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1 Introduction
1.1 What is proximal crop sensing?

Proximal sensing refers to measurements using sensors in close proximity to
the object of interest (Adamchuk et al. 2018). Proximal crop sensors are used to
collect information about a growing crop and can be mounted on the ground,
handheld or borne by vehicles such as tractors or robots. Remote sensing
involves the measurement of crop properties often with similar equipment as
used in proximal sensing, but from a greater distance, using satellites, airplanes
or unmanned aerial vehicles (UAVs, drones). The latter may also be used at
short distances. At the other end of the spatial scale, there are sensors that
can be used very close to, or in contact with, plant parts. Hence, there is a wide
range of different types of sensors and scales on which they are used. Different
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2 Developments in proximal crop sensing for precision agriculture

sensors can also be used in combination, e.g. a proximal sensor can be used to
calibrate data collected by remote sensing (Fig. 1).

In most cases, crop sensors collect inferential data, i.e. they do not directly
measure crop properties of interest but rather produce a metric that can be
used to estimate these properties. For example, light in different wavelengths
reflected by a crop canopy can be recorded by a crop sensor and translated into
useful information for agricultural management using established empirical
relationships with e.g. the protein content of the crop.

Proximal crop sensors are used to assess and predict a range of different
crop conditions, such as nutrient status, incidence of weeds and diseases,
and drought stress in plants. The ripening stage of fruits and even number
of spikes in a wheat stand can also be determined from digital images. Rapid
technological development and access to artificial intelligence and machine
learning methods have enabled new applications that were not possible just a
few years ago, while still employing sensor techniques that have been used for
a number of years.

1.2 Aim of this chapter

This chapter presents an overview of proximal sensing techniques used in
practical precision agriculture, with the overall aim of contributing to more
sustainable crop production. To provide perspective on the usefulness of
crop sensors, the chapter starts with an example of why site-specific crop
management is important and how it relates to sustainable production.
The basics of crop canopy reflectance are then presented, followed by an

Figure 1 Crop sensors used in precision agriculture may cover a range of spatial scales,
from individual leaf to landscape. Sensors used within a few metres of the crop canopy
are called proximal sensors. Drones can be used for proximal sensing or remote sensing.
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Developments in proximal crop sensing for precision agriculture 3

introduction to two practical precision agriculture techniques, site-specific
weed management and real-time crop sensing, mainly focusing on within-field
nitrogen application. Two case studies in which different types of proximal
sensors are used, individually or in combination with other techniques (UAVs
and satellites), are described. Finally, potential future developments are briefly
discussed.

2 Precision agriculture for sustainable crop production
2.1 What is sustainable crop production?

Sustainable crop production refers to the practice of growing crops in a way that
minimises negative impacts on the environment, while also ensuring long-term
productivity and economic viability. It involves using methods and techniques
that promote soil health, conserve water, protect biodiversity and optimise the
use of inputs such as pesticides and fertilisers. Sustainable crop production
aims to meet the current needs of food production without compromising the
ability of future generations to meet their own needs (Brodt et al. 2011). Since
the global cropland area is finite, methods are needed to achieve sustainable
intensification (European Parliament 2019). Precision agriculture is one
approach often promoted to achieve more sustainable crop production.

In precision agriculture, whether organic or conventional, the goal is often
to apply optimum rates of various inputs, e.g. fertilisers (see the definition of
precision agriculture on the website of the International Society of Precision
Agriculture: www.ispag.org). More specifically, the target is often economic
optimisation, i.e. not the input rates that give the highest yields, but those that
provide the optimum balance between input costs, desired yield quality, grain
price etc. The need to avoid nutrient losses to the atmosphere or through
leaching or erosion adds additional complexity, making it difficult to identify
the economic optimum in practice. During the cropping season, when fertilisers
need to be applied, crucial information is lacking on e.g. the amount of rainfall
during coming months and the amount of nutrients that will be supplied from
the soil.

2.2 Economic optimisation with crop sensors - an example of
spatial variation in a wheat field

An example of how the economic optimum nitrogen (N) rate (EONR) can
vary within part of a wheat (Triticum aestivum L.) field is shown in Fig. 2. It is
evident that a uniform N rate for the entire field is not appropriate (Fig. 2a).
In the example, average EONR is 154 kg N ha™' (range 82-225 kg N ha™'). The
average yield at this EONR (Fig. 2b)is 8.34 tha™" (range 5.1-10.5 t ha™"), with an
average protein content of 11.7% (range 10.6-13.7%) (Fig. 2¢). In this example,
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Figure 2 Example of spatial variation in an approximately 3 ha area of a winter wheat field
in Sweden, where each cell is 12 m x 12 m: (a) Economic optimum nitrogen rate (EONR),
(b) grain yield at EONR and (c) grain protein content at EONR.

the N response curves of grain yield and protein concentration, and thereby
EONR, are known for every single 12 m x 12 m grid cell of the area (through a
so-called chessboard trial, the principle of which is described in e.g. Kindred
et al. (2016)). In a real situation, this is never the case. At best, the field-average
N requirement is predicted early in the cropping season based on an estimate
of future yield combined with an estimate of N supply from the soil. To better
account for crop growing conditions during the season, the total N dose can be
split into a few split applications (2-4) over time. Use of crop sensors to assess
crop growth and N uptake before every split application can be one way to
optimise the N requirement in different parts of a field.

3 The electromagnetic spectrum - reflection
characteristics of light from a crop

Light falling onto a plant leaf is either reflected from the leaf surface, absorbed
or transmitted through the leaf. Most crop sensors used in precision agriculture
measure the reflectance of light or transmittance through the leaf. These
sensors may be used in situ, in contact with the object (e.g. leaf, stem or ear)
or at a distance from the crop (e.g. mounted on a tractor or carried by hand).
Some sensors have their own light source (active sensors), whereas others rely
on incoming sunlight (passive sensors).

A growing crop may reflect light as shown in Fig. 3. The reflectance
characteristics of a crop are called its spectral signature. Different types of crops
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Figure 3 Generalised spectral signature (reflectance) of a cereal crop canopy in the visible
to short-wave infrared region of the electromagnetic spectrum, which is commonly used
in remote sensing. Most proximal crop sensors currently used in precision agriculture
record light in the visible to near-infrared region. Reflectance refers to the reflected
fraction of incoming light.

oreven different cultivars of the same crop may have their own spectral signature,
with slight shifts from the curve shown in Fig. 3. This shift is used e.g. in crop type
classification with satellite image analysis. Green, healthy vegetation reflects
only a small amount of the incoming visible light, in the photosynthetically active
radiation spectral region (400-700 nm). Leaf chlorophyll absorbs especially
blue and red light, which is used as a source of energy for photosynthesis, while
somewhat more of the green lightin solar radiation is reflected. At slightly longer
wavelengths (>700 nm), much more light is reflected, with a sharp increase in
reflectance up to around 780 nm (Fig. 3). This part of the spectrum is referred
to as the red edge and is part of the near-infrared region (NIR) in which the cell
structure of the leaves reflects about half of all incoming light. In the short-wave
infrared (SWIR) region (sometimes also called the mid-infrared region, MIR),
from 1300 to 2500 nm, reflectance is lower due to absorption related to plant
water content (lower water content results in higher reflectance). Some of the
satellites used in precision agriculture (e.g. Landsat and Sentinel-2) record light
also in the SWIR region, but it is less common for proximal sensors currently
used in practical precision agriculture to have the ability to measure reflectance
in this part of the spectrum. The thermal infrared region (TIR) refers to long-
wave infrared light, commonly encompassing wavelengths between 8000 and
14 000 nm (beyond the scale in Fig. 3) and is of interest in measurements with
thermal sensors. All objects with temperature above 0 K, including vegetation,
emit heat in the form of long-wave energy.
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The dramatic differences in light reflectance in the visible to NIR part of the
spectrum are of particular importance in crop sensing in precision agriculture
(Fig. 4). Many crop sensors use the difference in reflectance between the
NIR region and the visible region of the electromagnetic spectrum to deliver
information on crop status. As can be seen in Fig. 4, the spectral signature of
a wheat crop varies in a typical manner according to the amount of N applied,
provided that N is the limiting factor for crop growth. Wheat receiving 0 kg N
ha™" displays high reflectance in the visible wavebands and lower reflectance in
the NIR region. An increasing amount of N lowers the reflectance in the visible
bands and increases the reflectance in the NIR bands, in the case shown with a
large increase when 80 kg N is added and a smaller increase when successively
higher N dose is used until at some level there is no increase. In principle, this
interaction between reflectance and N is the basis for the use of crop sensors
in precision agriculture.

Figure 4 shows the wavebands of different types of crop sensors, with
different symbols indicating the bandwidth. These are satellites Sentinel-2
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Figure 4 Crop canopy reflectance of a winter wheat crop (cv. Julius) just after flowering
(Zadoks growth stage DC 69-75; Zadoks et al. 1973). Data from 10 Swedish field trials
2019-2021 testing six nitrogen (N) rates (described in Piikki et al. 2022). Band recordings
by different sensor types are shown with different symbols: Satellites: Sentinel-2 (ESA,
France) and Planetscope (Planet, USA); drone camera: Micasense Altum (AgEagle,
USA); handheld: GreenSeeker, GS (Trimble/Case, USA), RapidScan CS-45, RS (Holland
Scientific, USA).
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(ESA, France) and Planetscope (Planet, USA), the Micasense Altum (AgEagle,
USA) drone camera, and the handheld proximal sensors GreenSeeker (Trimble/
Case, USA) and RapidScan CS-45 (Holland Scientific, USA). Optical satellite
sensors and optical drone sensors are passive sensors, whereas the handheld
GreenSeeker and RapidScan sensors have their own light source. The bands
available can be used to describe the difference in reflectance between the
visible and NIR regions. This is most often done by combining reflectance (p)
data from two or more bands into a vegetation index, commonly a normalised
difference index (NDI) where: ND/M =([p,— pj]/[p.‘ + pj]). Examples are normalised
difference vegetation index (NDVI) and normalised difference red edge index
(NDRE):

NDVI = (pyg = Preg) (P + Prea) (Eq. 1)
NDRE = (pNIR - pRed edge)/(pNIR + pRed edge) (Eq 2)

As can be seen in Fig. 4, the bands recorded by different sensors are slightly
different in terms of wavelengths and bandwidths. This means that indices such
as NDVI and NDRE differ somewhat between sensors.

There are hundreds of different indices described in the literature (see
e.g. the on-line Index Database: https://www.indexdatabase.de/), often with
the aim of finding band combinations that are empirically well related to
various crop properties. The challenge is that different stresses affecting the
crop may be difficult to distinguish using reflectance in a few wavebands. In
general, more and narrower bands make it possible to describe the spectral
characteristics of a crop more precisely. A multispectral sensor is able to record
reflectance in several bands. A sensor with a large number of bands over a
continuous spectral range is called a hyperspectral sensor. Such sensors may
have several hundred bands and are used in research but are not commonly
used in practical precision agriculture.

4 Site-specific weed management and variable-rate
application of nitrogen with proximal sensors

Two main uses of proximal crop sensors are in site-specific weed management
(SSWM) and variable-rate application of N. In SSWM, this often involves using
cameras mounted on a spray boom to detect visible light (red-green-blue, RGB)
at very high spatial resolution to allow for feature detection to separate weeds
and crops. Invariable-rate N application, itis more common to use spectrometers
detecting reflectance from the crop canopy in different wavelengths in the visible
to NIR region of the electromagnetic spectrum. Typically, these applications of
proximal crop sensors take place at certain times of the growing season. Figure 5
indicates the two periods during which SSWM and variable-rate N application
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Figure 5 Examples of timing of different management actions in a growing cereal
crop. Site-specific weed management using proximal cameras takes place early in the
crop season. Variable-rate nitrogen (N) application is typically undertaken during stem
elongation. Liming and phosphorus and potassium fertilisation are normally carried out
before the season.

are undertaken in cereals, the example is wheat in Scandinavia. Weed scanning
is done before the crop becomes too dense, possibly until the beginning of
stem elongation (stage DC 30), whereas variable-rate N application based on
crop sensing is commonly carried out during stem elongation to booting. For
fertilisation, this is typically in split-dose application strategies, where a first dose
of N (or NPK) may be applied at a uniform rate and subsequent doses are based
on crop status, to adapt to within-field variability and varying mineralisation of
soil N, which can be caused by seasonal rainfall and temperature patterns.

In the management approach depicted in Fig. 5, application of other
major nutrients, such as phosphorus and potassium, and adjustment of
soil pH with lime are carried out before the cropping season, based on soil
mapping (and/or with proximal soil sensors if precision agriculture practices
are employed). The seed rate may also be varied based on e.g. soil texture
conditions. As mentioned, a first uniform N dose is applied early in the season
(further details on precision soil management are provided in other chapters of
this book). Since it is challenging to predict N requirement before the cropping
season, it can be advantageous to add N on a few occasions during the season
in order to come as close as possible to the EONR (see Fig. 2). Targeting the
optimal N rate is beneficial for the quantity and quality of yield but also for
reducing losses of N through leaching and volatilisation (Karlsson Potter et al.
2022). There is a considerable potential to increase the N use efficiency in
agriculture, which on a global scale is estimated to be only 33% (Raun and
Johnson 1999).
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4.1 Crop sensors for site-specific weed management

The goal of SSWM can be to reduce the use of herbicides in conventional
farming or to control weeds mechanically. Camera-guided inter-row hoeing
is of interest in both organic and conventional farming and allows for precise
tracking of crop rows and adjustment of the implement (Gerhards et al.
2022). Chemical weed management in precision agriculture based on crop
sensors mainly consists of three parts: (1) recognition and mapping of weeds,
(2) assessment of suitable treatment and (3) actual weeding, e.g. on-or-off
spraying. Weeds commonly occur non-uniformly in a field, often in patches.
Avoiding a flat rate can therefore often reduce herbicide use substantially,
by 50-90% (Gerhards et al. 2022). This can contribute substantially to overall
environmental policy goals such as the European Union Green Deal to reduce
chemical use and increase biodiversity (European Parliament 2019).

Systems for weeding can be off-line or real-time. In an off-line system,
mapping of weed occurrence is carried out beforehand, e.g. using drones or
cameras mounted on a vehicle (Rasmussen et al. 2013). In a real-time system, a
number of cameras can instead be mounted on a spray boom, allowing instant
image analysis of weed occurrence, and the outcome immediately controls the
spraying pattern. The off-line approach has the advantage that the user can
see the results of mapping for the whole field in advance and take decisions
on treatment in a more interactive manner, e.g. it is possible to determine the
exact amount of herbicides needed. The real-time approach requires less time
and can be entirely automated. The process of distinguishing weeds from crops
with image analysis is a major challenge and there is a considerable amount
of research dealing with this matter (see reviews by e.g. Allmendinger et al.
2022; Gerhards et al. 2022; Hu et al. 2024). The most straightforward situation
is when weeds are the only green vegetation present, e.g. colonising bare soil
after harvest of a grain crop (“green-on-brown”). A simple green-red vegetation
index or an index based on visible and near-infrared wavebands works well for
weed mapping in this case. It is more complicated to automatically distinguish
weeds in a growing green crop (‘green-on-green’). The most challenging task
is separating grassy weeds in a cereal crop, while broadleaf weeds are easier
to recognise.

Major manufacturers of agricultural services offer solutions for camera-
controlled chemical spraying, such as the John Deere See & Spray Select system
and the Bosch/BASF One Smart Spray system. A challenge in this regard is the
lack of standard protocols for linking detection and weed treatment systems
(Gerhards et al. 2022). Some commercially available systems, such as the
WeedSeeker and Bilberry SSWM (by Trimble/AGCO) and the DAT Ecopatch
(Dimensions Agri Technologies, AS, Norway), can be mounted directly on an
existing sprayer if it is equipped with the ISOBUS communication system. The
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Figure 6 Cameras for weed detection, mounted on a spray boom. Images are taken
continuously and analysed for weed and crop coverage in real time. Inset: original
image (left) and classified image (right). Source: Photo adapted from: Dimensions Agri
Technologies, Norway.

DAT Ecopatch system consists of downward-looking RGB cameras (as opposed
to forward-looking cameras in some other systems) that are placed 3-4 m apart
along the boom (Fig. 6). As with other similar systems, image analysis is done
with a machine learning/artificial intelligence algorithm that predicts green-on-
green weed coverage and crop coverage, most efficiently up to the growth
stage around DC 30 (as indicated in Fig. 5). The DAT system uses a patch
spraying approach, which means that an entire section of the sprayer is on-or-
off depending on the image analysis results, and patches or groups of weeds
are sprayed — an approach that is proven suitable in small-grain cereals. An
alternative is systems that aim for spot spraying, which can target even single
plants (Allmedinger et al. 2022).

4.2 Tractor-mounted crop sensors for real-time management

Tractor-mounted sensors are among the most widely used tools in practical
precision agriculture. They are mainly used not only in small-grain cereals
and maize but also in e.g. potato and oilseed rape. They are based on the
principle that a tractor-mounted crop sensor (typically on the cab roof or a
front-boom) scans the crop canopy, most commonly for applying variable-
rate N according to crop status. Sensed signals of crop canopy reflectance
in different wavebands are directly processed in the tractor, and a calibration
model computes a suitable amount of N to apply (Fig. 7). This information is
then sent via some form of application rate controller that adjusts the spreader
accordingly. The sensors used in real-time scanning can be active or passive.
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Figure 7 Schematic view of a tractor-mounted proximal crop sensor used for real-time
variable-rate application of fertiliser (most commonly nitrogen).

In addition to N management, these systems are e.g. also used for variable
fungicide application, adapting the rate according to biomass variation.

An example of a passive sensor is the first version of the Yara N-Sensor
(Yara, Norway), which was introduced commercially in the late 1990s (Heege
2013). To handle differences in ambient light, that sensor simultaneously
recorded incident light through an upward pointing sensor to correct for
varying light levels, while one spectrometer registered reflectance in four
spots around the vehicle (two on each side) at an angle of around 60°. This
was originally a hyperspectral sensor with 45 bands in the range 450-900 nm
(10 nm wide) but only two bands in the red edge region were used to estimate
an internal vegetation index (Reusch 2006). An assessment of how different
band combinations is related to N uptake in winter wheat was done by Reusch
(2005). Wolters et al (2021) showed that a chlorophyll index (using the bands
740 nm and 783 nm) calculated by Sentinel-2 satellite images can predict very
similar within-field maps of N uptake as those obtained with a tractor-borne
Yara N-Sensor (mean absolute difference 7 kg N ha™' on comparing data from
13 wheat fields).

It is more common today to use active sensors in real-time scanning and
application. By using light-emitting diodes or laser diodes the sensors become
independent of sunlight, so scanning can be done at night or with varying cloud
cover. Examples of active commercial on-the-go instruments for crop sensing
are GreenSeeker (Trimble/Case, USA) (using two bands calculating NDVI (red
660 nm, NIR 770 nm; see Fig. 4)), OptRx sensor (AglLeader, USA) (using three
bands, 670,730 and 780 nm; same as RapidScan shown in Fig. 4) and CropSpec
(TopCon, Japan) (two bands, 735 and 805 nm). The active version of the Yara
N-Sensor, ALS, records reflectance in the bands 730, 760, 900, 970 nm (Reusch
2006), while its successor, ALS-2, uses four bands in the red-to-red edge region
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and a xenon flashlamp as light source. ISARIA (Fritzmeier, Germany) is another
active sensor solution, with proprietary indices depicting biomass and N status.

An essential component of these real-time systems is an agronomic model
for converting the reflectance data obtained into management information,
such as an N rate to apply. In Fig. 8, this model is exemplified as a grey central
box, between sensor maps on top and variable-rate N maps below. The
rectangular pattern (12 m x 24 m along tramlines) in the N rate maps in Fig. 8
coincides with the 24-m wide boom spreader used by this farmer. The tractor
sensor used by the farmer is a Yara N-Sensor ALS and the N topdressing map
shown is output from the model used by that system. The other two N rate maps
are simply based on correlation between the N-Sensor and the other sensors
(coefficient of determination R? in this case between data from the tractor index

Chlorophyll index from different sensors

Satellite

Variable N rate

Il > 65 kg N/ha
I 60 - 65
I 55 - 60
50 - 55
[ 45 - 50
[ ]40-45
[ J<=40

Figure 8 Upper panels: Maps of chlorophyll index from different sensorsin a 7.7-ha wheat
field in south-west Sweden at late stem elongation (DC 39; time of supplementary N
fertilisation). The grey box represents an agronomic model. Lower panels: N application
maps based on different sensors (tractor sensor Yara N-Sensor ALS, satellite image
Sentinel-2 (20-m pixels), drone camera Micasense Altum; all data collected within five
days). The zero-N plot received no N previously during the season. Diagram modified
from Nilsson et al. (2023).
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and the drone camera and satellite is 0.74 and 0.59, respectively). It is evident
that the different sensors can generate a relatively similar N rate application
file if data are collected at the same time and if the same agronomic model is
used. The advantage of the tractor sensor is that it can be used under different
weather conditions, at any time of day (if active), and the whole process of
scanning and application can be automated. Mapping and detailed positioning
are not necessary in the real-time solution, making it simple to use in practice.
However, an advantage of pre-fertilisation mapping with satellite or drone is
that it provides an overview of the entire field, which can be useful in decision-
making and the fertilisation strategy can be adapted accordingly. There are
also economic differences between tools that can be decisive for users.

There are different approaches for transferring data from the real-time
sensors to actuation, e.g. applying the right amount of N. In the simplest
approach, the farmer scans a small reference area considered representative
of the average N requirement. The system may then vary the N application
through a built-in model (e.g. adding more N in areas with lower vegetation
index values, with some restrictions as in the case in Fig. 8). Some systems allow
the userto use two arbitrary reference areas (high, low) and distribute according
to the difference. In these cases, the farmer may use expert knowledge to
manually set a desired N rate. Various tools can be used to guide the farmer
to a suitable N rate. Small on-farm experiments (Lacoste et al. 2022) such as
zero-plots (no N added; example shown in Fig. 8) and/or max-plots or max-
strips (sufficient N applied to ensure N is not limiting for crop growth) can be
used as reference in estimation of N rate (e.g. Johnson and Raun 2003; Lukina
et al. 2001). Such plots are intended to indicate the level of soil N supply and
yield potential, respectively, in the actual growing season (e.g. Raun et al. 2001).
An approach that does not require a real max-plot is to use a so-called virtual
reference plot (Holland and Schepers 2013), which takes e.g. the 95-percentile
vegetation index value of the field as a max value. The information from such
on-farm experiments can be used in the calculation of a suitable N rate to apply
(Piikki et al. 2022).

5 Examples of handheld sensors and sensors in contact
with plants

Some real-time sensor systems have the same components as some handheld
spectrometers, such as the active sensors GreenSeeker (Trimble/Case, USA)
and the RapidScan CS-45 (Holland Scientific, USA), which has similar optics to
the OptRx tractor system. In addition, both passive and active versions of the
Yara N-Sensor exist as handheld units. Such instruments are particularly useful
in research, in small-plot field trials, and in evaluating on-farm experiments
(e.g. producing data to be used in calibrations of real-time sensors). Handheld
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hyperspectral sensors are also used in spectroscopic research, e.g. instruments
such as ASD Fieldspec 4 (Malvern Panalytical, USA) can record reflectance in
contiguous narrow bands from 350 to 2500 nm. Such instruments can be used
in the development of new crop sensor applications (e.g. Pierna et al. 2022).
Another type of handheld instrument uses ultraviolet fluorescence. One such
instrument is the Multiplex (FORCE-A, France), which uses light-emitting diodes
(in visible and ultraviolet (375 nm) light) and filtered photodiodes for screening
of chlorophyll fluorescence (Ben Ghozlen et al. 2010). The instrument provides
different fluorescence indices that have been shown to be useful for detecting
nutrient stress, diseases and e.g. maturity and quality in grapes (Agati et al.
2018).

The now classical handheld absorbance-based SPAD meter was developed
by Minolta (Konica Minolta, Japan) in the 1980s, although the development
of such an instrument was described earlier (Wallihan 1973). The SPAD-502
meter indirectly measures the chlorophyll content per unit leaf area based
on transmittance of red (650 nm) and infrared (940 nm) radiation through the
leaf when a light source and a detector are clamped around a leaf. The Yara
N-tester (Yara, Norway) is an adaptation of the SPAD meter with calibrations of
N requirement for a range of crops. A non-linear relationship between SPAD
meter readings, the Yara N-tester and chlorophyll concentration in different
crops has been described by e.g. Uddling et al.(2007). To acquire representative
readings for a crop stand, a number of measurements must be made on
different leaves. For example, in small-grain cereals, measurement with the Yara
N-tester should be made on 30 leaves (flag leaves) to get a reading. Other
brands of chlorophyll meters using the same principle are now also available.
The Dualex Scientific (FORCE-A, France) is a similar type of sensor, but it uses
ultraviolet light to quantify chlorophyll concentration and polyphenol content.
Chlorophyll meters have been shown to be useful for calibrating real-time
sensors and other remote sensing data, since it is laborious to generate data
with spatial coverage using chlorophyll meters alone (e.g. Miao et al. 2008;
Séderstrom et al. 2017).

Since chlorophyll meters can give a quantitative measure of the N
concentration in crop leaves (e.g. per unit fresh weight or leaf area), these
instruments can also be used to measure N uptake (kg N ha=") when combined
with information on biomass. In a pilot study, Blackert (2018) found that
handheld GreenSeeker measurements and chlorophyll meter readings in
combination were well correlated (R? = 0.96) with analysed N uptake (kg N
ha—1). A commercial service is now available (from Yara, Norway) in which the
ground coverage of the crop based on an ordinary digital photo is combined
with Yara N-tester readings to quickly assess N uptake.

High-throughput field phenotyping in plant breeding is a field of research
that is related to precision agriculture, but the requirements differ due to
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differences in scale, e.g. size and number of plots and fields. Sometimes even
the detailed structure of individual plants can be of interest in this type of
research. In a review by Chawade et al. (2019), a multitude of techniques were
described. Some are similar to those used in practical precision agriculture
and others have the potential to be included, e.g. as part of tractor-mounted
real-time sensor solutions. Examples are different techniques to capture plant
structure and crop height, which could be useful to further refine assessments
of nutrient requirements and plant protection management. Such techniques
involve the creation of point clouds that can be used to assess biomass and
describe plant height, leaf area and leaf angle. Light detection and ranging
(LiDAR) or, more simply, photogrammetric analysis of a series of overlapping
photos (structure from motion, SfM) are examples of techniques used. An
alternative approach for measuring crop height is to use ultrasonic sensors,
which typically use time-of-flight of a reflected sound wave from a transmitter
to a receiver. This type of technique has proven useful in practical solutions in
geometric characterisation of crops and in nitrogen and water management
(Bronson et al. 2021; Moreno and Andujar 2023).

6 Case Study 1: Comparison of sensors for prediction
of N uptake in oats

6.1 Oats - an important crop

Around two-thirds of the world's oats (Avena sativa L.) are produced in Europe,
Canada and Russia (USDA; https://apps.fas.usda.gov/psdonline, data from
2023), with reported global average yield of around 2.5 t ha™! but 2- to 3-fold
higher yields in countries with more intense production. In Sweden, oats are
the third largest cereal crop grown and in recent years new markets have
developed, such as substitutes for rice and dairy products. With this increased
importance, a better basis for fertiliser recommendations for oat crops is
required. In Swedish spring oats, N is currently mainly applied at sowing, with
an optional topdressing shortly after crop emergence. Based on previous
Swedish experiments on oats, N fertiliser can be split into two doses, with the
second applied at stem elongation (Zadoks’ growth stage DC 32-37; Zadoks
et al. 1973), without affecting yield compared with applying all N at sowing
(e.g. Krijger 2011). One benefit of split fertiliser application is that it allows the
fertiliser level to be adjusted at a stage when itis easier to predict soil N delivery
during the growing season (Delin and Stenberg 2014; Walsh and Walsh 2020).
Adjustment of N fertilisation to current crop status within and between fields
using crop sensors has been successfully performed for other crops (Berger
etal. 2020; Diacono et al. 2012; Mulla 2013).
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6.2 Split N application can be beneficial

A recent study by Engstrom et al. (2024) investigated the effect of split N
application on yield and quality in four spring oat varieties, with topdressing of
N at DC 31 and DC 45, in three small-plot field experiments per year at different
sites in south-west Sweden (Gétala, Multorp, Lanna) in 2020, 2021 and 2022
(Fig. 9). The soil type is sandy loam at Gétala, silty clay loam at Multorp and
silty clay at Lanna. The sowing date was mainly around April 15, but varied from
April 3 at Gétala in 2020 to April 22 at Lanna in 2022. The preceding crop was
winter wheat or spring oats at all sites and in all years. The results indicated
that EONR for oats (kg ha™") could be explained by yield at EONR (OptN__ )

yield

bﬁ%f it T ol Al

T e

Figure 9 Design of one of the small-plot field experiments on oats in the case study.
False-coloured image from the Micasense Rededge drone camera (red = NIR band;
green = red band; blue = green band). Reflectance panels can been seen along the
edges and marks after cutting the crop are visible in parcels in the upper part of the trial.
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(t ha™") and N uptake (kg ha—1) in unfertilised plots at DC 31-32 (Eq. 3) and
43-47 (Eqg. 4):

EONR =93 + 11 x OptN,,~ 1.7 x N uptake (Eg. 3)
EONR =74 + 14 x OptN ,~ 1.0 x N uptake (Eg. 4)

When determining EONR, the grain/fertiliser price ratio was in this case set
to 8.0 (based on the average of the previous 10-year period) (Engstrom et al.
2024). Topdressing at the later stage (DC 43-47) increased the chances of
higher protein and more accurate prior prediction of EONR (R? = 0.96 vs. 0.70
at DC 31-32). Another finding was that estimation of N uptake by a crop sensor
during these growth stages would enable variable rate application.

In the case study, prediction models of N uptake were developed with four
different multispectral crop sensors. To determine N uptake during the season,
the crop was cut (2 x 0.25 m? areas) in each plot (total plot size ~2 m x 10 m) in
N fertilisation treatments supplying 0, 70, 100 and 160 kg N ha™', for all varieties
in one block and on two occasions, DC 31-32 and DC 43-47. Crop samples
were dried at maximum 55°C, N concentration was analysed and N uptake was
calculated. On the same occasions in each plot, before cutting, measurements
of crop canopy reflectance were carried out with two handheld spectrometers
and two drone-borne multispectral cameras. The handheld sensors were Yara
N-Sensor ALS (Yara, Norway) and RapidScan-CS-45 (Holland Scientific, USA),
although the RapidScan sensor was only used in two seasons (2021 and 2022).
The drone cameras were a five-band Micasense Rededge camera (AgEagle,
USA; with similar bands as Micasense Altum in Fig. 4) and a nine-band MAIA
camera (Eoptis Srl., Italy; with bands the same as Sentinel-2 in Fig. 4).

The measurements with these sensors were made in a manner commonly
applied or recommended by the instrument provider. With the handheld
Yara N-Sensor, the value recorded for each parcel was the average of four
measurements made from each parcel corner from about 1.5 m above the
ground, at an angle of about 45°. With the RapidScan, continuous scanning and
logging of data were carried out while walking along one side of each parcel
(holding the instrument 0.5-1.0 m above the canopy, at an angle of 45° so that
the instrument was aimed at the centre of the parcel). The drone cameras were
mounted on the same drone (a customised Explorian-8, Pitchup, Sweden). The
flights were carried out with a sun angle of not less than 45°, each flight in as
uniform weather as possible (either sunny or cloudy). Flight altitude was 80 m
and flight speed 5 m s™'. The image overlap was at least 80%. Both cameras had
an incoming light sensor, from which data were used in image post-processing.
The Micasense Rededge was calibrated with a photo of the target panel before
and after each flight, whereas for the MAIA camera 50 cm x 50 cm reflectance
panels (from MosaicMill Oy, Finland) were used, with reflectance 2%, 8%, 23%
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and 44% (in all bands). Image mosaics were made with the Solvi web service
(Solvi AB, Sweden; https://solvi.ag). The reflectance panels were placed within
the field trial (as seen in Fig. 9) and used to establish a relationship between
digital numbers in the different bands and the values of the panels. Calibration
of the mosaics was then done using this empirical relationship (‘empirical line
method’; Aasen et al. 2018).

The average reflectance values for each parcel and for each sensor
were extracted and compared with the results of laboratory analyses on the
cut plant samples. A range of different vegetation indices were computed
and comparisons were made through bivariate and multivariate regression
analyses. Prediction models were validated through a leave-one-trial-out
procedure and also a leave-one-year-out procedure. Results of the leave-one-
year-out evaluation and results obtained using the generally best-performing
bivariate linear or non-linear model between sensor data and reflectance data
are reported here.

The best-performingindividual vegetation indexin this case was chlorophyll
index (Chll) (Gitelson et al. 2003), although the difference compared with some
other similar red edge indices, such as NDRE, was very small. The chlorophyll
index is simply based on the ratio of two bands (p) in the red edge-NIR region:
Chll = (P Pred edge)_1 (Eq.5)

For the Yara N-Sensor, only the internal vegetation index (Sl ) was used,
details of which are not publicly available. The Sl values obtained have been
shown to be strongly correlated with Chll (e.g. Séderstrém et al. 2017). For
the RapidScan sensor, the bands NIR (780 nm) and RE (730 nm) were used for
calculation of Chll. For Micasense Rededge, camera bands 5 (840 nm) and 4
(717 nm) were used, while for the MAIA device sensor bands 7 (783 nm) and 6
(740 nm) were used.

6.3 Predicting N uptake in oats with crop sensors

Overall in the experiments, N uptake (kg N ha™') was very similar in 2021
(mean =58, 6 =28, n = 96) and 2022 (mean = 52, 6 = 32, n = 96), but lower
in 2020 (mean = 28, 6 = 23, n = 32). For all sensors, there was a relatively
strong correlation between the vegetation index and analysed N uptake. The
relationship was linear in all cases except for the RapidScan sensor, where the
data followed an exponential function (Fig. 10). Since the different crop sensors
used record reflectance in different bands, the calculated Chll was expected
to differ.

As can be seen in Fig. 10, the Chll values differed substantially between
the sensors. For the RapidScan (left panel in Fig. 10), there was an exponential
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relationship between Chll index and crop N uptake. For the drone cameras
(centre and right panels), only a few very high N uptake values (>100-120 kg N
ha™")tended to deviate from a linear relationship. The reason for the exponential
behaviour of data from the RapidScan sensor is uncertain. Measurements with
that instrument were made at an angle, so more of the plant affected the data.
However, this was also the case with the Yara N-Sensor, although that instrument
uses an internal vegetation index. Making measurements at an angle could
be an advantage e.g. if the crop stand is thin, by reducing the impact of soil.
Moreover, RapidScan is an active sensor and some studies suggest that these
may be more strongly affected by the uppermost part of the plant stand
compared with passive sensors (Winterhalter et al. 2013). Therefore even
though the bands in RapidScan are relatively similar to the bands used in the
MAIA camera, differences in the instrument and in the measurement procedure
can cause differences in the values produced.

Results of the leave-one-year-out validation are displayed in Table 1. This
type of challenging validation should indicate the general performance of
prediction models, which is useful in assessment of use of the models in other
locations and years. All sensors performed well (R? > 0.7, root mean square
error of predictions (RMSEP) <20 kg N ha'). The nine-band drone camera
(MAIA) had slightly higher R? value and the lowest prediction error of all sensors
(R? = 0.85; RMSEP = 12 kg N ha™"). Very high values of N uptake in a dense
crop stand are most challenging to predict with sensors based solely on crop
canopy reflectance. As mentioned earlier in this chapter, using information on
crop height or structure of plants within the stand could possibly improve the
model (e.g. Moreno and Andujar 2023). Combining information from different
types of sensors may further improve predictions of N uptake.

Since all four sensors types performed relatively well at estimating
N uptake up to about 100 kg ha™', they and other similar sensors could be
useful tools for predicting EONR during the growing season, e.g. using the
equations reported above (Egs. 4 and 5). The choice of tool used depends
on the type/s available for the farmer/advisor and how quickly and easily the

Table 1 Results from leave-one-year-out validation of oats N uptake prediction models.

Years Index Type of model R? RMSEP
RapidScan 2021, 2022 Chll Exponential 0.77 15 kg N ha™'
Yara N-Sensor 2020-2022 Sl Linear 0.79 14
Micasense 2020-2022 Chll Linear 0.80 16
Rededge
MAIA 2020-2022 Chll Linear 0.85 12

RMSEP = root mean square error of predictions vs. observed values. S|
the Yara N-Sensor.

is the proprietary index of

Yara
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sensor data can be retrieved. The most challenging part in predicting EONR
early in the season is accurate assessment of future yield, which is used in the
calculation.

7 Case Study 2: Evaluation and upscaling of portable
tools for crude protein determination and field
mapping in conjunction with Sentinel-2 satellite

imagery
7.1 Mapping of protein needed in nitrogen use efficiency
estimations

This case study demonstrates how a portable NIR protein content analyser can
be combined with satellite imagery and used to create field-scale crop protein
maps. The study was conducted in two cropping seasons, 2021 and 2022, but
the information presented here is a subset of the data, collected in 2022. An
initial report on the study can be found in Morandin Figueiredo et al. (2023).

Ability to determine crop quality parameters in the field would greatly
increase the capacity of growers to estimate the use efficiency of inputs, such as
irrigation, fertilisation and plant protection products, allowing for more precise
field management. Crude protein (CP) is an essential variable in terms of N use
efficiency evaluations. In precision agriculture, it is currently relatively easy to
keep track of applied rates of N fertiliser and of yield, but it is less common to
have detailed knowledge about the protein concentrations in different parts
of the field. A study by Borjesson et al. (2019) showed that CP in winter wheat
could be predicted with mean absolute error (MAE) <1% by combining an early
(end of stem elongation) and a late (milk development) satellite image. In a
review of CP predictions, Bastos et al. (2021) noted that on-combine protein
measurements are generally more accurate than CP predictions made using
proximal or remote sensing. However, on-combine protein mapping is still very
uncommon in practice.

An alternative procedure for CP mapping could be to combine a proximal
CP sensor, to achieve a sufficient amount of ground observations, with
remote sensing data from satellites or drones to generate within-field protein
maps. One tool that can make this possible is the GrainSense (GS) Analyzer
(GrainSense Oy, Finland). It employs NIR analysis methodology for grain CP
determination by a portable handheld device with a built-in calibration model.
The objective of this experiment was to evaluate the accuracy of this instrument
in CP determination compared with the reference laboratory method and, if
necessary, to test different calibration approaches and assess whether the data
obtained from such tools can be used in combination with satellite imagery in
a cost-effective alternative to protein mapping devices mounted on combine
harvesters.
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7.2 Methods and data

Winter wheat samples were harvested from producers’ fields located within a
20 km x 20 km area in south-west Sweden. A total of 46 samples were collected
from five different fields with three different cultivars (two fields with cv. Reform,
two fields with cv. Brons, one field with cv. Norin) during the 2022 cropping
season. Each sample comprised nine subsamples collected in a 3-m radius
using a Minibatt (Godé, France) electric handheld sample harvester. Samples
were georeferenced using a Nomad handheld GNSS computer (Trimble, USA),
to enable extraction of corresponding reflectance values from satellite images.
The winter wheat samples were oven-dried at 40°C for 24 h and cleaned using
a sample cleaner model MLN (Pfeuffer, Germany), before being submitted
for analysis. Grain CP was determined by calculating the average of five sub-
samples using the GS tool. Reference CP value was obtained from laboratory
analysis using an Infratec™ 1241 (Foss, Denmark) grain analyser, which uses
near-infrared transmittance (NIT) methodology.

Statistical analyses were performed with R Statistical software (R Core
Team 2022). The metrics used for evaluation of the models were Nash-Sutcliffe
model efficiency (E), which measures how well predicted versus observed
data fit the 1:1 line (Nash and Sutcliffe, 1970), MAE, which is the mean of the
absolute difference between predicted and observed data, and coefficient of
determination of a linear regression model between predicted and observed
data (R?).

Satellite images were obtained from the Sentinel-2 satellite Multi Spectral
Instrument (MSI). Level-2A data (bottom of the atmosphere or surface
reflectance; Obregdn et al. 2019) were extracted for each sample point from
the images in ArcGIS Pro, version 2.5.1 (ESRI 2023). Among the bands available
from the satellite MSI, only nine bands were used: bands 02 (490 nm), 03 (560
nm), 04 (665 nm), 05 (705 nm), 06 (740 nm), 07 (783 nm), 8A (865 nm), 11
(1610 nm) and 12 (2190 nm). Output images from the Level-2A processing at
20 m spatial resolution contain all bands available from the satellite MSI and
therefore 20 m was chosen as the resolution for the present work. Images were
gathered from late May, which corresponds to flag leaf emergence in winter
wheat (Zadoks' growth stage DC 37) and is when farmers in Sweden usually
apply topdressing fertiliser, to late July, which is close to maturity (>DC 80).
The images were screened and images with clouds covering any portion of the
included fields in the study were discarded. Only five images in the date range
were considered suitable for analysis in 2022 (Table 2).

Table 2 Satellite image dates used for analysis.
Year Image dates (DD/MM)
2022 29/05, 05/06, 25/06, 30/06, 15/07
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7.3 Calibrating the GrainSense instrument

There was a significant difference between GS and laboratory reference
values, making it necessary to develop instrument calibration models prior to
using the data from the GS tool in the upscaled modelling. Models to correct
the protein content from the GS tool were built by linear regression, using the
GS data as predictor variables and the laboratory data as response variables.
Two approaches were evaluated: general calibration, where the entire dataset
was used to parameterise the model, and field-specific calibration, where the
dataset was split and field-specific models were built. Overall, field-specific
calibration models outperformed the general model, with MAE ranging
from 0.14% to 0.26%, compared with 0.38% for the general model (Table 3
and Fig. 11). The final model for the Bjertorp West site had very low MAE,

Table 3 Nash-Sutcliffe model efficiency (E), mean absolute error (MAE) and coefficient of
determination of linear regression models (R?) for field-specific and general calibration models
for crude protein (CP) prediction in winter wheat.

Mean CP (%)

Field Cultivar E MAE (%) R? Observed Predicted
Bjertorp West Brons -0.09 0.14 0.11 10.68 10.69
Bjertorp North Norin 0.85 0.17 0.86 11.58 11.56
Kilagarden North Reform 0.94 0.26 0.94 12.36 12.36
Skofteby Northeast Brons 0.87 0.23 0.87 11.67 11.65
Skofteby Southeast ~ Reform 0.97 0.20 0.97 11.57 11.58
General model 0.83 0.38 0.83 11.57 11.57
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Figure 11 Results of leave-one-out cross-validation of (a) general and (b) field-specific
calibration models for GrainSense crude protein analysis. Dashed lines represent the 1:1
ratio.
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but the model was not robust due the fact that the data used to build it had a
very small range.

7.4 Combining proximal and remote sensing to produce
protein maps for wheat

Grain CP prediction models were built by linear regression and the same
approach as used for the calibration models was followed. General and field-
specific prediction models were developed with the objective of upscaling the
GS data in combination with satellite data to generate CP field maps. Calibrated
GS data were used as response variables and reflectance data from the satellite
images as predictor variables in different configurations. Individual bands
(p) and combinations of two, three and four bands were tested. Normalised
difference indices, NDIM = ([p, - PJ] /lp + pj]), were also calculated using all
combinations of two individual bands and were evaluated individually and
in two, three and four index combinations. The models were tested for every
available image, individually and in two and three image sequences. For the
image sequences, the same bands or indices per image were used. The total
number of models evaluated is shown in Table 4. Final selection was based on
the lowest MAE for both general and field-specific models.

The predictor variables for the selected models varied for each field-
specific and general models, as shown in Table 5The best predictors included
combinations of two indices from two images.

Grain CP prediction models followed the same trend as the calibrations,
with field-specific models outperforming the general models (Fig. 12).

Table 4 Wheat grain crude protein (CP) regression combinations tested using nine different
bands in 20-m spatial resolution images from the Sentinel-2 satellite.

Predictor variables Number of combinations
Single band 45
Single band, 2 image sequence 90
Single band, 3 image sequence 90
2/3/4 band combinations 180/420/630
2/3/4 band combinations, 2 image sequence 360/840/1260
2/3/4 band combinations, 3 image sequence 360/840/1260
Vegetation indices 180
Vegetation indices, 2 image sequence 360
Vegetation indices, 3 image sequence 360
Vegetation index combinations 3150
Vegetation index combinations, 2 image sequence 6300
Vegetation index combinations, 3 image sequence 6300
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Table 5 Nash-Sutcliffe model efficiency (E), mean absolute error (MAE), coefficient of
determination of linear regression models (R?) and final model predictor variables for field-
specific and general models for crude protein (CP) prediction in winter wheat.

Mean CP (%)

Field E MAE (%) R? Observed Predicted
Bjertorp West® -0.11 0.14 0.1 10.68 10.69
Bjertorp North® 0.85 0.17 0.85 11.58 11.56
Kilagarden North® 0.94 0.27 0.94 12.36 12.36
Skofteby Northeast? 0.87 0.22 0.87 11.67 11.66
Skofteby Southeast® 0.96 0.22 0.96 11.57 11.56
General model’ 0.73 0.45 0.74 11.57 11.56
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Figure 12 Results of leave-one-out cross-validation between laboratory reference crude
protein (CP) and predicted CP from selected (a) general and (b) field-specific prediction
models. Dashed lines represent the 1:1 ratio.

Variability in yearly weather conditions, cultivar releases and management
practices make it necessary to update prediction models on a seasonal basis to
reflect current conditions. An approach was proposed comprising four simple
steps that farmers can deploy to obtain grain CP maps:

e Take a number of grain samples from each field.

¢ Determine CP in all samples using the GS sensor and send part of the
samples for laboratory analysis of CP.
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e Calibrate a model for correction of sensor-based CP values (preferably per
field) and apply that on non-laboratory analysed samples.
e Use the corrected CP values to calibrate a satellite-based model for CP

mapping.

In a decision support system, the procedure could be simplified for the user and
all combinations of bands and image dates could be automatically tested to find
the best model for CP mapping. Field-specific models generally outperform
general models. A dynamic system which selects the best predictors based on
the conditions of the current crop could account for variations across fields due
to soil properties and management practices. In addition, continuous in-season
reflectance measurements could be used to account for variations in crop
growth due to different cultivars and environmental conditions.

Small and relatively simple-to-use proximal sensors, such as the GS tool,
have great potential as a cost-effective, fast and accurate method for grain
CP analysis, although they rely on either the manufacturer or the end-user to
develop calibration curves. If used in conjunction with the proposed satellite-
based system, it would be possible to upscale local CP predictions to highly
accurate CP field maps that can be combined with yield maps and nitrogen
(N) input to generate N use efficiency maps. It is interesting to note that in all
fields, the best combination of vegetation indices for predicting CP included
bands in the SWIR region (Table 5; SWIR region shown in Fig. 3). As mentioned,
the sensors currently employed in precision agriculture applications most
commonly use bands in the vis-NIR region of the electromagnetic spectrum
(examples shown in Fig. 4). This case study shows the usefulness also of bands
in the SWIR region.

8 Outlook and Conclusion

A recent report described ‘plant wearables’ as technology with the potential
to revolutionise plant production (World Economic Forum 2023). These can
be miniature, low-cost, even biodegradable sensors that are attached e.g. on
leaves for monitoring variables such as temperature, humidity, moisture and
nutrient levels. Through continuous logging and transmission of data, such
sensors, as part of the Internet-of-Things, could facilitate real-time surveillance
of detailed plant health and field conditions. More efficient data sharing and
integration of data from different sources, including plant wearables, can be
expected to contribute to better decision support and more precise use of
precision agriculture technologies. Some techniques described in this chapter,
such as camera-assisted SSWM and sensor-based N application, could benefit
from additional information, e.g. on soil properties and yield potential. The
ongoing digitisation of agriculture and the explosion of applications using

Published by Burleigh Dodds Science Publishing Limited, 2025.



Developments in proximal crop sensing for precision agriculture 27

artificial intelligence are likely to affect crop production and agricultural advisory
and support services in unforeseen ways in the near future. In combination with
new methods and other available sensing techniques, proximal crop sensing
will likely be used even more commonly in future, as part of efforts to meet local
and global challenges.

9 Where to look for further information

This text does not completely cover the field of proximal crop sensors. Other
sensors, techniques and applications exist. To get more in-depth details, a
good approach can be to read a textbook such as Heege (2013), which does
provide a broad coverage of precision farming principles, and a few review
articles, e.g. Chawade et al. (2019), Gerhards et al. (2022) and Lo Presti et al.
(2023).

In addition, members of the International Society of Precision Agriculture
(https://ispag.org) have access to a goldmine of information through all articles
in the journal Precision Agriculture, and the comprehensive ICPA and ECPA
conference proceedings.
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