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Abstract
Background  To improve our understanding of microbial systems, it is essential to refine the conceptual frameworks 
that connect microorganisms to their ecological functions. While trait-based approaches can provide nuanced 
perspectives on how microorganisms influence ecosystem processes, there is ongoing debate over the link between 
microbial taxonomic classifications and life history traits. Here, we integrate genomic, metagenomic, amplicon 
sequencing, and experimental (stable isotope probing) data to investigate the scaling of bacterial growth traits from 
individual taxa to complex assemblages and to identify specific taxonomic groups of soil bacteria that can be used as 
indicators of community-scale microbial growth.

Results  Our results revealed broadly different distributions of growth rates among bacterial phyla, including 
significantly different mean and median rates. This, in turn, manifested in strong relationships between relative 
abundances of some phyla and community-scale growth rates in soil. Specifically, we calculated community 
weighted mean growth rates using measured growth rates of constituent taxa and found that the fast-growing 
taxa that had sufficient abundance and ubiquity across samples to contribute to variation in community-average 
growth were mostly lineages of Proteobacteria (e.g., Sphingomonas). As a result, the relative abundance of phylum 
Proteobacteria was the single strongest taxonomic predictor of community-average growth, explaining up to ~ 60% 
of the variation in growth rates across communities. In contrast, Verrucomicrobia were consistent indicators of slower 
community-average growth. These patterns were especially strong when using taxon-level growth rates measured 
following carbon and nitrogen additions to soil.

Conclusions  Our results demonstrate that phylum relative abundances can be strong indicators of community-
level bacterial growth despite the wide variation in growth rates observed within phyla. The stronger phylum-growth 
relationships for whole assemblages than are apparent for individual taxa are due to relative abundance-weighted 
trait averaging in complex assemblages, i.e., at the community scale, broad differences in growth traits among phyla 
become more important than variation within phyla. Overall, our results provide clarity regarding the use of bacterial 
taxonomic information for inferring traits, demonstrating that high taxonomic ranks can be valid indicators of 
microbial traits in soil provided that inferences are drawn at the appropriate scale.
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Background
The advent of microbiome sequencing techniques has 
greatly advanced our knowledge of the taxonomic com-
position of microbial communities, but there remains 
substantial debate over whether and how microbial traits 
and functions can be inferred from taxonomic informa-
tion. On the one hand, microbiome studies are often 
conducted under the premise that they will improve our 
understanding of microbial ecosystem functions [1] and 
many tools have been developed to translate microbial 
taxonomy/phylogeny into function [2–5]. In contrast, 
other studies are highly critical of inferring traits and 
functions from microbial taxonomy, claiming that prob-
lems such as horizontal gene transfer and poor phylo-
genetic conservation of traits will obscure relationships 
[5–9]. As microbiome analyses become increasingly 
integrated into environmental research, we need clear 
guidance on how microbial datasets can be used to glean 
information on microbe-mediated ecosystem function. 
Here, we address the use of bacterial taxonomy for infer-
ring a key microbial functional trait: growth rate.

Growth rate is a fundamental bacterial life history 
trait related to important ecosystem processes such as 
the decomposition of organic matter, nutrient turnover, 
and soil carbon (C) storage [10–14]. The importance of 
microbial growth is highlighted by its centrality within 
popular life history concepts in microbial ecology, 
including the copiotroph–oligotroph dichotomy [15, 16] 
and the growth yield–resource acquisition–stress toler-
ance (Y–A–S) framework [10]. The importance of micro-
bial growth is further underscored by emerging efforts 
to incorporate microbial traits, including growth rates, 
into process-based ecosystem models [17–20]. Recently, 
research on microbial growth has been facilitated by the 
emergence of high-resolution methods for estimating 
microbial growth rates, including (meta)genomic meth-
ods that estimate growth potential [15, 21] and stable iso-
tope probing (SIP) methods that measure in situ growth 
[22]. However, while powerful, these methods are chal-
lenging and resource-intensive and may not be feasible 
for all studies to implement. Thus, it is reasonable to 
question whether reliable indicators of microbial growth 
could be inferred from taxonomic identity or commu-
nity-level taxonomic composition. Some prior work has 
suggested that such inferences may indeed be possible, 
demonstrating that high bacterial taxonomic ranks (e.g., 
phyla) have broadly different ecological traits, includ-
ing growth rates [15, 23], though the degree of phylo-
genetic conservation varies depending on the specific 
trait in question [24, 25]. That conclusion was supported 

by experimental work demonstrating distinct growth 
responses of bacterial phyla to sucrose additions [26]. In 
subsequent years, many studies have used these phylum-
level trait categorizations to draw inferences regarding 
microbial growth traits in soils [27–30]. The idea that 
high taxonomic ranks could be used as microbial growth 
indicators is attractive given that complex environmen-
tal microbiomes, e.g., soil communities, are often poorly 
characterized at lower taxonomic levels but have reliable 
high-level taxonomic information.

Though attractive, the aforementioned trait catego-
rizations have also been criticized in recent years, with 
several studies claiming that life history categorizations 
of bacterial phyla are inaccurate and/or do not reflect 
the substantial variation in traits within phyla [7, 9, 31]. 
These criticisms are supported by recent SIP studies, 
which demonstrated that phylum affiliation is a poor pre-
dictor of the growth rates of individual bacterial taxa in 
soil [16, 32]. These new studies have led to uncertainty 
over whether and how taxonomic information can be 
used as indicators of microbial ecological traits. However, 
while convincing, the SIP studies also introduce a new 
conceptual difficulty: inferences in the SIP studies are 
made at the level of individual taxa, whereas many stud-
ies that use life history designations of high taxonomic 
ranks are doing so to gain insight into the functioning of 
whole microbial communities [27–29]. This mismatch of 
ecological levels of organization highlights the need to 
explore the scaling of growth rates from individual taxa 
to complex assemblages. A first step at accomplishing 
this would be to combine taxon-level growth data with 
information about the occurrence and relative abundance 
patterns of those taxa across distributed natural assem-
blages. This would facilitate identification of taxonomic 
groups that are likely to influence variation in commu-
nity-scale microbial growth, thus yielding important 
insights regarding the patterns and drivers of microbial 
growth at varying ecological scales.

We hypothesize that growth trait designations of bacte-
rial phyla can be valid at the community level even when 
they are not reliable for individual taxa. Justification of 
our hypothesis partly comes from the taxon-level growth 
data itself, e.g., the observation that fast-growing taxa are 
only observed in phyla historically considered copiotro-
phic (e.g., Proteobacteria, Firmicutes) and are sometimes 
highly abundant [16]. Further justification of our hypoth-
esis comes from prior studies that reported broad differ-
ences in growth rate distributions among phyla [15, 33]. 
This observation suggests that even if there is high varia-
tion in growth rates within phyla, trait averaging across 
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taxa in diverse assemblages could lead to predictable rela-
tionships between growth rate and high taxonomic ranks 
in whole communities [34]. Though investigation of scal-
ing effects and emergent properties in microbial systems 
is a growing area of research [1, 34–36], no studies to our 
knowledge have assessed how ecological scale influences 
the relationships between bacterial taxonomy and growth 
rates. To address these questions, we integrate a collec-
tion of datasets on bacterial growth rates to gain insight 
into the taxonomic groups that could be used as reliable 
indicators of microbial growth in soil. Specifically, we 
extend prior analyses to explore how bacterial taxonomy-
growth relationships vary at different ecological scales, 
i.e., taxon versus community levels. By considering the 
role of ecological scale in microbial trait designations, 
our work is an important addition to microbial life his-
tory theory, contributing to our goal of providing clearer 
guidance on relating microbial taxonomic profiles to the 
important ecological traits of those communities.

Materials and methods
Bacterial growth rates at the taxon level
Our first goal was to revisit patterns in taxon-level 
growth traits of soil bacteria derived from both genomic 
and experimental (i.e., SIP) estimates of growth. For these 
analyses, we considered organisms within six bacte-
rial phyla (Acidobacteria, Actinobacteria, Bacteroidetes, 
Firmicutes, Proteobacteria, Verrucomicrobia), as these 
groups typically comprise the majority of soil bacterial 
communities and were present in all datasets we used. 
Furthermore, these are the major groups that have pre-
viously been categorized as fast versus slow-growing [26, 
31] and have therefore been the focus of more recent 
work investigating the growth traits of individual bac-
terial lineages [16]. For the genomic analysis, we used 
growth rates of soil bacteria found in the EGGO data-
base, a compilation of minimum doubling time predic-
tions for publicly available genome assemblies using 
gRodon [15]. The gRodon model is based on patterns 
of codon usage bias, the strongest genomic indicator of 
bacterial growth potential [21]. The updated predictions 
we used also included a correction for optimal growth 
temperature [33]. Details of the gRodon model mechan-
ics are provided elsewhere [15, 33, 37]. We selected soil 
bacteria from the database by filtering the genomes only 
to include those representing soil organisms as indicated 
by the Joint Genome Institute’s GOLD database [38]. 
For intercomparison with SIP data that were generated 
by 16S rRNA gene sequencing (below), and for which 
taxonomic assignments are unreliable below the genus 
level, we aggregated the gRodon estimates at the genus 
level (207 genera from 10,096 genomes). For consistency 
with the SIP data, we calculated maximum growth rates 
from the gRodon minimum doubling times (in h) using 

an exponential growth equation, where growth rate 
(h−1) = ln(2)/h.

We compared the genomic predictions of growth rates 
to those empirically measured in soil bacteria via quan-
titative stable isotope probing (qSIP) [22, 39]. The qSIP 
dataset we used has been described previously [32, 40, 
41]. Briefly, soils for the qSIP experiment were collected 
from four ecosystems in northern Arizona and incu-
bated under three different experimental treatments: C 
addition (1  mg glucose-C g soil−1), C + N addition (glu-
cose + 0.1  mg [NH4]2SO4-N g soil−1), and no additions 
(control). All treatments received 18O water to enable iso-
topic labelling of microbial DNA. After the incubation, 
DNA was extracted, subjected to CsCl density gradient 
centrifugation, and then split into ~ 20 density fractions 
of ~ 150 µL. 16S rRNA genes (515F/806R primers) were 
quantified in the fractions using qPCR and sequenced 
on an Illumina MiSeq (raw sequences: PRJNA521534). 
Raw sequences were processed using DADA2 [42] and 
taxonomy was assigned to the amplicon sequence vari-
ants (ASVs) using a naïve-bayes classifier [43] trained 
on the SILVA database (version 132) [44]. The molecu-
lar weight of the DNA of each ASV was calculated using 
the qSIP equations [22] and the DNA molecular weights 
were used to estimate growth rates of each taxon using 
an exponential growth model [39, 45]. This ultimately 
yielded 2277 ASVs with growth rate estimates. To facili-
tate comparison with the genomic data, we calculated 
the average growth rates of the 279 genera present. We 
did this for each experimental treatment separately (con-
trol, C, C + N) and for all treatments averaged together. 
Full details are provided in the Supplementary Methods 
section.

Bacterial growth rates at the community level
Our next goal was to extend the analysis to the commu-
nity level to investigate the scaling of microbial growth 
and to identify potential indicator taxa of commu-
nity-aggregated growth. We used two complementary 
approaches to addressing this question. First, as a com-
munity-level analogue of the genomic growth rate esti-
mates, we used a previously described global dataset of 
soil metagenomes [46] (raw sequences: PRJEB18701) to 
estimate the growth potential of soil bacterial communi-
ties. As described previously, we predicted community 
average maximum growth rates for the metagenomes 
using gRodon2 [14], which considers codon usage bias 
in highly expressed ribosomal protein genes and the rela-
tive coverages of genes in the community [15, 37]. Full 
details are provided in the Supplementary Methods. 
To relate the growth rates to the taxonomic composi-
tion of the communities, we used a dataset of 16S rRNA 
gene amplicons generated from the same soils [46]. The 
amplicons were produced using the 515F/806R primer 
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set and sequenced on an Illumina MiSeq (raw sequences: 
PRJEB19856). The raw 16S sequences were processed and 
classified as described for the qSIP data above.

Our second approach to the community-level analysis 
was to identify the qSIP ASVs in external community-
level data: the Earth Microbiome Project (EMP) 16S 
rRNA gene amplicon dataset [47] (​h​t​t​p​​s​:​/​​/​f​t​p​​.​m​​i​c​r​​o​b​i​​
o​.​m​e​​/​e​​m​p​/​​r​e​l​​e​a​s​e​​1​/​​o​t​u​_​t​a​b​l​e​s​/​d​e​b​l​u​r​/). The rationale 
for using the EMP dataset instead of the original qSIP 
dataset for this analysis was that the qSIP study featured 
few whole communities, i.e., the original experimental 
replicates. The EMP dataset provided a large number 
of distinct communities, which allowed us to draw on 
broader patterns of bacterial taxonomic composition. 
This approach was intended to add ecological context 
to the qSIP data by simultaneously considering both the 
measured growth rates of the taxa as well as the patterns 
of occurrence and relative abundance of the taxa across 
distributed soil assemblages. We accomplished this by 
calculating community weighted mean growth rates of 
the EMP assemblages using the taxon-level qSIP growth 
rates, thus allowing us to identify specific taxonomic 
groups that strongly contributed to (and are therefore 
indicators of ) variation in community growth across 
samples.

To identify the qSIP ASVs in the EMP communities, 
we first subset the EMP data to only include soil com-
munities and then used VSEARCH [48] to identify 100% 
identity alignment matches between the EMP ASVs and 
the qSIP ASVs. We used the longest available EMP ASVs 
(the 150  bp release) to perform the alignments. Of the 
2277 qSIP ASVs, 1574 had exact sequence matches in the 
EMP soil communities. We interpret these to be the same 
(or very similar) taxa as those present in the qSIP data-
set that should have similar growth traits. We then sub-
set the EMP communities to only include the qSIP ASVs 
and removed samples with fewer than 5000 sequences 
remaining. Relative abundances of the ASVs in the com-
munity subsets were then calculated as the sequence 
count of each ASV divided by the rarefied sequence 
depth (5000). The resulting community subsets had 
microbial richness values ranging from 120 to 600 ASVs 
per sample. Next, following prior approaches of scaling 
up taxon-level processes [49, 50], we calculated a com-
munity weighted mean growth rate for each EMP com-
munity subset by multiplying the relative abundance of 
each ASV by the qSIP-estimated growth rate of that ASV 
and then summing across all of the ASVs in each com-
munity subset. We did this separately using growth rates 
from the substrate/nutrient conditions of the three qSIP 
experimental treatments (control, C, and C + N). Prior 
to further analysis, we removed one EMP study from the 
dataset (study ID ‘864’) as this study contained unusual 
bacterial communities with many extreme outliers in 

terms of community average growth rates (Supplemen-
tary Fig. S1). The final datasets analyzed for community-
average growth included 701, 698, and 636 EMP samples 
with 1208, 1158, and 867 qSIP ASVs for the control, C, 
and C + N, treatments, respectively. These differences 
are due to differences in the specific ASVs present in the 
different qSIP treatments, which, in turn, influenced the 
number of EMP samples meeting the sequence depth 
threshold in each case.

A limitation of our qSIP-EMP approach is that the qSIP 
ASVs comprise only ~ 24% of the EMP sequence reads 
and ~ 2% of the total ASVs within the EMP soil sam-
ples. Therefore, our calculated community growth rates 
should not be interpreted as representing the original 
EMP communities, since EMP ASVs without growth rate 
information were removed prior to calculation. However, 
while the community subsets are not fully representative 
of the original EMP communities at the ASV level, we did 
observe strong correlations in the relative abundances of 
higher taxonomic groups between the community sub-
sets and the original full EMP communities (Supplemen-
tary Fig. S2). This indicates that the community subsets 
are at least representative of the original EMP communi-
ties at higher taxonomic levels. In any case, the commu-
nity subsets could alternatively be viewed as somewhat 
hypothetical assemblages that are distinct from the origi-
nal EMP communities but that still exhibit wide natural 
variation in the relative abundances of taxa for which 
growth has been measured. As such, analysis of the com-
munity subsets is appropriate for accomplishing the cen-
tral goal of our study, i.e., exploring the patterns by which 
growth rates of individual taxa might scale up to complex 
soil assemblages.

Statistical analyses
Statistical analyses were conducted in R [51]. To test the 
hypothesis that the phyla exhibit distinct distributions of 
growth rates, we used multi-sample Anderson–Darling 
tests [52]. To compare the phyla in terms of their median 
and mean growth rates, we used Mood’s median test and 
a generalized linear model (gamma distribution, log-
link function) [53], respectively. To analyze relationships 
between variables, we used Pearson correlation analysis. 
In cases where multiple correlation coefficients were cal-
culated for an analysis, we used the Benjamini–Hochberg 
method to correct the p values for false discovery rates 
[54]. To identify the specific taxonomic groups that most 
strongly contributed to variation in the calculated com-
munity-average growth values across samples, we used 
random forest regression [55]. For the regression models, 
we considered taxon relative abundances as candidate 
predictors of community-average growth. We quantified 
the “importance” of taxa in contributing to variation in 
community growth by determining the increase in model 

https://ftp.microbio.me/emp/release1/otu_tables/deblur/
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mean squared error when each taxon was randomly 
shuffled across the dataset. Note that in the correlation 
analyses relating to microbial growth and in the regres-
sion models, the x and y variables are not fully indepen-
dent since the taxon relative abundances (predictors) and 
the community growth rates (response) were both deter-
mined using the original ASV sequences. Because of this, 
the statistical results we present are interpreted only for 
the purpose of revealing the specific taxonomic groups 
that were the strongest contributors to calculated com-
munity growth. All data and analysis scripts are provided 
in Figshare: ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​6​0​8​4​​/​m​​9​.​f​​i​g​s​​h​a​r​e​​.​2​​8​2​6​4​3​2​
2​.​v​1 [56].

Results and discussion
Taxon-level patterns in bacterial growth traits
The genomic and qSIP methods produced similar pat-
terns of growth rates among the six bacterial phyla 
(Fig.  1A, B). However, the magnitude of the values was 

very different between the methods (Fig.  1C). Not sur-
prisingly, the maximum rates predicted from genomes 
were much higher than the qSIP-measured rates 
(Fig.  1C). This reflects the difference between growth 
potential and actual growth and also likely reflects a 
bias towards higher growth in cultured isolates with 
sequenced genomes [15]. Similar to prior studies [16], 
both methods revealed wide variation in growth rates 
within most bacterial phyla (Fig.  1A, B). These patterns 
held when examining the average growth rate of genera 
across all qSIP treatments (Fig. 1B) and for the three qSIP 
treatments analyzed separately (Supplementary Figs. S3, 
S4, and S5).

Despite the wide variation in growth rates observed 
within phyla, we also observed differences in the growth 
rate distributions among phyla (Fig. 1A, B) (A2 = 16.3 and 
18.8 for gRodon and qSIP, respectively, both P < 0.001). 
Those differences included different mean rates (χ2 = 37.1 
and 29.9 for gRodon and qSIP, respectively, both GLM 

Fig. 1  Growth rates within and among the major soil bacterial phyla. Shown are distributions of maximum growth rates of 207 genera of soil bacteria 
from the gRodon model (A) and measured growth rates of 276 bacterial genera from quantitative stable isotope probing (qSIP) (B). Panel B shows the 
overall average growth rates across all qSIP experimental treatments. The growth distributions separated by qSIP treatment are provided on Supplemen-
tary Figs. S3, S4, and S5. P values on panels (A) and (B) indicate statistically different mean growth rates among phyla (diamond symbols on the plots) and 
are from generalized linear models. Panel C shows the correlation between the two growth rate methods in terms of their phylum-level mean growth 
rates. Error bars on (C) indicate one standard error of the mean and the correlation coefficient (r) and P value provided are from Pearson correlation 
analysis. Panel D shows the correlation of the growth rates of the genera shared between the two datasets and the correlation coefficient (r) and P value 
provided are from Pearson correlation analysis
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P < 0.001) and different median rates among phyla (both 
Mood’s median P < 0.001) (Fig. 1A, B). Further, the gen-
eral pattern of mean growth rates among phyla was con-
sistent between the qSIP and genomic methods (Fig. 1C). 
For both methods, Firmicutes genera exhibited the high-
est growth rates on average, Verrucomicrobia and Acido-
bacteria exhibited the lowest growth rates, and the other 
phyla were intermediate (Fig. 1C). Specifically, Firmicutes 
genera had ~ fourfold and ~ threefold higher growth rates 
than Acidobacteria genera on average and ~ threefold 
and fourfold higher growth rates than Verrucomicrobia 
genera on average for the genomic and qSIP methods, 
respectively. Similar patterns among phyla have been 
reported in studies focused on marine and gut bacteria 
[15, 33]. These results also support prior work identifying 
Firmicutes as the most potentially copiotrophic bacte-
rial phylum in soil [16]. It is worth noting, however, that 
some phyla were lacking in representative genera—very 
few soil Acidobacteria and Verrucomicrobia genera were 
within the EGGO database and few Firmicutes genera 
were in the qSIP dataset. However, the strong agree-
ment between the two methods across all phyla shows 
broadly conserved growth patterns and is a promising 
demonstration of our ability to connect in situ growth 
rates with intrinsic genomic traits. Furthermore, while 
only 40 genera overlapped between the two datasets, the 
genomic and qSIP growth rates of those genera were also 
significantly positively correlated (Fig. 1D). We conclude 
from these results that the patterns among taxa support 
the premise of our hypothesis, i.e., that the major phyla 
of soil bacteria are broadly different in terms of observed 
and potential growth rates.

This conclusion may seem unsurprising since it has 
long been known that certain phyla have many fast-
growing members, particularly common laboratory 
organisms, e.g., Bacillus (Firmicutes), Escherichia (Pro-
teobacteria), etc. However, recent work has also shown 
that many environmental strains within those phyla do 
not conform to the trait designations that have been 
historically assumed for the phyla [16]. Those new stud-
ies emphasize high within-phylum variation in growth 
rates [16] and demonstrate that phylum affiliation is a 
poor predictor of traits of individual taxa [16, 32]. Here, 
we re-emphasize the broad among-phylum differences 
in growth rates to explore the possibility that among-
phylum differences take precedence over within-phylum 
variation when growth rates are scaled to the community 
level.

Community-aggregated growth rates of soil bacteria
Since the community level is the ecological scale at which 
life history designations of soil bacterial phyla have often 
been interpreted [26–29], we sought to explore the scal-
ing of bacterial growth from individual taxa to diverse 

assemblages. Growth at the community scale is impor-
tant since investigators interested in ecosystem processes 
such as nutrient turnover or C sequestration may be 
more interested in the aggregate growth of entire bac-
terial communities rather than individual taxa [1, 11]. 
Specifically, our goal was to identify taxa that might be 
used as reliable indicators of community-average growth. 
To investigate the scaling of bacterial growth, we applied 
qSIP-measured growth rates of bacterial taxa to those 
same organisms in EMP soil communities and calculated 
community weighted mean growth rates for the EMP 
assemblages. The specific lineages across all taxonomic 
levels that most strongly contributed to variation in com-
munity average growth are shown in Supplementary 
Table S1. In general, we found that the weighted average 
growth of communities was consistently positively asso-
ciated with the relative abundance of Proteobacteria in 
the assemblages and negatively associated with Verru-
comicrobia (Fig. 2A). These are among the relationships 
that would be expected since Verrucomicrobia genera 
had among the lowest growth rates on average while 
Proteobacteria genera had intermediate growth rates on 
average but with some very high growth potential taxa 
(Fig. 1). When using growth rates measured under C and 
C + N addition, the relationships became much stronger 
(Fig. 2B, C). The strength of those relationships is strik-
ing and suggests that some phyla can be strong indica-
tors of the growth status of complex soil communities, 
particularly under substrate and nutrient addition condi-
tions. These results add important ecological context to 
the taxon-level growth rate data, revealing that the taxa 
that are sufficiently ubiquitous and abundant enough to 
drive variation in community-average growth across dis-
tributed soil samples tend to be members of the Proteo-
bacteria and Verrucomicrobia phyla.

Community growth estimates also showed that the 
relative abundances of other phyla did not consistently 
contribute to variation in community-average growth 
(Fig.  2B–D). For example, the generally slow-growing 
Acidobacteria (Fig.  1) were not consistently associated 
with slower community growth (Fig.  2). Similarly, con-
trary to what might be expected, fast-growing Firmicutes 
(Fig. 1) did not consistently contribute to faster commu-
nity growth (Fig. 2). That said, we did detect a significant 
positive association between Firmicutes and community 
growth under C addition (Fig.  2B), which was attrib-
uted to a small cluster of samples that exhibited unusu-
ally high relative abundance of Firmicutes and also had 
high community-average growth. This relationship is 
expected from the genus-level growth distributions and 
suggests that Firmicutes can be functionally important 
in some communities. This conclusion is supported by 
revisiting the EMP study we initially removed from the 
analysis: study 864. This study was characterized by 
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atypical soil communities that were often dominated by 
Firmicutes (sometimes > 80% of sequences), with cor-
respondingly high estimated growth rates in those cases 
(Supplementary Fig. S6). Within that study, the relative 
abundance of Firmicutes was strongly positively associ-
ated with growth (Supplementary Fig. S6). We conclude 
from this that Firmicutes should be considered important 
community members in soils where they are found to be 
abundant (e.g., > 10% relative abundance). However, they 
may not be consistently abundant enough to be a reli-
able indicator of community-level growth. Proteobacte-
ria and Verrucomicrobia, on the other hand, do appear 
to be consistent indicators of community growth, lending 
support to prior work that has interpreted those phyla as 

such [28–30]. This conclusion is supported by the data-
set of maximum growth rates predicted from global soil 
metagenomes using the gRodon2 model [14], which 
revealed community-aggregated growth to be correlated 
only with the relative abundances of Proteobacteria and 
Verrucomicrobia (Supplementary Fig. S7). However, 
the correlations in the metagenome data were weaker 
(Supplementary Fig. S7). This may be because, unlike the 
qSIP study, those samples were not enriched in rapidly 
growing taxa due to C and N addition, i.e., the condi-
tions under which the influence of high growth potential 
community members becomes particularly evident [41] 
(Fig. 2). Therefore, variation in maximum growth might 
have been somewhat constrained in the metagenome 

Fig. 2  Relationships between phylum relative abundances and calculated community-average growth rates for the subset Earth Microbiome Project 
(EMP) soil communities. EMP communities were filtered to only include the qSIP ASVs prior to calculation of the community-average rates. Shown are 
calculated community growth rates for the control (no addition) (A), the glucose-C addition treatment (B), the C + N addition treatment (C) and the 
overall average growth across all experimental treatments (D). Correlation coefficients are from Pearson correlation analysis. Asterisks indicate significant 
correlations at the following levels: **P < 0.01, ***P < 0.001. Colors indicate consistent contributors to fast growth (red) and slow growth (blue), i.e., Pro-
teobacteria and Verrucomicrobia, respectively
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dataset, potentially preventing us from observing stron-
ger relationships. Future experimental studies that 
involve soil C and N additions could also incorporate the 
metagenomic maximum growth estimates to resolve this 
question.

We sought additional support for these results by 
repeating the analysis using phylum relative abundances 
from the original full EMP communities to determine 
whether the observed taxon-growth correlations held for 
the original EMP communities and not just for the sub-
sets comprised only of the qSIP ASVs. Phylum relative 
abundances in the full EMP communities had essentially 
the same relationships with growth compared with the 
subsets (Supplementary Fig. S8), supporting our finding 
that the community subsets are representative of the full 
EMP communities at high taxonomic levels (Supplemen-
tary Fig. S2). We also observed essentially the same rela-
tionships after correcting the ASV counts for 16S rRNA 
gene copy number (Supplementary Fig. S9), demonstrat-
ing that variation in 16S copy number was not a con-
founding factor in our analysis and providing additional 
support for our findings.

Though we observed consistent patterns across several 
iterations of our analysis, we do suggest some caution in 
interpreting phylum relative abundances as indicators of 
bacterial growth given that the community-average rates 
we report here are only calculated and not actual mea-
sured growth rates for those communities. Actual rates 
could differ from our calculated rates for various reasons, 
e.g., varying responses of taxa to differences in soil abi-
otic factors or ecological factors such as density depen-
dence, interspecific interactions, etc. [39]. Although the 
qSIP growth rates applied to the EMP organisms may not 
represent their actual growth in all cases, the qSIP rates 
were generated across climatically divergent sites (desert 
grassland, arid shrubland, dry pine forest, and temperate 
mixed conifer forest) and so should be applicable to many 
systems [32]. In addition, the qSIP growth rates appear 
to have a genomic basis (Fig.  1), so we would expect 
strong phylogenetic conservation of growth traits across 
environments [57], especially when averaging across 
hundreds of ASVs in a community. This should be partic-
ularly true with C + N additions, which would eliminate 
some of the site-specific growth constraints and where 
the rates are likely more reflective of genomic growth 
potential. For all these reasons, it is likely that the qSIP 
rates provide reasonable estimates of the growth poten-
tial of the EMP soil communities.

An additional caveat is that our study does not cap-
ture the highly dynamic nature of microbial growth in 
soils. Because the growth estimates we used are based 
on inherent genomic traits or on qSIP measurements at 
a single time point, temporal patterns in soil microbial 
growth are not reflected in our results. For example, the 

qSIP measurements do not consider temporal changes in 
environmental conditions (e.g., soil moisture, resource 
inputs), which can cause rapid shifts in taxonomic com-
position and activity/dormancy patterns among taxa in 
soil communities [58–60], all of which would strongly 
influence microbial growth rates. Another limitation 
is that the qSIP approach likely yields growth rate esti-
mates that are varyingly accurate among microbial life 
strategies, e.g., qSIP likely underestimates the growth 
rates of boom-bust adapted organisms with exception-
ally high growth potential that turn over before the end 
of the 1-week incubation (e.g., some Firmicutes). Due 
to these sampling and methodological limitations, our 
community-average growth estimates (and the original 
individual estimates) need to be interpreted with caution. 
Indeed, while our work demonstrates that the estimated 
growth of a microbial community at a snapshot in time 
is strongly related to broad patterns in the taxonomic 
composition of that community, we emphasize that our 
results should not be interpreted as static properties of 
those soils under all conditions. We encourage future 
studies on microbial growth to include sampling at vary-
ing time scales to improve our understanding of the tem-
poral dynamics of microbial growth at individual and 
community levels.

It is also worth revisiting here the issue of non-indepen-
dence of the calculated community growth rates and the 
taxon relative abundances. Because both variables were 
determined using the original ASV sequences, they are 
inherently mathematically related. Indeed, in some ways 
the results of our analyses are self-evident, i.e., commu-
nities with more fast-growing constituent taxa will obvi-
ously have faster community-average growth. However, it 
is also important to note that taxonomic information per 
se was not used in the calculation of community-average 
growth. Thus, it is still useful to investigate the taxonomic 
affiliations of the organisms that were important in con-
tributing to variation in calculated community growth. 
Therefore, while the relationships need to be interpreted 
carefully, they are ecologically relevant in that they reveal 
the taxonomic groups that are likely to influence the 
aggregate growth of whole bacterial assemblages, owing 
to the measured growth rates of those taxa in combina-
tion with the observed occurrence and relative abun-
dance patterns of those taxa across actual communities.

Overall, our results suggest that some phyla may be 
informative of the growth rates of whole bacterial com-
munities. It is possible that this is also true for other 
aspects of bacterial life history, e.g., resource acquisi-
tion or stress tolerance [10], which should be evaluated 
by future studies. While prior studies have criticized the 
interpretation of phylum relative abundances in microbial 
ecology research [7, 9, 31], we offer a clarified position by 
emphasizing ecological scale as a critical consideration 
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when applying phylum-level trait assignments. Phylum-
level taxonomy should not be used to draw firm conclu-
sions about the traits of any particular taxon, given the 
high variation in trait values within phyla (Fig.  1) [16]. 
However, at the community level, not every organism 
belonging to a particular phylum needs to exhibit the 
traits assigned to the phylum for the relative abundance 
of that phylum to reliably indicate community function. 
As long as the traits in question (e.g., rapid growth) only 
appear within abundant and ubiquitous members of spe-
cific phyla, it seems reasonable to assume that the rela-
tive abundances of those phyla will accurately correlate 
with trait values across large collections of communities. 
Our analysis suggests that this assumption holds for two 
phyla, Proteobacteria and Verrucomicrobia (Fig.  2), and 
that the role of those focal phyla should be more thor-
oughly evaluated by future work. This conclusion could 
find practical use in the field of ecosystem modelling, 
where there is great interest in incorporating microbial 
traits into model structures [17–20]. While it may not 
be feasible to incorporate trait information of hundreds 
of constituent taxa into models, it may be tractable to 
incorporate one or a few phyla that reliably correlate with 
community-level trait values.

Indicator taxa of community-aggregated growth
In addition to correlating community-level growth with 
phylum relative abundances, we sought to quantitatively 
assess the contributions of taxa to the observed variation 
in community growth rates across samples. To do this, we 
used random forest regression, where models were con-
structed with different levels of taxonomic resolution and 
the relative abundances of the taxa were used as the pre-
dictor features in the models. For this analysis, we used 
the average growth across all qSIP treatments (shown in 
Fig.  2D), as this dataset contains the largest number of 
samples and taxa and encompasses all the experimental 
growth conditions assessed. As stated previously, since 
the response and predictors in these models are not fully 
independent, we only use the models to aid in identifica-
tion of the specific taxa that were the strongest contribu-
tors to calculated community growth. We first evaluated 
an overall model using re-scaled relative abundances of 
all taxa at all taxonomic levels as candidate predictors. In 
this model, phylum Proteobacteria emerged as the single 
strongest predictor of community growth, with more 
than two-fold higher importance than any other individ-
ual taxon across all taxonomic levels (Fig. 3A). This rein-
forces our conclusion that high taxonomic groups can 
be strong indicators of the growth of complex bacterial 
communities. Indeed, comparison of the regression mod-
els for different taxonomic levels revealed that additional 

Fig. 3  Regression models showing the strongest taxonomic indicators of community average bacterial growth. Panel A shows the top importance 
individual taxa when scaled relative abundances of all taxa were combined into a single random forest regression model. ‘Importance’ in (A) was calcu-
lated as the increase in model mean squared error (MSE) when each respective predictor was randomly shuffled across the dataset. Panel B shows the 
correlation between community average growth and the relative abundance of Sphingomonas from the Alpharoteobacteria lineage Sphingomonadales, 
the most consistently important lower taxon across all models (Supplementary Table S1). The correlation coefficient and P value shown are from Pearson 
correlation analysis
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taxonomic information beyond the class level had neg-
ligible additional benefit in accounting for variation in 
community growth (Supplementary Table S1). This indi-
cates that when considering whole microbial communi-
ties, the class level may represent a useful compromise 
between the improved trait information of finer taxo-
nomic levels versus the simplicity and scaling benefits 
of broader taxonomic levels. In all, these results further 
underscore the potential utility of high taxonomic levels 
in the context of microbial community growth.

Taken together, these results suggest that high taxo-
nomic resolution may not be important for predicting 
community-level growth across large and distributed 
microbial datasets. In contrast, prior findings from the 
same qSIP experiment demonstrated that predicting 
growth rates of individual taxa requires greater taxo-
nomic resolution than phylum-level affiliations [16, 32]. 
These differences between taxon vs. community-level 
patterns emerge as a product of the broad among-phylum 
differences in growth (Fig. 1) in combination with varia-
tion in the relative abundances of taxa in complex assem-
blages. In other words, relative abundance-weighted trait 
averaging results in emergent predictability of growth 
[34], where phylum-growth relationships become stron-
ger for assemblages than they are for individual taxa. 
Put simply, when scaling growth to the community level, 
broad among-phylum differences become more impor-
tant than within-phylum variation. Indeed, while it is 
important to investigate the complex variation in the 
growth traits of individual taxa, when one additionally 
considers the observed occurrence and relative abun-
dance patterns of those taxa across natural assemblages, 
the importance of broad microbial taxonomic groups 
(i.e., Proteobacteria) to community-level growth becomes 
clear. This is despite the fact that many individual Pro-
teobacteria actually grow slowly and the fact that taxa in 
other phyla (e.g., Firmicutes) generally grow faster on an 
individual basis (Fig. 1). We expect that this observation 
will be particularly useful for outside soil microbiome 
datasets where many constituent taxa will be unclassified 
at fine taxonomic levels or members of poorly character-
ized lower taxonomic groups with no a priori knowledge 
of their growth potential.

Nevertheless, it is still useful to identify the individual 
orders, families, or genera that may also be strong indi-
cators of community growth. The most consistently 
important lower taxa across the different random for-
est models were members of the Alphaproteobacte-
rial lineage Sphingomonadales (Supplementary Table 
S1), which positively contributed to community growth 
(Fig. 3B). The highest importance Verrucomicrobia genus 
was Candidatus Udaeobacter, which was negatively asso-
ciated with community average growth (Supplemen-
tary Fig. S10). It is not surprising to find Candidatus 

Udaeobacter to be associated with slow growth given its 
auxotrophic lifestyle [61]. Other important taxa included 
the Bacteroidetes genus Ferruginibacter (Fig. 3A), which 
was positively associated with community growth (Sup-
plementary Fig. S11) and the Acidobacteria order Vicina-
mibacterales (Fig.  3C), which was negatively associated 
with community growth (Supplementary Fig. S12). Inter-
estingly, however, none of these taxa exhibited spectacu-
larly high or low growth rates themselves. For example, 
under C + N addition, Sphingomonas was at the 73rd per-
centile for growth rate while Candidatus Udaeobacter 
was at the 35th percentile. The contributions of these 
taxa to community growth, therefore, are due not only 
to their traits per se but also to their ubiquity and high 
variation in relative abundance across communities. In 
contrast, organisms in the extreme upper and lower tails 
of the growth distributions generally had very low rela-
tive abundance, and thus did not significantly contribute 
to community-level growth. This indicates that extremely 
high and low growth potential may represent “fringe” 
ecological strategies in soil that rarely confer high abun-
dance and may not substantially influence broad pro-
cesses such as overall community growth. In any case, it 
is clear from our results that even trait values only slightly 
different from the average can manifest changes in broad 
community-level functions provided that the taxa pos-
sessing those traits are highly abundant. As such, future 
studies on microbial growth should focus on taxa that are 
common and abundant across communities [62] but do 
not currently have growth rate estimates. Indeed, though 
our analysis included many widely distributed and abun-
dant taxa, only a minority of the organisms present in the 
EMP soils had measured growth rates in the qSIP growth 
rate data we used. Therefore, we expect that additional 
taxonomic groups that are important in contributing to 
community-scale growth will be revealed as research on 
individual microbial growth rates continues to advance.

Conclusions
To improve our understanding of microbe-mediated eco-
system functioning, it is imperative to determine how 
key microbial traits such as growth rate scale from indi-
viduals to assemblages. By evaluating how taxonomy-
growth relationships vary across ecological scales, our 
study sought to identify specific taxa that can be used 
as indicators of the growth of complex microbial assem-
blages. Our work highlights the importance of ecological 
scale when inferring life history traits of bacterial taxa. 
While high-level bacterial taxonomic ranks (e.g., phyla) 
do not provide precise information about the growth 
traits of individual taxa, we demonstrate that high ranks 
can be strong indicators of the growth of complex bac-
terial assemblages. Specifically, we found that Proteo-
bacteria were consistently positively associated with 
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community-average growth rates whereas Verrucomicro-
bia were consistently negatively associated with commu-
nity-average growth. These patterns manifested because 
the most abundant and ubiquitous members of those 
phyla in soils exemplify the respective phylum-level trait 
designations, e.g., fast-growing Sphingomonas for Proteo-
bacteria and slow-growing Candidatus Udaeobacter for 
Verrucomicrobia. These patterns were strongest under 
conditions of substrate and nutrient additions, indicat-
ing that our findings may be particularly useful in stud-
ies involving resource gradients and/or manipulations. 
Overall, our results demonstrate that high taxonomic 
ranks can be accurate indicators of bacterial life history 
traits and that the ecological relevance of those catego-
ries only emerges at the community level.
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