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1 � Introduction

1.1 �What is proximal crop sensing?

Proximal sensing refers to measurements using sensors in close proximity to 
the object of interest (Adamchuk et al. 2018). Proximal crop sensors are used to 
collect information about a growing crop and can be mounted on the ground, 
handheld or borne by vehicles such as tractors or robots. Remote sensing 
involves the measurement of crop properties often with similar equipment as 
used in proximal sensing, but from a greater distance, using satellites, airplanes 
or unmanned aerial vehicles (UAVs, drones). The latter may also be used at 
short distances. At the other end of the spatial scale, there are sensors that 
can be used very close to, or in contact with, plant parts. Hence, there is a wide 
range of different types of sensors and scales on which they are used. Different 
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sensors can also be used in combination, e.g. a proximal sensor can be used to 
calibrate data collected by remote sensing (Fig. 1).

In most cases, crop sensors collect inferential data, i.e. they do not directly 
measure crop properties of interest but rather produce a metric that can be 
used to estimate these properties. For example, light in different wavelengths 
reflected by a crop canopy can be recorded by a crop sensor and translated into 
useful information for agricultural management using established empirical 
relationships with e.g. the protein content of the crop.

Proximal crop sensors are used to assess and predict a range of different 
crop conditions, such as nutrient status, incidence of weeds and diseases, 
and drought stress in plants. The ripening stage of fruits and even number 
of spikes in a wheat stand can also be determined from digital images. Rapid 
technological development and access to artificial intelligence and machine 
learning methods have enabled new applications that were not possible just a 
few years ago, while still employing sensor techniques that have been used for 
a number of years.

1.2 �Aim of this chapter

This chapter presents an overview of proximal sensing techniques used in 
practical precision agriculture, with the overall aim of contributing to more 
sustainable crop production. To provide perspective on the usefulness of 
crop sensors, the chapter starts with an example of why site-specific crop 
management is important and how it relates to sustainable production. 
The basics of crop canopy reflectance are then presented, followed by an 

Figure 1 Crop sensors used in precision agriculture may cover a range of spatial scales, 
from individual leaf to landscape. Sensors used within a few metres of the crop canopy 
are called proximal sensors. Drones can be used for proximal sensing or remote sensing.
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introduction to two practical precision agriculture techniques, site-specific 
weed management and real-time crop sensing, mainly focusing on within-field 
nitrogen application. Two case studies in which different types of proximal 
sensors are used, individually or in combination with other techniques (UAVs 
and satellites), are described. Finally, potential future developments are briefly 
discussed.

2 � Precision agriculture for sustainable crop production

2.1 �What is sustainable crop production?

Sustainable crop production refers to the practice of growing crops in a way that 
minimises negative impacts on the environment, while also ensuring long-term 
productivity and economic viability. It involves using methods and techniques 
that promote soil health, conserve water, protect biodiversity and optimise the 
use of inputs such as pesticides and fertilisers. Sustainable crop production 
aims to meet the current needs of food production without compromising the 
ability of future generations to meet their own needs (Brodt et al. 2011). Since 
the global cropland area is finite, methods are needed to achieve sustainable 
intensification (European Parliament 2019). Precision agriculture is one 
approach often promoted to achieve more sustainable crop production.

In precision agriculture, whether organic or conventional, the goal is often 
to apply optimum rates of various inputs, e.g. fertilisers (see the definition of 
precision agriculture on the website of the International Society of Precision 
Agriculture: www​.ispag​.org). More specifically, the target is often economic 
optimisation, i.e. not the input rates that give the highest yields, but those that 
provide the optimum balance between input costs, desired yield quality, grain 
price etc. The need to avoid nutrient losses to the atmosphere or through 
leaching or erosion adds additional complexity, making it difficult to identify 
the economic optimum in practice. During the cropping season, when fertilisers 
need to be applied, crucial information is lacking on e.g. the amount of rainfall 
during coming months and the amount of nutrients that will be supplied from 
the soil.

2.2 �Economic optimisation with crop sensors – an example of 
spatial variation in a wheat field

An example of how the economic optimum nitrogen (N) rate (EONR) can 
vary within part of a wheat (Triticum aestivum L.) field is shown in Fig. 2. It is 
evident that a uniform N rate for the entire field is not appropriate (Fig. 2a). 
In the example, average EONR is 154 kg N ha−1 (range 82-225 kg N ha−1). The 
average yield at this EONR (Fig. 2b) is 8.34 t ha−1 (range 5.1–10.5 t ha−1), with an 
average protein content of 11.7% (range 10.6–13.7%) (Fig. 2c). In this example, 
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the N response curves of grain yield and protein concentration, and thereby 
EONR, are known for every single 12 m × 12 m grid cell of the area (through a 
so-called chessboard trial, the principle of which is described in e.g. Kindred 
et al. (2016)). In a real situation, this is never the case. At best, the field-average 
N requirement is predicted early in the cropping season based on an estimate 
of future yield combined with an estimate of N supply from the soil. To better 
account for crop growing conditions during the season, the total N dose can be 
split into a few split applications (2–4) over time. Use of crop sensors to assess 
crop growth and N uptake before every split application can be one way to 
optimise the N requirement in different parts of a field.

3 � The electromagnetic spectrum – reflection 
characteristics of light from a crop

Light falling onto a plant leaf is either reflected from the leaf surface, absorbed 
or transmitted through the leaf. Most crop sensors used in precision agriculture 
measure the reflectance of light or transmittance through the leaf. These 
sensors may be used in situ, in contact with the object (e.g. leaf, stem or ear) 
or at a distance from the crop (e.g. mounted on a tractor or carried by hand). 
Some sensors have their own light source (active sensors), whereas others rely 
on incoming sunlight (passive sensors).

A growing crop may reflect light as shown in Fig. 3. The reflectance 
characteristics of a crop are called its spectral signature. Different types of crops 

Figure 2 Example of spatial variation in an approximately 3 ha area of a winter wheat field 
in Sweden, where each cell is 12 m × 12 m: (a) Economic optimum nitrogen rate (EONR), 
(b) grain yield at EONR and (c) grain protein content at EONR.
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or even different cultivars of the same crop may have their own spectral signature, 
with slight shifts from the curve shown in Fig. 3. This shift is used e.g. in crop type 
classification with satellite image analysis. Green, healthy vegetation reflects 
only a small amount of the incoming visible light, in the photosynthetically active 
radiation spectral region (400–700 nm). Leaf chlorophyll absorbs especially 
blue and red light, which is used as a source of energy for photosynthesis, while 
somewhat more of the green light in solar radiation is reflected. At slightly longer 
wavelengths (>700 nm), much more light is reflected, with a sharp increase in 
reflectance up to around 780 nm (Fig. 3). This part of the spectrum is referred 
to as the red edge and is part of the near-infrared region (NIR) in which the cell 
structure of the leaves reflects about half of all incoming light. In the short-wave 
infrared (SWIR) region (sometimes also called the mid-infrared region, MIR), 
from 1300 to 2500 nm, reflectance is lower due to absorption related to plant 
water content (lower water content results in higher reflectance). Some of the 
satellites used in precision agriculture (e.g. Landsat and Sentinel-2) record light 
also in the SWIR region, but it is less common for proximal sensors currently 
used in practical precision agriculture to have the ability to measure reflectance 
in this part of the spectrum. The thermal infrared region (TIR) refers to long-
wave infrared light, commonly encompassing wavelengths between 8000 and 
14 000 nm (beyond the scale in Fig. 3) and is of interest in measurements with 
thermal sensors. All objects with temperature above 0 K, including vegetation, 
emit heat in the form of long-wave energy.

Figure 3 Generalised spectral signature (reflectance) of a cereal crop canopy in the visible 
to short-wave infrared region of the electromagnetic spectrum, which is commonly used 
in remote sensing. Most proximal crop sensors currently used in precision agriculture 
record light in the visible to near-infrared region. Reflectance refers to the reflected 
fraction of incoming light.
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The dramatic differences in light reflectance in the visible to NIR part of the 
spectrum are of particular importance in crop sensing in precision agriculture 
(Fig. 4). Many crop sensors use the difference in reflectance between the 
NIR region and the visible region of the electromagnetic spectrum to deliver 
information on crop status. As can be seen in Fig. 4, the spectral signature of 
a wheat crop varies in a typical manner according to the amount of N applied, 
provided that N is the limiting factor for crop growth. Wheat receiving 0 kg N 
ha−1 displays high reflectance in the visible wavebands and lower reflectance in 
the NIR region. An increasing amount of N lowers the reflectance in the visible 
bands and increases the reflectance in the NIR bands, in the case shown with a 
large increase when 80 kg N is added and a smaller increase when successively 
higher N dose is used until at some level there is no increase. In principle, this 
interaction between reflectance and N is the basis for the use of crop sensors 
in precision agriculture.

Figure 4 shows the wavebands of different types of crop sensors, with 
different symbols indicating the bandwidth. These are satellites Sentinel-2 

Figure 4 Crop canopy reflectance of a winter wheat crop (cv. Julius) just after flowering 
(Zadoks growth stage DC 69-75; Zadoks et al. 1973). Data from 10 Swedish field trials 
2019–2021 testing six nitrogen (N) rates (described in Piikki et al. 2022). Band recordings 
by different sensor types are shown with different symbols: Satellites: Sentinel-2 (ESA, 
France) and Planetscope (Planet, USA); drone camera: Micasense Altum (AgEagle, 
USA); handheld: GreenSeeker, GS (Trimble/Case, USA), RapidScan CS-45, RS (Holland 
Scientific, USA).
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(ESA, France) and Planetscope (Planet, USA), the Micasense Altum (AgEagle, 
USA) drone camera, and the handheld proximal sensors GreenSeeker (Trimble/
Case, USA) and RapidScan CS-45 (Holland Scientific, USA). Optical satellite 
sensors and optical drone sensors are passive sensors, whereas the handheld 
GreenSeeker and RapidScan sensors have their own light source. The bands 
available can be used to describe the difference in reflectance between the 
visible and NIR regions. This is most often done by combining reflectance (ρ) 
data from two or more bands into a vegetation index, commonly a normalised 
difference index (NDI) where: NDIi,j = ([ρi – ρj]/[ρi + ρj]). Examples are normalised 
difference vegetation index (NDVI) and normalised difference red edge index 
(NDRE):

NDVI = (ρNIR – ρRed)/(ρNIR + ρRed)	 (Eq. 1)

NDRE = (ρNIR – ρRed edge)/(ρNIR + ρRed edge)	 (Eq. 2)

As can be seen in Fig. 4, the bands recorded by different sensors are slightly 
different in terms of wavelengths and bandwidths. This means that indices such 
as NDVI and NDRE differ somewhat between sensors.

There are hundreds of different indices described in the literature (see 
e.g. the on-line Index Database: https://www​.indexdatabase​.de/), often with 
the aim of finding band combinations that are empirically well related to 
various crop properties. The challenge is that different stresses affecting the 
crop may be difficult to distinguish using reflectance in a few wavebands. In 
general, more and narrower bands make it possible to describe the spectral 
characteristics of a crop more precisely. A multispectral sensor is able to record 
reflectance in several bands. A sensor with a large number of bands over a 
continuous spectral range is called a hyperspectral sensor. Such sensors may 
have several hundred bands and are used in research but are not commonly 
used in practical precision agriculture.

4 � Site-specific weed management and variable-rate 
application of nitrogen with proximal sensors

Two main uses of proximal crop sensors are in site-specific weed management 
(SSWM) and variable-rate application of N. In SSWM, this often involves using 
cameras mounted on a spray boom to detect visible light (red-green-blue, RGB) 
at very high spatial resolution to allow for feature detection to separate weeds 
and crops. In variable-rate N application, it is more common to use spectrometers 
detecting reflectance from the crop canopy in different wavelengths in the visible 
to NIR region of the electromagnetic spectrum. Typically, these applications of 
proximal crop sensors take place at certain times of the growing season. Figure 5 
indicates the two periods during which SSWM and variable-rate N application 
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are undertaken in cereals, the example is wheat in Scandinavia. Weed scanning 
is done before the crop becomes too dense, possibly until the beginning of 
stem elongation (stage DC 30), whereas variable-rate N application based on 
crop sensing is commonly carried out during stem elongation to booting. For 
fertilisation, this is typically in split-dose application strategies, where a first dose 
of N (or NPK) may be applied at a uniform rate and subsequent doses are based 
on crop status, to adapt to within-field variability and varying mineralisation of 
soil N, which can be caused by seasonal rainfall and temperature patterns.

In the management approach depicted in Fig. 5, application of other 
major  nutrients, such as phosphorus and potassium, and adjustment of 
soil pH with lime are carried out before the cropping season, based on soil 
mapping (and/or with proximal soil sensors if precision agriculture practices 
are employed). The seed rate may also be varied based on e.g. soil texture 
conditions. As mentioned, a first uniform N dose is applied early in the season 
(further details on precision soil management are provided in other chapters of 
this book). Since it is challenging to predict N requirement before the cropping 
season, it can be advantageous to add N on a few occasions during the season 
in order to come as close as possible to the EONR (see Fig. 2). Targeting the 
optimal N rate is beneficial for the quantity and quality of yield but also for 
reducing losses of N through leaching and volatilisation (Karlsson Potter et al. 
2022). There is a considerable potential to increase the N use efficiency in 
agriculture, which on a global scale is estimated to be only 33% (Raun and 
Johnson 1999).

Figure 5  Examples of timing of different management actions in a growing cereal 
crop. Site-specific weed management using proximal cameras takes place early in the 
crop season. Variable-rate nitrogen (N) application is typically undertaken during stem 
elongation. Liming and phosphorus and potassium fertilisation are normally carried out 
before the season.
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4.1 �Crop sensors for site-specific weed management

The goal of SSWM can be to reduce the use of herbicides in conventional 
farming or to control weeds mechanically. Camera-guided inter-row hoeing 
is of interest in both organic and conventional farming and allows for precise 
tracking of crop rows and adjustment of the implement (Gerhards et  al. 
2022). Chemical weed management in precision agriculture based on crop 
sensors mainly consists of three parts: (1) recognition and mapping of weeds, 
(2) assessment of suitable treatment and (3) actual weeding, e.g. on-or-off 
spraying. Weeds commonly occur non-uniformly in a field, often in patches. 
Avoiding a flat rate can therefore often reduce herbicide use substantially, 
by 50–90% (Gerhards et al. 2022). This can contribute substantially to overall 
environmental policy goals such as the European Union Green Deal to reduce 
chemical use and increase biodiversity (European Parliament 2019).

Systems for weeding can be off-line or real-time. In an off-line system, 
mapping of weed occurrence is carried out beforehand, e.g. using drones or 
cameras mounted on a vehicle (Rasmussen et al. 2013). In a real-time system, a 
number of cameras can instead be mounted on a spray boom, allowing instant 
image analysis of weed occurrence, and the outcome immediately controls the 
spraying pattern. The off-line approach has the advantage that the user can 
see the results of mapping for the whole field in advance and take decisions 
on treatment in a more interactive manner, e.g. it is possible to determine the 
exact amount of herbicides needed. The real-time approach requires less time 
and can be entirely automated. The process of distinguishing weeds from crops 
with image analysis is a major challenge and there is a considerable amount 
of research dealing with this matter (see reviews by e.g. Allmendinger et  al. 
2022; Gerhards et al. 2022; Hu et al. 2024). The most straightforward situation 
is when weeds are the only green vegetation present, e.g. colonising bare soil 
after harvest of a grain crop (“green-on-brown”). A simple green-red vegetation 
index or an index based on visible and near-infrared wavebands works well for 
weed mapping in this case. It is more complicated to automatically distinguish 
weeds in a growing green crop (‘green-on-green’). The most challenging task 
is separating grassy weeds in a cereal crop, while broadleaf weeds are easier 
to recognise.

Major manufacturers of agricultural services offer solutions for camera-
controlled chemical spraying, such as the John Deere See & Spray Select system 
and the Bosch/BASF One Smart Spray system. A challenge in this regard is the 
lack of standard protocols for linking detection and weed treatment systems 
(Gerhards et  al. 2022). Some commercially available systems, such as the 
WeedSeeker and Bilberry SSWM (by Trimble/AGCO) and the DAT Ecopatch 
(Dimensions Agri Technologies, AS, Norway), can be mounted directly on an 
existing sprayer if it is equipped with the ISOBUS communication system. The 
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DAT Ecopatch system consists of downward-looking RGB cameras (as opposed 
to forward-looking cameras in some other systems) that are placed 3-4 m apart 
along the boom (Fig. 6). As with other similar systems, image analysis is done 
with a machine learning/artificial intelligence algorithm that predicts green-on-
green weed coverage and crop coverage, most efficiently up to the growth 
stage around DC 30 (as indicated in Fig. 5). The DAT system uses a patch 
spraying approach, which means that an entire section of the sprayer is on-or-
off depending on the image analysis results, and patches or groups of weeds 
are sprayed – an approach that is proven suitable in small-grain cereals. An 
alternative is systems that aim for spot spraying, which can target even single 
plants (Allmedinger et al. 2022).

4.2 �Tractor-mounted crop sensors for real-time management

Tractor-mounted sensors are among the most widely used tools in practical 
precision agriculture. They are mainly used not only in small-grain cereals 
and maize but also in e.g. potato and oilseed rape. They are based on the 
principle that a tractor-mounted crop sensor (typically on the cab roof or a 
front-boom) scans the crop canopy, most commonly for applying variable-
rate N according to crop status. Sensed signals of crop canopy reflectance 
in different wavebands are directly processed in the tractor, and a calibration 
model computes a suitable amount of N to apply (Fig. 7). This information is 
then sent via some form of application rate controller that adjusts the spreader 
accordingly. The sensors used in real-time scanning can be active or passive. 

Figure 6  Cameras for weed detection, mounted on a spray boom. Images are taken 
continuously and analysed for weed and crop coverage in real time. Inset: original 
image (left) and classified image (right). Source: Photo adapted from: Dimensions Agri 
Technologies, Norway.
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In addition to N management, these systems are e.g. also used for variable 
fungicide application, adapting the rate according to biomass variation.

An example of a passive sensor is the first version of the Yara N-Sensor 
(Yara, Norway), which was introduced commercially in the late 1990s (Heege 
2013). To handle differences in ambient light, that sensor simultaneously 
recorded incident light through an upward pointing sensor to correct for 
varying light levels, while one spectrometer registered reflectance in four 
spots around the vehicle (two on each side) at an angle of around 60°. This 
was originally a hyperspectral sensor with 45 bands in the range 450–900 nm 
(10 nm wide) but only two bands in the red edge region were used to estimate 
an internal vegetation index (Reusch 2006). An assessment of how different 
band combinations is related to N uptake in winter wheat was done by Reusch 
(2005). Wolters et al (2021) showed that a chlorophyll index (using the bands 
740 nm and 783 nm) calculated by Sentinel-2 satellite images can predict very 
similar within-field maps of N uptake as those obtained with a tractor-borne 
Yara N-Sensor (mean absolute difference 7 kg N ha−1 on comparing data from 
13 wheat fields).

It is more common today to use active sensors in real-time scanning and 
application. By using light-emitting diodes or laser diodes the sensors become 
independent of sunlight, so scanning can be done at night or with varying cloud 
cover. Examples of active commercial on-the-go instruments for crop sensing 
are GreenSeeker (Trimble/Case, USA) (using two bands calculating NDVI (red 
660 nm, NIR 770 nm; see Fig. 4)), OptRx sensor (AgLeader, USA) (using three 
bands, 670, 730 and 780 nm; same as RapidScan shown in Fig. 4) and CropSpec 
(TopCon, Japan) (two bands, 735 and 805 nm). The active version of the Yara 
N-Sensor, ALS, records reflectance in the bands 730, 760, 900, 970 nm (Reusch 
2006), while its successor, ALS-2, uses four bands in the red-to-red edge region 

Figure 7 Schematic view of a tractor-mounted proximal crop sensor used for real-time 
variable-rate application of fertiliser (most commonly nitrogen).
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and a xenon flashlamp as light source. ISARIA (Fritzmeier, Germany) is another 
active sensor solution, with proprietary indices depicting biomass and N status.

An essential component of these real-time systems is an agronomic model 
for converting the reflectance data obtained into management information, 
such as an N rate to apply. In Fig. 8, this model is exemplified as a grey central 
box, between sensor maps on top and variable-rate N maps below. The 
rectangular pattern (12 m × 24 m along tramlines) in the N rate maps in Fig. 8 
coincides with the 24-m wide boom spreader used by this farmer. The tractor 
sensor used by the farmer is a Yara N-Sensor ALS and the N topdressing map 
shown is output from the model used by that system. The other two N rate maps 
are simply based on correlation between the N-Sensor and the other sensors 
(coefficient of determination R2 in this case between data from the tractor index 

Figure 8 Upper panels: Maps of chlorophyll index from different sensors in a 7.7-ha wheat 
field in south-west Sweden at late stem elongation (DC 39; time of supplementary N 
fertilisation). The grey box represents an agronomic model. Lower panels: N application 
maps based on different sensors (tractor sensor Yara N-Sensor ALS, satellite image 
Sentinel-2 (20-m pixels), drone camera Micasense Altum; all data collected within five 
days). The zero-N plot received no N previously during the season. Diagram modified 
from Nilsson et al. (2023).
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and the drone camera and satellite is 0.74 and 0.59, respectively). It is evident 
that the different sensors can generate a relatively similar N rate application 
file if data are collected at the same time and if the same agronomic model is 
used. The advantage of the tractor sensor is that it can be used under different 
weather conditions, at any time of day (if active), and the whole process of 
scanning and application can be automated. Mapping and detailed positioning 
are not necessary in the real-time solution, making it simple to use in practice. 
However, an advantage of pre-fertilisation mapping with satellite or drone is 
that it provides an overview of the entire field, which can be useful in decision-
making and the fertilisation strategy can be adapted accordingly. There are 
also economic differences between tools that can be decisive for users.

There are different approaches for transferring data from the real-time 
sensors to actuation, e.g. applying the right amount of N. In the simplest 
approach, the farmer scans a small reference area considered representative 
of the average N requirement. The system may then vary the N application 
through a built-in model (e.g. adding more N in areas with lower vegetation 
index values, with some restrictions as in the case in Fig. 8). Some systems allow 
the user to use two arbitrary reference areas (high, low) and distribute according 
to the difference. In these cases, the farmer may use expert knowledge to 
manually set a desired N rate. Various tools can be used to guide the farmer 
to a suitable N rate. Small on-farm experiments (Lacoste et al. 2022) such as 
zero-plots (no N added; example shown in Fig. 8) and/or max-plots or max-
strips (sufficient N applied to ensure N is not limiting for crop growth) can be 
used as reference in estimation of N rate (e.g. Johnson and Raun 2003; Lukina 
et al. 2001). Such plots are intended to indicate the level of soil N supply and 
yield potential, respectively, in the actual growing season (e.g. Raun et al. 2001). 
An approach that does not require a real max-plot is to use a so-called virtual 
reference plot (Holland and Schepers 2013), which takes e.g. the 95-percentile 
vegetation index value of the field as a max value. The information from such 
on-farm experiments can be used in the calculation of a suitable N rate to apply 
(Piikki et al. 2022).

5 � Examples of handheld sensors and sensors in contact 
with plants

Some real-time sensor systems have the same components as some handheld 
spectrometers, such as the active sensors GreenSeeker (Trimble/Case, USA) 
and the RapidScan CS-45 (Holland Scientific, USA), which has similar optics to 
the OptRx tractor system. In addition, both passive and active versions of the 
Yara N-Sensor exist as handheld units. Such instruments are particularly useful 
in research, in small-plot field trials, and in evaluating on-farm experiments 
(e.g. producing data to be used in calibrations of real-time sensors). Handheld 
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hyperspectral sensors are also used in spectroscopic research, e.g. instruments 
such as ASD Fieldspec 4 (Malvern Panalytical, USA) can record reflectance in 
contiguous narrow bands from 350 to 2500 nm. Such instruments can be used 
in the development of new crop sensor applications (e.g. Pierna et al. 2022). 
Another type of handheld instrument uses ultraviolet fluorescence. One such 
instrument is the Multiplex (FORCE-A, France), which uses light-emitting diodes 
(in visible and ultraviolet (375 nm) light) and filtered photodiodes for screening 
of chlorophyll fluorescence (Ben Ghozlen et al. 2010). The instrument provides 
different fluorescence indices that have been shown to be useful for detecting 
nutrient stress, diseases and e.g. maturity and quality in grapes (Agati et  al. 
2018).

The now classical handheld absorbance-based SPAD meter was developed 
by Minolta (Konica Minolta, Japan) in the 1980s, although the development 
of such an instrument was described earlier (Wallihan 1973). The SPAD-502 
meter indirectly measures the chlorophyll content per unit leaf area based 
on transmittance of red (650 nm) and infrared (940 nm) radiation through the 
leaf when a light source and a detector are clamped around a leaf. The Yara 
N-tester (Yara, Norway) is an adaptation of the SPAD meter with calibrations of 
N requirement for a range of crops. A non-linear relationship between SPAD 
meter readings, the Yara N-tester and chlorophyll concentration in different 
crops has been described by e.g. Uddling et al. (2007). To acquire representative 
readings for a crop stand, a number of measurements must be made on 
different leaves. For example, in small-grain cereals, measurement with the Yara 
N-tester should be made on 30 leaves (flag leaves) to get a reading. Other 
brands of chlorophyll meters using the same principle are now also available. 
The Dualex Scientific (FORCE-A, France) is a similar type of sensor, but it uses 
ultraviolet light to quantify chlorophyll concentration and polyphenol content. 
Chlorophyll meters have been shown to be useful for calibrating real-time 
sensors and other remote sensing data, since it is laborious to generate data 
with spatial coverage using chlorophyll meters alone (e.g. Miao et  al. 2008; 
Söderström et al. 2017).

Since chlorophyll meters can give a quantitative measure of the N 
concentration in crop leaves (e.g. per unit fresh weight or leaf area), these 
instruments can also be used to measure N uptake (kg N ha−1) when combined 
with information on biomass. In a pilot study, Blackert (2018) found that 
handheld GreenSeeker measurements and chlorophyll meter readings in 
combination were well correlated (R2 = 0.96) with analysed N uptake (kg N 
ha−1). A commercial service is now available (from Yara, Norway) in which the 
ground coverage of the crop based on an ordinary digital photo is combined 
with Yara N-tester readings to quickly assess N uptake.

High-throughput field phenotyping in plant breeding is a field of research 
that is related to precision agriculture, but the requirements differ due to 
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differences in scale, e.g. size and number of plots and fields. Sometimes even 
the detailed structure of individual plants can be of interest in this type of 
research. In a review by Chawade et al. (2019), a multitude of techniques were 
described. Some are similar to those used in practical precision agriculture 
and others have the potential to be included, e.g. as part of tractor-mounted 
real-time sensor solutions. Examples are different techniques to capture plant 
structure and crop height, which could be useful to further refine assessments 
of nutrient requirements and plant protection management. Such techniques 
involve the creation of point clouds that can be used to assess biomass and 
describe plant height, leaf area and leaf angle. Light detection and ranging 
(LiDAR) or, more simply, photogrammetric analysis of a series of overlapping 
photos (structure from motion, SfM) are examples of techniques used. An 
alternative approach for measuring crop height is to use ultrasonic sensors, 
which typically use time-of-flight of a reflected sound wave from a transmitter 
to a receiver. This type of technique has proven useful in practical solutions in 
geometric characterisation of crops and in nitrogen and water management 
(Bronson et al. 2021; Moreno and Andújar 2023).

6 � Case Study 1: Comparison of sensors for prediction 
of N uptake in oats

6.1 �Oats – an important crop

Around two-thirds of the world’s oats (Avena sativa L.) are produced in Europe, 
Canada and Russia (USDA; https://apps​.fas​.usda​.gov​/psdonline, data from 
2023), with reported global average yield of around 2.5 t ha−1 but 2- to 3-fold 
higher yields in countries with more intense production. In Sweden, oats are 
the third largest cereal crop grown and in recent years new markets have 
developed, such as substitutes for rice and dairy products. With this increased 
importance, a better basis for fertiliser recommendations for oat crops is 
required. In Swedish spring oats, N is currently mainly applied at sowing, with 
an optional topdressing shortly after crop emergence. Based on previous 
Swedish experiments on oats, N fertiliser can be split into two doses, with the 
second applied at stem elongation (Zadoks’ growth stage DC 32-37; Zadoks 
et  al. 1973), without affecting yield compared with applying all N at sowing 
(e.g. Krijger 2011). One benefit of split fertiliser application is that it allows the 
fertiliser level to be adjusted at a stage when it is easier to predict soil N delivery 
during the growing season (Delin and Stenberg 2014; Walsh and Walsh 2020). 
Adjustment of N fertilisation to current crop status within and between fields 
using crop sensors has been successfully performed for other crops (Berger 
et al. 2020; Diacono et al. 2012; Mulla 2013).
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6.2 �Split N application can be beneficial

A recent study by Engström et  al. (2024) investigated the effect of split N 
application on yield and quality in four spring oat varieties, with topdressing of 
N at DC 31 and DC 45, in three small-plot field experiments per year at different 
sites in south-west Sweden (Götala, Multorp, Lanna) in 2020, 2021 and 2022 
(Fig. 9). The soil type is sandy loam at Götala, silty clay loam at Multorp and 
silty clay at Lanna. The sowing date was mainly around April 15, but varied from 
April 3 at Götala in 2020 to April 22 at Lanna in 2022. The preceding crop was 
winter wheat or spring oats at all sites and in all years. The results indicated 
that EONR for oats (kg ha−1) could be explained by yield at EONR (OptNyield) 

Figure 9  Design of one of the small-plot field experiments on oats in the case study. 
False-coloured image from the Micasense Rededge drone camera (red = NIR band; 
green = red band; blue = green band). Reflectance panels can been seen along the 
edges and marks after cutting the crop are visible in parcels in the upper part of the trial.
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(t ha−1) and N uptake (kg ha−1) in unfertilised plots at DC 31-32 (Eq. 3) and 
43-47 (Eq. 4):

EONR = 93 + 11 × OptNyield – 1.7 × N uptake	 (Eq. 3)

EONR = 74 + 14 × OptNyield – 1.0 × N uptake	 (Eq. 4)

When determining EONR, the grain/fertiliser price ratio was in this case set 
to 8.0 (based on the average of the previous 10-year period) (Engström et al. 
2024). Topdressing at the later stage (DC 43-47) increased the chances of 
higher protein and more accurate prior prediction of EONR (R2 = 0.96 vs. 0.70 
at DC 31-32). Another finding was that estimation of N uptake by a crop sensor 
during these growth stages would enable variable rate application.

In the case study, prediction models of N uptake were developed with four 
different multispectral crop sensors. To determine N uptake during the season, 
the crop was cut (2 × 0.25 m2 areas) in each plot (total plot size ~2 m × 10 m) in 
N fertilisation treatments supplying 0, 70, 100 and 160 kg N ha−1, for all varieties 
in one block and on two occasions, DC 31-32 and DC 43-47. Crop samples 
were dried at maximum 55°C, N concentration was analysed and N uptake was 
calculated. On the same occasions in each plot, before cutting, measurements 
of crop canopy reflectance were carried out with two handheld spectrometers 
and two drone-borne multispectral cameras. The handheld sensors were Yara 
N-Sensor ALS (Yara, Norway) and RapidScan-CS-45 (Holland Scientific, USA), 
although the RapidScan sensor was only used in two seasons (2021 and 2022). 
The drone cameras were a five-band Micasense Rededge camera (AgEagle, 
USA; with similar bands as Micasense Altum in Fig. 4) and a nine-band MAIA 
camera (Eoptis Srl., Italy; with bands the same as Sentinel-2 in Fig. 4).

The measurements with these sensors were made in a manner commonly 
applied or recommended by the instrument provider. With the handheld 
Yara N-Sensor, the value recorded for each parcel was the average of four 
measurements made from each parcel corner from about 1.5 m above the 
ground, at an angle of about 45°. With the RapidScan, continuous scanning and 
logging of data were carried out while walking along one side of each parcel 
(holding the instrument 0.5–1.0 m above the canopy, at an angle of 45° so that 
the instrument was aimed at the centre of the parcel). The drone cameras were 
mounted on the same drone (a customised Explorian-8, Pitchup, Sweden). The 
flights were carried out with a sun angle of not less than 45°, each flight in as 
uniform weather as possible (either sunny or cloudy). Flight altitude was 80 m 
and flight speed 5 m s−1. The image overlap was at least 80%. Both cameras had 
an incoming light sensor, from which data were used in image post-processing. 
The Micasense Rededge was calibrated with a photo of the target panel before 
and after each flight, whereas for the MAIA camera 50 cm × 50 cm reflectance 
panels (from MosaicMill Oy, Finland) were used, with reflectance 2%, 8%, 23% 
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and 44% (in all bands). Image mosaics were made with the Solvi web service 
(Solvi AB, Sweden; https://solvi​.ag). The reflectance panels were placed within 
the field trial (as seen in Fig. 9) and used to establish a relationship between 
digital numbers in the different bands and the values of the panels. Calibration 
of the mosaics was then done using this empirical relationship (‘empirical line 
method’; Aasen et al. 2018).

The average reflectance values for each parcel and for each sensor 
were extracted and compared with the results of laboratory analyses on the 
cut plant samples. A range of different vegetation indices were computed 
and comparisons were made through bivariate and multivariate regression 
analyses. Prediction models were validated through a leave-one-trial-out 
procedure and also a leave-one-year-out procedure. Results of the leave-one-
year-out evaluation and results obtained using the generally best-performing 
bivariate linear or non-linear model between sensor data and reflectance data 
are reported here.

The best-performing individual vegetation index in this case was chlorophyll 
index (ChlI) (Gitelson et al. 2003), although the difference compared with some 
other similar red edge indices, such as NDRE, was very small. The chlorophyll 
index is simply based on the ratio of two bands (ρ) in the red edge-NIR region:

Chll = (ρNIR/ρRed edge)–1	 (Eq. 5)

For the Yara N-Sensor, only the internal vegetation index (SIYara) was used, 
details of which are not publicly available. The SIYara values obtained have been 
shown to be strongly correlated with ChlI (e.g. Söderström et  al. 2017). For 
the RapidScan sensor, the bands NIR (780 nm) and RE (730 nm) were used for 
calculation of ChlI. For Micasense Rededge, camera bands 5 (840 nm) and 4 
(717 nm) were used, while for the MAIA device sensor bands 7 (783 nm) and 6 
(740 nm) were used.

6.3 �Predicting N uptake in oats with crop sensors

Overall in the experiments, N uptake (kg N ha−1) was very similar in 2021 
(mean = 58, σ = 28, n = 96) and 2022 (mean = 52, σ = 32, n = 96), but lower 
in 2020 (mean = 28, σ = 23, n = 32). For all sensors, there was a relatively 
strong correlation between the vegetation index and analysed N uptake. The 
relationship was linear in all cases except for the RapidScan sensor, where the 
data followed an exponential function (Fig. 10). Since the different crop sensors 
used record reflectance in different bands, the calculated ChlI was expected 
to differ.

As can be seen in Fig. 10, the ChlI values differed substantially between 
the sensors. For the RapidScan (left panel in Fig. 10), there was an exponential 
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relationship between ChlI index and crop N uptake. For the drone cameras 
(centre and right panels), only a few very high N uptake values (>100–120 kg N 
ha−1) tended to deviate from a linear relationship. The reason for the exponential 
behaviour of data from the RapidScan sensor is uncertain. Measurements with 
that instrument were made at an angle, so more of the plant affected the data. 
However, this was also the case with the Yara N-Sensor, although that instrument 
uses an internal vegetation index. Making measurements at an angle could 
be an advantage e.g. if the crop stand is thin, by reducing the impact of soil. 
Moreover, RapidScan is an active sensor and some studies suggest that these 
may be more strongly affected by the uppermost part of the plant stand 
compared with passive sensors (Winterhalter et  al. 2013). Therefore even 
though the bands in RapidScan are relatively similar to the bands used in the 
MAIA camera, differences in the instrument and in the measurement procedure 
can cause differences in the values produced.

Results of the leave-one-year-out validation are displayed in Table 1. This 
type of challenging validation should indicate the general performance of 
prediction models, which is useful in assessment of use of the models in other 
locations and years. All sensors performed well (R2 > 0.7, root mean square 
error of predictions (RMSEP) <20 kg N ha−1). The nine-band drone camera 
(MAIA) had slightly higher R2 value and the lowest prediction error of all sensors 
(R2 = 0.85; RMSEP = 12 kg N ha−1). Very high values of N uptake in a dense 
crop stand are most challenging to predict with sensors based solely on crop 
canopy reflectance. As mentioned earlier in this chapter, using information on 
crop height or structure of plants within the stand could possibly improve the 
model (e.g. Moreno and Andújar 2023). Combining information from different 
types of sensors may further improve predictions of N uptake.

Since all four sensors types performed relatively well at estimating 
N uptake up to about 100 kg ha−1, they and other similar sensors could be 
useful tools for predicting EONR during the growing season, e.g. using the 
equations reported above (Eqs. 4 and 5). The choice of tool used depends 
on the type/s available for the farmer/advisor and how quickly and easily the 

Table 1 Results from leave-one-year-out validation of oats N uptake prediction models. 

​ Years Index Type of model R2 RMSEP

RapidScan 2021, 2022 ChlI Exponential 0.77 15 kg N ha−1

Yara N-Sensor 2020–2022 SIYara Linear 0.79 14

Micasense 
Rededge

2020–2022 ChlI Linear 0.80 16

MAIA 2020–2022 ChlI Linear 0.85 12

RMSEP = root mean square error of predictions vs. observed values. SIYara is the proprietary index of 
the Yara N-Sensor. 
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sensor data can be retrieved. The most challenging part in predicting EONR 
early in the season is accurate assessment of future yield, which is used in the  
calculation.

7 � Case Study 2: Evaluation and upscaling of portable 
tools for crude protein determination and field 
mapping in conjunction with Sentinel-2 satellite 
imagery

7.1 �Mapping of protein needed in nitrogen use efficiency 
estimations

This case study demonstrates how a portable NIR protein content analyser can 
be combined with satellite imagery and used to create field-scale crop protein 
maps. The study was conducted in two cropping seasons, 2021 and 2022, but 
the information presented here is a subset of the data, collected in 2022. An 
initial report on the study can be found in Morandin Figueiredo et al. (2023).

Ability to determine crop quality parameters in the field would greatly 
increase the capacity of growers to estimate the use efficiency of inputs, such as 
irrigation, fertilisation and plant protection products, allowing for more precise 
field management. Crude protein (CP) is an essential variable in terms of N use 
efficiency evaluations. In precision agriculture, it is currently relatively easy to 
keep track of applied rates of N fertiliser and of yield, but it is less common to 
have detailed knowledge about the protein concentrations in different parts 
of the field. A study by Börjesson et al. (2019) showed that CP in winter wheat 
could be predicted with mean absolute error (MAE) <1% by combining an early 
(end of stem elongation) and a late (milk development) satellite image. In a 
review of CP predictions, Bastos et al. (2021) noted that on-combine protein 
measurements are generally more accurate than CP predictions made using 
proximal or remote sensing. However, on-combine protein mapping is still very 
uncommon in practice.

An alternative procedure for CP mapping could be to combine a proximal 
CP sensor, to achieve a sufficient amount of ground observations, with 
remote sensing data from satellites or drones to generate within-field protein 
maps. One tool that can make this possible is the GrainSense (GS) Analyzer 
(GrainSense Oy, Finland). It employs NIR analysis methodology for grain CP 
determination by a portable handheld device with a built-in calibration model. 
The objective of this experiment was to evaluate the accuracy of this instrument 
in CP determination compared with the reference laboratory method and, if 
necessary, to test different calibration approaches and assess whether the data 
obtained from such tools can be used in combination with satellite imagery in 
a cost-effective alternative to protein mapping devices mounted on combine 
harvesters.
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7.2 �Methods and data

Winter wheat samples were harvested from producers’ fields located within a 
20 km × 20 km area in south-west Sweden. A total of 46 samples were collected 
from five different fields with three different cultivars (two fields with cv. Reform, 
two fields with cv. Brons, one field with cv. Norin) during the 2022 cropping 
season. Each sample comprised nine subsamples collected in a 3-m radius 
using a Minibatt (Godé, France) electric handheld sample harvester. Samples 
were georeferenced using a Nomad handheld GNSS computer (Trimble, USA), 
to enable extraction of corresponding reflectance values from satellite images. 
The winter wheat samples were oven-dried at 40°C for 24 h and cleaned using 
a sample cleaner model MLN (Pfeuffer, Germany), before being submitted 
for analysis. Grain CP was determined by calculating the average of five sub-
samples using the GS tool. Reference CP value was obtained from laboratory 
analysis using an InfratecTM 1241 (Foss, Denmark) grain analyser, which uses 
near-infrared transmittance (NIT) methodology.

Statistical analyses were performed with R Statistical software (R Core 
Team 2022). The metrics used for evaluation of the models were Nash-Sutcliffe 
model efficiency (E), which measures how well predicted versus observed 
data fit the 1:1 line (Nash and Sutcliffe, 1970), MAE, which is the mean of the 
absolute difference between predicted and observed data, and coefficient of 
determination of a linear regression model between predicted and observed 
data (R2).

Satellite images were obtained from the Sentinel-2 satellite Multi Spectral 
Instrument (MSI). Level-2A data (bottom of the atmosphere or surface 
reflectance; Obregón et al. 2019) were extracted for each sample point from 
the images in ArcGIS Pro, version 2.5.1 (ESRI 2023). Among the bands available 
from the satellite MSI, only nine bands were used: bands 02 (490 nm), 03 (560 
nm), 04 (665 nm), 05 (705 nm), 06 (740 nm), 07 (783 nm), 8A (865 nm), 11 
(1610 nm) and 12 (2190 nm). Output images from the Level-2A processing at 
20 m spatial resolution contain all bands available from the satellite MSI and 
therefore 20 m was chosen as the resolution for the present work. Images were 
gathered from late May, which corresponds to flag leaf emergence in winter 
wheat (Zadoks’ growth stage DC 37) and is when farmers in Sweden usually 
apply topdressing fertiliser, to late July, which is close to maturity (>DC 80). 
The images were screened and images with clouds covering any portion of the 
included fields in the study were discarded. Only five images in the date range 
were considered suitable for analysis in 2022 (Table 2).

Table 2 Satellite image dates used for analysis.

Year Image dates (DD/MM)

2022 29/05, 05/06, 25/06, 30/06, 15/07
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7.3 �Calibrating the GrainSense instrument

There was a significant difference between GS and laboratory reference 
values, making it necessary to develop instrument calibration models prior to 
using the data from the GS tool in the upscaled modelling. Models to correct 
the protein content from the GS tool were built by linear regression, using the 
GS data as predictor variables and the laboratory data as response variables. 
Two approaches were evaluated: general calibration, where the entire dataset 
was used to parameterise the model, and field-specific calibration, where the 
dataset was split and field-specific models were built. Overall, field-specific 
calibration models outperformed the general model, with MAE ranging 
from 0.14% to 0.26%, compared with 0.38% for the general model (Table 3 
and Fig.  11). The final model for the Bjertorp West site had very low MAE,  

Table 3  Nash-Sutcliffe model efficiency (E), mean absolute error (MAE) and coefficient of 
determination of linear regression models (R2) for field-specific and general calibration models 
for crude protein (CP) prediction in winter wheat.

Field Cultivar E MAE (%) R2

Mean CP (%)

Observed Predicted

Bjertorp West Brons −0.09 0.14 0.11 10.68 10.69

Bjertorp North Norin 0.85 0.17 0.86 11.58 11.56

Kilagarden North Reform 0.94 0.26 0.94 12.36 12.36

Skofteby Northeast Brons 0.87 0.23 0.87 11.67 11.65

Skofteby Southeast Reform 0.97 0.20 0.97 11.57 11.58

General model ​ 0.83 0.38 0.83 11.57 11.57

Figure 11 Results of leave-one-out cross-validation of (a) general and (b) field-specific 
calibration models for GrainSense crude protein analysis. Dashed lines represent the 1:1 
ratio.



﻿Developments in proximal crop sensing for precision agriculture24

Published by Burleigh Dodds Science Publishing Limited, 2025.

but the model was not robust due the fact that the data used to build it had a 
very small range.

7.4 �Combining proximal and remote sensing to produce 
protein maps for wheat

Grain CP prediction models were built by linear regression and the same 
approach as used for the calibration models was followed. General and field-
specific prediction models were developed with the objective of upscaling the 
GS data in combination with satellite data to generate CP field maps. Calibrated 
GS data were used as response variables and reflectance data from the satellite 
images as predictor variables in different configurations. Individual bands 
(ρ) and combinations of two, three and four bands were tested. Normalised 
difference indices, NDIi,j = ([ρi – ρj] / [ρi + ρj]), were also calculated using all 
combinations of two individual bands and were evaluated individually and 
in two, three and four index combinations. The models were tested for every 
available image, individually and in two and three image sequences. For the 
image sequences, the same bands or indices per image were used. The total 
number of models evaluated is shown in Table 4. Final selection was based on 
the lowest MAE for both general and field-specific models.

The predictor variables for the selected models varied for each field-
specific and general models, as shown in Table 5The best predictors included 
combinations of two indices from two images.

Grain CP prediction models followed the same trend as the calibrations, 
with field-specific models outperforming the general models (Fig. 12).

Table 4 Wheat grain crude protein (CP) regression combinations tested using nine different 
bands in 20-m spatial resolution images from the Sentinel-2 satellite.

Predictor variables Number of combinations

Single band 45

Single band, 2 image sequence 90

Single band, 3 image sequence 90

2/3/4 band combinations 180/420/630

2/3/4 band combinations, 2 image sequence 360/840/1260

2/3/4 band combinations, 3 image sequence 360/840/1260

Vegetation indices 180

Vegetation indices, 2 image sequence 360

Vegetation indices, 3 image sequence 360

Vegetation index combinations 3150

Vegetation index combinations, 2 image sequence 6300

Vegetation index combinations, 3 image sequence 6300
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Variability in yearly weather conditions, cultivar releases and management 
practices make it necessary to update prediction models on a seasonal basis to 
reflect current conditions. An approach was proposed comprising four simple 
steps that farmers can deploy to obtain grain CP maps:

	• Take a number of grain samples from each field.
	• Determine CP in all samples using the GS sensor and send part of the 

samples for laboratory analysis of CP.

Table 5  Nash-Sutcliffe model efficiency (E), mean absolute error (MAE), coefficient of 
determination of linear regression models (R2) and final model predictor variables for field-
specific and general models for crude protein (CP) prediction in winter wheat.

Field E MAE (%) R2

Mean CP (%)

Observed Predicted

Bjertorp Westa −0.11 0.14 0.11 10.68 10.69

Bjertorp Northb 0.85 0.17 0.85 11.58 11.56

Kilagarden Northc 0.94 0.27 0.94 12.36 12.36

Skofteby Northeastd 0.87 0.22 0.87 11.67 11.66

Skofteby Southeaste 0.96 0.22 0.96 11.57 11.56

General modelf 0.73 0.45 0.74 11.57 11.56

aNDI2,7 and NDI6,12 from images 29/05, 05/06 and 15/07.
bNDI3,4 and NDI4,11 from images 29/05, 25/06 and 15/07.
cρ6 and ρ12 from images 29/05, 05/06 and 15/07.
dρ6 and ρ12 from images 25/06, 30/06 and 15/07.
eNDI2,12 and NDI3,12 from images 05/06, 25/06 and 15/07.
fρ3, ρ7, ρ8A and ρ12 from image 29/05, 05/06 and 15/07.

Figure 12 Results of leave-one-out cross-validation between laboratory reference crude 
protein (CP) and predicted CP from selected (a) general and (b) field-specific prediction 
models. Dashed lines represent the 1:1 ratio.
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	• Calibrate a model for correction of sensor-based CP values (preferably per 
field) and apply that on non-laboratory analysed samples.

	• Use the corrected CP values to calibrate a satellite-based model for CP 
mapping.

In a decision support system, the procedure could be simplified for the user and 
all combinations of bands and image dates could be automatically tested to find 
the best model for CP mapping. Field-specific models generally outperform 
general models. A dynamic system which selects the best predictors based on 
the conditions of the current crop could account for variations across fields due 
to soil properties and management practices. In addition, continuous in-season 
reflectance measurements could be used to account for variations in crop 
growth due to different cultivars and environmental conditions.

Small and relatively simple-to-use proximal sensors, such as the GS tool, 
have great potential as a cost-effective, fast and accurate method for grain 
CP analysis, although they rely on either the manufacturer or the end-user to 
develop calibration curves. If used in conjunction with the proposed satellite-
based system, it would be possible to upscale local CP predictions to highly 
accurate CP field maps that can be combined with yield maps and nitrogen 
(N) input to generate N use efficiency maps. It is interesting to note that in all 
fields, the best combination of vegetation indices for predicting CP included 
bands in the SWIR region (Table 5; SWIR region shown in Fig. 3). As mentioned, 
the sensors currently employed in precision agriculture applications most 
commonly use bands in the vis-NIR region of the electromagnetic spectrum 
(examples shown in Fig. 4). This case study shows the usefulness also of bands 
in the SWIR region.

8 � Outlook and Conclusion

A recent report described ‘plant wearables’ as technology with the potential 
to revolutionise plant production (World Economic Forum 2023). These can 
be miniature, low-cost, even biodegradable sensors that are attached e.g. on 
leaves for monitoring variables such as temperature, humidity, moisture and 
nutrient levels. Through continuous logging and transmission of data, such 
sensors, as part of the Internet-of-Things, could facilitate real-time surveillance 
of detailed plant health and field conditions. More efficient data sharing and 
integration of data from different sources, including plant wearables, can be 
expected to contribute to better decision support and more precise use of 
precision agriculture technologies. Some techniques described in this chapter, 
such as camera-assisted SSWM and sensor-based N application, could benefit 
from additional information, e.g. on soil properties and yield potential. The 
ongoing digitisation of agriculture and the explosion of applications using 
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artificial intelligence are likely to affect crop production and agricultural advisory 
and support services in unforeseen ways in the near future. In combination with 
new methods and other available sensing techniques, proximal crop sensing 
will likely be used even more commonly in future, as part of efforts to meet local 
and global challenges.

9 � Where to look for further information

This text does not completely cover the field of proximal crop sensors. Other 
sensors, techniques and applications exist. To get more in-depth details, a 
good approach can be to read a textbook such as Heege (2013), which does 
provide a broad coverage of precision farming principles, and a few review 
articles, e.g. Chawade et al. (2019), Gerhards et al. (2022) and Lo Presti et al. 
(2023).

In addition, members of the International Society of Precision Agriculture 
(https://ispag​.org) have access to a goldmine of information through all articles 
in the journal Precision Agriculture, and the comprehensive ICPA and ECPA 
conference proceedings.
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