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Relative abundances of bacterial phyla
are strong indicators of community-scale
microbial growth rates in soil
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Abstract

Background To improve our understanding of microbial systems, it is essential to refine the conceptual frameworks
that connect microorganisms to their ecological functions. While trait-based approaches can provide nuanced
perspectives on how microorganisms influence ecosystem processes, there is ongoing debate over the link between
microbial taxonomic classifications and life history traits. Here, we integrate genomic, metagenomic, amplicon
sequencing, and experimental (stable isotope probing) data to investigate the scaling of bacterial growth traits from
individual taxa to complex assemblages and to identify specific taxonomic groups of soil bacteria that can be used as
indicators of community-scale microbial growth.

Results Our results revealed broadly different distributions of growth rates among bacterial phyla, including
significantly different mean and median rates. This, in turn, manifested in strong relationships between relative
abundances of some phyla and community-scale growth rates in soil. Specifically, we calculated community
weighted mean growth rates using measured growth rates of constituent taxa and found that the fast-growing

taxa that had sufficient abundance and ubiquity across samples to contribute to variation in community-average
growth were mostly lineages of Proteobacteria (e.g., Sphingomonas). As a result, the relative abundance of phylum
Proteobacteria was the single strongest taxonomic predictor of community-average growth, explaining up to ~60%
of the variation in growth rates across communities. In contrast, Verrucomicrobia were consistent indicators of slower
community-average growth. These patterns were especially strong when using taxon-level growth rates measured
following carbon and nitrogen additions to soil.

Conclusions Our results demonstrate that phylum relative abundances can be strong indicators of community-
level bacterial growth despite the wide variation in growth rates observed within phyla. The stronger phylum-growth
relationships for whole assemblages than are apparent for individual taxa are due to relative abundance-weighted
trait averaging in complex assemblages, i.e,, at the community scale, broad differences in growth traits among phyla
become more important than variation within phyla. Overall, our results provide clarity regarding the use of bacterial
taxonomic information for inferring traits, demonstrating that high taxonomic ranks can be valid indicators of
microbial traits in soil provided that inferences are drawn at the appropriate scale.
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Background

The advent of microbiome sequencing techniques has
greatly advanced our knowledge of the taxonomic com-
position of microbial communities, but there remains
substantial debate over whether and how microbial traits
and functions can be inferred from taxonomic informa-
tion. On the one hand, microbiome studies are often
conducted under the premise that they will improve our
understanding of microbial ecosystem functions [1] and
many tools have been developed to translate microbial
taxonomy/phylogeny into function [2-5]. In contrast,
other studies are highly critical of inferring traits and
functions from microbial taxonomy, claiming that prob-
lems such as horizontal gene transfer and poor phylo-
genetic conservation of traits will obscure relationships
[5-9]. As microbiome analyses become increasingly
integrated into environmental research, we need clear
guidance on how microbial datasets can be used to glean
information on microbe-mediated ecosystem function.
Here, we address the use of bacterial taxonomy for infer-
ring a key microbial functional trait: growth rate.

Growth rate is a fundamental bacterial life history
trait related to important ecosystem processes such as
the decomposition of organic matter, nutrient turnover,
and soil carbon (C) storage [10—14]. The importance of
microbial growth is highlighted by its centrality within
popular life history concepts in microbial ecology,
including the copiotroph—oligotroph dichotomy [15, 16]
and the growth yield—resource acquisition—stress toler-
ance (Y-A-S) framework [10]. The importance of micro-
bial growth is further underscored by emerging efforts
to incorporate microbial traits, including growth rates,
into process-based ecosystem models [17-20]. Recently,
research on microbial growth has been facilitated by the
emergence of high-resolution methods for estimating
microbial growth rates, including (meta)genomic meth-
ods that estimate growth potential [15, 21] and stable iso-
tope probing (SIP) methods that measure in situ growth
[22]. However, while powerful, these methods are chal-
lenging and resource-intensive and may not be feasible
for all studies to implement. Thus, it is reasonable to
question whether reliable indicators of microbial growth
could be inferred from taxonomic identity or commu-
nity-level taxonomic composition. Some prior work has
suggested that such inferences may indeed be possible,
demonstrating that high bacterial taxonomic ranks (e.g.,
phyla) have broadly different ecological traits, includ-
ing growth rates [15, 23], though the degree of phylo-
genetic conservation varies depending on the specific
trait in question [24, 25]. That conclusion was supported

by experimental work demonstrating distinct growth
responses of bacterial phyla to sucrose additions [26]. In
subsequent years, many studies have used these phylum-
level trait categorizations to draw inferences regarding
microbial growth traits in soils [27-30]. The idea that
high taxonomic ranks could be used as microbial growth
indicators is attractive given that complex environmen-
tal microbiomes, e.g., soil communities, are often poorly
characterized at lower taxonomic levels but have reliable
high-level taxonomic information.

Though attractive, the aforementioned trait catego-
rizations have also been criticized in recent years, with
several studies claiming that life history categorizations
of bacterial phyla are inaccurate and/or do not reflect
the substantial variation in traits within phyla [7, 9, 31].
These criticisms are supported by recent SIP studies,
which demonstrated that phylum affiliation is a poor pre-
dictor of the growth rates of individual bacterial taxa in
soil [16, 32]. These new studies have led to uncertainty
over whether and how taxonomic information can be
used as indicators of microbial ecological traits. However,
while convincing, the SIP studies also introduce a new
conceptual difficulty: inferences in the SIP studies are
made at the level of individual taxa, whereas many stud-
ies that use life history designations of high taxonomic
ranks are doing so to gain insight into the functioning of
whole microbial communities [27-29]. This mismatch of
ecological levels of organization highlights the need to
explore the scaling of growth rates from individual taxa
to complex assemblages. A first step at accomplishing
this would be to combine taxon-level growth data with
information about the occurrence and relative abundance
patterns of those taxa across distributed natural assem-
blages. This would facilitate identification of taxonomic
groups that are likely to influence variation in commu-
nity-scale microbial growth, thus yielding important
insights regarding the patterns and drivers of microbial
growth at varying ecological scales.

We hypothesize that growth trait designations of bacte-
rial phyla can be valid at the community level even when
they are not reliable for individual taxa. Justification of
our hypothesis partly comes from the taxon-level growth
data itself, e.g., the observation that fast-growing taxa are
only observed in phyla historically considered copiotro-
phic (e.g., Proteobacteria, Firmicutes) and are sometimes
highly abundant [16]. Further justification of our hypoth-
esis comes from prior studies that reported broad differ-
ences in growth rate distributions among phyla [15, 33].
This observation suggests that even if there is high varia-
tion in growth rates within phyla, trait averaging across
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taxa in diverse assemblages could lead to predictable rela-
tionships between growth rate and high taxonomic ranks
in whole communities [34]. Though investigation of scal-
ing effects and emergent properties in microbial systems
is a growing area of research [1, 34—36], no studies to our
knowledge have assessed how ecological scale influences
the relationships between bacterial taxonomy and growth
rates. To address these questions, we integrate a collec-
tion of datasets on bacterial growth rates to gain insight
into the taxonomic groups that could be used as reliable
indicators of microbial growth in soil. Specifically, we
extend prior analyses to explore how bacterial taxonomy-
growth relationships vary at different ecological scales,
i.e, taxon versus community levels. By considering the
role of ecological scale in microbial trait designations,
our work is an important addition to microbial life his-
tory theory, contributing to our goal of providing clearer
guidance on relating microbial taxonomic profiles to the
important ecological traits of those communities.

Materials and methods

Bacterial growth rates at the taxon level

Our first goal was to revisit patterns in taxon-level
growth traits of soil bacteria derived from both genomic
and experimental (i.e., SIP) estimates of growth. For these
analyses, we considered organisms within six bacte-
rial phyla (Acidobacteria, Actinobacteria, Bacteroidetes,
Firmicutes, Proteobacteria, Verrucomicrobia), as these
groups typically comprise the majority of soil bacterial
communities and were present in all datasets we used.
Furthermore, these are the major groups that have pre-
viously been categorized as fast versus slow-growing [26,
31] and have therefore been the focus of more recent
work investigating the growth traits of individual bac-
terial lineages [16]. For the genomic analysis, we used
growth rates of soil bacteria found in the EGGO data-
base, a compilation of minimum doubling time predic-
tions for publicly available genome assemblies using
gRodon [15]. The gRodon model is based on patterns
of codon usage bias, the strongest genomic indicator of
bacterial growth potential [21]. The updated predictions
we used also included a correction for optimal growth
temperature [33]. Details of the gRodon model mechan-
ics are provided elsewhere [15, 33, 37]. We selected soil
bacteria from the database by filtering the genomes only
to include those representing soil organisms as indicated
by the Joint Genome Institute’s GOLD database [38].
For intercomparison with SIP data that were generated
by 16S rRNA gene sequencing (below), and for which
taxonomic assignments are unreliable below the genus
level, we aggregated the gRodon estimates at the genus
level (207 genera from 10,096 genomes). For consistency
with the SIP data, we calculated maximum growth rates
from the gRodon minimum doubling times (in h) using
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an exponential growth equation, where growth rate
(h™") =In(2)/h.

We compared the genomic predictions of growth rates
to those empirically measured in soil bacteria via quan-
titative stable isotope probing (qSIP) [22, 39]. The qSIP
dataset we used has been described previously [32, 40,
41]. Briefly, soils for the qSIP experiment were collected
from four ecosystems in northern Arizona and incu-
bated under three different experimental treatments: C
addition (1 mg glucose-C g soil™!), C+N addition (glu-
cose +0.1 mg [NH,],SO,-N g soil™), and no additions
(control). All treatments received 2O water to enable iso-
topic labelling of microbial DNA. After the incubation,
DNA was extracted, subjected to CsCl density gradient
centrifugation, and then split into ~20 density fractions
of ~150 pL. 16S rRNA genes (515F/806R primers) were
quantified in the fractions using qPCR and sequenced
on an Illumina MiSeq (raw sequences: PRINA521534).
Raw sequences were processed using DADA2 [42] and
taxonomy was assigned to the amplicon sequence vari-
ants (ASVs) using a naive-bayes classifier [43] trained
on the SILVA database (version 132) [44]. The molecu-
lar weight of the DNA of each ASV was calculated using
the qSIP equations [22] and the DNA molecular weights
were used to estimate growth rates of each taxon using
an exponential growth model [39, 45]. This ultimately
yielded 2277 ASVs with growth rate estimates. To facili-
tate comparison with the genomic data, we calculated
the average growth rates of the 279 genera present. We
did this for each experimental treatment separately (con-
trol, C, C+N) and for all treatments averaged together.
Full details are provided in the Supplementary Methods
section.

Bacterial growth rates at the community level

Our next goal was to extend the analysis to the commu-
nity level to investigate the scaling of microbial growth
and to identify potential indicator taxa of commu-
nity-aggregated growth. We used two complementary
approaches to addressing this question. First, as a com-
munity-level analogue of the genomic growth rate esti-
mates, we used a previously described global dataset of
soil metagenomes [46] (raw sequences: PRJEB18701) to
estimate the growth potential of soil bacterial communi-
ties. As described previously, we predicted community
average maximum growth rates for the metagenomes
using gRodon2 [14], which considers codon usage bias
in highly expressed ribosomal protein genes and the rela-
tive coverages of genes in the community [15, 37]. Full
details are provided in the Supplementary Methods.
To relate the growth rates to the taxonomic composi-
tion of the communities, we used a dataset of 16S rRNA
gene amplicons generated from the same soils [46]. The
amplicons were produced using the 515F/806R primer
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set and sequenced on an Illumina MiSeq (raw sequences:
PRJEB19856). The raw 16S sequences were processed and
classified as described for the qSIP data above.

Our second approach to the community-level analysis
was to identify the qSIP ASVs in external community-
level data: the Earth Microbiome Project (EMP) 16S
rRNA gene amplicon dataset [47] (https://ftp.microbi
o.me/emp/releasel/otu_tables/deblur/). The rationale
for using the EMP dataset instead of the original qSIP
dataset for this analysis was that the qSIP study featured
few whole communities, i.e., the original experimental
replicates. The EMP dataset provided a large number
of distinct communities, which allowed us to draw on
broader patterns of bacterial taxonomic composition.
This approach was intended to add ecological context
to the qSIP data by simultaneously considering both the
measured growth rates of the taxa as well as the patterns
of occurrence and relative abundance of the taxa across
distributed soil assemblages. We accomplished this by
calculating community weighted mean growth rates of
the EMP assemblages using the taxon-level qSIP growth
rates, thus allowing us to identify specific taxonomic
groups that strongly contributed to (and are therefore
indicators of) variation in community growth across
samples.

To identify the qSIP ASVs in the EMP communities,
we first subset the EMP data to only include soil com-
munities and then used VSEARCH [48] to identify 100%
identity alignment matches between the EMP ASVs and
the gSIP ASVs. We used the longest available EMP ASVs
(the 150 bp release) to perform the alignments. Of the
2277 qSIP ASVs, 1574 had exact sequence matches in the
EMP soil communities. We interpret these to be the same
(or very similar) taxa as those present in the qSIP data-
set that should have similar growth traits. We then sub-
set the EMP communities to only include the qSIP ASVs
and removed samples with fewer than 5000 sequences
remaining. Relative abundances of the ASVs in the com-
munity subsets were then calculated as the sequence
count of each ASV divided by the rarefied sequence
depth (5000). The resulting community subsets had
microbial richness values ranging from 120 to 600 ASVs
per sample. Next, following prior approaches of scaling
up taxon-level processes [49, 50], we calculated a com-
munity weighted mean growth rate for each EMP com-
munity subset by multiplying the relative abundance of
each ASV by the qSIP-estimated growth rate of that ASV
and then summing across all of the ASVs in each com-
munity subset. We did this separately using growth rates
from the substrate/nutrient conditions of the three qSIP
experimental treatments (control, C, and C+N). Prior
to further analysis, we removed one EMP study from the
dataset (study ID ‘864’) as this study contained unusual
bacterial communities with many extreme outliers in
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terms of community average growth rates (Supplemen-
tary Fig. S1). The final datasets analyzed for community-
average growth included 701, 698, and 636 EMP samples
with 1208, 1158, and 867 qSIP ASVs for the control, C,
and C+N, treatments, respectively. These differences
are due to differences in the specific ASVs present in the
different qSIP treatments, which, in turn, influenced the
number of EMP samples meeting the sequence depth
threshold in each case.

A limitation of our gSIP-EMP approach is that the qSIP
ASVs comprise only ~24% of the EMP sequence reads
and ~2% of the total ASVs within the EMP soil sam-
ples. Therefore, our calculated community growth rates
should not be interpreted as representing the original
EMP communities, since EMP ASVs without growth rate
information were removed prior to calculation. However,
while the community subsets are not fully representative
of the original EMP communities at the ASV level, we did
observe strong correlations in the relative abundances of
higher taxonomic groups between the community sub-
sets and the original full EMP communities (Supplemen-
tary Fig. S2). This indicates that the community subsets
are at least representative of the original EMP communi-
ties at higher taxonomic levels. In any case, the commu-
nity subsets could alternatively be viewed as somewhat
hypothetical assemblages that are distinct from the origi-
nal EMP communities but that still exhibit wide natural
variation in the relative abundances of taxa for which
growth has been measured. As such, analysis of the com-
munity subsets is appropriate for accomplishing the cen-
tral goal of our study, i.e., exploring the patterns by which
growth rates of individual taxa might scale up to complex
soil assemblages.

Statistical analyses

Statistical analyses were conducted in R [51]. To test the
hypothesis that the phyla exhibit distinct distributions of
growth rates, we used multi-sample Anderson—Darling
tests [52]. To compare the phyla in terms of their median
and mean growth rates, we used Mood’s median test and
a generalized linear model (gamma distribution, log-
link function) [53], respectively. To analyze relationships
between variables, we used Pearson correlation analysis.
In cases where multiple correlation coefficients were cal-
culated for an analysis, we used the Benjamini—Hochberg
method to correct the p values for false discovery rates
[54]. To identify the specific taxonomic groups that most
strongly contributed to variation in the calculated com-
munity-average growth values across samples, we used
random forest regression [55]. For the regression models,
we considered taxon relative abundances as candidate
predictors of community-average growth. We quantified
the “importance” of taxa in contributing to variation in
community growth by determining the increase in model
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mean squared error when each taxon was randomly
shuffled across the dataset. Note that in the correlation
analyses relating to microbial growth and in the regres-
sion models, the x and y variables are not fully indepen-
dent since the taxon relative abundances (predictors) and
the community growth rates (response) were both deter-
mined using the original ASV sequences. Because of this,
the statistical results we present are interpreted only for
the purpose of revealing the specific taxonomic groups
that were the strongest contributors to calculated com-
munity growth. All data and analysis scripts are provided
in Figshare: https://doi.org/10.6084/m9.figshare.2826432
2.v1 [56].

Results and discussion

Taxon-level patterns in bacterial growth traits

The genomic and qSIP methods produced similar pat-
terns of growth rates among the six bacterial phyla
(Fig. 1A, B). However, the magnitude of the values was
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very different between the methods (Fig. 1C). Not sur-
prisingly, the maximum rates predicted from genomes
were much higher than the ¢SIP-measured rates
(Fig. 1C). This reflects the difference between growth
potential and actual growth and also likely reflects a
bias towards higher growth in cultured isolates with
sequenced genomes [15]. Similar to prior studies [16],
both methods revealed wide variation in growth rates
within most bacterial phyla (Fig. 1A, B). These patterns
held when examining the average growth rate of genera
across all qSIP treatments (Fig. 1B) and for the three qSIP
treatments analyzed separately (Supplementary Figs. S3,
S4, and S5).

Despite the wide variation in growth rates observed
within phyla, we also observed differences in the growth
rate distributions among phyla (Fig. 1A, B) (4%>=16.3 and
18.8 for gRodon and qSIP, respectively, both P<0.001).
Those differences included different mean rates (x*=37.1
and 29.9 for gRodon and qSIP, respectively, both GLM
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Fig. 1 Growth rates within and among the major soil bacterial phyla. Shown are distributions of maximum growth rates of 207 genera of soil bacteria
from the gRodon model (A) and measured growth rates of 276 bacterial genera from quantitative stable isotope probing (gSIP) (B). Panel B shows the
overall average growth rates across all gSIP experimental treatments. The growth distributions separated by gSIP treatment are provided on Supplemen-
tary Figs. S3, S4, and S5. P values on panels (A) and (B) indicate statistically different mean growth rates among phyla (diamond symbols on the plots) and
are from generalized linear models. Panel C shows the correlation between the two growth rate methods in terms of their phylum-level mean growth
rates. Error bars on (C) indicate one standard error of the mean and the correlation coefficient (r) and P value provided are from Pearson correlation
analysis. Panel D shows the correlation of the growth rates of the genera shared between the two datasets and the correlation coefficient (1) and P value

provided are from Pearson correlation analysis
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P<0.001) and different median rates among phyla (both
Mood’s median P<0.001) (Fig. 1A, B). Further, the gen-
eral pattern of mean growth rates among phyla was con-
sistent between the qSIP and genomic methods (Fig. 1C).
For both methods, Firmicutes genera exhibited the high-
est growth rates on average, Verrucomicrobia and Acido-
bacteria exhibited the lowest growth rates, and the other
phyla were intermediate (Fig. 1C). Specifically, Firmicutes
genera had ~ fourfold and ~ threefold higher growth rates
than Acidobacteria genera on average and ~ threefold
and fourfold higher growth rates than Verrucomicrobia
genera on average for the genomic and gSIP methods,
respectively. Similar patterns among phyla have been
reported in studies focused on marine and gut bacteria
[15, 33]. These results also support prior work identifying
Firmicutes as the most potentially copiotrophic bacte-
rial phylum in soil [16]. It is worth noting, however, that
some phyla were lacking in representative genera—very
few soil Acidobacteria and Verrucomicrobia genera were
within the EGGO database and few Firmicutes genera
were in the qSIP dataset. However, the strong agree-
ment between the two methods across all phyla shows
broadly conserved growth patterns and is a promising
demonstration of our ability to connect in situ growth
rates with intrinsic genomic traits. Furthermore, while
only 40 genera overlapped between the two datasets, the
genomic and qSIP growth rates of those genera were also
significantly positively correlated (Fig. 1D). We conclude
from these results that the patterns among taxa support
the premise of our hypothesis, i.e., that the major phyla
of soil bacteria are broadly different in terms of observed
and potential growth rates.

This conclusion may seem unsurprising since it has
long been known that certain phyla have many fast-
growing members, particularly common laboratory
organisms, e.g., Bacillus (Firmicutes), Escherichia (Pro-
teobacteria), etc. However, recent work has also shown
that many environmental strains within those phyla do
not conform to the trait designations that have been
historically assumed for the phyla [16]. Those new stud-
ies emphasize high within-phylum variation in growth
rates [16] and demonstrate that phylum affiliation is a
poor predictor of traits of individual taxa [16, 32]. Here,
we re-emphasize the broad among-phylum differences
in growth rates to explore the possibility that among-
phylum differences take precedence over within-phylum
variation when growth rates are scaled to the community
level.

Community-aggregated growth rates of soil bacteria

Since the community level is the ecological scale at which
life history designations of soil bacterial phyla have often
been interpreted [26—29], we sought to explore the scal-
ing of bacterial growth from individual taxa to diverse
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assemblages. Growth at the community scale is impor-
tant since investigators interested in ecosystem processes
such as nutrient turnover or C sequestration may be
more interested in the aggregate growth of entire bac-
terial communities rather than individual taxa [1, 11].
Specifically, our goal was to identify taxa that might be
used as reliable indicators of community-average growth.
To investigate the scaling of bacterial growth, we applied
qSIP-measured growth rates of bacterial taxa to those
same organisms in EMP soil communities and calculated
community weighted mean growth rates for the EMP
assemblages. The specific lineages across all taxonomic
levels that most strongly contributed to variation in com-
munity average growth are shown in Supplementary
Table S1. In general, we found that the weighted average
growth of communities was consistently positively asso-
ciated with the relative abundance of Proteobacteria in
the assemblages and negatively associated with Verru-
comicrobia (Fig. 2A). These are among the relationships
that would be expected since Verrucomicrobia genera
had among the lowest growth rates on average while
Proteobacteria genera had intermediate growth rates on
average but with some very high growth potential taxa
(Fig. 1). When using growth rates measured under C and
C+N addition, the relationships became much stronger
(Fig. 2B, C). The strength of those relationships is strik-
ing and suggests that some phyla can be strong indica-
tors of the growth status of complex soil communities,
particularly under substrate and nutrient addition condi-
tions. These results add important ecological context to
the taxon-level growth rate data, revealing that the taxa
that are sufficiently ubiquitous and abundant enough to
drive variation in community-average growth across dis-
tributed soil samples tend to be members of the Proteo-
bacteria and Verrucomicrobia phyla.

Community growth estimates also showed that the
relative abundances of other phyla did not consistently
contribute to variation in community-average growth
(Fig. 2B-D). For example, the generally slow-growing
Acidobacteria (Fig. 1) were not consistently associated
with slower community growth (Fig. 2). Similarly, con-
trary to what might be expected, fast-growing Firmicutes
(Fig. 1) did not consistently contribute to faster commu-
nity growth (Fig. 2). That said, we did detect a significant
positive association between Firmicutes and community
growth under C addition (Fig. 2B), which was attrib-
uted to a small cluster of samples that exhibited unusu-
ally high relative abundance of Firmicutes and also had
high community-average growth. This relationship is
expected from the genus-level growth distributions and
suggests that Firmicutes can be functionally important
in some communities. This conclusion is supported by
revisiting the EMP study we initially removed from the
analysis: study 864. This study was characterized by
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atypical soil communities that were often dominated by
Firmicutes (sometimes>80% of sequences), with cor-
respondingly high estimated growth rates in those cases
(Supplementary Fig. S6). Within that study, the relative
abundance of Firmicutes was strongly positively associ-
ated with growth (Supplementary Fig. S6). We conclude
from this that Firmicutes should be considered important
community members in soils where they are found to be
abundant (e.g., > 10% relative abundance). However, they
may not be consistently abundant enough to be a reli-
able indicator of community-level growth. Proteobacte-
ria and Verrucomicrobia, on the other hand, do appear
to be consistent indicators of community growth, lending
support to prior work that has interpreted those phyla as

such [28-30]. This conclusion is supported by the data-
set of maximum growth rates predicted from global soil
metagenomes using the gRodon2 model [14], which
revealed community-aggregated growth to be correlated
only with the relative abundances of Proteobacteria and
Verrucomicrobia (Supplementary Fig. S7). However,
the correlations in the metagenome data were weaker
(Supplementary Fig. S7). This may be because, unlike the
gSIP study, those samples were not enriched in rapidly
growing taxa due to C and N addition, i.e., the condi-
tions under which the influence of high growth potential
community members becomes particularly evident [41]
(Fig. 2). Therefore, variation in maximum growth might
have been somewhat constrained in the metagenome
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dataset, potentially preventing us from observing stron-
ger relationships. Future experimental studies that
involve soil C and N additions could also incorporate the
metagenomic maximum growth estimates to resolve this
question.

We sought additional support for these results by
repeating the analysis using phylum relative abundances
from the original full EMP communities to determine
whether the observed taxon-growth correlations held for
the original EMP communities and not just for the sub-
sets comprised only of the qSIP ASVs. Phylum relative
abundances in the full EMP communities had essentially
the same relationships with growth compared with the
subsets (Supplementary Fig. S8), supporting our finding
that the community subsets are representative of the full
EMP communities at high taxonomic levels (Supplemen-
tary Fig. S2). We also observed essentially the same rela-
tionships after correcting the ASV counts for 16S rRNA
gene copy number (Supplementary Fig. S9), demonstrat-
ing that variation in 16S copy number was not a con-
founding factor in our analysis and providing additional
support for our findings.

Though we observed consistent patterns across several
iterations of our analysis, we do suggest some caution in
interpreting phylum relative abundances as indicators of
bacterial growth given that the community-average rates
we report here are only calculated and not actual mea-
sured growth rates for those communities. Actual rates
could differ from our calculated rates for various reasons,
e.g., varying responses of taxa to differences in soil abi-
otic factors or ecological factors such as density depen-
dence, interspecific interactions, etc. [39]. Although the
qSIP growth rates applied to the EMP organisms may not
represent their actual growth in all cases, the qSIP rates
were generated across climatically divergent sites (desert
grassland, arid shrubland, dry pine forest, and temperate
mixed conifer forest) and so should be applicable to many
systems [32]. In addition, the qSIP growth rates appear
to have a genomic basis (Fig. 1), so we would expect
strong phylogenetic conservation of growth traits across
environments [57], especially when averaging across
hundreds of ASVs in a community. This should be partic-
ularly true with C+ N additions, which would eliminate
some of the site-specific growth constraints and where
the rates are likely more reflective of genomic growth
potential. For all these reasons, it is likely that the qSIP
rates provide reasonable estimates of the growth poten-
tial of the EMP soil communities.

An additional caveat is that our study does not cap-
ture the highly dynamic nature of microbial growth in
soils. Because the growth estimates we used are based
on inherent genomic traits or on qSIP measurements at
a single time point, temporal patterns in soil microbial
growth are not reflected in our results. For example, the
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qSIP measurements do not consider temporal changes in
environmental conditions (e.g., soil moisture, resource
inputs), which can cause rapid shifts in taxonomic com-
position and activity/dormancy patterns among taxa in
soil communities [58—60], all of which would strongly
influence microbial growth rates. Another limitation
is that the gSIP approach likely yields growth rate esti-
mates that are varyingly accurate among microbial life
strategies, e.g., qSIP likely underestimates the growth
rates of boom-bust adapted organisms with exception-
ally high growth potential that turn over before the end
of the 1-week incubation (e.g., some Firmicutes). Due
to these sampling and methodological limitations, our
community-average growth estimates (and the original
individual estimates) need to be interpreted with caution.
Indeed, while our work demonstrates that the estimated
growth of a microbial community at a snapshot in time
is strongly related to broad patterns in the taxonomic
composition of that community, we emphasize that our
results should not be interpreted as static properties of
those soils under all conditions. We encourage future
studies on microbial growth to include sampling at vary-
ing time scales to improve our understanding of the tem-
poral dynamics of microbial growth at individual and
community levels.

It is also worth revisiting here the issue of non-indepen-
dence of the calculated community growth rates and the
taxon relative abundances. Because both variables were
determined using the original ASV sequences, they are
inherently mathematically related. Indeed, in some ways
the results of our analyses are self-evident, i.e., commu-
nities with more fast-growing constituent taxa will obvi-
ously have faster community-average growth. However, it
is also important to note that taxonomic information per
se was not used in the calculation of community-average
growth. Thus, it is still useful to investigate the taxonomic
affiliations of the organisms that were important in con-
tributing to variation in calculated community growth.
Therefore, while the relationships need to be interpreted
carefully, they are ecologically relevant in that they reveal
the taxonomic groups that are likely to influence the
aggregate growth of whole bacterial assemblages, owing
to the measured growth rates of those taxa in combina-
tion with the observed occurrence and relative abun-
dance patterns of those taxa across actual communities.

Overall, our results suggest that some phyla may be
informative of the growth rates of whole bacterial com-
munities. It is possible that this is also true for other
aspects of bacterial life history, e.g., resource acquisi-
tion or stress tolerance [10], which should be evaluated
by future studies. While prior studies have criticized the
interpretation of phylum relative abundances in microbial
ecology research [7, 9, 31], we offer a clarified position by
emphasizing ecological scale as a critical consideration
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when applying phylum-level trait assignments. Phylum-
level taxonomy should not be used to draw firm conclu-
sions about the traits of any particular taxon, given the
high variation in trait values within phyla (Fig. 1) [16].
However, at the community level, not every organism
belonging to a particular phylum needs to exhibit the
traits assigned to the phylum for the relative abundance
of that phylum to reliably indicate community function.
As long as the traits in question (e.g., rapid growth) only
appear within abundant and ubiquitous members of spe-
cific phyla, it seems reasonable to assume that the rela-
tive abundances of those phyla will accurately correlate
with trait values across large collections of communities.
Our analysis suggests that this assumption holds for two
phyla, Proteobacteria and Verrucomicrobia (Fig. 2), and
that the role of those focal phyla should be more thor-
oughly evaluated by future work. This conclusion could
find practical use in the field of ecosystem modelling,
where there is great interest in incorporating microbial
traits into model structures [17-20]. While it may not
be feasible to incorporate trait information of hundreds
of constituent taxa into models, it may be tractable to
incorporate one or a few phyla that reliably correlate with
community-level trait values.

Indicator taxa of community-aggregated growth

In addition to correlating community-level growth with
phylum relative abundances, we sought to quantitatively
assess the contributions of taxa to the observed variation
in community growth rates across samples. To do this, we
used random forest regression, where models were con-
structed with different levels of taxonomic resolution and
the relative abundances of the taxa were used as the pre-
dictor features in the models. For this analysis, we used
the average growth across all qSIP treatments (shown in
Fig. 2D), as this dataset contains the largest number of
samples and taxa and encompasses all the experimental
growth conditions assessed. As stated previously, since
the response and predictors in these models are not fully
independent, we only use the models to aid in identifica-
tion of the specific taxa that were the strongest contribu-
tors to calculated community growth. We first evaluated
an overall model using re-scaled relative abundances of
all taxa at all taxonomic levels as candidate predictors. In
this model, phylum Proteobacteria emerged as the single
strongest predictor of community growth, with more
than two-fold higher importance than any other individ-
ual taxon across all taxonomic levels (Fig. 3A). This rein-
forces our conclusion that high taxonomic groups can
be strong indicators of the growth of complex bacterial
communities. Indeed, comparison of the regression mod-
els for different taxonomic levels revealed that additional



Osburn et al. Environmental Microbiome (2025) 20:131

taxonomic information beyond the class level had neg-
ligible additional benefit in accounting for variation in
community growth (Supplementary Table S1). This indi-
cates that when considering whole microbial communi-
ties, the class level may represent a useful compromise
between the improved trait information of finer taxo-
nomic levels versus the simplicity and scaling benefits
of broader taxonomic levels. In all, these results further
underscore the potential utility of high taxonomic levels
in the context of microbial community growth.

Taken together, these results suggest that high taxo-
nomic resolution may not be important for predicting
community-level growth across large and distributed
microbial datasets. In contrast, prior findings from the
same qSIP experiment demonstrated that predicting
growth rates of individual taxa requires greater taxo-
nomic resolution than phylum-level affiliations [16, 32].
These differences between taxon vs. community-level
patterns emerge as a product of the broad among-phylum
differences in growth (Fig. 1) in combination with varia-
tion in the relative abundances of taxa in complex assem-
blages. In other words, relative abundance-weighted trait
averaging results in emergent predictability of growth
[34], where phylum-growth relationships become stron-
ger for assemblages than they are for individual taxa.
Put simply, when scaling growth to the community level,
broad among-phylum differences become more impor-
tant than within-phylum variation. Indeed, while it is
important to investigate the complex variation in the
growth traits of individual taxa, when one additionally
considers the observed occurrence and relative abun-
dance patterns of those taxa across natural assemblages,
the importance of broad microbial taxonomic groups
(i.e., Proteobacteria) to community-level growth becomes
clear. This is despite the fact that many individual Pro-
teobacteria actually grow slowly and the fact that taxa in
other phyla (e.g., Firmicutes) generally grow faster on an
individual basis (Fig. 1). We expect that this observation
will be particularly useful for outside soil microbiome
datasets where many constituent taxa will be unclassified
at fine taxonomic levels or members of poorly character-
ized lower taxonomic groups with no a priori knowledge
of their growth potential.

Nevertheless, it is still useful to identify the individual
orders, families, or genera that may also be strong indi-
cators of community growth. The most consistently
important lower taxa across the different random for-
est models were members of the Alphaproteobacte-
rial lineage Sphingomonadales (Supplementary Table
S1), which positively contributed to community growth
(Fig. 3B). The highest importance Verrucomicrobia genus
was Candidatus Udaeobacter, which was negatively asso-
ciated with community average growth (Supplemen-
tary Fig. S10). It is not surprising to find Candidatus
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Udaeobacter to be associated with slow growth given its
auxotrophic lifestyle [61]. Other important taxa included
the Bacteroidetes genus Ferruginibacter (Fig. 3A), which
was positively associated with community growth (Sup-
plementary Fig. S11) and the Acidobacteria order Vicina-
mibacterales (Fig. 3C), which was negatively associated
with community growth (Supplementary Fig. S12). Inter-
estingly, however, none of these taxa exhibited spectacu-
larly high or low growth rates themselves. For example,
under C+ N addition, Sphingomonas was at the 73rd per-
centile for growth rate while Candidatus Udaeobacter
was at the 35th percentile. The contributions of these
taxa to community growth, therefore, are due not only
to their traits per se but also to their ubiquity and high
variation in relative abundance across communities. In
contrast, organisms in the extreme upper and lower tails
of the growth distributions generally had very low rela-
tive abundance, and thus did not significantly contribute
to community-level growth. This indicates that extremely
high and low growth potential may represent “fringe”
ecological strategies in soil that rarely confer high abun-
dance and may not substantially influence broad pro-
cesses such as overall community growth. In any case, it
is clear from our results that even trait values only slightly
different from the average can manifest changes in broad
community-level functions provided that the taxa pos-
sessing those traits are highly abundant. As such, future
studies on microbial growth should focus on taxa that are
common and abundant across communities [62] but do
not currently have growth rate estimates. Indeed, though
our analysis included many widely distributed and abun-
dant taxa, only a minority of the organisms present in the
EMP soils had measured growth rates in the qSIP growth
rate data we used. Therefore, we expect that additional
taxonomic groups that are important in contributing to
community-scale growth will be revealed as research on
individual microbial growth rates continues to advance.

Conclusions

To improve our understanding of microbe-mediated eco-
system functioning, it is imperative to determine how
key microbial traits such as growth rate scale from indi-
viduals to assemblages. By evaluating how taxonomy-
growth relationships vary across ecological scales, our
study sought to identify specific taxa that can be used
as indicators of the growth of complex microbial assem-
blages. Our work highlights the importance of ecological
scale when inferring life history traits of bacterial taxa.
While high-level bacterial taxonomic ranks (e.g., phyla)
do not provide precise information about the growth
traits of individual taxa, we demonstrate that high ranks
can be strong indicators of the growth of complex bac-
terial assemblages. Specifically, we found that Proteo-
bacteria were consistently positively associated with
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community-average growth rates whereas Verrucomicro-
bia were consistently negatively associated with commu-
nity-average growth. These patterns manifested because
the most abundant and ubiquitous members of those
phyla in soils exemplify the respective phylum-level trait
designations, e.g., fast-growing Sphingomonas for Proteo-
bacteria and slow-growing Candidatus Udaeobacter for
Verrucomicrobia. These patterns were strongest under
conditions of substrate and nutrient additions, indicat-
ing that our findings may be particularly useful in stud-
ies involving resource gradients and/or manipulations.
Overall, our results demonstrate that high taxonomic
ranks can be accurate indicators of bacterial life history
traits and that the ecological relevance of those catego-
ries only emerges at the community level.
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