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Abstract

Aims: To determine the Salmonella serotype distribution, antimicrobial resistance profiles, and antimicrobial resistance genes (ARGs) in food
samples obtained from local markets in a low-income urban setting and nearby farms in Cambodia.

Methods and results: One hundred and thirty-nine Salmonella isolates from various food sources were tested for antibiotic susceptibility using
a panel of 12 antibiotics, and 81 selected Salmonellaisolates were further sequenced for serotype distribution and ARG identification. The results
showed that 71% (99/139) of the isolates exhibited resistance to at least one antibiotic, with 39% (39/99) classified as multidrug-resistant (MDR).
The highest resistance was observed against azithromycin (37%), followed by oxytetracycline (35%). A total of 32 serotypes were identified,
with the six most common being S. Corvallis (7%), S. Haifa (6%), S. Weltevreden (6%), S. Agona (5%), S. Kentucky (5%), and S. Livingstone
(5%). A broad range of ARGs was observed across multiple antibiotic classes, including macrolides, aminoglycosides, tetracyclines, phenicols,
fluoroquinolones, sulfonamide-trimethoprim, beta-lactams, and MDR genes.

Conclusions: The results highlight the potential role of fresh food products in the widespread dissemination of Salmonella strains resistant to
multiple antibiotics.

Impact Statement

This study demonstrates the need for targeted food safety measures and antimicrobial stewardship, particularly in low- and middle-income
countries.
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Introduction effectiveness gap of such measures for both vendors and con-
sumers (Kwoba et al. 2023). This gap arises from insufficient
regulation of microbial contamination and lack of implemen-
tation of regulations, which ultimately results in inadequate
food safety management within the food production chain in
many LMICs, including Cambodia.

In Cambodia, food safety remains a significant concern for

Food safety aims to ensure the availability of safe, high-quality
food products for consumers worldwide. The safety level is re-
lated to foods free from contaminants, including foodborne
pathogens such as bacteria and other harmful microorgan-
isms, chemical pollutants such as heavy metals, pesticides, and

pharmaceutical residues, physical contaminants, and allergens . i .
(Wu et al. 2021, Thakali et al. 2022, Tibebu et al. 2024). Ad-  Public health, economic improvement, and the promotion of
dressing public health concerns and international food trade sustainable agriculture de\{elopment (Mosimann et al. 2023).
requires collaboration between consumers, governments, in- Salmonella has been desgrlbed as one of the most commonly
ternational organizations, and industries to ensure food safety .found foodborne agents in mu.l t1tud1np us fresh food prOduC.t.S
through adequate regulations, guidelines, and access to appro- in LMICs, including Cambodia (Lettini et al. 2016, Trongjit

priate resources (WHO 2022). Food safety regulations must e; azl.oi(;lzl\l/)lesirei et 321.6(2)821, Patra e; al. 2b()21, Nguyep 65
acknowledge the food safety link between food production al c). More than serotypes have been recognize

and consumption at all levels within the food system. Research }Vlthm dlle S. enter(lica species (Ferrari Ist al. 2019). The. most
on food safety interventions implemented at the market level requently reported serotypes among LUropean countries in-

. . . . .1 lude S. Typhimurium, S. Kentucky, and S. Enteritidis (EFSA
low- le- LMICs) highlights the € P ’ %
in low- and middle-income countries (LMICs) highlights the 2024). In Asia, S. Typhimurium has been identified as the pre-
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Huoy et al.

Table 1. Salmonella enterica isolated from various food commodities from food markets and vegetable farms in Phnom Penh, Cambodia (Huoy et al. 2024).

Number of isolates from

Samples Bok White Morning

source Pork Beef Chicken Fish Seafood choy cabbage Salad glory Curly cabbage Total®
Markets 18 18 17 16 16 8 3 12 11 9 128
Farms 2 8 1 11
Total 18 18 17 16 16 10 3 12 19 10 139

3These isolates were last confirmed with a PCR screening test using the invA gene.

dominant serotype among non-typhoidal strains, while S. Ty-
phi was recognized as the main serotype within the typhoidal
strains (Patra et al. 2021, Salvador et al. 2022, Wang et al.
2023b). Regarding Cambodia, several serotypes have been
reported from meat products and food contact surfaces, in-
cluding S. Typhimurium, S. Rissen, S. Hvittingfoss, S. Cor-
vallis, S. Krefeld, S. Weltevreden, S. Altona, and S. Anatum
(Lay et al. 2011, Trongjit et al. 2017, Schwan et al. 2021).
In addition, S. Typhi, S. Paratyphi A, and S. Choleraesuis
were documented as the cause of typical clinical Salmonella
infection among hospitalized adults in Cambodia (Vlieghe
et al. 2012 , Kuijpers et al. 2017, Kheng et al. 2020). In-
deed, Kheng et al. (2020) reported that S. Typhi was the pri-
mary serovar in clinical salmonellosis in 2012-2013 (94% of
cases), while S. Paratyphi A accounted for 61% of infections in
2014.

Antimicrobials are often used to treat and control the
spread of Salmonella spp. and other bacterial infections
among humans, livestock, and crops/horticulture (Crump et
al. 2015, Givens et al. 2023). Antibiotics are also used for
prophylactic purposes and as growth promoters in the live-
stock industry (Peng et al. 2014, Van Boeckel et al. 2019, Van
et al. 2020). The most common antimicrobial classes used to
treat clinical Salmonella infection in humans are carbapen-
ems, penicillins, fluoroquinolones, and cephalosporins (WHO
2019, Nambiar et al. 2024). However, the rise in antimicro-
bial resistance (AMR) presents a considerable threat to public
health, and prevention, as opposed to treating bacterial infec-
tions including salmonellosis, is becoming increasingly critical
(Vlieghe et al. 2013, Trongjit et al. 2017).

The development of AMR is accelerated through the lack of
control over antibiotic usage and limited knowledge regard-
ing the application of antibiotics in livestock farms, notably in
LMICs (Heyman 2020, Mann et al. 2021). Globally, tetracy-
cline, penicillins, and macrolides are commonly used in agri-
culture and livestock production (Laxminarayan et al. 2015,
Mann et al. 2021). However, in Cambodia, the sale of antibi-
otics is poorly regulated, which leads to antibiotic purchases
without a prescription (Reed et al. 2019, Lim et al. 2021).
This, together with limited knowledge of proper antibiotic us-
age, generates an increased risk of the development and spread
of AMR (Om and McLaws 2016, Chea et al. 2022). Mul-
tidrug resistance (MDR), resistance to at least three classes
of antimicrobials (Lettini et al. 2016, Catalano et al. 2022),
is of particular concern in Cambodia, with reports showing
that 52% of the Salmonella isolates collected from pigs and
broiler chickens from local markets were multidrug resistant
(Trongjit et al. 2017). Another study showed that ~88% of S.
Typhi isolated from Cambodian children between 2012 and
2016 exhibited MDR (Kheng et al. 2020). Moreover, studies
have shown that most S. Typhi and S. Paratyphi isolates were
resistant to ciprofloxacin (Kuijpers et al. 2017, Gandra et al.

2020). Thus, one can conclude that increasing AMR among
Salmonella strains in Cambodia poses severe challenges to
food safety and public health.

Resistant bacteria and antimicrobial resistance genes
(ARGs) transmit through the food chain, and this is partic-
ularly challenging within LMICs. There are several reasons
for the transmission routes from primary producer to food re-
tailer, for example, lack of surveillance, poor biosecurity, and
informal production chains (Sagar et al. 2023). There is also
a lack of data on circulating Salmonella serotypes and pheno-
typic and genotypic AMR in the food production system in
Cambodia. Such data are essential when developing strategies
and interventions to address food safety challenges at various
levels in the food system. This study aimed to determine the
Salmonella serotype distribution, AMR profiles, and ARGs of
Salmonella isolates from fresh food samples collected from lo-
cal markets in the capital region of Cambodia and in vegetable
farms supplying the urban markets.

Materials and methods

Salmonella isolates

Between 2020 and 2021, a study was performed at food mar-
kets in the Cambodian capital Phnom Penh and at vegetable
farms adjacent to Phnom Penh to investigate the prevalence
of Salmonella among three categories of fresh food: meat,
seafood, and vegetables (Huoy et al. 2024). A total of 139
isolates from 285 food samples from that study were used in
this study (Table 1). The sampling process, Salmonella culti-
vation, and confirmation are described in detail by Huoy et al.
(2024).

Antimicrobial susceptibility tests

Antimicrobial susceptibility tests (ASTs) were performed with
the Kirby-Bauer disk diffusion method for the 12 included an-
tibiotics: azithromycin (Azm), cefuroxime (Cxm), doxycycline
(DO), ampicillin (Amp), imipenem (Ipm), sulfamethoxazole—
trimethoprim (SxT), aztreonam (Atm), ciprofloxacin (Cip),
chloramphenicol (C), oxytetracycline (OT), gentamicin (Gn),
and amoxicillin (Aml) (Table 2). All 139 frozen (—20°C)
isolates were thawed and enriched in nutrient broth (NB,
Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany), fol-
lowed by sub-culturing on Salmonella-Shigella agar (SS, Hi-
Media Laboratories Private Limited, Maharashtra, India).
Five isolated colonies per plate were inoculated in NB (Sigma-
Aldrich Chemie GmbH, Taufkirchen, Germany) and incu-
bated at 37°C in a shaking incubator for 6 h. The bacterial cul-
ture was adjusted to 0.5 McFarland turbidity standards and
spread onto Mueller-Hinton agar (HiMedia Laboratories Pri-
vate Limited, Maharashtra, India). Antibiotic discs were ap-
plied to the plates, which were incubated for 24 h at 37°C. The
zone of inhibition was measured and interpreted according to
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Table 2. The standard zone size of antimicrobial disks used in a study investigating Salmonella spp. among various food samples in Cambodia (CLSI 2020).

Antibiotic class Antibiotic substance

Disk content (ug)

Zone diameter breakpoints, nearest whole mm
Susceptible (S) Intermediate (I) Resistance (R)

Penicillin? Ampicillin (Amp) 10
Amoxicillin (Aml) 25
Cephem Cefuroxime (Cxm) 30
(cephalosporin)?
Monobactams? Aztreonam (Atm) 30
Carbapenems? Imipenem (Ipm) 10
Aminoglycosides Gentamycin (Gn) 10
Macrolides Azithromycin (Azm) 15
Tetracycline Doxycycline (Do) 30
Oxytetracycline (Ot) 30
Quinolones Ciprofloxacin (Cip) 5
Folate pathway Sulfonamide-trimethoprim 25
antagonists (Sxt)
Phenicol Chloramphenicol (C) 30

>17 14-16 <13
>18 14-17> <13
>18 15-17> <14
>21 18200 <17
>23 20-22b <19
>15 13-14b <12
>13 <12
>14 11-13 <10
>15 12-14 <11
>31 21-30b <20
>16 11-15 <10
>18 13-17 <12

*Monobactam; carbapenems; cephalosporin; and penicillin are subclasses of beta-lactam antibiotics.
bIntermediate breakpoints for corresponding antibiotic substance that can potentially concentrate at an anatomical site.

the Clinical Laboratory Standard Institute (CLSI) (Table 2)
(CLSI 2020). Resistance to at least three classes of antibi-
otics was defined as MDR. Escherichia coli ATCC 25922 with
S. enterica subspecies enterica serotype Typhimurium ATCC
14028 was used as a control strain.

Salmonella whole genome sequencing

Initially, we planned to sequence all 139 isolates. However,
certain of the DNA samples transported to Sweden failed
to meet the quality requirements for sequencing. Therefore,
isolate selection was prioritized for isolates containing high-
quality DNA and having at least one antibiotic resistance, as
our goal was to compare their AMR profiles with predicted
resistance genes (ARGs) from sequencing data. Additionally,
three of these strains were selected as references, meaning they
displayed no resistance.

In total, 81 out of 139 Salmonella spp. isolates were
selected for whole genome sequencing (WGS) to deter-
mine their serotypes and ARGs. Briefly, Salmonella genomic
DNA was extracted using the Wizard® HMW DNA ex-
traction kit (Promega, Madison, USA). DNA quality check
was performed using a NanoDrop™ 8000 Spectrophotome-
ter (Thermo Fisher Scientific, Delaware, USA) and a Qubit 4.0
Fluorometer (Thermo Fisher Q33238, Invitrogen, USA). Sam-
ples with ODj401280 = 1.8-2.0 and a minimum concentration
of 2.5 ug were selected for sequencing library preparation us-
ing TruSeq PCR-free DNA library preparation kit (Illumina
Inc.). Sequencing was conducted using NovaSeq X 10B lane
with paired-end sequencing of 150 cycles (Illumina, SciLife
Lab, Uppsala, Sweden).

Salmonella whole genome sequence analysis
Sequence quality control and trimming

FastQC (Andrews 2010) was used to assess the quality of
the raw Illumina sequencing reads. Read quality was im-
proved using Trimmomatic (Bolger et al. 2014), which re-
moved adapter sequences and filtered out low-quality reads
(Phred score < 25) with default parameters.

Serotype prediction

Serotype prediction was performed on quality-controlled se-
quencing reads using SeqSero2 (Zhang et al. 2019), which uti-
lized a reference database for Salmonella serotyping.

Whole-genome assembly

Genome assemblies were generated from quality-controlled II-
lumina short reads using SPAdes v3.15.5 with the careful pa-
rameter to reduce mismatches and short indels. The default
k-mer sizes (21, 33, 55, and 77) were used. Assembly qual-
ity was evaluated using QUAST v5.0.2 based on total assem-
bly size, N50, and the number of contigs. Assemblies with
N50 > 30 kb and fewer than 500 contigs were considered
suitable for downstream ARG prediction using AMR tools.

Antibiotic resistance gene identification

Predictive identification of ARGs was conducted using the
Comprehensive Antibiotic Resistance Database (CARD) Re-
sistance Gene Identifier (RGI) tool. Genome assemblies were
used as input for the CARD-RGI tool.

All sequence analyses were performed at the Department
of Animal Biosciences, Swedish University of Agricultural Sci-
ence, Uppsala, Sweden, and the Bioinformatics Data Analysis
Core Facility at the Faculty of Medicine and Health Sciences,
Linkoping University, Linkoping, Sweden.

Results

AMR of the Salmonella isolates
Among the 139 Salmonella isolates, 99 (71%) exhibited resis-
tance to at least one antibiotic, with 39 (39%) of these identi-
fied as MDR. The highest proportion of resistant isolates was
observed against azithromycin (37%), followed by oxytetra-
cycline (35%), ampicillin (24%), amoxicillin (24%), doxy-
cycline (20%), chloramphenicol (18%), sulfamethoxazole—
trimethoprim (17%), cefuroxime (14%), gentamicin (12%),
ciprofloxacin (8%), aztreonam (8%), and imipenem (4%)
(Table 3).

There was intermediate resistance (I) against ciprofloxacin
in 41% (57/139) of the included samples and against gentam-
icin in 30% (42/139) (Fig. 1). The highest proportions of sus-
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Table 3. Antimicrobial resistance in 139 Salmonella spp. isolated from meat, seafood, and vegetables in Cambodia.

Antimicrobial resistance (% resistant isolates) against tested antimicrobial agents

Number of
Sample type isolates Azm Cxm Do Amp Ipm Sxt Atm Cip C Ot Gn Aml
Meat 53 8 21 25 28 4 23 11 4 26 45 6 26
Seafood/fish 32 47 16 22 19 9 16 3 19 9 22 9 19
Vegetable 54 59 7 15 24 0 13 7 6 15 31 20 24
Total 139 37 14 20 24 4 17 8 8 18 35 12 24

Azm = azithromycin, Cxm = cefuroxime, Do = doxycycline, Amp = ampicillin, [pm = imipenem, Sxt = sulfamethoxazole—trimethoprim, Atm = aztreonam,
Cip = ciprofloxacin, C = chloramphenicol, Ot = oxytetracycline, Gn = gentamicin, Aml = amoxycillin.

Amoxicillin  INININIGIG
Gentamycin I I
Oxytetracycline IS
Chloramphenico] |
Ciprofloxacin [N [
Aztreonam | I
Sulphenamide-Trimethoprim [Ny ——
Imipenem I
Ampicillin - I
Doxycycline [ INEEGG—— |
Cefuroxime I I
Azithromycin [
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

m Susceptible

Intermediate

= Resistant

Figure 1. Percentage (%) of antimicrobial susceptibility exhibited among Salmonella spp. (n = 139), isolated from different food commmodities collected in

Cambodia, for each of the 12 included antibiotics.

ceptible isolates were observed for imipenem, aztreonam, and
chloramphenicol.

Salmonella serotype distribution and AMR
phenotypes

A total of 81 Salmonella spp. isolates were submitted for Il-
lumina sequencing. Among these, 75 isolates were classified
into 32 distinct serotypes belonging to serogroups B (7 = 17),
C(n=236),E(n=13),F (n=1),G (n=2),1 (n = 4),and R
(n = 2) (Table 4). A greater diversity of serotypes was identi-
fied among the isolates from vegetables compared to the other
food sources. Additionally, six isolates could not be assigned
to specific serotypes. Among these, one isolate belonged to
serogroup D, another to serogroup I, while four isolates could
not be classified into any serogroup.

The most common serotypes were S. Corvallis (7%), S.
Haifa (6%), S. Weltevreden (6 %), S. Agona (5%), S. Kentucky
(5%), S. Livingstone (5%), S. Typhimurium (4%), S. Infantis
(4%), S. Rissen (4%), S. Bareilly (4%), S. Mbandaka (4 %), S.
Uganda (4%), and S. Hvittingfoss (4%) (Table 4).

The phenotypic AMR profiles were categorized based on
the number of antimicrobial classes to which the strain exhib-
ited resistance, ranging from at least 1 to 9 classes (Table 3).
Approximately 41% (31 out of 75) identified Salmonella
serotypes exhibited the MDR phenotype. Among the identi-
fied resistance profiles, significant MDR was observed in four
Salmonella isolates. This included two isolates from vegetable
sources: one S. Weltevreden, which was resistant to nine an-
tibiotic classes and one S. Corvallis, which was resistant to
eight antibiotic classes. Furthermore, three isolates displayed
resistance to seven or eight antibiotic classes.

Distribution of ARGs

A total of 144 ARGs were detecteamong the 81 Salmonella
genomes (Table 6). The identified ARGs were associated
with various antimicrobial classes examined in this study,
such as beta-lactams (including monobactam, carbapen-
ems, cephalosporin, and penicillin), tetracyclines, aminogly-
cosides, quinolones, phenols, sulfonamide-trimethoprim, and
macrolides. Resistance to other antibiotic categories was also
predicted from this database, including cephamycins, gly-
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Table 4. Serotype distribution of 81 Salmonella spp. isolated from different food commodities in Cambodia.
Number of isolates (%)
Antigenic
Serogroup Serotypes formulae Pork/beef Poultry meat Seafood/fish Vegetable Total
B S. Haifa 4:210:1,2 1(1.2) 1(1.2) 1(1.2) 2(2.5) 5(6.2)
S. Agona 4:f,g,s:- 3(3.7) 1(1.2) - - 4(5.0)
S. Typhimurium 4:i:1,2 - 1(1.2) 2(2.5) 3(3.7)
S. Indiana 4:2:1,7 ; ; 1(1.2) 1(1.2)
S. Heidelberg 4:r:1,2 1(1.2) - - 1(1.2)
S. Saintpaul 4ieh:1,2 : 1(1.2) - 1(1.2)
S. Chester 4:3,h:e,n,x - 1(1.2) - 1(1.2)
S. Brancaster 4:229:- 1(1.2 - - 1(1.2)
C S. Corvallis 8 :24,223:- (1.2) 3(3.7 - 2 (2.5) 6(7.4)
S. Kentucky 8:i:26 1(1.2) 1(1.2 1(1.2) 1(1.2) 4(5.0)
S. Livingstone 7:d:l,w 2(2.5) 2(2.5) - 4 (5.0)
S. infantis 7:ir:1,5 2(2.5) 1(1.2) - 3(3.7)
S. Rissen 7:f,g: 2(2.5) ; 1(1.2) 3(3.7)
S. Bareilly 7:y:1,5 1(1.2) 1(1.2) 1(1.2) 3(3.7)
S. Mbandaka 7:210:e,n,z15 1(1.2) - 2 (2.5) 3(3.7)
S. Thompson 7:k:1,5 - - 2(2.5) 2(2.5)
S. Braenderup 7:e,h:e,n,z15 - 2 (2.5) - 2 (2.5)
S. Molade/S. 8:210:26 ; 1(1.2) 1(1.2) 2(2.5)
Wippra
S. Newport 8:e,h:1,2 ; ; 1(1.2) 1(1.2)
S. Mkamba 7:Lv:1,6 - 1(1.2) - 1(1.2)
S. Potsdam 7:L,v:e,n,z15 - - 1(1.2) 1(1.2)
S. Tananarive/S. 8:y:1,5 - - 1(1.2) 1(1.2)
Brunei
D Other strain? 9,46:1:- - - 1(1.2) 1(1.2)
E S. Weltevreden 3,10:r:26 - 1(1.2) (5.0) 5(6.2)
S. Uganda 3,10:1,213:1,5 2(2.5) : 1(1.2) 3(3.7)
S. Anatum 3,10:e,h:1,6 2(2.5) - ; 2(2.5)
S. London 3,10:Lv:1,6 2(2.5) ; ; 2(2.5)
S. Give 3,10:Lv:1,7 1(1.2) ; ; 1(1.2)
F S. Aberdeen 11:0:1,2 1(1.2) ; - 1(1.2)
G S. Kedougou 13:i:l,w - 1(1.2) 1(1.2) 2(2.5)
I S. Hvittingfoss 16:bse,n,x 1(1.2) ; 2(2.6) 3(3.7)
S. Wa 16:b:1,5 ; 1(1.2) - 1(1.2)
Other strain® 16:r:e,n,x - - 1(1.2) 1(1.2)
R S. Johannesburg 40:b:e,n,x 2 (2.5) - - 2 (2.5)
Others Other subspecies I 67:-:26 1(1.2) - - 1(1.2)
Unidentified strains 1(1.2) 1(1.2) 1(1.2) 3(3.7)
Total 23 (28) 12 (15) 17 (21) 29 (36) 81 (100)

2The antigenic formula is possibly closely related to the strains S. Deckstein (9,46: r:1,7)/S. Shoreditch (9,46: r: e, n, z15)/S. Sokode (9,46: r: z6).
bThe antigenic formula is possibly closely related to the strain S. Annedal (16: 1, i: e, n, x).

copeptides, lincosamides, nucleosides, peptides, phosphonic
acid, pleuromutilins, rifamycins, and agents used for disin-
fection and antiseptics. Additionally, MDR genes, i.e. ARGs
encoding resistance mechanisms against several different an-
tibiotics, such as efflux pumps, were detected among the iso-
lates, with the commonly identified genes being sdiA, marA,
acrB, rsmA, golS, mdsA, mdsB, and mdsC, among others.
Furthermore, genes associated with resistance to disinfec-
tants and antiseptics, such as qacG, qacL, and gacEdeltal,
were also identified. Six resistance mechanisms were observed
among the sequence data, including antibiotic efflux, antibi-
otic inactivation, target alteration, target replacement, tar-
get protection, and reduced permeability to the antibiotic
substance.

AMR phenotype and genotype matching

Table 7 presents the matching percentage between the AMR
phenotype and genotype of the studied isolates. Agreement be-
tween AMR pattern and the corresponding resistance genes

was noted across several antimicrobial classes, including
macrolides, folate pathway antagonists, quinolones, pheni-
cols, tetracyclines, and aminoglycosides. Additionally, a clear
association between MDR genes (golS, mdsA, mdsB, and
mdsC) and phenotypic resistance to antimicrobial classes such
as cephalosporins, carbapenems, and monobactams was ob-
served. In contrast, a low matching percentage was seen be-
tween phenotype and genotype for amoxicillin resistance,
with only a 24% match.

Discussion

Salmonella is a major contributor to foodborne illnesses glob-
ally. Numerous Cambodian studies have reported a high
prevalence of Salmonella-contaminated food and strains that
have been shown to exhibit high levels of AMR (Kheng et al.
2020, Trongjit et al. 2017). Consequently, it is crucial to un-
derstand the distribution of Salmonella serotypes, the profiles
of AMR, and the mechanisms driving resistance by identify-
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Table 5. Antimicrobial resistance phenotypic identified among the Salmonella serovars isolated from various foods in Cambodia.

Huoy et al.

Serovars Number of Number of
(Number of resistant isolates/total number of isolates) isolates Resistance profile? antimicrobial classes?
S. Corvallis (2/6), S. Typhimurium (2/3), S. Newport 15 Azm 1
(1/1), S. Livingstone (2/4), S. Kentucky (1/4), S. Bareilly
(1/3), S. Mbandaka (1/3), S. Kedougou (1/2), S.
Braenderup (1/2), S. Thompson (1/2), S. Weltevreden
(1/5), serotype 16:r:e,n,x (1/6)
S. Corvallis (1/6), S. Bareilly (1/3) Atm
S. Johannesburg (2/2), S. Chester (1/1), S. Give (1/1) Cxm
S. Anatum (1/2), S. London (1/2) Ot
S. Anatum (1/2), S. Haifa (1/5) Do
S. Kentucky (1/4) Sxt
S. Molade/S. Wippra (1/2), S. Haifa (1/5) Do-Ot
Serotype 9,46:r:- (1/1) Amp-Aml
S. Agona (1/4), S. Heidelberg (1/1), S. Haifa (1/5) C-Ot
S. Bareilly (1/3), S. Mbandaka (1/3) Azm-Gn
S. Hvittingfoss (1/3) Azm-Ot
S. Livingstone (1/4) Azm-Cip
S. Livingstone (1/4) Cxm-Gn
S. Corvallis (1/6) Ipm-Ot
S. Molade/S. Wippra (1/2) Azm-Ipm
S. Haifa (1/5), S. Corvallis (1/6) Azm-Do-Ot
S. Mbandaka (1/3) Do-C-Ot
Serotype 67:-:2Z6 (1/1) Amp-Sxt-Aml
S. Hvittingfoss (1/3) Cxm-Amp-Aml
S. Thompson (1/2) Azm-Amp-Gn
S. Livingstone (1/4) Azm-Atm-Cip
Weltevreden (1/5) Azm-Sxt-Ot

S.

S. Weltevreden (1/5)

S. Haifa (1/5)

S. Tananarive/S. Brunei (1/1)

S. Typhimurium (1/3)

S. Uganda (1/3)

S. Wa (1/1)

S. Agona (1/4)

S. Kentucky (1/4)

S. Haifa (1/5)

S. Kedougou (1/2)

S. Rissen (1/3), S. Agona (1/4), S. London (1/2)
S. Brancaster (1/1)

S. Braenderup (1/2)

S. infantis (1/3)

S. Agona (1/4)

S. Indiana (1/1)

S. infantis (1/3)

S. Potsdam (1/1), S. Rissen (1/3)

S. Mkamba (1/1)

S. Saintpaul (1/1)

S. Uganda (1/3)

S. Kentucky (1/4)

S. Infantis (1/3)

S. Corvallis (1/6)

S. Weltevreden (1/5)
Total number of isolates

diﬂHHi—le—\MNHHHMD—IHL&HHHHD—\MD—\MHHHHMHMD—\NHHMHMNWHNHNN-&N

Azm-Do-Ipm-Ot

Azm-Do-Cip-Ot

Azm-Amp-Ot-Aml

Azm-Amp-C-Aml

Azm-Amp-Gn-Aml
Azm-Cxm-Amp-Aml
Cxm-Amp-Ot-Aml

Amp-Cip-Ot-Aml

Amp-Sxt-Ot-Aml

Do-Amp-C-Aml

Amp-Sxt-C-Ot-Aml
Do-Amp-Sxt-C-Ot-Aml
Cxm-Do-Amp-Cip-Ot-Aml
Cxm-Do-Amp-C-Ot-Aml
Cxm-Do-Amp-Sxt-C
Cxm-Amp-Sxt-Atm-Ot-Aml
Cxm-Do-Sxt-Atm-C-Ot-Gn
Azm-Amp-Sxt-C-Ot-Gn-Aml
Amp-Sxt-Cip-C-Ot-Gn-Aml
Azm-Do-Amp-Sxt-Cip-C-Ot-Aml
Cxm-Do-Amp-Atm-C-Ot-Gn-Aml
Azm-Cxm-Do-Amp-Sxt-Cip-C-Ot-Aml
Cxm-Do-Amp-Sxt-Atm-Cip-Ot-Gn-Aml
Cxm-Do-Amp-Sxt-Atm-Cip-C-Ot-Gn-Aml
Azm-Cxm-Do-Amp-Sxt-Atm-Cip-C-Ot-Gn-Aml

ORI NN U B DB D WWWWWWWWWWWWWINRNIRPNPPNPNPENPNPNPNRFE= R

32AMR abbreviations: Azm = azithromycin, Cxm = cefuroxime, Do = doxycycline, Amp = ampicillin, I[pm = imipenem, Sxt = sulfamethoxazole-trimethoprim,
Atm = aztreonam, Cip = ciprofloxacin, C = chloramphenicol, Ot = oxytetracycline, Gn = gentamicin, Aml = amoxycillin.
b Antimicrobial classes: macrolide (Azm), cephalosporing (Cxm), tetracycline (Do, Ot), penicillin (Amp, Aml), carbapenems (Ipm), sulfonamide/trimethoprim
(Sxt), monobatams (Atm), quinolones (Cip), phenicol (C), aminoglycosides (Gn).

ing ARGs. In the current study, 139 Salmonella isolates col-
lected from different food commodities (meat, seafood/fish,
and vegetables) described in a previous study (Huoy et al.
2024) were serotyped and characterized for phenotypic and
genotypic AMR.

Analysis of the 139 Salmonella isolates revealed a high
prevalence of resistance to azithromycin and oxytetracycline,
with the second-highest resistance observed in two widely

used penicillin-class antibiotics, ampicillin and amoxicillin.
These findings are consistent with several studies conducted
in Cambodia, other Southeast Asian countries, and various
European Union (EU) member states. Over a 10-year pe-
riod, studies on AMR indicated a rising resistance rate of
53%-77% among Salmonella isolates from human, animal,
and environment samples in South Asia, with particularly
high resistance to tetracycline and amoxicillin (Talukder et
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Table 6. ARG detection by sequence analysis using CARD-RGI on Salmonella isolates from food samples collected in Cambodia.

Antimicrobial classes

Antimicrobial resistance genes (ARGs)

Beta-lactam

Tetracycline
Aminoglycoside

Quinolone/fluoroquinolone

Phenicol
Sulfonamide-trimethoprim
Macrolide

MDR genes

Disinfecting agents and
antiseptics
Other ARGs

ACC-1a, TEM-1, TEM-176, TEM-215, CMY-159, CMH-3, CTX-M-55, CTX-M-65, LAP-2,
OXA-1, OXA-10, Sed-1, SHV-11, SHV-26, LptD

tet(A), tet(B), tet(]), tet(L), tet(M), tet(45), tet(X4), tetR, emrK

AAC(3)-11d, AAC(3)-Ile, AAC(3)-IVa, AAC(6')-Iaa, AAC(6')-1b10, AAC(6')-1f, AAC(6')-1i,
AAC(6')-Iid, AAC(6')-Iy, aadA, aadA2, aadA3, aadA7, aadA16, aadA23, acrD, APH(3')-1a,
APH(3")-Ib, APH(4)-1a, APH(6)-1d, baeR, baeS, cpxA, kdpE, mdtA, mdtB, mdtC

emrA, emrB, emrR, MdtK, QepA2, OnrB12, QnrB19, QnrS1, OnrS2, QurD1, gyrA, gyrB,
parC, adeF

floR, catA4, catB3, cmlA1, cmlAS, catll from E. coli K-12

sull, sul2, sul3, dfrE, dfrAl, dfrA12, dfrA14

mphA, mef (B), Mrx, E. coli emrE, efmA, CR P

sdiA, marA, rsmA, ramA, mdtM, oqxA, oqxB, acr B, Ac r E, Acr F, AcrS, fosAS, acrA,
AcrAB-TolC with A ¢ R mu t ation, AcrAB- T olC with MarR mutation s, E. coli soxS
mutation, E. coli sox R muta tion, K. pneumoniae acrR mutati on, CRP, efrA, ErmB, evgA,
gadW, H-NS, mdtE, msrC, KpnE, KpnF, KpnG, Kp nH, Md tQ, golS, mdsA, mdsB, mdsC,
K. pneumoniae OmpK37, E. coli mdfA

qacG, qacL, qacEdeltal

ArnT, bacA, eptB, FosA2, FosA6, FosA7, FosA8, mdtG, OmpA, PmrF, ugd, MCR-1.1, E.
coli GlpT mutation, E. coli UbpT mutation, msbA, eatAv, vanG, vanY gene in (vanA, vanB,
vanF, vanM) cluster, vanT gene in vanG cluster, vanXY gene in vanC cluster, In uA, lsaA

Table 7. Matching percentage between phenotypic and genotypic antimicrobial resistance in Salmonellaisolates isolated from various foods in Cambodia.

Antimicrobial

Antimicrobial class sub-class Antimicrobial agent

Number of isolates carrying

Beta-lactam Monobactams Aztreonam (Atm)
Cephem Cefuroxime (Cxm)
(cephalosporin)
Penicillin Ampicillin (Amp)
Amoxicillin (Aml)
Carbapenems imipenem (Ipm)
Folate pathway - Sulfonamide—trimethoprim
antagonists (Sxt)
Macrolides - Azithromycin (Azm)
Quinolones - Ciprofloxacin (Cip)
Phenicols - Chloramphenicol (C)
Tetracycline - Oxytetracycline (Ot)
- Doxycycline (Do)
Aminoglycosides - Gentamycin (Gn)

Number of phenotypic  antimicrobial resistance Matching*
resistance isolates genes (ARGs) AMR-ARGS (%)

9 92 10000
18 182 10000
31 31b 10000
29 7 2414

4 32 7500
21 21 10000
36 36 10000
11 11 10000
22 22 10000
38 38 10000
23 23 10000
13 13 10000

*% matching of AMR phenotype and genotype was calculated by dividing the total number of AMR phenotypic by the total number of isolates carrying

ARGs.

AMDR genes (golS, mdsA, mdsB, and mdsC) presented and responsible for the resistant mechanism to antibiotic classes (monobactam; carbapenem;

cephalosporin; cephamycin; penam; phenicol antibiotic; and penem).

bResistance gene responsible for resistance to ampicillin is primarily a gene from Haemophilus influenzae PBP3 conferring resistance to beta-lactam antibiotics.

al. 2023). Research on non-typhoidal Salmonella (NTS) iso-
lates in Taiwan also revealed high resistance to azithromycin,
which was associated with complex resistance mechanisms
(Chiou et al. 2023). In Vietnam, Salmonella isolates from
both vegetable and water samples exhibited high resistance to
tetracycline (Nguyen et al. 2021a). The occurrence of AMR,
which was also reported by the EU, demonstrated a notably
high resistance to ampicillin and tetracycline in Salmonella
isolates from humans and food-producing animals (Roasto
et al. 2023, EFSA 2024). Furthermore, in addition to resis-
tance, a high proportion of Salmonella isolates displayed in-
termediate resistance to ciprofloxacin and gentamicin antibi-
otics. These findings are in line with previous studies. For in-
stance, studies on S. Typhi isolates from Cambodian children
demonstrated high levels of intermediate resistance and re-

sistance to the antibiotic ciprofloxacin (Emary et al. 2012,
Chheng et al. 2013). As Reed et al. (2019) reported in a
review, Salmonella spp. isolates from humans exhibited a
high resistance rate to ciprofloxacin. Nonetheless, the antibi-
otics included in this study remained effective in inhibiting
the growth of the majority of Salmonella isolates, suggesting
that they may still be viable options for treating Salmonella
infections.

WGS data analysis using the SeqSero 2 tool has proved
to be a highly effective approach, offering greater accuracy
in serotype predictions than traditional serotyping methods
(Cooper et al. 2020). Sequence analysis detected 32 serotypes
among 81 Salmonella isolates, with the six most frequently
identified serotypes being S. Corvallis, S. Haifa, S. Weltevre-
den, S. Agona, S. Kentucky, and S. Livingstone. Previous
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research has identified Salmonella isolates as S. Corvallis,
sourced from environmental samples among informal Cam-
bodian markets (Schwan et al. 2022). Salmonella Haifa had
been reported as one of the most commonly found serovars
among poultry meat and farm samples in both Ethiopia and
Nigeria (Dagnew et al. 2020, Raji et al. 2021, Abayneh et al.
2023). Salmonella Agona was identified as the most prevalent
non-typhoidal serovar in chicken meat, while S. Kentucky was
one of the serovars exhibiting high MDR (Tay et al. 2019).
In recent years, S. Kentucky and S. Livingstone have become
increasingly detected in poultry as well as poultry products
(Guillén et al. 2020, Quinn et al. 2023). Interestingly, our
study revealed the occurrence of S. Weltevreden in vegeta-
bles sampled from both farms and local markets, providing
valuable insight into the potential connection between farm-
level and market-level contamination. Moreover, S. Weltevre-
den was identified from sampled geckos due to the wild geckos
being considered as the natural reservoir of serotype, indicat-
ing that the natural reservoir possibly influences the preva-
lence of S. Weltevreden among agricultural products (Nguyen
et al. 2021b). S almonella Weltevreden has also been identi-
fied as a serotype linked to human diarrhea and is commonly
found in both food and environmental sources (Zhang et al.
2023). A study investigating pig and pork samples from the
Cambodian border identified S. Rissen and S. Anatum as the
most common Salmonella serotypes (Lay et al. 2021), both
of which were also detected in the present study. Further-
more, the study identified two serotypes, S. Hvittingfoss and S.
Thompson, in the vegetable samples aligns with findings from
another study on the distribution of Salmonella serotypes in
Cambodian vegetable supply chains across the Siem Reap and
Battambang provinces (Salazar et al. 2025). These findings in-
dicated a high diversity of Salmonella serotypes in fresh food
products in local markets, suggesting potential variations in
transmission pathways across different Cambodian food sup-
ply chain stages.

Prediction of ARGs using the CARD database revealed
that Salmonella isolates carried a diverse range of resistance
genes, with MDR genes present in almost all analyzed isolates.
Among the Salmonella sequences, 83% (67 out of 81) exhib-
ited the CPR gene, which contributes to resistance against an-
tibiotic classes such as macrolides, fluoroquinolones, and pe-
nams. CPR is a resistance-nodulation-cell division antibiotic
efflux pump that plays a crucial role in MDR among Gram-
negative bacteria (Fernando and Kumar 2013, Yamasaki et al.
2023). The ARGs associated with azithromycin resistance in-
clude mphA, mef(B), Mrx, E. coli emrE, efmA, and CPR, with
the latter being a key gene contributing to resistance to this an-
tibiotic. Most of the genes detected in this study have also been
described in other studies. The gene mph(A) is one of the main
genes responsible for azithromycin resistance among sick chil-
dren in China, and from food-producing animals and meat in
Europe (Wang et al. 2023a, Ivanova et al. 2024). ARGs as-
sociated with resistance to tetracyclines include zet(A), tet(B),
tet(]), tet(L), tet(M), tet(45), tet(X4), tetR, and emrK. The tet
gene family is the most prominent among Salmonella isolates
from food samples and is associated with an efflux pump for
tetracycline resistance (Maka and Popowska 2016, Boraei-
Nexhad et al.2023). In addition to this, the study also iden-
tified several genes responsible for beta-lactam resistance, in-
cluding ACC-1a, TEM-1, TEM-176, TEM-215, CMY-159,
CMH-3, CTX-M-55, CTX-M-65, LAP-2, OXA-1, OXA-10,
Sed-1, SHV-11, SHV-26, and LptD. The ACC, TEM, CMY,

Huoy et al.

CMH, LAP, OXA, Sed, and SHV genes are associated with
antibiotic inactivation mechanisms, whereas LptD is involved
with the ATP-binding cassette antibiotic efflux pump. Several
studies reported that the beta-lactamase genes (bla) influence
resistance to the beta-lactam class of antibiotics. For instance,
~77% (33 out of 43) of NTS isolates from humans and an-
imals in central Ethiopia carried the blaTEM genes (Eguale
et al. 2017). Another study on Salmonella isolates from poul-
try, poultry products, and humans also identified the presence
of bla genes, such as blaTEM, blaCTX, blaSHV, and blaACC
genes (Hasman et al. 20035). In addition to the ARGs men-
tioned above, the same study also identified numerous resis-
tance genes responsible for resistance mechanisms to other
tested antibiotics. These findings highlight the extensive di-
versity of ARGs among Salmonella isolates from fresh food
products in Cambodia.

Moreover, MDR phenotypes were predominantly detected
in isolates from meat and vegetables collected at local mar-
kets, whereas only two isolates originated from farm samples.
However, fewer samples were collected from farms compared
to markets. Regarding genotype data, most isolates carried
MDR genes. The most common MDR genes were sdiA, marA,
acrB,rsmA, mdtM, golS, mdsA, mdsB, and mdsC. These MDR
genes are associated with antibiotic efflux pumps and reduced
the permeability of the bacterial cell wall to antibiotics. Several
studies have shown an increase in MDR among Salmonella
isolates. Approximately 38% of Salmonella serovars isolated
from humans and animals in a study from India exhibited
MDR (Borah et al. 2022). Research on zoonotic Salmonella
isolates in Bangladesh revealed that up to 94% of those from
broiler chickens were MDR (Das et al. 2022). Furthermore, all
Salmonella isolates from the raw milk of healthy dairy cows
in China exhibited MDR, with over 60% carrying the efflux
pump genes ogxA and oqxB, which were also identified in a
previous study (Liu et al. 2022). There are clear linkages be-
tween farms and markets, which may explain transmission of
resistant bacteria in the food production chain. For example,
lack of awareness and implementation of appropriate hygiene
and sanitation practices, poor food storage and handling con-
ditions, and high and unstable temperatures in Cambodian
local markets all contribute to bacterial growth and cross-
contamination (Huoy et al. 2024). The wide variety of MDR
genes identified in this study necessitates a deeper understand-
ing of their resistance mechanisms to enhance monitoring and
control efforts against the spread of MDR Salmonella in Cam-
bodia’s food value chain.

The observed phenotypic and genotypic patterns of
Salmonella AMR included resistance to most of the antibiotic
classes, except for amoxicillin resistance. Our study showed
that there was a high matching percentage between pheno-
typic and genotypic resistance, indicating that phenotypic re-
sistance profiling is a useful tool when no detailed characteri-
zation is needed. A strong association was observed between
AMR phenotypes and specific ARGs across antimicrobial
classes such as phenicols, tetracycline, quinolones, aminogly-
cosides, and folate pathway antagonists class. For example, all
Salmonella isolates with resistance to phenicols were aligned
with the ARG-identifying genes such as cmlA1, cmlAS, floR,
rsmA, catB3, mdsA, mdsB, mdsC, gols, and mdtM. However,
a complete match between phenotypic and genotypic resis-
tance was not always observed, as was the case with amoxi-
cillin, which had only a 24% matching percentage. Similarly,
a study on Salmonella serovars Derby and Rissen from the pig
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value chain in Vietnam found a lack of concordance between
AMR phenotypes and genotypes (Gonzdlez-Santamarina et
al. 2021). The observed mismatches in our study may be
attributed to limitations of the CARD database, as well as
incomplete gene annotations, absent regulatory elements, or
strain-specific mutations that affect gene expression rather
than gene presence. To improve detection and validation, fu-
ture studies could incorporate complementary tools such as
Abricate and AMRFinderPlus.

The present study uncovered a high diversity of serotypes
among Salmonella isolates as well as a high prevalence of
AMR. The results emphasize the potential role of fresh
food products in the widespread dissemination of Salmonella
strains resistant to multiple antibiotics. This is likely associ-
ated with the unrestricted use of antibiotics in the livestock
sector and poor hygiene and sanitation practices along the en-
tire chain from production to consumption. The WGS data
provided a deeper insight into the Salmonella resistance genes
responsible for the MDR mechanisms. This study underscores
the need for a control strategy to reduce levels of antibiotic re-
sistance in Salmonella in the food value chain.
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