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Abstract

Diatoms, a diverse and abundant group of microalgae, play a crucial role in the functioning of rivers, and are widely used as indicators of
ecological quality. This microalgae group has an intraspecific genetic diversity that is poorly understood on a global scale. We examined
their genetic diversity using metabarcoding data from Nordic to Equatorial rivers (n = 1103 samples). Notably, 61% of genetic variants
were endemic to a single climate zone, including 33% from the Equatorial zone. Looking at the genetic diversity within species, one third
of the species showed geographic pattern between climate zones and the phylogenetic structure of their communities indicated that
they were shaped by environmental filtering. Another third showed no geographic pattern, and their communities were in majority
shaped by neutral processes. A final group was between these two situations. Interestingly, no geographic pattern was observed within
the same climate zones, even in regions over 10 000 km apart. We conclude that the numerous species showing allopatric diversification
between climate zones, would deserve to be separated into new species to improve diatom-based biomonitoring tools. For future studies,
expanding geographical sampling coverage, together with using multi-markers or metagenomes approaches would enable to go beyond

these results.

Keywords: cryptic diversity; eDNA metabarcoding; diatoms; allopatric diversification; geographic pattern

Introduction

Understanding geographic distribution of microorganisms is
essential due to their major roles in ecosystems’ functioning
[1]. Baas-Becking’s hypothesis, “everything is everywhere, but the
environment selects”, was, until recently, considered the primary
rule for explaining microbial species distributions [2]. It states
that most microorganisms exhibit cosmopolitan distributions
(e.g. [3,4]), while others align with a “moderate endemicity model”
[5], shaped by species origin, historical dynamics and dispersal
limitations (e.g. [6, 7]).

Diatoms are a group of microalgae frequently dominating
freshwater biomass, and often used as ecological indicators [8].
Diatom species were previously considered as cosmopolitan due
to their small size and large populations [3]. However, recent
studies combining molecular and morphological data revealed
a huge cryptic diversity [9], challenging species boundaries
and distributions [10]. This new insight complicates species
identification which until now was based on morphology using
their siliceous skeleton, and might change our understanding on
diatom species distribution, niche differentiation and evolution.
A deeper understanding of factors shaping cryptic diversity

in diatoms could improve their use as indicators to monitor
ecosystems [11, 12].

Cryptic diversity study in diatoms has mostly been based on
cultures, and revealed geographic patterns that suggest possi-
ble allopatric speciation [13, 14]. However, culture-based meth-
ods are time-consuming and limited to cultivable taxa. In con-
trast, metabarcoding offers significant potential to study diatoms,
revealing high levels of genetic diversity in multiple environ-
mental samples for many species [15]. Using a rbcL barcode (a
short coding region in RuBisCo gene; [16]), metabarcoding studies
showed that most species based on the morphological species
concept host genetic variants, with distinct ecological and geo-
graphic distributions [17], highlighting a clear benefit for biomon-
itoring. Across geographically distant areas, the metabarcoding
approach showed that almost no genetic variants were shared,
indicating high levels of endemism [18]. Even in remote areas
with similar climate (e.g. high-altitude alpine lakes [19]), dispersal
limitation dominates without any clear geographic pattern, in
contrast to the results from earlier culture-based studies [13, 14].
Therefore, extending the application of metabarcoding to a large
river dataset in different climate regions offers the opportunity
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to acquire new insights into the genetic diversity of freshwater
diatom species.

Our aim was to assess global genetic diversity within diatoms
in rivers and examine its structure across a wide geographic area,
guided by two hypotheses.

Firstly, based on evolutionary biology and population genetics
(e.g.[20, 21]), we expected that endemic species (restricted to a par-
ticular climate zone) would have lower genetic diversity than cos-
mopolitan species (occurring in at least two climate zones). Addi-
tionally, a significant proportion of the genetic diversity would
not be identifiable at the species level due to incompleteness
in the existing genetic reference barcoding libraries. From this
perspective, we predicted that less studied climate zones, such
as the Equatorial zone, would have the highest proportion of
unknown diversity.

Secondly, as observed on former culture-based studies [13, 14],
we expected most diatom species to show a geographic pattern of
their genetic diversity within species with clades restricted to spe-
cific climate zones. The geographic pattern would suggest that cli-
mate and dispersal limitation would play a crucial role in shaping
genetic diversity within species. We also hypothesized exceptions
among cosmopolitan species known for their rapid dispersal [22].
To explain these diversity patterns, we hypothesized that different
ecological processes (deterministic and neutral processes; [23])
would prevail from a species to another.

To address these hypotheses, we analysed diatom commu-
nities from rivers across four climate zones (Nordic, Temper-
ate, Equatorial and Mediterranean; adopted from Kottek et al.
[24]) spanning Europe, Africa, Central and South America, using
environmental DNA (eDNA) metabarcoding approach. To char-
acterize the genetic diversity of the 394 species considered, we
used Amplicon Sequence Variants (ASVs) from a 263 bp bar-
code in the rbcL gene. The relative abundance and occurrence
of ASVs across climate zones have made it possible to estimate
the geographic distribution of species. We assessed clade associa-
tions with climate zones for 36 abundant and genetically diverse
species using phylogenetic signal tests [25]. Additionally, we eval-
uated the ecological processes driving the intraspecific diversity
of these species by calculating phylogenetic community structure
metrics [26].

Materials and methods
Study area and sampling procedure

Through several previous studies, we established a database com-
prising a total of 1103 samples collected across four climate zones:
Nordic, Temperate, Mediterranean and Equatorial from regions
in Europe, Central and South America, and Africa (Fig. 1). The
significance of these climate zones was assessed by extracting the
19 bioclimatic variables of WorldClim v2 [27] based on the geo-
graphical coordinates of the sampling points. A Multi-Response
Permutation Procedure was performed on these variables and
showed that the differences between climate zones were highly
significant (P <.001). Mean annual temperatures and precipita-
tion showed marked differences (24°C, 13°C, 10°C, 4°C, and 2200,
699, 950, 657 mm, respectively, for Equatorial, Mediterranean,
Temperate, and Nordic). Details of these analyses are given in
Supplementary material 1. Samples were collected from 2013 to
2021 (Supplementary material 2) during the stable water period,
following a standard protocol [28]. Biofilm was scrubbed from
five randomly selected stones, preserved in ethanol with final
concentration of 70% (except Croatian samples, stored at —20°C).

DNA extraction

DNA was extracted from a biofilm pellet, obtained after
centrifugation of 2 to 4ml of the initial biofilm suspension, using
soil kits (Supplementary material 2), following the manufacturers’
instructions. For the PCR amplification, a short barcode (263 bp) of
the rbcL chloroplast gene was targeted by using an equimolar mix
of three forward primers (Diat_rbcL_708F_1, Diat_rbcL_708F_2,
Diat_rbcL_708F_3) and two reverse primers (R3_1, R3_2) [29].
PCR reactions for each DNA sample were performed in trip-
licate in a final volume of 25ul following Vasselon et al. [29]
procedure. Equimolar concentrations of PCR products (replicates)
were pooled for each sample and sent for sequencing to
platforms using Illumina MiSeq technology and the v2 reagent kit
(2 x 250 bp), except for the Swedish samples which were
sequenced using v3 reagent kit (2 x 300 bp). All samples were
sequenced at the Bordeaux Transcriptome Genome Platform
(PGTB, Bordeaux, France), with the exception for Swedish samples
which were sequenced at the National Genomic Infrastructure
(NGI)/the SNP&SEQ Technology platform (samples in 2020), and
at the Swedish University of Agricultural Sciences (samples in
2021) (Supplementary material 2).

Bioinformatic pipeline

Bioinformatic analyses on the raw data (forward and reverse
reads) from the different sequencing runs were launched on the
Migale Bioinformatics Facility [30] using the DADA?2 pipeline [31]
to generate ASVs. Primer sequences were trimmed to forward
(R1) and reverse (R2) reads using cutadapt v3.5 [32], and reads
were then truncated to 210 (R1) and 130-200 (R2) nucleotides,
according to a median quality score > 30 using the filterAndTrim()
function for the R-package dada2 [31]. The DADA2 denoising
model (learnErrors(), derepFastq(), and dada() function) was used to
determine an error model and, finally, mergePairs() function was
used to merge forward and reverse reads to generate tables of
full denoised sequences for each sequencing run. After merging
all sequence tables together, chimeras were removed using the
removeBimeraDenovo() function, and only 263-bp diatom ASVs
were retained. Taxonomic assignment was performed using the
nalve Bayesian classifier implemented in the R-package dada2
(assignTaxonomy() function), with a minimum bootstrap value of
60% and the ready to use Diat.barcode reference library v.12 for
metabarcoding analyses (doi.org/10.57745/XWJJGI) which is an
adaptation of the original library [33] trimmed to the 263 bp
barcode. After taxonomic assignment, non-diatom ASVs and
sequences with stop codons were removed (n=156, stop codon
were detected by converting ASV nucleotide sequences into amino
acid sequences using Emboss v6.6.0), bringing the total number of
ASVs across the 1103 samples from 12404 to 12 248. From 12248
ASVs, 8650 remained after filtering out sequences that could
not be assigned at the order level, and further reduced to 3302
ASVs across 1073 samples by removing rare ASVs (fewer than
10 sequences in total) and samples with fewer than 500 reads
(Supplementary materials 3 and 4). Ultimately, out of 3302 ASVs,
1397 were not assigned to the species level, while 1905 ASVs cor-
responded to 394 species. To compare the occurrence of each ASV
and species across samples and climate zones, two normalization
approaches were applied: rarefaction and Total Sum Scaling
(TSS). Following this comparison, the TSS-normalized table was
used for downstream analyses, resulting in an ASV relative
abundance table with assigned species taxonomy. Full details
of the normalization comparison are provided in Supplementary
Material 5.
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Figure 1. Sampling locations. The circle colours correspond to the respective climate zones, the numbers in brackets indicate the number of samples

for each country. Map template created with Canva (www.canva.com).

Statistical analyses
Characterization of diatom occurrence patterns

All data analysis and graphical presentations were done using R
version 4.3.2 [34].

We first provided an overview of diatom community structure
across climate zones with a heatmap based on a normalized
(relative abundance) dataset including assigned and unassigned
ASVs (3302 ASVs). In the ASV table, samples were organized in
rows and ordered in binary format according to the distribution of
ASVs. The ASV columns were then sorted based on their incidence
across samples using the reciprocal averaging method [35] and the
OrderMatrix() function from the R package Metacom [36].

A Sankey diagram, using the R-package network3D [37], illus-
trated the number of ASVs assigned and not assigned ASVs to
species level, those cosmopolitan or endemic, and their distribu-
tion across climate zones. Then, we focused on ASVs assigned to
species level and examined species distribution based on their
abundance, site occupancy, number of ASVs, and climate zone
presence.

Estimation of geographic patterns of genetic diversity
within species and link with climate zones

To evaluate if there was a geographic pattern of genetic diver-
sity within species a subset of species from the initial dataset
of the 394 determined species was carried out. The selection
was based on ASV counts per species and determined statisti-
cally using quantile analysis, resulting in the inclusion of species
with at least 10 ASVs, for a total of 36 species (excluding taxa
labelled as "sp" within a genus; Supplementary material 6). Phy-
logenies for the 36 selected species were generated from FASTA
files using RaxML (version 8.2.12) and R-packages ape [38] and
ips [39]. A maximum likelihood tree was constructed for each
species from aligned ASVs sequences, with rapid bootstrap tests
and a gamma GTR substitution model based on Modeltest results
calculated in RaxmlGUI [40].

For each of 36 species, its phylogeny was used to assess the
presence of a geographic pattern among its ASVs, using phylo-
genetic signal tests. We hypothesized that a geographical struc-
ture could only be observed between different climate zones,

but not between regions belonging to the same climate zone. To
this end, we ran two series of tests: the first series focused on
ASVs across different climate zones, while the second focused
on ASVs within remote regions belonging to the same climate
zone. Remote regions belonging to the same climate zone were
only available for Mediterranean climate (Spain-Catalonia vs.
Croatia, distant by more than 1100 km), and for Equatorial climate
(Martinique/Guadeloupe in the West Indies vs. Reunion/Mayotte
islands in the Indian Ocean distant by more than 10000 km,
French Guiana was excluded because it presented large conti-
nental rivers far different from small insular rivers). To perform
the first series of phylogenetic signal test, the species phylogenies
for each species were used as input data, along with the number
of site occupancies in each climate zone (or remote regions for
the second series). For the first series of tests, the number of
phylogenetic signal tests was dependent on the number of climate
zones in which the ASVs of a given species occurred. For species
whose ASVs were present in all four climate zones, four tests (one
per climate zone) were performed, whereas only three tests were
performed for species with ASVs occurring in three climate zones.
For the second series of tests, two tests, one per remote region,
were conducted per species in each climate zone, namely Equa-
torial and Mediterranean. The tests were conducted using the
phyloSignal() function [41]. For the first series of tests, the number
of occupied sites by an ASV was transformed into a frequency
for each species within each climate zone (Nordic, Temperate,
Mediterranean, and Equatorial). Similarly for the second series of
tests, the number of sites occupied by an ASV was transformed
into a frequency for each species within each region of a sin-
gle climate zone (e.g. Spain-Catalonia/Croatia or Guadeloupe/-
Martinique/Réunion/Mayotte). In order to have robust statistical
results, for each species and each series of tests, we ran five differ-
ent tests: “Cmean” [42]; “I" [43]; “Lambda” [44]; “K” and “K.star” [45].
Since these different tests can give different results for the same
input data, we counted the number of significant tests (P> 5%)
for each species in each climate zone and in each remote region,
for the first and second series of tests, respectively. We converted
this number into a percentage of significant tests per species and
climate zone and per species and remote region, for the first
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and second series tests, respectively. Then for each species, an
average percentage was calculated over the four climate zones
for the first series of tests and over the two remote regions for the
second series of tests. For each species, these average percentages
of significant tests were interpreted as follows: more than 65%
significant testsindicate a clear geographic pattern corresponding
to phylogenetic signal of ASVs between climate zones (or remote
regions for the second series of tests) within the species; 33% to
65% significant tests suggest a weak geographic pattern; less than
33% significant tests reflect the absence of a geographic pattern.

To visualize the distribution of ASVs across climate zones,
haplotype networks were constructed for each of the 36 selected
species using occupancy data for the respective climate zone. For
Sellaphora nigri (De Notaris) Wetzel & Ector, a selection of the 69
most frequent ASVs was done (ASVs occurring in less than six
samples were discarded). Functions haplotype() and haploNet() were
used under the R-package pegas [46].

Assessment of ecological processes structuring diatom
communities and explaining the co-occurrence of genetic
variants

To determine which ecological processes (deterministic and neu-
tral processes) shape the ASVs co-occurrence inside each of the
36 species, the phylogenetic indices Net Relatedness Index (NRI)
and Nearest Taxon Index (NTI) were calculated, following Webb
etal. [26]. NRI assesses the lineage/phylogenetic distance between
all ASVs within a species, while NTI is focused on evaluating
pairwise distance between closely related ASVs within a species.
Following these definitions, indices were used to measure if ASVs
of a species are phylogenetically over-clustered in communities,
or are over-dispersed, or do not diverge from null model. For a
given species, phylogenetic over-clustering of ASVs suggest that
the dominant ecological process in its structuring is environ-
mental filtering. On the contrary, in the case of a phylogenetic
over-dispersion, competition dominates, whereas, if indices are
neither over-dispersed or over-clustered, they follow a null model.
NRI and NTI were already used in former studies to understand
assembly rules for diatom species [47, 48]. In addition, the use of
phylogenetic distance as a proxy of niche proximity is accepted
for diatoms, as there is a conservation of ecological niche through
the phylogeny (e.g. [25, 49]). NRI and NTI were calculated with
ses.mpd(), ses.mntd() functions of the R-package picante (version
1.8.2) [50] and the phylogenies of each 36 species. For each species,
the percentage of NRI and NTI values not significantly different
from null model was calculated and used to identify species with
or without over-clustering. Species with the lowest ratio of non-
significantly different values from null model were considered to
have over-clustering, and those with the highest ratio as species
with low over-clustering. The similarity in the over-clustering level
between the 36 species was illustrated by a heat map was gen-
erated using the R-package pheatmap [51], with clustering based
on an Euclidean distance and the Ward’s sum-of-squares linkage
algorithm (Supplementary material 7). A second Sankey diagram
was used to illustrate the relationship between the results of
the phylogenetic test and phylogenetic clustering for species and
their ASVs.

Results

Reorganizing the rows and columns of the global ASV table (1073
samples x 3302 ASVs) using the reciprocal averaging method
revealed a distribution pattern of ASVs, along the diagonal of
that matrix characterized by the presence of modules associated

with climate zones (Fig. 2). However, there were a few exceptions,
with some ASVs displaying shared or overlapping distributions,
particularly between the Temperate and Mediterranean zones.

Assessment of unassigned diversity, endemism
level, and climate zone’s location of ASVs

Among the total detected ASVs (n=3302), 61% were classified as
endemic or occurring in only one climate zone, while 39% were
cosmopolitan and present in at least two climate zones (Fig. 3).
When dividing the dataset into ASVs assigned and unassigned to
the species level, 47% of the assigned ASVs were cosmopolitan,
compared to 27% of the unassigned ASVs. Notably, within the high
percentage of unassigned ASVs detected as endemic, the greatest
number of unique ASVs were found in the Equatorial zone (n =666
ASVs), followed by the Nordic zone (n=201 ASVs), the Temperate
zone (n=93 ASVs), and the Mediterranean zone (n=61 ASVs).

Do cosmopolitan species have greater genetic
diversities than endemic species?

The analysis of ASVs assigned to the species level (n=1905)
revealed four distinct groups, based on mean values of site
occupancy and average abundance (Fig. 4, Supplementary mate-
rial 6). Each group is differentiated by occurrence and genetic
diversity. The top left group corresponded to cosmopolitan
species with high genetic diversity (high number of ASVs) and
widespread occurrence. This group included Sellaphora nigri (De
Notaris) Wetzel & Ector, Eunotia glacialis F. Meister, Achnanthidium
minutissimum (Kltzing) Czarnecki, Nitzschia palea (Kitzing) W.
Smith, Navicula cryptotenella Lange-Bertalot, Sellaphora pupula
(Kttzing) Mereschkovsky, and Sellaphora saugerresii (Desmazieres)
C.E. Wetzel & D.G. Mann. On the opposite side, the bottom right
group was represented by endemic species, characterized by a
low number of ASVs but high average abundance, and restricted
to specific climate zones. This group includes species mainly
restricted to the Equatorial zone: Epithemia hirudiniformis (O. Mill)
Rimet, D.G. Mann, R. Trobajo, J. Zimm. & R. Jahn, Ulnaria goulardii
(Brébisson ex Cleve & Grunow) D.M. Williams, Potapova & C.E.
Wetzel, Epithemia boucheziae Kochoska, Chardon, Chonova, Keck,
Kermarrec, Larras, S.F. Rivera, Tapolczai, Vasselon, Levkov &
Rimet, Halamphora tumida (Hustedt) Levkov, with the exception
of Stephanodiscus binatus H&kansson & HJ. Kling, which was
not endemic since detected in all zones except Equatorial. The
penultimate group, at the bottom left, gathered the largest
number of species, characterized by moderate average abundance
and number of ASVs, and a wide geographic distribution or
restricted to a specific climate zone. The last group, at the top
right, included two cosmopolitan species with a low genetic
diversity: Melosira varians (C. Agardh) and Eunotia pectinalis
(Kitzing) Rabenhorst, present in all climate zones (except
Mediterranean for E. pectinalis).

Is there a geographic pattern of genetic diversity
inside species and is it related to climate zones?

Haplotype networks were drawn for 36 diatom species (Fig. 5,
Supplementary materials 8 and 9). Among these 36 species, a
clear separation by climate zone was observed for instance within
Sellaphora nigri and Nitzschia sigmoidea (Nitzsch) W. Smith (Fig. 5).
In contrast, no clear separation depending on climate zone was
observed for some species like Nitzschia linearis (W. Smith) and
Mayamaea permitis (Hustedt) K. Bruder & Medlin (Fig. 5). Haplotype
networks were consistent with the results of the phylogenetic
signal confirming the presence or absence of geographic pattern
within species (Supplementary material 10).
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Figure 3. Proportion of environmental sequences (ASVs) whose species name were known or unknown, with their geographical distribution and
location in climate zones. Column 1: gives the total number of ASVs Column 2: ASVs species name were considered as known if it could be assigned
using the bioinformatic pipeline and Diat.barcode reference library. Column 3: ASVs were considered endemic if they were present in a single climate
zone and cosmopolitan if they were in at least two zones. Column 4: gives the proportion of endemic and cosmopolitan ASV in each climate zone.

Numbers in brackets indicate the number of ASVs for each category.

Phylogenetic signal levels were compared based on climate
zone or geographic distance within remote regions (Fig. 6). Consid-
ering the climate zone, 33% of species exhibited a high phyloge-
netic signal, while 22%, 42% and 3% (only one species) showed an
intermediate, low and no phylogenetic signal respectively. In con-
trast, when assessing the geographic signal within a single climate
zone, the majority of species (63%) exhibited a low phylogenetic
signal, while the remainders showed no phylogenetic signal at all.

Which ecological processes dominate within
species to explain the co-occurrence of their
genetic variants?

From the same 36 species, the NRI and NTIindices were calculated
to determine the ecological processes explaining the occurrence
of their respective ASVs (Supplementary materials 7 and 10). All
NRIand NTI were positive, indicating an over-clustering, with 19%
being statistically significant (P <.05). A cluster analysis based on
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(horizontal line) and average abundance (vertical line).

NRI and NTI results identified four groups (according the trunca-
tion threshold; Supplementary material 7) that, for simplicity’s
sake, can be grouped into three groups. The first group, which
includes two, comprised 14 species (e.g. Sellaphora nigri, E. glacialis)
showing strong phylogenetic over-clustering within species com-
munities (ratio of values not significantly different to null model
ranging from 0.65 to 0.80). The second group of 11 species (e.g.
Achnanthidium pyrenaicum [Hustedt] H.Kobayasi, E. pectinalis [Kiitz-
ing] Rabenhorst) exhibited weaker over-clustering (ratio of values
not significantly different to null model ranging from 0.80 to
0.95). The last group comprised 11 species (e.g. Staurosia construens
Ehrenberg, Nitzschia fonticola (Grunow) Grunow) that showed a low
over-clustering with a dominance of the null model (ratio ranging
from 0.95 to 1). When comparing phylogenetic signal with NRI
and NTI indices, 67% of species with a high phylogenetic signal
demonstrated strong environmental filtering or over-clustering,
while 56% of species with a low phylogenetic signal did not diverge
from null model (Fig. 7).

Discussion

This extensive eDNA metabarcoding dataset enabled us to
analyse the genetic diversity of diatom species across four distinct
climate zones spanning four continents. Our study revealed
that genetic variants (ASVs) within diatom species are often
region-specific, emphasizing the critical role of genetic resolution
in defining species boundaries. This aligns with Mann's [52]
species concept that the definition of diatom species should
reflect their true diversity, beyond morphology alone. Although
species concepts remain widely debated, metabarcoding and the
taxonomic assignment of ASVs through a given barcoding library
(here Diat.barcode) provide a consistent and standardized method

for species identification and genetic diversity assessment. In
this respect, diatom intercalibration exercises, which highlight
the value of a unified approach over individual analyst expertise
[53], show the importance of harmonized diatom identification.
Metabarcoding thus improves species classification, by offering a
more objective alternative to traditional morphological method
(e.g. reducing reliance on the expertise of individual analysts;
[54], and shifting the focus from the taxonomic resolution itself
to ASVs captured by this resolution [55].

A large proportion of the diversity is not
identified at species level and is endemic of the
Equatorial zone

Across the dataset (including ASVs assigned and not assigned to a
taxonomic level such as species) endemic taxa (61%) consistently
outnumbered cosmopolitan taxa (39%), especially among ASVs
not assigned to species level. Another interesting point is that
Equatorial zone presented the highest percentage of endemic taxa
(33%), with also a predominance of ASVs not assigned to the
species level. This result supports our first hypothesis, empha-
sizing that there is still a great undiscovered diversity in the
Equatorial region which is therefore not referenced, and this
aligns with Mann and Vanormelingen [56] who believe that these
regions are under-studied. Additionally, the majority of ASVs were
specific to a single climate zone. The high endemism of the
Equatorial zone is mostly explained by French Guiana (South
America), which is consistent with the hotspots of diatom diver-
sity already recognized and high endemism in Amazonia [57].
Tropicalislands, on the other hand, have a lower rate of endemism
than continental areas [18] making them moderate contributors
to the global Equatorial endemism. This suggests that, although
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Figure 5. Haplotype network of four diatom species. In a haplotype network, each pie chart corresponds to an ASVs, with the diameter indicating the
number of reads in the studied area and the colours indicating its presence in a climate zone. For each edge connecting pie-charts, length and number
of lines crossing it correspond to the number of nucleotide differences between ASVs.

island isolation may promote endemism, the unique and environ-
mentally heterogeneous habitats of continental regions appear to
be more important drivers of localized diversity patterns in the
Equatorial zone [58]. Interestingly, Nordic climate zones host also
a high number of endemic taxa. In contrast, the Temperate and
Mediterranean zones have the lowest endemic diversity, likely due
to their close geographic proximity in Europe, which facilitates
dispersal. Overall, these findings emphasize the importance of
targeted sampling in underexplored regions, in order to fully
capture the extent of diatom diversity and understand the driving
factors in species endemism.

Cosmopolitan species have greater genetic
diversities than endemic species, with a few
exceptions

A positive relationship was found between species site occupancy
and genetic diversity, with species found in multiple sites exhibit-
ing higher genetic diversity, such as A. minutissimum, N. palea, N.
cryptotenella, Sellaphora nigri, S. pupula, and S. saugerresii, which are
recognized as cosmopolitan species [59]. This pattern is consistent
with observations in other organisms, including plants (e.g. [60,
61]) and bacteria (e.g. [55, 62]). Cosmopolitan species tend to have
greater evolutionary flexibility and thus greater genetic diversity
[63], which enables them to thrive in diverse environments and

occupy a wide range of ecological niches. On the other hand, we
observed several endemic diatom species restricted to the Equa-
torial zone, including Epithemia hirudiniformis, E. boucheziae, Ulnaria
goulardii, and Halamphora tumida, which is consistent with previous
findings in tropical areas [64-66]. Among these, H. tumida, ini-
tially described as Amphora tumida Hustedt from Venezuela (South
America), is a special case, since it is in line with our findings,
being detected exclusively in the Equatorial zone, whereas subse-
quent studies have reported this species in widespread habitats
[67]. It should be noted, however, that in these studies, H. tumida
was identified solely on the basis of morphological characteristics
[67],and may not correspond to the same species. Endemic species
typically show lower genetic diversity due to their restriction to a
specific location and limited geographic distribution [60]. Despite
the general trend of genetically diverse taxa being cosmopoli-
tan and genetically poor taxa being endemic, exceptions were
observed in three examples. Cosmopolitan species, such as M. var-
ians, with high abundance across all four climate zones, exhibited
a low genetic diversity, as observed previously by Zetzsche et al.
[68]. Similarly, E. pectinalis and Stephanodiscus binatus, detected in
three climate zones are also usually recognized as a cosmopolitan
species [69, 70], but also presented with poor genetic diversity.
Although, our dataset was primarily composed of benthic taxa,
we acknowledge that planktonic diatoms (S. binatus or M. varians)
may follow different biogeographic and evolutionary patterns. It
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Figure 6. Test of the phylogenetic signal for climate zones (Equatorial, Mediterranean, Nordic, and Temperate) and geographic distance inside a single
climate zone (Mediterranean zone: Croatia, Spain-Catalonia; Equatorial: Guadeloupe, Martinique, Mayotte, Réunion islands). Based on an average
frequency of five significant tests for each species over the four climate zones and geographic distance within remote regions, species were gathered
in four different groups: high phylogenetic signal (average frequency of significant tests >0.65), intermediate (0.65 < to <0.33), low (0.33 <to <0) and

with no phylogenetic signal (= 0, no significant tests).

has been shown that ecological traits like lifestyle (benthic vs.
planktonic) can influence dispersal, with some studies suggesting
a greater dispersal capacity in planktonic species [22], while oth-
ers found no significant effect [71]. This remains a hypothesis at
the global scale that was not directly tested here. Previous studies
(e.g. [9, 15]) on diatom evolution showed that diversification rates
vary between genomes and genes across different genera and
species. While some genes may work well for identifying species
within a genus, they can be too conserved for others [9]. The
low genetic diversity observed in some species may be due to
the use of a single gene marker, rbcL, and using multi-markers
or metagenome-assembled genomes approaches would provide
additional insights.

For a majority of the species, genetically similar
ASVs are found in the same climate zone

Phylogenetic signal tests showed that there was a geographical
pattern (i.e. significant phylogenetic signal) for a majority of
species, for which the genetically similar ASVs were located in
the same climate zone, with the nuance that the geographical
pattern was strong for 33% of species and intermediate for 22%
of species. These results, obtained from environmental data on a
broad geographical scale, extend the findings of previous studies
based on cell culture showing that within certain species, phylo-
genetic clades were restricted to geographical areas. This is the
case for S. pupula, for which dozens of cultures were sequenced,
and for which the phylogenetic cluster and distribution in defined
geographical zones whereas clearly established [13, 72]. Similarly,
Gomphonema parvulum and Pinnularia borealis cell cultures, exhib-
ited clades restricted to different climate zones [9, 14]. For these
species, the authors concluded that ongoing speciation or that
different species were present. Interestingly, according to a study
based on culture method [73], a complex pattern of genetic and
physiological variation tied to specific environmental conditions

was also observed for Nitzschia inconspicua, whereas in a field study
[17] no significant differentiation was found in the ecological pref-
erences of ASVsidentified by a metabarcoding approach. This dis-
crepancy between the results of culture and eDNA metabarcoding
highlights how methodology can influence observed patterns;
with cultures isolating specific ecotypes and eDNA metabarcod-
ing capturing broader natural diversity. For A. minutissimum, the
previously cited study [17] also found that ASVs formed distinct
grouping according to their ecological preferences. In our study,
both of these species (N. inconspicua and A. minutissimum) exhibited
a high phylogenetic signal within climate zones, supporting the
role of local environmental filters and climate to shape their
intraspecific diversity.

On the other hand, previous research suggested other factors
shaping intraspecific genetic diversity, which could explain the
weaker phylogenetic signal observed in 44% of species. Notably,
Vanelslander et al. [74] showed that genetic divergence can arise
from ecophysiological adaptations of individual living in sympa-
try, facilitating niche partitioning among closely related species.
Such a process could explain the weaker phylogenetic signal we
detected for N. linearis. In our study, most of the N. linearis ASVs
appeared in both Mediterranean and Temperate zones. Minimal
geographic isolation may have facilitated sympatric diversifica-
tion in N. linearis. Reproductive isolation could have led to diver-
gence in another examples, such as Eunotia bilunaris, as shown
by Vanormelingen et al. [59]. Sympatric diversification inside
species with weaker phylogenetic signal may also be explained
by other processes such as intraspecific competition, influenced
by resource availability like nutrients and light [75].

Overall, our results highlight that for a majority of the species
(55%), clades of ASVs diverge between different climate zones,
which may suggest the presence of ongoing allopatric diversifi-
cation or different species. In addition, we observed that when
considering different geographical regions within the same
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Figure 7. Links between phylogenetic signal of climate zones and ecological processes at play in communities for diatom species commonly observed
in rivers. Column 1: indicates the number of species tested. Column 2: indicates the proportion of species with a strong, intermediate, or weak signal
based on the three groups of percentages of significant phylogenetic tests per species (high: more than 65% of tests significant, intermediate: between
33% and 65%, low: less than 33%). Column 3: evaluates ecological processes within the phylogenetic indices of species communities. Three categories
can be distinguished (from top to bottom). First, phylogenetic over-clustering is regularly detected in species communities (average of 25% to 22%,
respectively, for NRI and NTI), indicating a significant impact of environmental filters. Phylogenetic clustering is also detected at lower percentages
(average of 10% for NRI and NTI), indicating a lesser importance of environmental filters. Finally, the low percentage of excessive phylogenetic
clustering (average of 2% for NRI and NTI) indicates a predominant importance of stochastic processes in the structuring of diatom communities. The
results presented in Supplementary Material 7 complement this visualization.

climate zone, no link can be established between genetic
similarity of ASVs and their geographic origin. For example,
even with several thousand kilometres between geographical
regions within the same climatic zone (e.g. Equatorial zone), geo-
graphical distance does not appear to shape intraspecific genetic
diversity.

Which ecological processes dominate within
species to explain the co-occurrence of their
ASVs?

For species with a strong phylogenetic signal, most of their
co-occurring ASVs were closer phylogenetically than expected
from null model, suggesting that environmental filtering is a
predominant process. According to Webb et al. [76], closely
related species with shared physiological tolerances tend to
co-occur under strong environmental filtering when relevant
traits are conserved [24]. This supports that environmental
conditions could shape species distributions across different
climate zones in our study. Such findings align with the
theoretical framework suggesting that taxonomically related
groups with similar ecological niches can persist under favourable
environmental conditions [76]. For example temperature and
light play a significant role in intraspecific competition among
diatom sub-species, in aquatic ecosystems [77]. Consequently,

the greater temperature variability in Temperate region than
in Equatorial region, where conditions are more stable [24],
may act as an environmental filter strongly influencing the
distribution of intraspecific diatom diversity. It is important to
consider that the geographic separation of studied climate zones
combined with the large-scale atmospheric circulation patterns,
like Hadley, Ferrel, and Polar cells, may further influence species
dispersal [78]. These atmospheric patterns, which determine wind
directions, temperature gradients, and moisture distribution, can
act as barriers to species movement, particularly for species
dependent on stable environmental conditions, limiting their
ability to move easily across different climate regions [78, 79].
Conversely, for most of species showing no link between ASVs
similarity and climate origin (weak or no phylogenetic signal), co-
occurring ASVs were not phylogenetically closer than expected by
random (i.e. null model). This indicates the greatest importance
of neutral processes such as dispersal and ecological drift in line
with neutral theory’s assumption of ecological equivalence where
environmental preferences are not strongly limiting [80]. It is
essential to consider that dispersal ability in microbial communi-
ties, including diatoms, can vary also due to deterministic traits
such as spore formation, morphological adaptations, and habitat
specificity as well as physiological traits that determine tolerance
to environmental fluctuations [59]. Indeed, such deterministic
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adaptations can facilitate widespread dispersal, leading to more
uniform distributions and increasing the apparent influence of
neutral processes in structuring their communities, a context-
dependent interplay between selection and stochastic forces
consistent with Vellend’s conceptual synthesis [81]. Both neutral
and deterministic factors, including habitat features and seasonal
variation in favourable conditions, likely interact to influence
dispersal success and the establishment of species in new
habitats [55].

In conclusion, our results revealed that 61% of ASVs were
endemic to a specific climate zone, with 33% of them occurring
in the Equatorial zone. Additionally, for 55% of species, ASVs
showed diversification patterns linked to climate zones, poten-
tially leading to allopatric speciation. However, these results must
be considered in light of certain limitations of our study. The geo-
graphical sampling effort was biased toward the Equatorial zone,
which has many island samples and was more widely distributed
spatially than Temperate, Mediterranean and Nordic zones. An
improvement would be to include more continental regions for
each climate zone in the future. We recommend taking advan-
tage of nucleotide archive platforms (e.g. European Nucleotide
Archive, Sequence Read Archive) where datasets from various
geographic origins (e.g. America, Asia, Africa) using the same
rbcl barcode have recently been deposited. We also encourage
people using the same rbcL barcode which would increase data
coverage and enhance comparability across regions. During this
study, we relied on a short region of a single genetic marker.
Although rbcL has demonstrated several advantages over other
gene markers commonly used for diatoms (18S, cox1, ITS; [13]),
it would be interesting to go beyond the use of one or more
short fragments and consider the use of long fragment using
long-read technology (e.g. Oxford Nanopore Technology, Pacific
Biosciences), or metagenomes with shot-gun sequencing in order
to access more accurate information on genetic diversity. Finally,
data on local factors, such as physico-chemical parameters, were
rarely available due to differences in the protocols used, the
instruments employed, and data sharing between laboratories.
We circumvented this issue by using a null model-based approach
(NTI and NRI indices) to estimate the ecological processes (deter-
ministic and neutral processes) that drove the structuring of
diatom communities. In the future, integrating both climatic and
parameters in-situ measured into such a study will provide a
more comprehensive understanding of the local factors driving
community assembly. Despite the limitations listed above, our
study provides new insights on the cosmopolitan or endemic
nature of diatom species and on the ecological processes driving
their distribution. It also offers new perspectives for assessing
ecological quality of aquatic ecosystems under global change. For
example, our results could bring improvement of diatom-based
biomonitoring tools. Species exhibiting diversification/speciation
across different climate zones deserve particular attention, as
they occupy distinct geographical locations, thrive in varied envi-
ronments, and belong to different phylogenetic clades. From a tax-
onomic point of view, consideration should be given to separating
these species into new species. This would strengthen the use of
diatoms as ecological indicators, especially since biotic indices
are highly dependent on taxonomic accuracy [82]. Additionally,
many of the species with high phylogenetic signal and allopatric
diversification in our study were small cell-sized species, which
are difficult to identify using traditional morphological methods
(e.g. light microscopy). This reinforces the advantages of eDNA
metabarcoding for detecting cryptic diversity in biomonitoring
analyses.
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