the CV is dependent on the
mean for approximately beta distributed variables. If the dispersion of
the distribution, δ2, remains fixed, the components of Equation (14)
that change and depend on the mean can be isolated:

CVðX Þ=

ffiffiffiffiffiffiffiffiffi
1
2pq

q

p
, if p+ q= 1: ð15Þ

Like the variance, if p and q diverge the numerator in Equation (15)
and (14) would shrink. However, unlike the variance the denomi-
nator would also change. If the divergence of p and q occurs due
to a decreased p and increased q (a decrease in μ) then the
denominator decreases and the CV increases. Conversely, if the
divergence of p and q occurs due to an increased p and decreased q
(an increase in μ) then the denominator increases and the CV
decreases. This results in a negative nonlinear function with respect
to the mean.

The Gini coefficient (G) is a frequently usedmeasure of inequality
inmultiplefields, including economics and ecology. Defined as half the
relative mean absolute difference, G can be calculated for a beta dis-
tributed variable, X, with

GðX Þ= 1
2μ

Z 1

0

Z 1

0
f ðxÞf ðyÞjx � yjdxdy

=
2Bð2p, 2qÞ
pBðp,qÞ2

,
ð16Þ

where B( . ) is the beta function defined as ΓðpÞΓðqÞ
Γðp+qÞ (see Pham-gia and

Turkkan61 for derivation of G for the beta distribution). Though more
complex to evaluate the exact relationship G has with the mean for
beta distributed variables (Fig. 2k), it is clear the relationship is
negative with p in the denominator for the same reasons described
above for the CV.

The differential entropy H in nats can be calculated for a beta
distributed random variable, X, with

HðX Þ= �
Z 1

0
f ðxÞ ln f ðxÞdx

= lnðBðp,qÞÞ � ðp� 1Þ½ΨðpÞ �Ψðp+ qÞ� � ðq� 1Þ½ΨðqÞ �Ψðp+qÞ�,
ð17Þ

where Ψ( . ) is the digamma function (see Lazo and Rathie62 for
derivation of H for the beta distribution). The differential entropy is
highly dependent on the skewness and mean of the distribution.
Although unlike other measures of heterogeneity, the differential
entropy has a complex nonlinear relationship with the dispersion of
the distribution. If μ is close to the (0,1) bounds, increased dispersion
results in increased clustering at the lower or upper bound reducing
the measured entropy, even though the expected range of observa-
tions has increased (note the crossing lines near the bounds
in Fig. 2j).

The 0.95 quantile range can be approximated for a beta dis-
tributed variable using the beta distribution’s cumulative distribution
function (cdf),

FðxÞ= Ixðp, qÞ, ð18Þ

where Ix( . ) is the regularized incomplete beta function. The 0.95
quantile range can then be calculated for a beta distributed variable, X,
with

rangeðX Þ= x0:975 � x0:025, ð19Þ

where x0.975 and x0.025 are the values of x when F(x) is equal to 0.975
and 0.025, respectively. Here we optimised x using Newton’s method
(tolerance = 10−12) with the initial guess set as the mode of a beta
distributed variable. The resulting function calculating the range
showed a similar pattern of mean-bias to the standard devia-
tion (Fig. 2L).

Derivation of δL from the standard gamma distribution. Due to its
flexibility, the standard gamma distribution has been used as a model
for many zero-bounded variables in a variety of fields. The gamma
distribution is commonly defined with parameters for shape (k) and
dispersion (δL) where the pdf, indexed by x, is

f ðxÞ= 1

ΓðkÞδk
L

xk�1e�x=δL , ð20Þ

with x, k, δL > 0. The product of two exponential functions, xk�1e�x=δL ,
describes all distribution shapes modelled by the pdf, while 1=ðΓðkÞδk

LÞ
normalises the area below the pdf to be equal to one.

The mean and variance of the gamma distribution are, respec-
tively,

μ= kδL, ð21Þ

and

σ2 = kδ2
L =μδL, ð22Þ

where μ > 0 and σ2 > 0. It is clear from this formulation alone that the
variance changes linearly with the mean while δL is fixed and that the
rate of this change is scaled by the dispersion of the distribution
(Equation (22); see Fig. 2e). It is also clear that the standard deviation
(σ) has a square root relationshipwith themeanwhen the dispersion is
fixed (σ =

ffiffiffiffiffiffiffiffi
μδL

p
).
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The solution to derive a mean-independent measure of disper-
sion for approximately gamma distributed variables is to simply
retrieve the distribution’s dispersion parameter, δL. Recall that the
variance had linear dependence on the mean (Equation (22)), which
can be removed with the reciprocal of μ. As such, the mean-
independent measure of dispersion, δL, can be derived from the
mean and variance with

δL =
σ2

μ
, ð23Þ

proving themean independence ofδL for gammadistributed variables,
where σ2 and μ can be estimated from a sample.

Other commonly used heterogeneity measures for the gamma
distribution. The CV can be derived from μ and σ2 for a gamma dis-
tributed random variable, X, as

CVðX Þ=
ffiffiffiffiffiffi
σ2

p

μ
=

1
ffiffiffi
k

p : ð24Þ

However, because the CV simplifies to be dependent solely on the
shape parameter (k) of the gamma distribution, it better describes the
mean and skewness of the distribution, instead of being descriptive of
mean-independent dispersion. The skewness for a gamma distributed
variable can be derived as

SkewðX Þ= 2
ffiffiffi
k

p =2 � CVðX Þ: ð25Þ

It is noteworthy that one could fix the CV for different μ, but this
requires μ to be modified, counter intuitively, by the dispersion of the
distribution. The result is a distribution with fixed skewness and a
mode that changes little as μ increases, which would be highly
unrealistic for most naturally occurring variables (Supplementary
Fig. S1; Figs. 2s; 3s).

The Gini coefficient (G) can be computed for a gammadistributed
random variable, X, with

GðX Þ= Γðk + 1=2Þ
ffiffiffiffi
π

p
Γðk + 1Þ : ð26Þ

However, like the CV, G is derived with the shape parameter of
the gamma distribution, independent of the scale/dispersion para-
meter. As a result, G is more closely related to the skewness
of the distribution, which increases when μ approaches the bound-
ary and decreases with an increased μ. This is particularly proble-
matic for the study of developing economies for example,
where G decreases as the economy becomes more wealthy
on average, even if the dispersion of the wealth distribution
remains constant or even increases by small amounts (see Fig. 2c).
Valbuena et al.35 elaborated on the relationship between G, CV
and skew.

Here we compute the differential entropy as a measure of infor-
mation. The differential entropy (H) in nats is computed for a gamma
distributed random variable, X, with

HðX Þ= k + ln δL + ln ΓðkÞ+ ð1� kÞΨðkÞ: ð27Þ

Like the differential entropy of the beta distribution
there exists a complex nonlinear relationship with the mean
and the dispersion. Again, increased dispersion can result in
reduced entropy due to increased clustering (see crossing lines
in Fig. 2b).

The 0.95 quantile range can be approximated for a gamma dis-
tributed variable using the gamma distribution’s cdf,

FðxÞ= γðk, x=δLÞ
ΓðkÞ , ð28Þ

where γ( . ) is the lower incomplete gamma function. The 0.95 quantile
range can then be calculated for a gamma distributed variable, X, fol-
lowing Equation (19). Here we optimise x using Newton’s method
(tolerance = 10−12) with the initial guess set as the mode of a gamma
distributed variable ((k − 1)δL when k≥1, otherwise 0).

Defining the general beta and gamma distribution
One limitation of the method so far is that the beta and gamma
distributions are constrained to a given fixed range of values.
The gamma distribution is constrained to the positive real numbers,
with a zero lower bound. Meanwhile, the beta distribution is con-
strained to the real numbers within the interval [0, 1]. These con-
straints limit the variety of variables that can be modelled by the
gamma and beta distributions. For this reason, here we define
general variants of both distributions such that variables with any
lower or upper bound can be modelled and δ can be retrieved.
Rather than modifying the pdfs and cdfs directly to allow for any
lower or upper bound, we defined methods for indexing the func-
tions and for calculating the variance and mean for the distributions
from observations of a variable (V) with any lower (L) or upper
(U) bound.

Derivation of δ2 from the general beta distribution. Given an obser-
vation (v) of a random variable (V) with any real number upper (U) and
lower (L) bound, x can be retrieved for indexing the beta pdf and cdf
(Equation (6); Equation (18)) with

x =
v� L
U � L

: ð29Þ

Essentially, v is rescaled to a value between 0 and 1 based on its pos-
sible minimum and maximum, such that it can be used to index the
beta pdf in Equation (6). Likewise, the expected value or mean of the
variable, E(V), can also be scaled to a value between 0 and 1 in the same
way:

EðX Þ= EðV Þ � L
U � L

, ð30Þ

where E(X) is equivalent to μ for the beta distribution (defined in
Equation (7)). Similarly, 1 − E(X), can be retrieved for V with

1� EðX Þ= U � EðV Þ
U � L

: ð31Þ

The variance of the variable, Var(V), scales based on the squared range
between the L and U:

VarðX Þ= VarðV Þ
ðU � LÞ2

, ð32Þ

where Var(X) is equivalent to σ2 for the beta distribution (defined in
Equation (12)). As a result, the mean-independent measure of
dispersion, δ2, can be retrieved for a double-bounded variable with

δ2 =
VarðV Þ

ðEðV Þ � LÞðU � EðV ÞÞ : ð33Þ
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Thus, Equation (33) is a general version of Equation (13) that can be
calculated for variables with any real number lower and upper bound.
In the main text Var(V) is denoted σ2 and E(V) is denoted μ for
simplicity.

Thegeneral beta pdf canbe expressedusing the standardbeta pdf
(f(x); Equation (6)) as f g ðv; L,UÞ= f ðv�L

U�LÞ=ðU � LÞ, where the denomi-
nator normalises the pdf to adjust for the modified scale when mod-
elling V, x for indexing the pdf is found for V with Equation (29), and
the parameters p and q can be found for V with Equations (30), (33),
(10), and (11).

Derivation of δL from the general gamma distribution. Given an
observation (v) of a variable (V) with any real number lower bound (L),
x can be retrieved for indexing the gamma pdf and cdf (Equation (20);
Equation (28)) with

x = v� L: ð34Þ

Essentially v is scaled such that its minimum is zero. Likewise, the
expected value ormean of the variable, E(V), can be scaled such that its
minimum is zero:

EðX Þ=EðV Þ � L, ð35Þ

where E(X) is equivalent to μ for the gamma distribution (defined in
Equation (21)). Conversely, the variance of the variable, Var(V), remains
unchanged when converted to the variance of a gamma distributed
variable:

VarðX Þ=VarðV Þ, ð36Þ

where Var(X) is equivalent to σ2 for the gamma distribution (defined in
Equation (22)). As a result, the mean-independent measure of
dispersion, δL, can be retrieved with

δL =
VarðV Þ
EðV Þ � L

: ð37Þ

Thus, Equation (37) is a general version of Equation (23) that can be
calculated for variables with any real number lower bound. In themain
text Var(V) is denoted σ2 and E(V) is denoted μ.

The general gamma pdf can be expressed using the standard
gamma pdf (f(x); Equation (20)) as fg(v; L) = f(v − L), where x to be used
for indexing the pdf is found for V with Equation (34), and the para-
meters k and δL can be found for V with Equations (35), (37),
and k = μ/δL.

Derivation of the generalised δ formulation. Lastly, we introduced a
generalised formulation of δ that is adaptive to the number of
boundaries present for the variable being measured (Equation (1)).
When the upper and lower bound are real numbers (L,U 2 R), δ
(Equation (1)) becomes δ2 (Equation (33)), and when the variable has
only a real number lower bound (L 2 R, U=2R), δ (Equation (1))
becomes δL (Equation (37)), each with their associated proofs in pre-
vious sections. Here we provide proofs of δ for upper bounded vari-
ables and unbounded variables.

For upper bounded variables (U 2 R, L=2R) there exists no com-
monly used model distribution. The solution, however, was simply to
use a conceptually flipped gammadistribution, where the lower bound
of zerowas instead used as an upper bound. This was done using same
approach of rescaling the variable as was done for lower bounded
variables. The target is, thus, to rescale a given observation (v) of a
variable (V ) with any real number upper bound (U) to retrieve x for
indexing the gamma pdf and cdf (Equation (20); Equation (28)). This

can be done with

x =U � v: ð38Þ

Essentially, v is rescaled such that its maximum is equal to zero.
Similarly, the expected value or mean of the variable (E(V)) can be
scaled such that its maximum is zero:

EðX Þ=U � EðV Þ, ð39Þ

where E(X) is equivalent to μ for the gamma distribution (defined in
Equation (21)). Much like the use of the general gammadistribution for
lower bounded variables, the variance of the upper bounded variable
(Var(V)) remains unchanged when converted to the variance of a
gamma distributed variable. As a result, the mean-independent
measure of dispersion for upper bounded (U) variables, δU, can be
retrieved with

δU =
VarðV Þ

U � EðV Þ : ð40Þ

Thus, upper bounded variables can also be modelled using the gen-
eralised δ. In the main text Var(V) is denoted σ2 and E(V) is denoted μ.

For unbounded variables (L,U=2R) the Gaussian/normal distribu-
tion is themost obviousmodel. TheGaussiandistribution is defined by
a parameter for central tenancy (μ) and dispersion/scale (σ2). Where
both parameters are estimated independently for an unbounded
variable with the mean (E(V)) and variance Var(V). Thus, the distribu-
tion’s dispersion is the variance itself (δ0 = Var(V) = σ2).

Empirical data and analysis of measures of heterogeneity
We further supported the theoretical demonstration of the mean-
independent δ and mean-dependence of other measures of hetero-
geneity by analysing two global empirical datasets as empirical
examples of approximately gamma- and beta-distributed variables. As
an approximately gamma-distributed variable, we analysed global land
elevation above sea level measured by the shuttle radar topography
mission (SRTM) at a resolution of 3 arcsec41. As an approximately beta-
distributed variable, we analysed global crop cover predicted using
vegetation data collected from the ESA PROBA-V onboard the PROBA
satellite at a resolution of 3.57 arcsec42.

Two-phase stratified randomsamplingwas performedon the land
elevation and crop cover products. The objective was not to estimate a
global mean, but to simply generate a large number of samples for all
possible mean values. Simple random sampling with replacement was
performed first, followed by calculation of the sample means, stratifi-
cation by the sample means, and resampling to generate a mean-
balanced sample. Simple random sampling with replacement was
performed by randomly selecting sample center positions from all
pixels in each product, where each pixel had an equal probability of
being selected. 10 million 60 × 60 arcsec samples were taken from the
land elevation dataset, and 10 million 71.4 × 71.4 arcsec samples were
collected from the crop cover product. The mean land elevation and
crop cover were calculated for their respective 10 million samples
each. Samples with less than 75% of their area occurring on land were
removed and samples with mean land elevation above 4000 meters
were removed due to a limited number of observations in many
regions. Strata were defined in evenly spaced bins across the extent of
the mean crop cover (0–100%) and land elevation above sea level (0-
4000meters). Stratified sampling was then performed, taking 101,490
land elevation samples in 200 uniformly spaced strata, and 39,690
crop cover samples in 50 uniformly spaced strata.

Heterogeneity measures were calculated for the mean-balanced
samples of land elevation (101,490 samples) and crop cover
(39,690 samples), where each sample had 400 pixels. We calculated
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the sample variance (s2), sample standard deviation (s), and coefficient
of variation (CV). Using Equations (37) and (33), we calculated δL and δ2
for land elevation and crop cover, respectively. To calculate δ, we used
s2 and the sample mean (x) in place of Var(V) and E(V), respectively.

We assessed the fit of the models derived analytically to hetero-
geneity measures of empirical data, and compared the fit with a null
model assuming no relationship with the mean. By calculating the
mean ormedian observed δL and δ2 for all observed samplemeans, we
could calculate the expected value of s, s2 and CV for each possible
mean. For the land elevation above sea level data, with a lower bound
of zero, heterogeneitymeasures were predicted for each samplemean
value (xL) with

s =
ffiffiffiffiffiffiffiffiffiffi

δLxL

q

+ ϵ ð41Þ

s2 = δLxL + ϵ ð42Þ

CV =

ffiffiffiffiffiffiffiffiffiffi

fδLxL

q

xL
+ ϵ, ð43Þ

where δL is the mean δL observed across all samples,fδL is the median
δL observed across all samples, and ϵ is the residual error. For the crop
cover percentage data, with a lower bound of zero and upper boundof
100, heterogeneity measures were predicted for each sample mean
value (x2) with

s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2½x2ð100� x2Þ�
q

+ ϵ ð44Þ

s2 = δ2½x2ð100� x2Þ�+ ϵ ð45Þ

CV =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fδ2½x2ð100� x2Þ�
q

x2
+ ϵ, ð46Þ

where δ2 is the mean δ2 observed across all samples,fδ2 is the median
δ2 observed across all samples, and ϵ is the residual error. The median
was deemed a better average for δ when predicting the CV due to the
CV rapidly increasing to ∞ at low mean values.

Likewise, assuming no relationship with the mean, we could
define a null model that is simply the mean empirically observed s, s2

and CV:

s = s + ϵ ð47Þ

s2 = s2 + ϵ ð48Þ

CV =CV + ϵ, ð49Þ

where s, s2 and CV are the mean of the respective heterogeneity
measure across all samples, and ϵ is the residual error. The mean
squared errors of the two model approaches ( �ϵ2) could then be com-
pared for each mean-biased heterogeneity measure using a two-sided
paired-sample t-test (relying on the central limit theorem for normality
due to a large sample size). The hypothesis was that themean ϵ2 would
be lower when accounting for the mean-bias of s, s2 and CV, i.e. �ϵ2

would be lower for Equations (41-46), compared to Equations (47-49).
Regarding δ, the hypothesis was that it has a negligible relation-

ship with the mean. For this hypothesis, equivalence testing is the
appropriate statistical test with previous applications in ecology63. The
test required selecting bounds for which a coefficient would be
deemed negligible, and a typical two-tailed one-sample t-test can be

carried out to assess confidence that the coefficient falls between the
negligible bounds. We selected the negligible bounds as a absolute
coefficient magnitude less than half that of all other model forms
demonstrated for other measures of heterogeneity. To carry out the
test, we rescaled all heterogeneity measures to values between 0 and 1
based on their observed minimum and maximum (equivalent to
Equation (29)). A predictor of the heterogeneity measure was calcu-
lated based on themodel forms introduced for s, s2, and CV (Equations
(41-46) without the δ term). Linear models were then fit with these
predictors to estimate coefficients and standard errors for both the
rescaled δ and rescaled other heterogeneitymeasures. The t-testswere
finally carried out with the coefficient estimate for δ and its standard
error and compared with the null (half the absolute coefficient esti-
mate of the associated heterogeneity measure).

Weused δL for a variable considered tohave a lower boundat zero
(since terrain elevations below zero occur only at few rare exceptions),
and δ2 on a variable with a lower and upper bound at 0 and 100,
respectively. Nonetheless, we consider δ as a universal measure of
heterogeneity and statistical dispersion that can be applied to any
approximately beta or gamma distributed variable with any real
number lower and upper bound. Thus many different examples of
disparate bounds would be applicable, for which we give two addi-
tional examples (for more examples, see Supplementary Note 1). First,
the normalised difference vegetation index (NDVI) which ranges from
-1 to 1. Second, species’ distributions on an elevation gradient which
may have any lower and/or upper bound if there is a plateau or
mountain top (note the bounds for a species’ distribution on an ele-
vation gradient are distinct from the bounds for elevation).

Relationships between measures of heterogeneity and
biodiversity
We carried out two analyses to understand the precise effect mean-
bias has on observed HDRs when using mean-biased heterogeneity
measures, and whether mean-independent measures of heterogeneity
developmore robust ecological theory. In the first analysis, we defined
theoretical species richness models that were dependent on pre-
defined MDRs and HDRs, such that the observed HDRs could be cal-
culated based on the specific mean-bias of each heterogeneity
measure. In the second analysis, we used δ in a reanalysis of empirical
data previously used by Allouche et al.27 to support the area-
heterogeneity trade-off hypothesis through observation of hump-
shaped HDRs. We further support the empirical analysis with small-
scale data for foliage height and birds species diversity49. With these
analyses, we develop a theoretical and empirical methodology for
evaluating the area-heterogeneity trade-off hypothesis that could be
extended to heterogeneity relationships with any other variable in
numerous fields.

Theoretical. Because mean-biased heterogeneity measures are pro-
duced through some mathematical combination of the mean and
heterogeneity, the MDR is always projected onto the observed HDR.
This is visualised in Fig. 3, and Supplementary Figs. S2–S5. In panels a
and b of Fig. 3 and Supplementary Figs. S2–S5, we show the species
richness for seven uniformly spaced values of mean (μ) between 64
and 2422 and seven uniformly spaced values of heterogeneity (δ)
between 0.64 and 144.0 based on the predefined MDRs and HDRs.
Using the Equations described above, the mean-biased measures of
heterogeneity andmean-independent δ could be calculated for each μ
and δ assuming a gammadistribution. Themeasure specificwarping of
the data could, thus, be observed for each fixed level ofmean and true
heterogeneity (Fig. 3d, g, j, m). For fitting a second degree polynomial
to the warped data, the same process of calculating species richness
was repeated with 500 uniformly spaced values of mean between 64
and 2422 and 500 uniformly spaced values of heterogeneity between
0.64 and 144.0 (n = 5002). The polynomial’s coefficients were fit using
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ordinary least squares (Panels e, h, k, andnof Fig. 3 andSupplementary
Figs. S2–S5).

For Fig. 3 we used a theoretical species richness model based on
empirical observations of land elevation above sea level and its rela-
tionship with breeding bird species richness in Catalonia. The pre-
defined MDR and HDR were, therefore, set to be equivalent to model
#5 in Table 1 if the independent variables were not scaled to compare
effect sizes. Meanwhile, the observed HDRs when using mean-biased
heterogeneity measures were not fixed. This was done to assess if the
empirical observations of hump-shaped HDRs could be attributed
solely tomean-biaswithout influence fromany other variables. For this
theoretical species richness (D) model, all variability is described by an
intercept (66.395), a hump-shaped MDR, and a monotonic positive
HDR:

D=66:395+ 3:034× 10�2μ+ � 1:188 × 10�5μ2 + 1:076× 10�1δ: ð50Þ
Empirical. To support the area-heterogeneity trade-off hypothesis,
Allouche et al.27 assessed the relationship between theheterogeneity in
land elevation above sea level and breeding bird richness data in
Catalonia, Spain. Land elevation was measured by the SRTM41 and
breeding bird abundance was collected by the Institut Català d’Orni-
tologia for 386 10 × 10 km continuous grid cells48. Species richness is
simply the number of unique species observed during sampling.

We made three primary changes to the analysis of the data
described above. First, we calculated, for land elevation above sea
level, both the range (ρ; used by Allouche et al.27) and the mean-
independent δ as measures of heterogeneity. Second, we removed
border grid cells that were only partially covering Catalonia and, thus,
received less sampling effort, whose effect on observed species rich-
nessmaynot bedescribedby a linear relationship30. Third,we included
a polynomial of the mean elevation to account for the well described
hump-shapedMDR29. These three changes resulted in the retrieval of a
monotonic linear HDR when using a simple linear model (Table 1).
Coefficients were fit using ordinary least squares. δ had no observed
relationship with location (Supplementary Fig. S6). Thus, the results
are unaffected by spatial auto-correlation.

To further support our results, we reanalysed the small-scale
dataset used in MacArthur and MacArthur’s seminal paper49 on HDRs
in forest ecosystems. The dataset consisted of 13 forests with mea-
sured bird species diversity (Shannon diversity index) and estimated
foliage density across the continuous height profile. The foliage den-
sity data was digitised by sampling points along the lines and
approximating the function with Chebyshev polynomials (Supple-
mentary Fig. S7d). The approximate function was then sampled64 to
create a dataset equivalent to randomly sampling 10,000 foliage
positions in each canopy. Themean and other heterogeneitymeasures
could then be calculated as previously described. Differential entropy
was approximated using k-nearest neighbour statistics65. We preferred
differential entropy over MacArthur and MacArthur’s foliage height
diversity49 due to bias induced by the apportioning of the data into
height bands66. Pearson’s correlation coefficient was subsequently
calculated to assess relationships with bird species diversity.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The breeding bird species abundance data analysed in this study is
available online in a Zenodo repository with no restrictions (https://
doi.org/10.5281/zenodo.11561447)67. The SRTM and Copernicus land
cover data are available online with no restrictions in a CGIAR-CSI and
Zenodo repository, respectively (https://srtm.csi.cgiar.org/41, and

https://doi.org/10.5281/zenodo.393905042, respectively). Source data
are provided with this paper.

Code availability
The code for the analysis and figures of this study are available online
in a Zenodo repository with no restrictions (https://doi.org/10.5281/
zenodo.11561447)67. Analysis was carried out using the Julia (v1.10.4)
programming language68. The full list of 303 package dependencies is
given in the Zenodo repository Manifest.toml67.

References
1. Heidrich, L. et al. Heterogeneity-diversity relationships differ

between and within trophic levels in temperate forests. Nat. Ecol.
Evol. 4, 1204–1212 (2020).

2. Scheeres, D. J. et al. Heterogeneousmassdistribution of the rubble-
pile asteroid (101955) Bennu. Sci. Adv. 6, eabc3350 (2020).

3. Ravallion, M. Income inequality in the developing world. Science
344, 851–855 (2014).

4. Li, S. et al. Distinct evolution and dynamics of epigenetic and
genetic heterogeneity in acute myeloid leukemia. Nat. Med. 22,
792–799 (2016).

5. Shibata, D. Heterogeneity and Tumor History. Science 336,
304–305 (2012).

6. Stevens,G. C. The LatitudinalGradient inGeographical Range:How
so Many Species Coexist in the Tropics. Am. Naturalist 133,
240–256 (1989).

7. Barnes, A. D. et al. Species richness and biomass explain spatial
turnover in ecosystem functioning across tropical and temperate
ecosystems. Philos. Trans. R. Soc. B: Biol. Sci. 371, 20150279 (2016).

8. Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an
effective information basis of biodiversity distributions. Nat. Com-
mun. 6, 8221 (2015).

9. McIntyre, P. B., Jones, L. E., Flecker, A. S. & Vanni, M. J. Fish
extinctions alter nutrient recycling in tropical freshwaters. Proc.
Natl Acad. Sci. 104, 4461–4466 (2007).

10. Valbuena, R. et al. Standardizing Ecosystem Morphological Traits
from 3D Information Sources. Trends Ecol. Evol. 35, 656–667
(2020).

11. Duvall, M. S., Hench, J. L. & Rosman, J. H. Collapsing Complexity:
Quantifying Multiscale Properties of Reef Topography. J. Geophys.
Res.: Oceans 124, 5021–5038 (2019).

12. Fahey, R. T. et al. Defining a spectrum of integrative trait-based
vegetation canopy structural types. Ecol. Lett. 22, 2049–2059
(2019).

13. Ferrari, R. et al. Habitat structural complexity metrics improve
predictions of fish abundance and distribution. Ecography 41,
1077–1091 (2018).

14. Hobi, M. L. et al. A comparison of Dynamic Habitat Indices derived
from different MODIS products as predictors of avian species
richness. Remote Sens. Environ. 195, 142–152 (2017).

15. Davies, A. B., Ancrenaz,M.,Oram, F. &Asner, G. P. Canopy structure
drives orangutan habitat selection in disturbed Bornean forests.
Proc. Natl. Acad. Sci. 114, 8307–8312 (2017).

16. Milanesi, P., Holderegger, R., Bollmann, K., Gugerli, F. & Zellweger,
F. Three-dimensional habitat structure and landscape genetics: a
step forward in estimating functional connectivity. Ecology 98,
393–402 (2017).

17. Sunagawa, S. et al. Structure and function of the global ocean
microbiome. Science 348, 1261359 (2015).

18. Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a
universal driver of species richness across taxa, biomes and spatial
scales. Ecol. Lett. 17, 866–880 (2014).

19. Malhi, Y. et al. Logged tropical forests have amplified and diverse
ecosystem energetics. Nature 612, 707–713 (2022).

Article https://doi.org/10.1038/s41467-025-64287-0

Nature Communications |         (2025) 16:8532 12

https://doi.org/10.5281/zenodo.11561447
https://doi.org/10.5281/zenodo.11561447
https://srtm.csi.cgiar.org/
https://doi.org/10.5281/zenodo.3939050
https://doi.org/10.5281/zenodo.11561447
https://doi.org/10.5281/zenodo.11561447
www.nature.com/naturecommunications


20. Pastore, A. I., Barabás, G., Bimler,M. D.,Mayfield,M.M. &Miller, T. E.
The evolution of niche overlap and competitive differences. Nat.
Ecol. Evolution 5, 330–337 (2021).

21. Kelly, C. K., Bowler, M. G., Pybus, O. & Harvey, P. H. Phylogeny,
Niches, and Relative Abundance in Natural Communities. Ecology
89, 962–970 (2008).

22. Harpole, W. S. & Tilman, D. Grassland species loss resulting from
reduced niche dimension. Nature 446, 791–793 (2007).

23. Fraser, R. H. &Currie, D. J. The Species Richness-Energy Hypothesis
in a System Where Historical Factors Are Thought to Prevail: Coral
Reefs. Am. Naturalist 148, 138–159 (1996).

24. Ben-Hur, E. & Kadmon, R. An experimental test of the area-
heterogeneity tradeoff. Proc. Natl. Acad. Sci. 117, 4815–4822 (2020).

25. Schall, P. et al. The impact of even-aged and uneven-aged forest
management on regional biodiversity of multiple taxa in European
beech forests. J. Appl. Ecol. 55, 267–278 (2018).

26. Chocron, R., Flather, C. H. & Kadmon, R. Bird diversity and envir-
onmental heterogeneity in North America: a test of the area-
heterogeneity trade-off.Glob. Ecol. Biogeogr. 24, 1225–1235 (2015).

27. Allouche, O., Kalyuzhny, M., Moreno-Rueda, G., Pizarro, M. & Kad-
mon, R. Area-heterogeneity tradeoff and the diversity of ecological
communities. Proc. Natl. Acad. Sci. 109, 17495–17500 (2012).

28. Ben-Hur, E. & Kadmon, R. Heterogeneity-diversity relationships in
sessile organisms: a unified framework. Ecol. Lett. 23,
193–207 (2020).

29. Hortal, J. et al. Species richness can decrease with altitude but not
with habitat diversity. Proc. Natl. Acad. Sci. 110, E2149–E2150 (2013).

30. Carnicer, J., Brotons, L., Herrando, S. & Sol, D. Improved empirical
tests of area-heterogeneity tradeoffs. Proc. Natl. Acad. Sci. 110,
E2858–E2860 (2013).

31. Toivonen, J., Kangas, A., Maltamo, M., Kukkonen, M. & Packalen, P.
Assessing biodiversity using forest structure indicators based on
airborne laser scanning data. For. Ecol. Manag. 546, 121376 (2023).

32. Stein, A. & Kreft, H. Terminology and quantification of environ-
mental heterogeneity in species-richness research. Biol. Rev. 90,
815–836 (2015).

33. Stevens, G. C. The Elevational Gradient in Altitudinal Range: An
Extension of Rapoport’s Latitudinal Rule to Altitude. Am. Naturalist
140, 893–911 (1992).

34. Kissling, W. D. & Shi, Y. Which metrics derived from airborne laser
scanning are essential to measure the vertical profile of ecosys-
tems? Diversity Distrib. 29, 1315–1320 (2023).

35. Valbuena, R., Maltamo, M., Mehtätalo, L. & Packalen, P. Key struc-
tural features of Boreal forests may be detected directly using
L-moments from airborne lidar data. Remote Sens. Environ. 194,
437–446 (2017).

36. Madadelahi, M., Agarwal, R., Martinez-Chapa, S. O. &Madou,M. J. A
roadmap to high-speedpolymerase chain reaction (PCR): COVID-19
as a technology accelerator. Biosens. Bioelectron. 246,
115830 (2024).

37. Kempes, C. P., Koehl, M. a. R. & West, G. B. The Scales That Limit:
The Physical Boundaries of Evolution. Front. Ecol. Evol. 7, 242
(2019).

38. Yancey, P. H., Gerringer, M. E., Drazen, J. C., Rowden, A. A. &
Jamieson, A. Marine fish may be biochemically constrained from
inhabiting the deepest ocean depths. Proc. Natl Acad. Sci. 111,
4461–4465 (2014).

39. Kaiser, A. et al. Increase in tracheal investment with beetle size
supports hypothesis of oxygen limitation on insect gigantism. Proc.
Natl Acad. Sci. 104, 13198–13203 (2007).

40. Einstein, A.The PrincipleOf Relativity, Ch. 3On the electrodynamics
of moving bodies, http://archive.org/details/in.ernet.dli.2015.
214561 (1923).

41. Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled seamless
SRTM data V4, International Centre for Tropical Agriculture (CIAT).

(2008). Available from https://srtm.csi.cgiar.org (accessed 2024-
03-19).

42. Buchhorn, M. et al. Copernicus Global Land Service: Land Cover
100m: collection 3: epoch 2019: Globehttps://doi.org/10.5281/
zenodo.3939050 (2020) https://zenodo.org/records/3939050.

43. Pan, X. et al. Elevational pattern of bird species richness and its
causes along a central Himalaya gradient, China. PeerJ 4,
e2636 (2016).

44. Ameztegui, A., Coll, L., Brotons, L. & Ninot, J. M. Land-use legacies
rather than climate change are driving the recent upward shift of
the mountain tree line in the Pyrenees. Glob. Ecol. Biogeogr. 25,
263–273 (2016).

45. Colwell, R. K. & Lees, D. C. The mid-domain effect: geometric
constraints on the geography of species richness. Trends Ecol. Evol.
15, 70–76 (2000).

46. Bhattarai, K. R. & Vetaas, O. R. Can Rapoport’s rule explain tree
species richness along the Himalayan elevation gradient, Nepal?
Diversity Distrib. 12, 373–378 (2006).

47. Bar-Massada, A. & Wood, E. M. The richness-heterogeneity rela-
tionshipdiffers betweenheterogeneitymeasureswithin and among
habitats. Ecography 37, 528–535 (2014).

48. Estrada, J., Pedrocchi, V., Brotons, L. & Herrando, S. Atles Dels
Ocells Nidificants de Catalunya 1999-2002 [Breeding Birds Atlas of
Catalonia]. (Institut Català d’Ornitologia/Lynx Editions, Barce-
lona, 2004).

49. MacArthur, R. H. & MacArthur, J. W. On Bird Species Diversity.
Ecology 42, 594–598 (1961).

50. Davies, A. B. & Asner, G. P. Advances in animal ecology from 3D-
LiDAR ecosystem mapping. Trends Ecol. Evol. 29, 681–691 (2014).

51. Jung, K., Kaiser, S., Böhm, S., Nieschulze, J. & Kalko, E. K. V. Moving
in three dimensions: effects of structural complexity on occurrence
and activity of insectivorous bats in managed forest stands. J. Appl.
Ecol. 49, 523–531 (2012).

52. Jetz, W., Kreft, H., Ceballos, G. & Mutke, J. Global associations
between terrestrial producer and vertebrate consumer diversity.
Proc. R. Soc. B: Biol. Sci. 276, 269–278 (2009).

53. Woolley, S. N. C. et al. Deep-sea diversity patterns are shaped by
energy availability. Nature 533, 393–396 (2016).

54. Tittensor, D. P. et al. Global patterns and predictors of marine bio-
diversity across taxa. Nature 466, 1098–1101 (2010).

55. Stevens, G. Extending Rapoport’s rule to Pacific marine fishes. J.
Biogeogr. 23, 149–154 (1996).

56. Gaston, K. J., Blackburn, T. M. & Spicer, J. I. Rapoport’s rule: time for
an epitaph? Trends Ecol. Evol. 13, 70–74 (1998).

57. Macek, M., Dvorský, M., Kopecký, M., Wild, J. & Doležal, J. Eleva-
tional range size patterns of vascular plants in the Himalaya con-
tradict Rapoport’s rule. J. Ecol. 109, 4025–4037 (2021).

58. Braber, B. d. et al. Socio-economic and environmental trade-offs in
Amazonian protected areas and Indigenous territories revealed by
assessing competing land uses.Nat. Ecol. Evol.8, 1482–1492 (2024).

59. Ferrari, S. & Cribari-Neto, F. Beta Regression for Modelling Rates
and Proportions. J. Appl. Stat. 31, 799–815 (2004).

60. Damgaard, C. F. & Irvine, K.M. Using the betadistribution to analyse
plant cover data. J. Ecol. 107, 2747–2759 (2019).

61. Pham-Gia, T. & Turkkan, N. Determination of the Beta distribution
form its Lorenz curve. Math. Computer Model. 16, 73–84 (1992).

62. Lazo, A. & Rathie, P. On the entropy of continuous probability dis-
tributions (Corresp.). IEEE Trans. Inf. Theory 24, 120–122 (1978).

63. Dixon, P. M. & Pechmann, J. H. K. A Statistical Test to Show Negli-
gible Trend. Ecology 86, 1751–1756 (2005).

64. Olver, S.&Townsend,A. Fast inverse transformsampling in oneand
two dimensions, https://doi.org/10.48550/arXiv.1307.1223 (2013).
http://arxiv.org/abs/1307.1223.

65. Kraskov, A., Stögbauer, H. & Grassberger, P. Estimating mutual
information. Phys. Rev. E 69, 066138 (2004).

Article https://doi.org/10.1038/s41467-025-64287-0

Nature Communications |         (2025) 16:8532 13

http://archive.org/details/in.ernet.dli.2015.214561
http://archive.org/details/in.ernet.dli.2015.214561
https://srtm.csi.cgiar.org
https://doi.org/10.5281/zenodo.3939050
https://doi.org/10.5281/zenodo.3939050
https://zenodo.org/records/3939050
https://doi.org/10.48550/arXiv.1307.1223
http://arxiv.org/abs/1307.1223
www.nature.com/naturecommunications


66. Valbuena, R. et al. Moving on from Foliage Height Diversity: deter-
mining maximum entropy in 3-dimensional variables. Proceedings
of the SilviLaser Conference 2021. 316–318 (2021).

67. Pellett, C. & Valbuena, R. Data and code - Disentangling dispersion
from mean reveals true heterogeneity-diversity relationships
https://doi.org/10.5281/zenodo.11561447 (2024) https://zenodo.
org/records/15438378.

68. Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: A Fresh
Approach to Numerical Computing. SIAM Rev. 59, 65–98 (2017).

Acknowledgements
We thank Jofre Carnicer and Lluís Brotons for supplying the breeding
bird species abundance data for Catalonia, collected by the Institut
Català d’Ornitologia. We also thank Magnus Ekström (SLU) for valuable
comments on an earlier version of this manuscript.

Author contributions
C.P.: conceptualisation, methodology, formal analysis, software, data
curation, visualisation and writing of first draft. R.V.: supervision and
conceptualisation. C.P. and R.V.: review and editing of the manuscript.

Funding
Open access funding provided by Swedish University of Agricultural
Sciences.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-64287-0.

Correspondence and requests for materials should be addressed to
Cameron Pellett.

Peer review information Nature Communications thanks Fangliang He
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2025

Article https://doi.org/10.1038/s41467-025-64287-0

Nature Communications |         (2025) 16:8532 14

https://doi.org/10.5281/zenodo.11561447
https://zenodo.org/records/15438378
https://zenodo.org/records/15438378
https://doi.org/10.1038/s41467-025-64287-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Disentangling dispersion from mean reveals true heterogeneity-diversity relationships
	Results and discussion
	Mean-biased heterogeneity measures
	Mean-independent heterogeneity measures
	Applying heterogeneity measures to empirical data
	Retrieving true heterogeneity-diversity relationships
	Broader applications in ecology

	Methods
	Mean-heterogeneity relationships for the standard beta and gamma distribution
	Derivation of δ2 from the standard beta distribution
	Other commonly used heterogeneity measures for the beta distribution
	Derivation of δL from the standard gamma distribution
	Other commonly used heterogeneity measures for the gamma distribution

	Defining the general beta and gamma distribution
	Derivation of δ2 from the general beta distribution
	Derivation of δL from the general gamma distribution
	Derivation of the generalised δ formulation

	Empirical data and analysis of measures of heterogeneity
	Relationships between measures of heterogeneity and biodiversity
	Theoretical
	Empirical

	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




