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ABSTRACT
Effective management of rodent pests necessitates efficient population surveillance. Many of the available methods currently used 
for estimating rodent populations are either costly or time-intensive. Rodent trapping demands significant resources, while tracking 
plates (TP) require high technical expertise and weeks to months of dedicated effort to satisfactorily interpret the plates. Here, we 
propose integrating Machine Learning techniques to evaluate plates with signs of rodent marks and compare their accuracy with that 
of conventional human-interpreted plates. We employed the Otsu method to transform plates from RGB color images to grayscale 
images, highlighting regions of interest. Subsequently, we applied a global threshold to create binary images, assigning values above a 
globally determined threshold as 1s and others as 0s. The original images were transformed into new versions with 25 small samples, 
highlighting regions of interest based on the binary images. We used dimensionality reduction methods to identify the fundamen-
tal structure of high-dimensional data and determined the most important patterns of interest on the plates. Among the methods, 
Principal Component Analysis, Independent Component Analysis, and Legendre Moments methods were used to visualize patterns 
and conduct exploratory data analysis. The k-nearest neighbors, a versatile and intuitive classification method relying on the similar-
ity principle, predicted the feature vector of PCA, ICA, and LM (Lpq) results. Ultimately, results from PCA and LM compared favora-
bly against the conventional labur-intensive manual method, thus proffering those in the field of disease ecology a better alternative 
for conducting timely and cost-effective rodent surveillance to monitor rodent distribution hotspots during rodent management pro-
grams. We propose a novel approach that could significantly enhance the protocols of rodent surveillance programs, particularly in 
Low- and Middle-Income Countries, where expertise in interpreting TPs may be limited to enhance rodent surveillance evaluation 
and timely rodent management while contributing to the indirect control of rodent-borne zoonoses.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
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1   |   Introduction

Rodents are ubiquitous in both rural and urban environments, ex-
erting a significant impact on global economies, with estimated 
annual agricultural and household losses reaching approximately 
US $22 billion (Belmain et al. 2014; Diagne et al. 2023). As global 
temperatures rise due to climate change, shifting environmental 
conditions are likely to alter rodent populations, amplifying their 
economic, ecological, and public health impacts (Costa, Porter, 
et  al.  2014; Islam et  al.  2021; Meerburg et  al.  2009; Richardson 
et  al.  2025). Increases in rodent abundance and geographic dis-
tribution may elevate the risk of zoonotic disease spillover, in-
cluding bartonellosis (Zeppelini et al. 2023), Lassa fever (Olayemi 
et al. 2016), leptospirosis (Costa, Porter, et al. 2014), plague (Vall 
et al. 2020), salmonellosis (Falay et al. 2022), and toxoplasmosis 
(Johnson and Koshy 2020) among others. Additionally, rat sight-
ings can impact mental health, often leading to disturbed sleep and 
psychological trauma among affected residents (Byers et al. 2019; 
Chelule and Mbentse 2021; de Klerk et al. 2016).

The agricultural, public health, and socioeconomic importance 
of rodent proliferation often necessitates the use of control mea-
sures, preferably non-hazardous methods (Stuart et al. 2024) to 
mitigate rodent-related damage, agricultural losses, the spread of 
rodent-borne diseases, and the broader problem of rodent pop-
ulation infestation (Tobin and Fall 2004). To design and evalu-
ate effective control strategies, we need a precise assessment of 
the target rodent species and population trends (Rahelinirina 
et  al.  2021). Several methods are commonly used to evaluate 
rodent population proliferation in both agricultural and urban/
rural environments. These include complaints or reports of ro-
dent sightings (Awoniyi et al. 2021; Murray et al. 2018), exterior 
and interior inspection of households for active rodent signs 
(CDC 2006), rodent trapping (Woodman et al. 1996), assessment 
of rodent-induced damage (Belmain et  al.  2014), and tracking 
plates (TPs) (Hacker et al. 2016).

Many of these methods used for assessing rodent populations 
have inherent limitations. For example, complaints or reports 
of rodent sightings are subject to temporal biases, as they typi-
cally rely on observations made during the day or shortly before 
dusk, periods that do not coincide with the peak of rodent ac-
tivity (Awoniyi et al. 2024). Rodent trapping, while suitable for 
both surveillance and control programs, is resource-intensive 
and may be susceptible to rodent trap avoidance. For instance, 
Duron et al. (2020) estimated the cost of trapping during an in-
tervention at approximately €38,000 for a single trapping ses-
sion involving 10 persons working at least 4 h per day over 15 
consecutive days to cover an average 200 ha-sized plot in New 
Caledonia. This illustrates the financial and logistic burden 
that would be similarly expected during surveillance programs. 
Similarly, household exterior and interior inspections and TPs, 
a method validated as a proxy for rodent infestation and partic-
ularly useful in complex, marginalized urban terrains such as 
the marginalized urban communities in Salvador, Bahia, Brazil 
(Eyre et al. 2020; Hacker et al. 2016), also have notable setbacks. 
Although less capital-intensive, TPs require technical expertise 
and considerable person-time investment to process, as reading, 
scoring, and interpreting rodent markings can take weeks to 
months of dedicated work by highly trained staff. Nevertheless, 
unlike the conventional surveillance methods, TPs are generally 

not affected by trap avoidance behaviors. By passively recording 
rodent presence through footprints and other markings without 
the need to attract or confine the animals, TPs remain effective 
in environments where trap shyness undermines the efficiency 
of conventional techniques.

Therefore, it is imperative to develop a robust and reliable 
method for precisely evaluating rodent populations while over-
coming the limitations associated with previous approaches and 
with advances the artificial intelligence showed opportunity 
tools in ecology studies. Here, we build on recent advances in 
Machine Learning (ML) techniques in ecological studies to in-
tegrate ML with TPs to evaluate rodent infestation, particularly 
in challenging urban terrains. Specifically, we aim to character-
ize the suitability of our novel method in accurately assessing 
rodent infestation by comparing the level of precision of the 
ML-interpreted TPs with the conventional human-interpreted 
plates. The results of this study should provide a prompt yet 
effective and reliable method for evaluating rodent infestation, 
which is also adaptable to other small mammal species in both 
rural and marginalized urban communities where their infesta-
tions have significant negative impacts on household properties, 
agriculture, public health, and economic productivity to guide 
informed small mammal population management.

2   |   Methods

2.1   |   Study Area

The tracking plate (TP) data utilized here was obtained from stud-
ies conducted in Pau da Lima (13°32′53.47″ S; 38°43′51.10″ W) 
between March and June 2015. Pau da Lima, situated in the out-
skirts of Salvador City, Bahia, Brazil, consists of a series of valleys, 
spanning an area of 0.17 km2, with approximately 128,997 inhabi-
tants residing in this low-income urban community (IBGE 2010). 
It features a subtropical climate, maintaining a relatively constant 
temperature throughout the year, but with varying rainfall across 
seasons. The rainy season, from April to July, typically experiences 
a mean of 272.2 mm/month, while the dry season from September 
to December sees a reduced mean rainfall of 124.2 mm/month. 
Pau da Lima is characterized by inappropriate solid waste man-
agement practices, an unsatisfactory sanitation system evidenced 
by open sewers and inadequate housing facilities (> 80% are squat-
ters), contributing to a history of household rodent infestation 
(Costa, Ribeiro, et al. 2014).

2.2   |   Tracking Plates

2.2.1   |   Positioning of the Tracking Plates (TPs)

For this study, we randomly selected 4200 TPs positioned in 420 
sampling points across Pau da Lima. Of these, 179 were lost or 
removed from the sampling points, resulting in a final count 
of 4021 TPs. Sixty-seven tracking plates were deployed at 14 
randomly selected locations within the study area. The proce-
dure for placing and positioning the TPs has been extensively 
discussed by Hacker et  al.  (2016). Briefly, at each sampling 
point, we positioned five 0.2 × 0.2 m acetate polyvinyl plates 
(TPs) preferably in an X-pattern (see Figure  1A), maintaining 
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an approximately 1 m distance between plates. Specifically, after 
positioning the central plate, the others were positioned within 
a 1 m radius buffer (Figure 1A). Before TPs positioning in the 
sampling area, they were painted with weather-resistant lamp-
black using a paint roller. Briefly, the lampblack is prepared by 
dissolving 10 g of lampblack powder in 200 mL of 70% ethanol 
in a tightly sealed container, followed by thorough mixing and 
allowing the solution to settle for at least 24 h before use. Once 
applied, the painted TPs dry within 5 min, enabling clear detec-
tion of various types of marks left by rodents such as paw prints, 
tail marks, and scratches (Figure 1B,C). We strategically placed 
TPs along natural barriers, but not in open areas to minimize 
attention from passers-by.

We placed TPs at selected sampling points for a minimum of two 
consecutive days. To document information about each TP, we 
examined each painted TP the following dawn for signs of pos-
sible rodent marks, including the presence of scratches or marks 
on the TPs (potential positive signs of rodent activities—though 
not necessarily indicative of rodent activities) and its status (i.e., 
if the TP was moved or lost). All TPs found intact were labeled, 
indicating the location, TP number, and survey date. Labeled 
TPs were photographed and uploaded onto an online data man-
agement platform (REDCap), using the unique TP label for 
subsequent review (Wright  2016). All TPs were repainted and 
repositioned in the same sampling location as the previous day. 
To adjust for potential confounding due to rainfall, considering 

FIGURE 1    |    (A) Illustration of TP placement in the field, (B) an example of a TP with rodent marks, (C) illustration of a TP with rodent marks 
overlaid on a 5 by 5 grid for subsequent reading/scoring, and (D) schematic step-by-step analysis procedure of TP.
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rodents may exhibit reduced activity during periods of intense 
rainfall, leading to reduced rodent marks and potentially ren-
dering the TPs unreadable, we repeated the experiment when-
ever more than 10% of the TPs were unreadable due to intense 
rainfall until we achieved two consecutive days of readable TPs.

2.3   |   Scoring and Analysis of Tracking Plates (TPs)

Following TPs collection from the field, they were scored using 
the procedure previously described by Hacker et al. (2016) and 
Eyre et al. (2020). Specifically, all digital images of the TPs were 
overlaid on a 5 × 5 grid (Figure 1C). Two independent examiners 
scored the overlaid TPs by reviewing specific signs of rat mark-
ings within the 5 × 5 grid. Discordant scores of more than three-
cell difference between examiners were reviewed to obtain a 
consensus. Overall TP scores were calculated using the number 
of positive cells among each of the positioned TPs during the 
sampling period (i.e., the mean score of all five TPs). Individual 
TPs were excluded if the observed markings covering the grid 
precluded rodent-specific markings (Figure 1D). The principal 
outcome of each TP was calculated as the proportion of cells 
with rodent marks (i.e., the number of cells positive for rodent 
markings divided by 25, which corresponds to the total number 
of cells on each TP). All TP marks determined to be non-rodent 
marks were considered “negative.”

2.4   |   Machine Learning Study Procedure

2.4.1   |   Pre-Processing

In total, 67 TPs were then transformed from RGB (red, green, 
and blue) to grayscale. To highlight regions of interest, a global 
threshold, determined from the mean intensity of the first 
image, was applied to all images. Pixels with intensity above this 
threshold were set to 1, and those below were set to 0, producing 
binary images (Figure 2).

From these 67 TPs, 44 were identified as positive images (PI), 
images that showed signs of rodent marks, and 23 as images 
with non-rodent marks or negative images (NI). These TPs were 
divided into 25 sub-samples as a preprocessing step to highlight 
localized regions of interest and to augment the dataset for train-
ing the ML models, since subtle rodent marks often occupy only 
small portions of a plate. This subdivision does not redefine the 
biological unit of measurement, which remains the entire plate. 
For analysis, sub-sample classifications can be aggregated back 
to the plate level: if one or more sub-samples are identified as pos-
itive, the plate is considered active (positive); if no sub-samples 
are positive, the plate is considered not active (negative). Thus, 
while subdivision improves sensitivity and provides sufficient 
training data, rodent activity is ultimately assessed at the plate 
level. From the 44 PI and 23 NI, 1100 (PI) and 575 (NI) subsets 
of images were generated (25 samples per image), respectively. 
To identify rodent marks from the subset of 1100 images, four 
experts evaluated each image individually, and images that had 
at least three votes for positive were selected to create a positive 
dataset. From the 1100 initial positive sub-samples, 654 were 
labeled as containing rodent marks. The remaining 446 with-
out marks were combined with the 575 negative sub-samples, 

yielding a dataset of 654 PI and 1021 NI. Figure 2 displays sub-
samples of PI and NI.

2.4.2   |   Feature Extraction

Feature extraction tackles the task of identifying the most suc-
cinct and informative feature set while reducing the size of 
the original data, optimizing both data storage and processing 
efficiency (Guyon et  al.  2008). It improves machine learning 
classification methods by reducing the number of overfittings. 
Various methods, including principal component analysis, inde-
pendent component analysis, t-distributed stochastic neighbor 
embedding, and moment functions, can be employed for feature 
extraction.

2.4.3   |   Principal Component Analysis

Principal Component Analysis (PCA), introduced by 
Pearson  (1901) and developed by Hotelling  (1933), is a fun-
damental technique for data analysis and dimensionality 
reduction. PCA identifies key patterns and correlations in high-
dimensional data by transforming the original variables into un-
correlated Principal Components (PCs) that capture the greatest 
variance. This simplification retains essential information while 
reducing complexity. Widely used in fields such as signal pro-
cessing, machine learning, and statistics, PCA is an effective 
tool for noise reduction, pattern detection, and enhancing the 
interpretation of multivariate data.

2.4.4   |   Independent Component Analysis

The principle of Independent Component Analysis (ICA), a 
statistical signal processing method for linearly decompos-
ing a random vector into components that strive for maxi-
mum independence (Hyvärinen et  al.  2001) was employed in 
the classification of TP images under test. The fundamental 
principle of ICA involves observations of random variables 
{

x1(t), x2(t), … , xn(t)
}

, presumed to originate from a linear mix-
ture of independent components 

{

s1(t), s2(t), … , sn(t)
}

, accord-
ing to

where A is the unknown mixture matrix. In the context of fea-
ture extraction using ICA, the columns of Atrain comprise the 
primary feature vectors extracted from the training images. 
These vectors serve as input for the classifier, combined with the 
mixture matrix of the image under test, Atest.

In this study, the images xn (or I(x, y)) are vectorized (Iv) and 
stacked. The Iv are processed by the PCA algorithm to compute 
their respective principal components (PCs) representations, 
which are used to project Iv onto the subspace spanned by the 
selected PCs. This is done by multiplying Iv by the selected PCs, 
IPCA = Iv ∗PCs. For the ICA method, Iv is fed into the FastICA 
algorithm (Hyvärinen and Oja 2000), which calculates A and s. 

(1)

x =
(

x1(t), x2(t), … , xn(t)
)T

= A
(

s1(t), s2(t), … , sn(t)
)T

= As
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The matrix A, analogous to the IPCA in PCA, is used as the ICA 
feature descriptor for each image, as illustrated in Figure 3a.

2.4.5   |   Moment Functions

The moment methods provide an effective manner to extract 
rotation-invariant features from images (Teague  1980). The 
image moment can be described mathematically as the inner 
product of the basis function Rns(r) and the image function 
f (r, �) (2D image defined in polar coordinate system). The 
image moment sets can be directly interpreted geometrically as 
the projection of f (r, �) onto a subspace formed by a set of basic 
functions Rns(r). Finding a collection of unique basis functions 
with advantageous qualities can be challenging given that there 
exist several basis function sets.

A simple moment function that can be easily implemented 
is the Legendre Moments (LM) which was introduced by 
Teague (1980). It is produced based on the recurrence relation 
of Legendre polynomial of order p (Chong et  al.  2004), and is 
defined as

where P0(x) = 1, P1(x) = x, and p > 1. Since the region of defini-
tion of Legendre polynomial is the interior of [ − 1, 1], a square 
image I(x, y) of N × N pixels with image pixel coordinates (x , 
y), typically ranging from [0,N − 1], is scaled in the region 
− 1 < x, y < 1. The discrete form of the LM of order (p + q) for an 
image I(x, y) can be expressed as

where the normalizing constant is

x̂  and ŷ denote the normalized pixel coordinates in the range 
[ − 1, 1], which are given by

Images I(x, y) are input into the LM algorithm, which com-
putes their corresponding moments using Legendre polyno-
mials Lpq. Unlike PCA and ICA techniques, LM do not require (2)Pp(x) =

(2p − 1)xPp − 1(x) − (p − 1)Pp − 2(x)

p

(3)Lpq = �pq
∑N−1

x=0

∑N−1

y=0
Pp

(

x̂
)

Pq
(

ŷ
)

I(x, y)

(4)�pq =
(2p + 1)(2q + 1)

N2

(5)x̂ =
2i

N − 1
− 1, ŷ =

2j

N − 1
− 1

FIGURE 2    |    Pre-processing workflow. (A) Original RGB plate image; (B) 25 small sub-images sampled from the original plate; (C) grayscale con-
version of the image; (D) global threshold applied, determined from the first image, producing binary images. The resulting 25-cell sub-images were 
used as input for the machine learning model.
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vectorization; instead, the images can be directly used to calcu-
late the Lpq , as seen in Figure 3b.

2.4.6   |   Classifier

Classifiers are the fundamental components of machine learn-
ing and pattern recognition. They are essential for classifying 
and generating predictions from newly received data.

2.4.7   |   k-Nearest Neighbors

A versatile and intuitive classification method, k-Nearest 
Neighbors (k-NN) relies on the principle of similarity to clas-
sify data points based on their proximity to neighboring in-
stances. The technique, which was initially presented by Fix and 
Hodges (1951) and then refined by Cover and Hart (1967), uses a 
feature space to classify data points based on how close they are 
to known labeled data points.

Fundamentally, k-NN uses the labels of its closest neighbors 
when determining the grouping of a new data point. The “k” 
in k-NN refers to the number of neighbors that are considered 

while classifying. The algorithm searches the k nearest data 
points depending on a chosen distance metric, such as Euclidean 
distance, to label a new data point. For each of these k neighbors, 
the most prevalent class becomes the predicted class for the new 
data point. The output derived from PCA (IPCA), ICA (A), and 
LM (Lpq) serve as the input for the k-NN algorithm, which com-
putes the distances to identify the closest neighbors (Figure 3c). 
Table 1 displays the feature vector size for each method, along 
with the corresponding extraction time per sample processed on 
an Intel i7-1255U (4.7 GHz), 16GB of RAM, and solid-state drive 
(SSD) laptop. The codes were implemented in MATLAB 2023b.

3   |   Results

3.1   |   Outcomes of Conventional Tracking Plate 
Analysis

In total, we placed 6645 units of TPs, and recovered 5746 units 
(87.79%), out of which 3181 (55%) had marks from both rodent 
and non-target species. Following the procedure to examine 
only TPs with at least two-thirds marks (Connors et al. 2005), 
two independently trained evaluators examined 1675 TP units 
that satisfied this condition, corresponding to 526 (31.4%) TP 

FIGURE 3    |    The feature extraction stage involves several steps. (a) The 25 small samples are vectorized and then stacked of each other. Then, this 
combined dataset is input into PCA and ICA for dimensionality reduction. (b) Images are directly inputted into the Moment Functions for process-
ing. (c) Feature vectors generated from all applied methods are fed into k-NN algorithm for classification purposes. ICA, Independent Component 
Analysis; k-NN, k-nearest neighbors; L, Legendre Moments; PCA, Principal Components Analysis.

 20457758, 2025, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.72382 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [10/11/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



7 of 13Ecology and Evolution, 2025

units with rodent marks, notably with 80% agreement in the 
results of the two trained independent evaluators using Hacker 
et al. (2016) previously validated protocol.

The process of sorting TPs with both rodent and non-rodent 
marks alone took weeks of dedicated evaluation by two well-
experienced evaluators. Additionally, identifying and scoring 
only TPs with rodent marks (in this case, 526 of 1675) took an-
other week of evaluation, eventually yielding 80% concordance 
results from the two experienced evaluators.

3.2   |   Outcomes of Machine Learning Tracking 
Plate Analysis

To evaluate the performance of our ML model, we employed a 
repeated partitioning strategy. The dataset consisted of 67 plates 
→ 654 positive images (PI), 1021 negative images (NI) of rodent 
marks and was partitioned 50 times. In each partition, the im-
ages were randomly split such that 80% of the PIs and 80% of 
the NIs were used for training while the remaining 20% of each 
class (PI and NI) were reserved for testing (data not shown). 
Feature vectors extracted from the images were then presented 
to a k-nearest neighbor (k-NN) classifier using the Euclidean 
distance metric, considering the 5 nearest neighbors for classi-
fication. This procedure was repeated across all iterations (50 
times) to determine the optimal feature vector size. Figure  4 
summarizes the overall classification performance. To evaluate 
model performance, we plotted accuracy as a function of feature 
vector size (Figure 4a) and reported additional metrics, includ-
ing specificity, sensitivity, cross-entropy loss, and mean-squared 
error (MSE) (Figure 4b). Accuracy was emphasized as the pri-
mary metric since it reflects the overall agreement between pre-
dictions and ground truth. Sensitivity and specificity provided 
complementary insight into false negative and false positive 
errors, respectively, while cross-entropy loss and MSE quanti-
fied prediction confidence and error magnitude, offering a more 
comprehensive assessment of model performance.

Results from Figure 4 and Table 1 indicate that the ML satisfac-
torily, especially PCA and LM identified and classified different 
marks on the TPs, particularly doing well for rodent identifica-
tion with higher precision (bar ICA) and significantly shorter 
period (1 day) compared to the conventional method, which is 
rigorous and laborious and requires over 2 weeks of dedicated 
evaluation by two highly experienced evaluators.

Figure 5 shows the efficacy of the feature extractors with vary-
ing training set sizes (10%–80%), keeping the remaining data 
for testing and using the same classification parameters as in 

the previous experiment. It presents the classification metrics, 
including sensitivity, specificity, cross-entropy loss, and mean 
squared error (MSE), along with the Area Under the ROC 
(Receiver Operating Characteristic) curve (AUC) for each de-
scriptor when 80% of the dataset is used for training.

4   |   Discussion

Incorporating machine learning in rodent surveillance could 
enhance efficiency and accuracy compared to conventional, 
labor-intensive human analysis. In this study, two independent 
evaluators required over 2 weeks to classify 1675 plates, whereas 
the ML pipeline completed the same task in less than 1 day on 
a standard computer (Intel i7-1255U, 16 GB RAM), yielding sat-
isfactory results. Beyond reducing processing time, ML has the 
potential to reduce human error, increase confidence in the re-
sults, and detect subtle rodent marks that may be difficult for 
the human eye to spot, thereby improving the effectiveness of 
rodent surveillance programs.

Here, the TP-rodent evaluation method performed well in de-
tecting rodent infestations in the marginalized communities. 
Although TP-rodent sampling is less expensive, simplified, easy 
to apply, and community friendly compared to other methods 
such as rodent trapping, exterior and interior rodent evaluation, 
the evaluation of the plates requires dedicated efforts and ex-
pertise. The intensity of rodent marks and the binary index of 
presence/absence of specific rodent marks on the TPs may be 
subjected to human error during analyses, as they often exhibit 
nonspecific markings that may be confusing to novice evalua-
tors during analysis, thereby complicating the results of the final 
analysis.

Although the application of ML in ecology remains limited, 
it has significantly enhanced rodent behavioral analysis and 
the spatiotemporal dynamics evaluation of animal motion in 
ecology and neuroscience research, providing higher consis-
tency than manual classification (Isik and Unal  2023; Luxem 
et al. 2022). Similarly, ML has shown potential to support clini-
cal diagnostics and in some cases may complement or enhance 
conventional physician assessments (Farzaneh et  al.  2023). In 
this study, in terms of processing time, Table  1 indicates that 
the extraction processing time for the feature extractors is differ-
ent. The higher requirement of ICA compared to other methods 
during the extraction process might be attributed to the higher 
computational demand resulting from the numerous summa-
tions in the equations, often necessitating iterative loops at the 
computational level.

In applying ML to rodent surveillance analysis, the feature 
extractors based on PCA and moment functions (LM) tend to 
preserve crucial image information within a smaller set of 
components compared to ICA, as we can see in Figure 4. Their 
ability to handle inherent image invariances plays a significant 
role in achieving high accuracy with fewer components. For 
instance, PCA achieved 91.80% accuracy using 22 components 
compared to 89.05% for LM and 66.03% for ICA, which obtained 
the lowest overall accuracy rate. When aggregated at the plate 
level, ML classifications (PCA + k-NN) of active versus inac-
tive matched human scoring in 91.80% of cases. The observed 

TABLE 1    |    Total of components and extraction time of the feature 
vectors.

Total of components 
(per sample)

Extraction time 
(s) (per sample)

ICA 100 1.0508

LM 100 0.4532

PCA 100 0.1843
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low accuracies were anticipated and could be attributed to the 
inherent impact of image invariances, such as rotation, trans-
lation, and scaling, aligned with discussions outlined in other 
research papers (Ridgeway 2016; Silva et al. 2015). While PCA 
required 22 components to achieve peak accuracy (91.80%), 
classification metrics plateaued after 20 components, indicating 

stability rather than over-complexity. The higher training pro-
portion (50%–80%) was necessitated by the modest dataset size. 
In larger datasets, fewer training iterations would be expected. 
Thus, although training requirements were relatively high in 
this pilot study, the approach is scalable and generalizable with 
expanded data.

FIGURE 4    |    (a) Accuracy per feature vector size for all feature vectors; (b) specificity, sensitivity, cross-entropy loss, and mean-squared error when 
the number of components varies. ICA, Independent Component Analysis; LM, Legendre Moments; PCA, Principal Components Analysis.
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Figure 4 compares key classification metrics (sensitivity, spec-
ificity, cross-entropy loss, and mean square error) for the ICA, 
PCA, and LM models. ICA required over 35 components to 
match the specificity of PCA and LM. With 22 components, 
ICA's sensitivity (~0.34) was much lower than PCA (~0.94) and 
LM (~0.88). Cross-entropy loss for ICA (~0.228) was higher than 
PCA (~0.072) and LM (~0.086), indicating poorer prediction 

alignment. MSE was also higher for ICA (~0.319) compared to 
PCA (~0.080) and LM (~0.115). PCA and LM outperformed ICA 
in this assessment.

A posterior analysis was conducted with the number of compo-
nents fixed at 22, while varying the training size from 10% to 80% 
to determine the optimal training size for achieving high accuracy. 

FIGURE 5    |    (a) Accuracy per descriptor when training set is varied; (b) Classification metrics when the training set varies from 10% to 80%. ICA, 
Independent Component Analysis; LM, Legendre Moments; PCA, Principal Components Analysis.
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As shown in Figure 5, LM initially achieved the highest accuracy 
up to a training size of 20%, after which it was surpassed by PCA. 
LM reached an accuracy plateau of 88.71% when the training size 
was 27%. In contrast, ICA continued to improve its accuracy as 
the training size increased but remained low, even with 80% of the 
data used for training, achieving an accuracy of only 67.80%. PCA's 
accuracy steadily increased as the training size grew, eventually 
plateauing at 91.00% when 59% of the training set was used.

Figure 5 presents a similar scenario to Figure 4, with PCA and 
LM outperforming ICA in classification metrics. PCA and LM 
both showed improvements in specificity, increasing from ~0.87 
to ~0.89 for PCA and from ~0.88 to ~0.895 for LM, while ICA's 
specificity only improved from ~0.85 to ~0.87. Sensitivity saw 
a substantial jump for PCA, rising from ~0.73 to ~0.95, and a 
moderate increase for LM, from ~0.82 to ~0.88. However, ICA's 
sensitivity remained significantly lower, increasing only slightly 
from ~0.275 to ~0.35. In terms of losses, PCA achieved the low-
est cross-entropy loss at ~0.07, followed by LM at ~0.09, while 
ICA had a ~0.23 loss. The mean square error (MSE) was also 
lowest for PCA (~0.095), with LM at ~0.12 and ICA lagging be-
hind with a high MSE of ~0.33.

Figure 6 presents the area under the curve (AUC) values for each 
model, offering insight into the quality of their predictions. The 
PCA and LM models achieved high AUC scores of 0.9343 and 
0.9015, respectively, indicating strong abilities to distinguish be-
tween positive and negative classes. In contrast, the ICA model 

recorded a much lower AUC of 0.6507, reflecting a limited ca-
pacity to effectively differentiate between the two classes.

To our knowledge, this is the first paper presenting a method ap-
plied to rodent surveillance with ML. Another noteworthy study 
(Hopkins et al. 2024) demonstrates the use of camera traps en-
hanced with machine learning for rodent detection. Their ML 
model, using the YoloV5x, achieved high precision and recall 
(mean average precision of 0.941 over all seven rodent classes), 
indicating precise species identification from camera trap im-
ages. The findings of Hopkins et  al.  (2024) underscore the ef-
ficiency, practicality, and sustainability of combining camera 
traps with ML technology for ecological monitoring, highlight-
ing its superior detection rates and reduced labor demand.

The importance of machine learning in this context cannot 
be overstated. Advanced ML algorithms enable automatic and 
accurate identification of rodent species from large datasets of 
camera trap images, enhancing both detection efficiency and 
data quality. By automating the identification process, ML re-
duces human labor and potential biases, ensuring consistent 
and reliable monitoring efforts. This technological advancement 
represents a significant step forward in wildlife conservation 
and ecological studies, as it allows for more effective and com-
prehensive monitoring of biodiversity.

Additionally, although TPs allow for the assessment of rodent 
presence based on the quantity of marks left by rodents, these 

FIGURE 6    |    Area under the ROC curve (AUC) of all feature extractors when using a feature vector size of 22% and 80% of the data for training. 
ICA, Independent Component Analysis; LM, Legendre Moments; NI, negative images for rodent mark; PCA, Principal Components Analysis; PI, 
positive images.
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can be challenging to identify and analyze using conventional 
methods; the integration of ML enhances these traditional ap-
proaches. By training algorithms to automatically identify 
these subtle details, which are difficult to detect manually, this 
approach represents a significant advancement in rodent pop-
ulation ecology and surveillance techniques. Additionally, the 
integration of ML and the conventional methods should enable 
satisfactory generalization of results and improve swift analysis 
of results, as a result reducing the limitations mentioned above 
regarding time and human errors in the identification and quan-
tification of rodent marks on TPs.

A notable limitation of our current approach is that neither the 
conventional nor ML can identify the specific rodent species 
present during surveillance, as the TP evaluation is inherently 
non-species specific. Consequently, a complementary surveil-
lance method is required when species-level identification is 
necessary. Going beyond simple presence/absence detection 
could be particularly valuable for rodent management pro-
grams, given that morphological differences among rodent spe-
cies may differentially influence their population dynamics and 
management strategies (Keesing and Ostfeld 2024). Addressing 
this challenge remains an important objective for our subse-
quent studies.

5   |   Conclusion

The results of this study demonstrate the promising potential 
of incorporating ML into rodent surveillance. The superior 
performance of PCA and LM, with a higher degree of accuracy 
compared to the conventional labor-intensive methods, high-
lights ML's ability to reduce human error during TP analysis. 
We present a novel approach that could significantly enhance 
the protocols of rodent surveillance programs. This method is 
particularly valuable for small mammal surveillance in LMICs, 
where expertise in interpreting TPs may be limited. Similarly, 
integrating ML into rodent surveillance should facilitate the 
prompt evaluation of rodent proliferation, enabling subsequent 
timely rodent population management, while also contributing 
to the indirect control of rodent-borne zoonoses in marginalized 
urban communities.
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