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Mapping small water channels using 
machine learning 

Abstract 

Boreal landscapes are shaped by a dense network of natural streams, modified 

streams, and ditches. Together, they regulate hydrology, nutrient transport, and 

ecosystem function. Historically, streams were modified to accommodate log 

transportation, and drainage ditches were dug to improve food and timber 

production. Although new ditching has mostly stopped, historical changes to the 

drainage network still affect forestry and water management. Small streams and 

ditches are the landscape’s capillaries, but they remain poorly mapped despite their 

vital hydrological and ecological roles. This thesis addresses this gap in knowledge 

by developing a novel, national-scale framework for mapping small streams and 

ditches using high-resolution topographic data and machine learning techniques. 

Combining convolutional neural networks, XGBoost classification, uncertainty 

quantification, and drainage analyses, this work identifies geomorphological and 

hydrological indices that distinguish streams from ditches across the landscape. The 

highest-performing model shows that integrating digital elevation models with 

terrain indices and machine learning delineates the channel networks successfully 

for ditches (recall=76%, precision=88%) and moderately for natural streams 

(recall=58%, precision=56%). Furthermore, the produced uncertainty maps 

highlight low-certainty pixels from the background that can be used to potentially 

improve the mapping of streams in the future. To the best of our knowledge, this is 

the first study that can separate streams and ditches on maps across an entire nation. 

By providing consistent, scalable maps of small channels, this research supports 

restoration prioritization, sustainable forestry planning, and national reporting under 

EU and UN environmental frameworks. The methodology also offers a reproducible 

approach for characterizing coupled natural-artificial drainage systems in boreal and 

temperate regions worldwide. 

 

Keywords: machine learning, deep learning, neural network, ditch, drainage, water 

channels, XGBoost, U-Net 

  



Kartläggning av små vattendrag och diken 
med hjälp av maskininlärning 

Abstract 

Det boreala landskapet präglas av ett omfattande nätverk av naturliga vattendrag, 

modifierade vattendrag och diken som tillsammans reglerar hydrologi, 

näringsflöden och ekosystemfunktioner. Historiskt har vattendrag rätats och rensats 

för timmerflottning medan diken har grävts för att öka jordbruks- och 

skogsproduktionen. Trots att nydikning numera är ovanlig påverkar dessa historiska 

ingrepp fortfarande vattenförvaltning och skogsbruk. Små vattendrag och diken 

fungerar som landskapets kapillärer men är fortfarande bristfälligt kartlagda, trots 

deras centrala hydrologiska och ekologiska betydelse. Denna avhandling utvecklar 

en metod för att kartlägga små vattendrag och diken på nationell skala med 

högupplösta topografiska data och maskininlärning. Genom att kombinera 

konvolutionella neurala nätverk, XGBoost-klassificering, osäkerhetsanalys och data 

på flödesackumulering identifieras geomorfologiska och hydrologiska indicier som 

skiljer diken från naturliga vattendrag. Den bästa metoden visar att digitala 

höjdmodeller och terrängindicier kan användas för att effektivt avgränsa vattendrag 

och diken. Metoden hade hög precision för diken (recall=76%, precision=88%) och 

mer måttliga resultat för naturliga vattendrag (recall=58%, precision=56%). 

Osäkerhetskartor visar dessutom var framtida förbättringar av kartläggningen bör 

riktas. 

Detta är den första studien som framgångsrikt särskiljer vattendrag och diken för 

ett helt land. Genom att skapa konsekventa, skalbara kartor över små vattendrag och 

diken bidrar forskningen till restaureringsprioritering, hållbar skogsförvaltning och 

nationell miljörapportering inom EU:s och FN:s ramar. Metoden erbjuder även ett 

reproducerbart sätt att beskriva sammankopplade naturliga och artificiella 

dräneringssystem i boreala och tempererade regioner. 

Keywords: maskininlärning, djupinlärning, neurala nätverk, diken, dränering, 

vattendrag, XGBoost, U-Net 

  



Mapeando cursos d’água estreitos usando 
aprendizado de máquina 

Resumo 

As paisagens boreais são moldadas por uma rede densa de cursos d’água naturais, 

cursos d’água modificados e valas de drenagem. Juntos, eles regulam a hidrologia, 

o transporte de nutrientes e o funcionamento dos ecossistemas. Historicamente, na 

Suécia os cursos d’água foram modificados para o transporte de madeira, e valas de 

drenagem foram escavadas para melhorar a agricultura e produção florestal. Embora 

a abertura de novas valas não seja mais permitida, as alterações históricas na 

drenagem ainda afetam o manejo florestal e a gestão da água. Pequenos cursos 

d’água e valas funcionam como as veias do terreno, mas continuam sendo pouco 

mapeados, apesar do seu papel essencial em hidrologia e ecologia.  

Esta tese foca nessa lacuna no conhecimento ao desenvolver um fluxo de trabalho 

inédito, em escala nacional, para o mapeamento de pequenos cursos d’água e valas, 

utilizando dados topográficos de alta resolução e técnicas de aprendizado de 

máquina. Combinando redes neurais convolucionais, classificação com XGBoost, 

quantificação de incertezas e análises de drenagem, o estudo identifica índices 

geomorfológicos e hidrológicos que distinguem cursos d’água de valas em toda a 

paisagem. O modelo com melhor desempenho demonstra que a combinação de 

modelos digitais de elevação com índices de terreno e aprendizado de máquina 

mapeia com sucesso as valas (recall=76%, precisão=88%) e de forma moderada os 

cursos d’água naturais (recall=58%, precisão=56%). Além disso, os mapas de 

incerteza produzidos destacam pixels de baixa confiabilidade do background, que 

podem ser usados para aprimorar o mapeamento de cursos d’água no futuro. 

Até onde sabemos, este é o primeiro estudo capaz de identificar separadamente 

cursos d’água naturais e valas de todo um país. Ao fornecer mapas consistentes e 

reprodutíveis de cursos d’água estreitos, esta pesquisa ajuda a determinar a 

prioridade para ações de restauração, o planejamento florestal sustentável e os 

relatórios nacionais sob os marcos ambientais da UE e da ONU. A metodologia 

também oferece uma abordagem reprodutível para caracterizar sistemas de 

drenagem naturais e artificiais interconectados em regiões boreais e temperadas em 

todo o mundo. 

Keywords: aprendizado de máquina, aprendizagem profunda, redes neurais, valas, 

drenagem, rios, cursos d’água, XGBoost, U-Net  





Dedication 

In memory of my grandmother Aracy Matheus dos Santos (05/02/2021). I 

wonder what she’s cooking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



  

“Science isn’t about why. It’s about WHY NOT.”’ 

– Cave Johnson 
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“Sometimes scientists change their minds. New developments cause a 

rethink. If this bothers you, consider how much damage is being done to the 

world by people for whom new developments do not cause a rethink.” 

– Terry Pratchett, The Science of Discworld 
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1. Introduction 

Boreal forests are the largest biome on Earth (Sanderson et al. 2012), 

spanning northern Europe, Asia, and North America (Figure 1). This global 

forest contains dense networks of small streams, wetlands, and peatlands that 

regulate hydrology and nutrient cycling (Pomeroy et al. 1998). Over 

centuries, these water systems have been modified in Sweden, Finland, and 

Canada (Lavoie et al. 2005), where ditches have drained the soil to improve 

forest productivity and expand agricultural land (Jacks 2019)(Figure 2), 

altering stream morphology, disrupting habitats, and impacting ecosystem 

processes. Therefore, understanding how natural and artificial channels 

interact is key to effectively managing and restoring water systems in these 

countries. 

 
Figure 1. The coverage of boreal forests across the higher latitudes of the globe. Plotted 

with data from Boucher et al. (2024). 
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Figure 2. The expansion, cleaning, and protection of forest drainages in Sweden, from 

1873 to 2003. Adapted from (Jacks 2019). 

In Sweden, the historical development of the forest industry further altered 

watercourses. To transport logs downstream, streams and rivers were 

modified: boulders were blasted or removed, watercourses were straightened 

or redirected, and dams were built to retain water during low-flow periods 

(Törnlund & Östlund 2006). These interventions changed stream 

morphology and ecology, disrupting habitats, reducing biodiversity, altering 

flow regimes, and affecting nutrient cycling (Törnlund & Östlund 2002). 

When timber floating ceased and road transport became dominant, these 

channel modifications remained, continuing to affect the local system. 

Ditches are another form of human modification of the Swedish 

landscape. Drainage ditches have been constructed since medieval times 

(Jacks 2019) and today constitute about 67 % of the country’s total channel 

network, which is currently estimated at 1.2 million km (Laudon et al. 

2022a). This proportion corresponds to approximately 800 000 km of ditch 

channels, the majority of which are forest ditches (Paul et al. 2023). Now, 

ditches present a complex relationship with natural streams within the 

Swedish hydrological network. Distinguishing one from the other may 

appear straightforward: ditches are typically linear, straight channels, but not 

always (Figure 3B, Figure 3D, Figure 3F), while natural streams tend to 
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meander (Figure 3A, Figure 3C, Figure 3E), but not always. Furthermore, 

ditches may have undergone naturalization processes over decades since they 

were dug, developing their own ecosystems that support diverse fauna and 

flora (Armitage et al. 2003; Herzon & Helenius 2008) and creating important 

ecological functions. This creates challenges for restoration, management, 

and compliance with environmental regulations. 
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Figure 3. Natural streams (on the left) and ditches (on the right) share visual similarities. 

Image credits: (A,B) Alejandro Gandara, (C,D) Cedrik Åkermark, (E) Andreas Palmén. 
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Both ditches and natural streams are subject to hydrological processes 

shaped by climate change. Global warming is predicted to increase 

precipitation in boreal regions, raising discharge in streams and expanding 

groundwater-fed areas along channels (Nilsson et al. 2013) which may 

benefit plant species richness. Higher temperatures increase the occurrence 

of heatwaves (Coumou & Rahmstorf 2012) and droughts (Trenberth 2011), 

which affects the water quality of boreal streams (Gómez-Gener et al. 2020). 

For streams in peatland-dominated boreal catchments, the DOC exports shift 

due to changes in runoff and precipitation (Dore 2005; Gauthier et al. 2015; 

Prijac et al. 2023). Earlier snowmelt affects spring flood peaks (Falloon & 

Betts 2006), reducing the channel geomorphological activity because of 

weaker extreme flood events (Andréasson et al. 2004), impacting channel 

connectivity (Croke et al. 2013). This represents a challenge for forestry 

practices because, following an initial increase in forest productivity with 

warmer temperatures, the adverse consequences outweigh any benefit 

(World Bank 2014). 

Increasing the soil carbon sequestration is an important climate change 

mitigation strategy (Minx et al. 2018). Peatlands, the predominant wetland 

type in boreal landscapes, are efficient natural long-term carbon sinks and 

help regulate water flow during dry periods (Karimi et al. 2025; Laudon et 

al. 2025). Unfortunately, extensive ditching for forestry in Sweden (940.000 

ha; Hånell 1990) and Finland (13% of the country’s area; Peltomaa 2007) 

has drained these wetlands, reducing their hydrological and ecological 

functions.  

To prevent the expansion of ditched areas in Sweden, regulations were 

implemented starting in 1986 (Hasselquist et al. 2020), such as the 

requirement of permits to dig new ditches (Skogsstyrelsen 2022). However, 

after one consults the Swedish Forest Agency (Swedish PEFC 2017), ditches 

can be cleaned to improve drainage capability; that is, the accumulated 

sediments can be removed using an excavator. This harms the established 

ecosystem and releases more sediments and nutrients from the soil, 

impacting the watercourses that receive this water (Nieminen et al. 2018). 

Currently, natural streams are a target of protection at many levels. For 

example, the Swedish Forest Agency recommends the use of a 30 m riparian 

buffer along natural streams to protect the aquatic habitat from forestry and 

agricultural practices (Skogsstyrelsen 2022). Such forest buffers act as a 

nutrient sink on the channel margins and promote biodiversity by hosting 
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different species than the surrounding area (Gundersen et al. 2010). 

However, in practice, these buffers vary greatly in terms of width, 

enforcement, and effectiveness. Adhesion by forest owners is voluntary and, 

as estimated in Kuglerová et al. (2020), only 25% of small streams even have 

said buffers. Also, the average width is ±4 meters, far from the 

recommended. 

Restoration efforts in small waterways mostly focus on ditch blocking. 

The aim is to reestablish wetland hydrology by blocking ditches to recover 

groundwater storage and support ecological functions (Maanavilja et al. 

2014; Bring et al. 2022)(Figure 4). However, rewetting drained peatlands can 

conflict with forestry interests (Lõhmus et al. 2015). The widespread high 

drainage density across the Swedish landscape shows the impact of ditching 

(Laudon et al. 2022), peaking 15 km/km² in some areas. Around 53% of 

Sweden’s peatlands were altered, i.e., 23% of the national landscape 

(Vasander et al. 2003). Since 21.6% of degraded peatlands are boreal, there 

is an opportunity for large-scale rewetting and carbon storage: rewetting 60% 

of today’s degraded peatlands could turn the global land system into a net 

carbon sink by 2100 (Humpenöder et al. 2020). Reflecting this potential, 

studies on boreal peatland restoration have been conducted in Sweden 

(Elenius et al. 2025; Laudon et al. 2025; Zannella et al. 2025), Finland 

(Komulainen et al. 1999; Haapalehto et al. 2011), and Canada (Nugent et al. 

2019). 
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Figure 4. A ditch being filled during the restoration of the Stormyran mire, in the 

Trollberget study site. Image credits: Andreas Palmén.  

Restoration attempts of natural streams that were altered by timber floating 

have been made (Gardeström et al. 2013) with varying results (Helfield et al. 

2007; Hasselquist et al. 2017; Frainer et al. 2018; Pilotto et al. 2018), but 

recovering pre-floating conditions is still a challenge (Nilsson et al. 2005). 

Meanwhile, the restoration of wetlands means removing the effect of ditches, 

by blocking water using a plug or filling them in completely with an 

excavator. The differences in legislation and management practices between 

natural streams or ditches show the importance of classifying them correctly 

to follow the goals of Agenda 2030. 

The Nature Restoration Law sets a critical target for freshwater 

ecosystems: restoring at least 20% of degraded ecosystems by 2030 and 90% 

by 2050 (Council of the European Union 2023). On a larger scale, the 

Sustainable Development goals listed in the United Nations Agenda 2030 

focus on the importance of protecting water resources from degradation and 

promoting their sustainable management (United Nations General Assembly 

2015). This led the European Union to adopt the Water Framework Directive 

guidelines (European Commission 2000), which require member states to 

implement policies aimed at improving the ecological and chemical status of 

water bodies. Consequently, the monitoring and management of freshwater 
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ecosystems becomes a priority to achieve restoration goals, with mapping 

being key to this development. 

Planning the management of small waterways (<6 m width) has been a 

challenge in Sweden because the majority of them were missing from 

topographical maps, where, as reported in Flyckt et al. (2022), only 9% of 

the ditches, 25% of the straightened watercourses, and 45% of the natural 

watercourses were present. In fact, Bishop et al. (2008) named them the Aqua 

Incognita - the unknown headwaters. While other studies have focused on 

understanding the hydrology, water quality, and ecology of small waterways, 

this thesis focuses on mapping the networks using novel technology. 

Common tools to map and classify these channels are field surveys (Brookes 

1987), comparing current and historical maps to aerial imagery (Ruuska & 

Helenius 1996), and checking channel continuity (Zaharia et al. 2018). 

However, such detailed work on a national scale has a high cost and takes a 

long time to be completed: we estimated it would take 90 years to digitize all 

the small water channels in Sweden, which does not match the urgency for 

compliance with the Agenda 2030. Considering the limitations of large-scale 

surveys, digital methods rose as an affordable alternative. 

Topography-based methods using Digital Elevation Models (DEMs) 

derived from Aerial Laser Scanning (ALS) can be scaled with robust results. 

DEMs capture fine-scale elevation data, enabling the modelling of 

hydrological features such as flow accumulation (Jenson & Domingue 1988; 

Moore et al. 1991). However, these models are not without limitations: they 

tend to misclassify depressions, often miss ditches due to their placement in 

wetlands or flat terrain, and may require extensive preprocessing (e.g., 

stream burning, breaching) that introduces further uncertainties, especially 

at road crossings (Lidberg et al. 2017). 

The field of artificial intelligence has shown promise in overcoming these 

limitations. This is a broad term encompassing, among other things, efforts 

to make machines perform tasks that require cognitive capabilities, such as 

reasoning, learning, and problem-solving (Russell & Norvig 2021). Using it, 

complex, time-demanding tasks can be automated in many cases at a lower 

cost. While this alone is not sufficient to classify a machine as an autonomous 

intelligent agent in the same sense as humans (Korteling et al. 2021), the 

automation of such tasks has many useful applications in many research 

areas (Pham & Pham 1999; Hamet & Tremblay 2017; As et al. 2018; De 

Almeida et al. 2019). 
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Machine Learning (ML) is a subfield of artificial intelligence (Shinde & 

Shah 2018). It involves using an algorithm that learns directly from the data 

by applying statistical methods to address various tasks. Within the 

environmental and ecological context, it has applications in species 

distribution (Pasha & Reddy 2024), forest health assessment (Estrada et al. 

2023), landslide susceptibility (Merghadi et al. 2020), and rainfall prediction 

(Barrera-Animas et al. 2022), among others. For water channels, it was used 

in river ice mapping (Han et al. 2024), streamflow (Szczepanek 2022), 

evaluation of water quality (Khoi et al. 2022), and reach classification 

(Guillon et al. 2020; Olusola et al. 2022). 

Deep Learning (DL), a subset of ML, was inspired by the structure of the 

human brain, using artificial neural networks to learn hierarchical 

representations of data. It started with the creation of neuron models 

(McCulloch & Pitts 1943), until reaching multi-layer perceptrons trained by 

backpropagation (Rumelhart et al. 1986). Within it, convolutional neural 

networks (CNN; LeCun et al. 1989) have several applications in forestry, 

such as delineating tree crowns (Ball et al. 2023), mapping biomass (Fu et 

al. 2024), and species identification (Zhang et al. 2022). In Earth Sciences, it 

has been used for the analysis of mineral resource distribution (Li et al. 

2024), mapping volcanic and glacial landforms (Kazemi Garajeh et al. 2022), 

and simultaneous earthquake detection (Mousavi et al. 2020). 

Surface waters have been mapped with satellite data and DL before 

(Isikdogan et al. 2017; Jiang et al. 2018; Fei et al. 2022; Mazhar et al. 2022; 

Thirumalraj et al. 2023). However, detecting small channels remains 

challenging because satellite imagery typically has a spatial resolution of 10–

50 m. Orthophotos (Lantmäteriet 2021) provide much higher resolution, but 

in Sweden, dense tree cover often hides the terrain and the channels 

underneath it. High-resolution digital elevation models (DEMs) derived 

from ALS (Lantmäteriet 2022) address this limitation: with resolutions of 

0.10–2 m, they make it possible to filter out vegetation and focus on the 

underlying terrain. 

Small-scale channels have been extracted from topographic indices and 

remote sensing data before (Koski et al. 2023; Du et al. 2024) using U-Net 

(Ronneberger et al. 2015), a CNN architecture. It was used in Sweden, too, 

where Lidberg et al. (2023) increased the mapping of ditches from 9% to 

86% using ALS-derived data. Given these developments, there is a growing 

opportunity to integrate machine learning tools to not only detect channels 
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but also to classify them based on geomorphological and hydrological 

attributes. Factors such as stream slope, length, and catchment area could aid 

in distinguishing ditches from natural streams, which is crucial for both 

regulatory compliance and ecological restoration. 

By advancing the methodology to map and classify small water channels 

in forested landscapes, this study aims to support better integration of 

scientific data into environmental policy and land management, contributing 

to the restoration and protection goals of both national and international 

environmental agendas. 
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2. Research objectives 

The main goal of this thesis was to improve the automatic mapping and 

classification of small water channels using data derived from high-

resolution DEMs.  

• Identifying the best settings to map channels using U-Net based 

on individual and combined topographic indices, with different 

dataset setups (using only ditches, only streams, ditches and 

streams combined as “channels”, and ditches and streams 

separated) (Study I) 

• Improve the classification of the detected channels from Study I 

with eXtreme Gradient Boosting (XGBoost), removing false 

positives (FPs) and increasing the amount of stream channels 

correctly classified (Study II) 

• Comparing the performance of different methods to measure 

uncertainty when classifying pixels with concrete dropout (Study 

III) 

• Determining if there is any location-specific variability in the U-

Net performance across Sweden (Study IV) 
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“‘They’re pretty high mountains,’ said Azhural, his voice now edged with doubt. 

‘Slopes go up, slopes go down,’ said M’bu gnomically. 

‘That’s true,’ said Azhural. ‘Like, on average, it’s flat all the way.’” 

– Terry Pratchett, Moving Pictures 
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3. Materials and Methods 

3.1 Study areas 

The twelve study areas used to train and test the models are distributed across 

Sweden (Figure 5), a Scandinavian country with an area of 450.295 km2. 

55% of its territory is covered in forests, mostly boreal in the northern and 

central areas (Diekmann 1999). On a smaller scale, deciduous forests are 

found in the south, where the fertile plains are also located, while peatlands 

and wetlands are found in the central and northern areas (Sjörs 1999). The 

sites were selected to be 1) mainly forested areas (86-99% forest cover 

(Busarello et al. 2025)); 2) as diverse as possible when it came to runoff 

conditions, soil type, topographic variation, and tree species; and 3) within 

the constraints of areas with available higher resolution LiDAR cover, 

which, at the time, was limited to a few areas of the country. 

 
Figure 5. Swedish map with the location of the twelve study areas, plotted over the 

elevation. 
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3.2 Data collection 

Using orthophotos and terrain visualization techniques, experts digitally 

mapped small water channels (<6 m width) across the study areas' landscape 

to create the data used to train the models. Ditches were visually identified 

from terrain indices and high-resolution (0.17-0.5 m) orthophotos 

(Lantmäteriet 2021)(Figure 6A) and traced as vector data. After the channel 

heads (> 2 ha) were located and the connections between the stream and ditch 

network marked, their downstream stream paths were also manually edited. 

In total, the dataset had 2235 km of ditches and 335 km of natural streams. 

In all Studies, the indices that aided the mapping and classification were 

derived from the 0.5 m resolution DEM, obtained from the ALS with 1-2 

points per square meter (Lantmäteriet 2022)(Figure 6B). All indices and their 

applications are listed in Section 3.2.1. 
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Figure 6. (A) An example of an orthophoto from Lantmäteriet (2021) and the channel 

prediction from the inference output of Study IV, both plotted in 0.5 m resolution, and 

with a cross-section a-b. (B) LiDAR point cloud from the cross-section a-b, plotted with 

data from Lantmäteriet (2022). The cross-section cuts through two streams (in turquoise) 

and a ditch (in orange), highlighted on the elevation surface. The opacity of the data 

points represents the distance from the cross-section (maximum 20 m), with distant 

points having a higher transparency. 

The laser data from Lantmäteriet (2022) were organized as square tiles with 

a side of 2500 m (Figure 7). These tiles were further divided into chips with 
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dimensions of 250 m x 250 m (Figure 7B) to be used by the ML models. In 

Study I, 80% of the chips were randomly selected for training, while the 20% 

remaining were used for testing. In Study II, chips from eight of the study 

areas randomly selected were used to retrain a U-Net model, with chips from 

the four remaining areas used to train the XGBoost model. In Study III and 

IV, the chips were divided into nine folds for training, plus one for testing 

and one for calibration, applying stratified sampling to preserve the 

representativeness of all study areas.  

 
Figure 7. (A) A hillshade tile of side 2500 m derived from the LiDAR data from 

Lantmäteriet (2022). The tile is further divided into 100 chips, each with a side of 250 

m, as shown in (B). 

In Study IV, the U-Net model was used for a national-scale prediction. To 

capture the Swedish landscape variability on such a large area, the 

independent National Inventory of Landscapes in Sweden (NILS; Ståhl et al. 

2011)(Figure 8) was used for evaluation. In it, 631 line transects are 

distributed across Sweden’s different land cover areas, including forests and 

wetlands, providing reliable national estimates. In the study area, 6 576 

channels were analyzed. 
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Figure 8. (A) The line inventories of the NILS database distributed across Sweden 

(n=631). (B) Example of a single line inventory and its small ditches and streams 

observed. 

The channels from the U-Net did not overlap perfectly with the NILS 

database due to GPS uncertainties, so we used the snap function with a 25 m 

radius to relocate channel observations to predicted channels. 

3.2.1 Topographic and hydrological indices 

Topographic indices were derived from DEMs to describe terrain 

characteristics and explain how the topography influences landforms, 

erosion, and water flow, among others. Hydrology indices are a part of them, 

but focus on describing hydrological processes by encompassing water 

dynamics to characterize different components of the flow regime (Olden & 

Poff 2003). In this work, most of the indices were calculated using Whitebox 

Tools (Lindsay 2016), an open-source geospatial analysis library for python 

used for GIS and remote sensing applications. The only exception is the sky-

view factor, obtained using the Relief Visualization Toolbox (Zakšek et al. 

2011), a relief visualization package for geospatial analysis. 

In this thesis, we detected the water channels using only topographic 

indices to train the U-Net models. Furthermore, in Study II, we built on those 

results by combining the detected channel network with hydrological indices 
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and morphology to improve the classification between ditches and streams. 

Below, we list the most relevant indices used in our work (Figure 9). 

 

 
Figure 9. Chips of the topographical indices obtained from the DEM. The ground truth 

is plotted over the hillshade at 90°. 

High-Pass Median Filter 

The High-Pass Median Filter (HPMF) highlights short-range variability in 

the elevation by a moving window that returns the difference between the 
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pixel value and the median value of the pixels around it within the window. 

The window size used in this study is 11x11 pixels, which in our resolution 

means 5.5 m x 5.5 m. This index was combined with the vector lines from 

the ground truth to create the labels to train the U-Net model used in our 

studies. 

Sky-View Factor 

The sky-view factor is a terrain visualization technique that shows the 

portion of the sky visible from each DEM cell, accounting for obstructions 

caused by the surrounding terrain. Used in Studies I, II, and IV, combined 

with the slope. 

Slope 

Slope is a terrain analysis that calculates the rate of maximum change in 

elevation for each cell of a DEM, the steepness. It ranges from 0° to 90°, 

where 0° is a completely flat terrain, and 90° is a vertical cliff. It was 

calculated by a polynomial fit of the elevation using a 5x5 cell window (in 

this case, 2.5 m x 2.5 m) for a more robust result. Used in Study III by itself 

and combined with the sky-view factor in Studies I, II, and IV. 

Flow Accumulation 

The flow accumulation grid was calculated using the single-flow-direction 

method with the D8 algorithm (O’Callaghan & Mark 1984), without flow 

divergence. In this approach, water from each cell flows entirely into a single 

downslope neighbouring cell.  

Average Flowpath Slope 

This tool calculates the slope steepness of the flowpaths passing through each 

cell of the DEM. 

Average Upslope Flowpath Length 

This index is the calculation of the average length of the upslope flowpaths 

that pass through each cell of the DEM. 

Maximum Upslope Flowpath Length 

This index is the same as the above, but instead it calculates the maximum 

length of the upslope flowpaths that pass through each DEM cell. 
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Upslope Depression Storage 

Returns the average upslope depression depth, with smooth terrain having 

lower values than rough terrain. It first calculates the upslope depth of the 

depression storage, then divides it by the number of upslope cells. Uses the 

FD8 flow algorithm (Freeman 1991) for the calculation. 

3.2.2 Additional data 

Other data that were not derived from the DEM were added to train the 

models in Study II. Sinuosity is an indicator of how straight a water channel 

is (Lazarus & Constantine 2013), being calculated by dividing the length of 

the channel by the distance between its start and end points. Data was also 

extracted from the Study I inference by counting the frequency of each 

channel class pixel within the channel buffer and obtaining which was the 

majority class. 

 

3.2.3 Drainage index 

For Study IV, knowing that deeper ditches have stronger drainage effects 

that decrease with distance, we calculated the drainage index. The ditch 

influence was modelled by calculating the logarithmic decay of the 

regression function described by Bring et al. (2022), resulting in: 

 

 
𝐼𝑛𝑑𝑒𝑥 =  𝐷 − (

𝐷

ln(𝑀 + 1)
× ln(𝑑 + 1)) 

 

 

D is the estimated ditch depth in meters, M is the maximum influence 

distance (150 m), and d is the distance from a pixel to the nearest ditch in 

meters. 

3.3 Machine Learning approaches 

3.3.1 Convolutional Neural Networks 

CNNs (LeCun et al. 2015) are DL methods commonly used in computer 

vision tasks for spatial data, such as image segmentation, classification, and 

object detection. With one of their first applications being the recognition of 

handwritten numbers (LeCun et al. 1989), CNNs have remained relevant in 
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the fields of medicine (Polsinelli et al. 2020; Zuluaga-Gomez et al. 2021), 

climate change (Kim et al. 2022; Elshewey et al. 2025), chemistry (Derry et 

al. 2023), traffic flow forecasting (Sun et al. 2020), and several others. 

These models offer an advantage by automatically extracting hierarchical 

features from images and requiring fewer training instances than standard 

vision transformers. Architecturally, CNNs consist of a sequence of 

convolutional and pooling layers, which transform the input representation 

several times before reaching one or more fully connected layers (Figure 10). 

Within a convolutional layer (Figure 11), learnable filters (kernels) are 

applied across the input image to detect basic visual features, such as edges 

and corners. The resulting feature maps encode the spatial presence of these 

patterns, where a non-linear activation function is subsequently applied, 

allowing the network to model complex, non-linear relationships within the 

data. Pooling layers then perform downsampling operations, reducing the 

spatial dimensions of the feature maps while retaining important 

information. This step enhances computational efficiency and improves 

robustness to local variations and distortions. 

 

 
Figure 10. Example of a VGG-16 convolutional neural network (Simonyan & Zisserman 

2015), with the convolutional layers in orange, and the three fully-connected layers in 

purple. The third fully connected layer performs the classification, with a final softmax 

layer computing the class probabilities. Image from 

https://github.com/HarisIqbal88/PlotNeuralNet. 

Through repeated convolution and pooling operations, CNNs progressively 

capture higher-level, abstract features. Ultimately, the multidimensional 

feature maps are flattened and passed into fully connected layers, where the 

extracted features are combined to classify previously unseen data. 
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Figure 11. A convolutional layer. In the example, we assume zeroes fill the cells 

surrounding the input layer (i.e., zero padding). The 3x3 learning filter, in grey, is 

composed of trainable weights, the values within the cells. It moves through the input 

layer, cell by cell, multiplying the elements that overlap and adding their values. Then, 

an activation function, in purple, is applied to produce values for the feature map created 

by this filter. In this example, we use ReLU (Rectified Linear Unit), which does not 

change positive values and converts negative ones to zero. After this, a 2x2 maxpooling 

window, in yellow, passes through the cells, outputting the maximum value from within 

the window to the final output, which has reduced dimensions.  

3.3.2 U-Net 

U-Net (Ronneberger et al. 2015) is a CNN model known for its U-shape 

(Figure 12) that comes from its downsampling encoding path and the 

upsampling decoding path. The encoding path works similarly to the CNN 

described before, pooling after each convolution and extracting relevant 

features, increasing the number of feature channels. After that, the decoding 

path performs transposed convolutions, reconstructing the original spatial 

resolution and classifying pixels. At each level, skip connections link the 

encoder and decoder paths, transferring feature maps to preserve spatial 

details that may be lost during downsampling. In Study I, standard dropout 

is used after the first convolutions in each block, randomly setting a fraction 

of activations to zero during training, as specified by the dropout rate. In 
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Study III, some changes were made in the U-Net architecture following Teng 

et al. (2023), together with choosing specific angles for the data 

augmentation translation (0°, 90°, 180°, and 270°). The model was retrained 

using only the slope for a shorter processing time. In Study IV, the model 

with the architecture from Study III was retrained too, this time using sky-

view factor and the slope. 

 

 
Figure 12. U-Net architecture. 

3.3.3 XGBoost 

XGBoost (Chen & Guestrin 2016) works differently from CNNs, not relying 

on spatial structure. It is an ensemble learning method that implements the 

boosting framework developed by Friedman (2001) for gradient-boosted 

decision trees. Decision trees (Figure 13) are models that make predictions 

by splitting data at nodes into branches based on feature values. The splitting 

criteria vary depending on the algorithm: in standard decision trees, common 

measures include entropy or Gini impurity, while XGBoost uses a 

regularized gain function based on second-order gradient statistics. Splitting 

stops when the maximum tree depth is reached, when each leaf contains 

fewer than a minimum number of samples, or, in the case of XGBoost, when 

the gain from a potential split falls below a predefined threshold. Boosting, 

which is one ensemble learning approach, combines multiple models named 
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“weak learners” to create a stronger one. The models are developed in 

sequence, with each new one correcting the mistakes of the previous ones.  

 

 

 
Figure 13. The final decision tree from the XGBoost training model. In the example, the 

maximum flow accumulation (facc_max) was used for the first decision split (node) by 

a high threshold, with most samples split to the left side (branch) and only a few to the 

right. Next, different lower thresholds are set for maximum flow accumulation again, 

further separating the samples. In the final split layer, new thresholds of maximum flow 

accumulation, maximum upslope depression storage (uds_max), and sinuosity are used 

for the final classification (leaves). Ideally, most of the channels in a leaf after the final 

division would be of the same type, something that can be observed in some leaves that 

contain mostly streams. However, some leaves still show an even split between channel 

types. 

3.3.4 Feature Conformal Prediction 

In Study III, several analyses were conducted to evaluate the model 

uncertainty. Instead of using the standard dropout in the U-Net model, 

concrete dropout was used, and the dropout rate was learned during training. 

During the inference, dropout was kept active with the adoption of Monte 

Carlo dropout (Gal & Ghahramani 2016): multiple stochastic forward passes 

were run, with different units dropped at each run. At the end, the predictions 

were aggregated by computing the mean and variance across the runs, 

building uncertainty maps to produce more robust predictions. 

The Feature Conformal Prediction (FCP; Teng et al. 2023) quantifies the 

uncertainty of a neural network by estimating the range of output values that 

would include the correct value with a specific probability, such as 90%. It 

works by recording the feature representations produced by a chosen layer 

of the network for all instances in a calibration set, which can be the 

convolutional layer just before the output in a U-Net, for example. For each 

instance, FCP measures the distance between the recorded feature 
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representation and the minimal feature representation that would give the 

correct output. These distances are then sorted, and a percentile (e.g., the 

90th) is selected to determine the maximum allowable deviation from the 

original feature representation that still guarantees the correct output. When 

evaluating a new instance, FCP varies its feature representation within this 

calculated distance and records the resulting changes in the network’s output. 

This process identifies the highest and lowest possible outputs consistent 

with the calibrated distance. The difference between these values serves as 

an indication of uncertainty: larger differences indicate higher uncertainty, 

while small differences indicate greater confidence in the prediction. 

3.4 Evaluation 

The U-Net evaluation of model performance was made on the pixel level, 

i.e., how many pixels were correctly classified when comparing the inference 

to the ground truth. The metrics used to verify the performance are derived 

from the confusion matrix, a table that assesses not only how many instances 

were correctly classified by the model, but also how many were incorrect, 

and which class these instances were predicted to have instead. The class that 

we want to evaluate is the positive one, while the other is the negative one. 

Instances that are correctly predicted as positive are named true positives 

(TPs). Those that are correctly predicted as being negative are named true 

negatives (TNs). Those that are incorrectly predicted to be positive, false 

positives (FPs). And those that were incorrectly predicted to be negative, 

false negatives (FNs). These values are then used to calculate other relevant 

metrics that better illustrate the model’s performance, such as recall, 

precision, F1-score, and the Matthew’s Correlation Coefficient (Matthews 

1975). 

Recall estimates the number of true positive instances predicted by the 

model from all ground truth positive instances (TP and FN combined), 

calculated by the ratio: 

 𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  

 

Precision is the number of true positive instances predicted by the model 

from all those predicted to be positive (TP and FP combined), calculated 

with: 
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 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  

 

The F-1 score is the harmonic mean of precision and recall, returning a 

number that shows the balance between them, obtained with: 

 

 𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
  

 

The MCC is also known as the phi-coefficient, a metric that measures the 

correlation between the predicted labels and ground truth, and is considered 

more reliable for very imbalanced datasets (Chicco & Jurman 2020).  

 

 
𝑀𝐶𝐶 =  

𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
  

 

In this thesis, we have a multiclass dataset with three classes (background, 

ditch, and stream), which required a more complex 3x3 confusion matrix 

(Figure 14). With a multiclass dataset, the metric needs to be calculated for 

each class separately, which is done by considering the two other classes as 

negative and combining their values.  

 

 

Figure 14. Confusion matrix structure for each channel class. In grey and yellow, 

“background” is the positive class. In brown and orange, the positive class is “ditch”, and 

in blue and purple, the positive class is “stream”. 

For XGBoost in Study II, we applied the same metrics but evaluated channel 

segments instead of pixels, counting the number of instances correctly 

classified when comparing the model inference to the ground truth polylines. 

To quantify the impact of each index on the model prediction, we have used 
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SHAP plots (Zhang et al. 2023). These are plots that show how each attribute 

impacted the model classification, favoring one class or another, and how 

much. This way, we can track which features contributed the most to the 

model’s decision. 

For Study IV, we also compared the classes observed in the NILS 

database survey with the channel classes predicted by the U-Net retrained 

model, then calculated the evaluation metrics. 
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3.5 Workflow 

 
Figure 15. Combined workflow for the four articles. In purple, the steps involved in Study 

I; in yellow, the steps involved in Study II; in light grey, the steps involved in Study III; 

and in blue, the steps involved in Study IV. The dashed boxes highlight the steps 

corresponding to each study. 

All studies used topographic indices to train a DL (U-Net) model for 

mapping water channels at the pixel level. Study II combined the output from 

the highest-ranking model from Study I with hydrological indices to train an 

ML (XGBoost) model, improving channel classification. Study III extended 

the methodology with a new U-Net architecture trained with only slope to 

evaluate different uncertainty quantification approaches. Study IV retrained 
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the model from Study III using the highest-ranking combination (sky-view 

factor and slope) and obtained a national-scale prediction of channels. A 

national drainage index was calculated, and the location-variability was 

assessed. 
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“May whatever tests await you on the other side either support or disprove 

your hypotheses.” 

– GLaDOS 
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4. Summary of results and discussion 

4.1 Channel detection and classification 

In Study I, the highest-ranking model was the one combining the sky-view 

factor and slope data in the training process. 89.7% of the ditches were 

detected using it, but 6.2% were incorrectly classified as streams. 75.5% of 

the stream channels were detected by the model too, with 15.8% of the 

streams being incorrectly classified as ditches. The MCC was 0.74 for 

ditches and 0.31 for streams. 

 
Figure 16. Prediction from the highest-ranking U-Net models. In (A), we have the ground 

truth; (B) is the output of a model trained without a channel type specified; (C) is the 

output of using only ditches in the training data; (D) is the output of using only streams 

in the training data; (E) is the output of using ditches and streams for training with the 
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HPMF; and (F) is the output of the model trained using ditches and streams with sky-

view factor and slope. 

When converting these detected channels from raster to vector data and 

reclassifying them with the hybrid model and hydrological data (Study II), a 

new evaluation was made on the U-Net performance for channel segments 

of several lengths (Figure 17). The U-Net model demonstrated a high recall 

rate for ditch channels (79%) but with low precision (5%). In contrast, it 

showed both low recall (8%) and precision (8%) for stream channels. When 

XGBoost was applied to reclassify the channels, the precision for ditches 

improved substantially to 50%, although recall decreased to 63%. For stream 

channels, both recall (71%) and precision (52%) increased. The background 

class was reported only in the hybrid plot, as it represents FPs from the U-

Net model that were reclassified by XGBoost. This class showed strong 

performance, with a recall of 79% and a precision of 88%.  

 

 
Figure 17. Precision-recall plots of the U-Net model performance compared to the 

ground truth (squares), and the XGBoost model performance compared to the ground 
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truth (circles) across the different segment lengths. The grey lines are iso-F1 lines, 

placing the trained models in a performance area according to their F1-scores. 

A visual analysis showed that a substantial number of FPs were now properly 

classified as background and could be removed from the maps (Figure 18), 

illustrating that the channels detected in Study I were successfully 

reclassified as stream TPs and FPs (background TPs). 

 

 
Figure 18. Prediction of the hybrid model compared to the ground truth and U-Net. On 

the left is the ground truth data, which was manually labeled. The center shows the 

predicted channels from the original U-Net model, and on the right are the predicted 

channels after post-processing by the hybrid model.  

In Study III, we found that FCP provided the most reliable uncertainty 

estimates despite the higher execution time, and network probability was the 

best for correcting misclassified pixels. Visual inspection (Figure 19) shows 

that the top 5% most uncertain background pixels still outline a potential 

channel, even though the model did not classify them as such. 
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Figure 19. (A) Ground truth map and (B) FCP uncertainty map for the 0.5 m resolution 

over the slope index. The 5% most uncertain pixels from the uncertainty quantification 

approaches are plotted. Wherever the slope is visible, it represents certain background 

pixels. Image credits: Westphal et al. (2025). 

In Study IV, the model predicted 1 153 749 km of ditch channels. With a 

precision of 88%, we estimate that approximately 1 015 299 km of the 

predicted ditches represent actual ditch channels. This is about a 20% 

increase compared to the previous estimate by Laudon et al. (2022), who 

estimated a total of 1.2 million kilometres of channels, of which 67% (about 

800,000 km) were considered ditch channels. Further, 145 646 km of streams 

were mapped, of which 56% (81 562 km) were estimated to be actual stream 

channels. The model performance in Study IV improved compared to the 

overprediction of the ditch channels in Study I. The recall for the ditch label 

remained high (76%), while precision increased from moderate to high 

(57.6% to 88%). For streams, performance also improved: the low precision 

(16.4%) from Study I increased to moderate values (56%) despite a small 

reduction in recall (59.7% to 58%). We have evaluated the new U-Net model 

with an independent test dataset and the NILS database (Table 1), illustrating 

the overall performance across the Swedish landscape. Ditches performed 

better than streams, yet both channel types still surpassed the Swedish 

topographical maps. 
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Table 1. Summary of the different models when evaluated on test data and topographical 

maps. The lines from the topographical maps were evaluated against both stream points 

and ditch points in the NILS database separately. 

Evaluation method Class Recall Precision F1-score 

Model evaluation on test data 
Ditch 76% 88% 0.81 

Stream 58% 56% 0.56 

NILS vs U-Net 
Ditch 83% 88% 0.86 

Stream 26% 93% 0.41 

NILS vs topographical maps Ditch 11% 27% 0.16 

Stream 36% 21% 0.27 

The confusion matrix for the NILS dataset compared to the U-Net model 

(Figure 20. Confusion matrix for Study IV’s model compared to NILS 

channel observations. confirms the findings from the table, showing that 

ditches have the largest number of TPs and only a few of them were 

undetected (16%). Most of the streams, however, were still undetected, and 

part of them (20%) were incorrectly classified as ditches. 

 
Figure 20. Confusion matrix for Study IV’s model compared to NILS channel 

observations.  

The distribution patterns of streams and ditches were different depending on 

the channel type. The northwestern region had the highest concentration of 

natural streams (Figure 21A), while fewer streams were found in the south. 
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Ditch channels were very few in the mountainous areas and were instead 

concentrated in the south and along the east coast (Figure 21B).  

 

 
Figure 21. Density of channels predicted by Study IV’s model across Sweden. Darker 

tones represent higher channel density. (A) Streams have been detected more often in the 

northwest. (B) Ditches were often detected around the east coast and southern Sweden. 

Evaluating the drainage index, we could verify that deeper ditches exert a 

greater influence, which decreases logarithmically with distance (Figure 22). 

With this, we developed a depth-weighted drainage index to map the spatial 

influence of artificial drainage across Sweden. The index integrates 

estimated ditch depths from high-resolution DEMs with a logarithmic 

distance-decay function (maximum influence 150 m), producing a 

continuous surface of drainage impact. The results suggest that drainage 

effects on soil, greenhouse gas emissions, and vegetation are likely more 

widespread than previously recognized. 
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Figure 22. (A) Predicted ditch channels used to calculate the drainage index. (B) Deeper 

ditches exert a greater influence that decreases logarithmically with distance. 

4.2 Methodology reflection 

Ditches were successfully mapped using the U-Net across all studies in this 

thesis. Our work represents the first effort to map ditches and streams 

separately using high-resolution LiDAR data and ML on a national scale. 

Previous studies used a single index with DL to detect channels (Koski et al. 

2023; Du et al. 2024), but the channel types were either not classified or were 

exclusively ditches. The highest performing model was trained on a 

combination of topographic indices (sky-view factor and slope), which 

agrees with some other studies where a combination of indices had a higher 

performance (Du et al. 2019; Kazimi et al. 2020), however, channels were 

not the only thing they were detecting, and they used a coarser resolution. 

Du et al. (2024) reported similar precision (88%) and higher recall (89%) 

compared to Study III; however, our model additionally detected small 

streams as separate features, making it more functional for management 

applications. 

We have also assessed the number of “channel” pixels that were detected, 

i.e., how many pixels were not labelled as background. This was done to 

compare the performance of the DL methodology with traditional methods 

and available maps, since the channel network from flow accumulation 

would not differentiate between ditches and streams. We then compared 

these pixels with the ground truth to determine how many corresponded to 
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ditches and how many to streams, thereby establishing a benchmark (Table 

2). We observed that many stream pixels were detected using flow 

accumulation alone; however, the ditches were not detected to the same 

extent. This was expected because flow accumulation represents the points 

in the landscape where water would converge, accumulating, meaning that 

there’s an increased likelihood of it matching the location of natural streams. 

Ditches were mostly placed where soil drainage was required, which is why 

their locations do not necessarily match natural channels or the highest flow 

accumulation. Using only flow accumulation would result in an acceptable 

performance for detecting natural streams, but only with DL would one be 

able to detect ditches in the same output. 

 
Table 2. Comparison between the performance of different models from Study I, the 

Swedish property map, and the traditional flow accumulation methodology. The 

percentage of stream pixels refers to how many stream pixels were detected, even if 

mislabeled as ditches. The Swedish property map and flow accumulation do not 

differentiate by channel type; these numbers were obtained by comparing these channels 

with our ground truth. 

Method Detected ditch pixels Detected stream pixels  

Swedish property map 8.1% 27.5% 

Flow accumulation (2 ha) 33.8% 76% 

Study I  89.7% 75.5% 

Our exploration of alternative ML architectures led to improved channel 

reclassification. Using the hybrid model, the channels detected in Study I 

were reclassified into ditches and streams, resulting in more accurate 

classification. The stream morphology was initially considered one of the 

most relevant characteristics to classify channels, but the measures of 

sinuosity did not reflect this expectation. Most of the values were close to 

1.0 for any channel type, meaning that they would be little meandering. With 

this, the contribution of sinuosity was heavily reduced, as can be seen in the 

absolute SHAP plot (Figure 23). Instead, the maximum flow accumulation 

was the most important index for classifying both ditches and streams, 

followed by the maximum average flowpath slope. This shows that 

catchment-level hydrological dynamics had a more important role in the 

channel classification. 
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Figure 23. SHAP plot of mean absolute values for the data used in Study II, showing that 

the sinuosity had a low impact on the classification of channels. 

In Study IV, we have enhanced the understanding of the extent and 

distribution of the Swedish drainage network. The location of ditches in 

agricultural areas and managed forests across the landscape follows their 

historical implementation for this purpose, with a density that surpassed 100 

km/km-2. The natural streams were concentrated in the northern boreal area, 

where their density peaked 2 km/km-2. 

4.3 Ecology, management, and policy 

Because boreal forests are major carbon stores that are increasingly 

becoming carbon sources (Bradshaw & Warkentin 2015), their channel 

networks play an important role in regulating climate-related processes. 

Misclassifying streams as ditches (Figure 20) could lead to under-protection, 

despite ditches supporting their own distinct biodiversity, while failing to 

detect a stream may result in its disturbance during ditch cleaning or by 

forestry machinery. Such errors can impact flow patterns, reduce organic 

matter retention (Muotka et al. 2002), and increase downstream 

sedimentation (Bishop et al. 2009), with cumulative effects across the 

channel network. 

In Study II, we addressed this issue by improving the initial channel 

classification produced by the model from Study I through a hybrid 

approach. One relevant challenge was selecting an appropriate segment 

length, as that could affect both classification accuracy and practical 

management decisions. Although uniform segment lengths simplify model 
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evaluation, natural channels rarely follow such regular patterns. We therefore 

tested multiple segment sizes and identified 50 m segments as the most 

balanced option, offering a compromise between model performance and 

operational feasibility for management planning. 

Our models not only improved channel mapping but also provided the 

spatial and geomorphic context needed for catchment-scale restoration 

planning. Creating high-resolution, reliable maps is valuable not only for 

identifying drainage patterns and supporting ecological applications such as 

stream and riparian restoration (Baker et al. 2007; Gergel et al. 2007). With 

more accurately delineated channels, our results enable representative 

assessments of the condition and extent of ditches and natural streams across 

Sweden, guiding restoration priorities. 

Stream restoration measures vary depending on project objectives and 

may include reconnecting floodplains, modifying flow regimes, or 

reconfiguring channels (Wohl et al. 2015). Some restoration initiatives have 

already been tested in Sweden, such as the demonstration project described 

by (Gardeström et al. 2013), where several methods were evaluated in a 

previously channelized wide stream. Similarly, Negishi & Richardson 

(2003) restored narrow boreal streams (<6 m) by increasing habitat 

heterogeneity with in-stream boulders. This intervention led to short-term 

improvements in detritivore productivity, but long-term monitoring is still 

required to evaluate long-term ecological restoration. 

In Study IV, we quantified the extensive ditch network and high-

resolution drainage density across the Swedish landscape, increasing the 

information available to support future analyses. In peatlands, the ditch-

induced lowering of the groundwater table increases peat decomposition, 

leading to emissions of up to 7 Mtonnes CO2eq per year in fertile forested 

soils (He et al. 2016). With our model outputs, these emissions can be better 

assessed to coordinate climate change mitigation plans. Rewetting after 

clear-cutting restores the water table (Bring et al. 2022), but an effective 

implementation relies on policymakers. Restoration effects also require post-

restoration monitoring and management. Bring et al. (2022) showed that 

ditch blocking raised the groundwater levels near the blocked ditch, though 

the effect was halved after a 9 m distance, while the drainage effect persisted 

until 21 m before being halved. Moreover, these interventions on nutrient-

rich peatlands can increase the export of DOC and nutrients, impacting the 

water quality (Koskinen et al. 2017). These findings highlight the need for 
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careful monitoring of interventions to ensure that rewetting achieves its 

intended ecological and climate benefits. 

Laine et al. (2024) suggested converting forestry-drained, nutrient-rich 

peatlands into tree-covered pine or spruce mires with a sub-surface water 

level. Our fine-scale assessment of drainage density can guide this type of 

implementation, ensuring that restoration targets are both realistic and 

compatible with land-use priorities. This balance is particularly relevant 

given that these areas are also highly suitable for forestry, where climate 

mitigation and forest production goals often compete.  

Achievable goals must be defined for restoration, however. While 

Agenda 2030 calls for the restoration of water systems, it leaves the 

methodology to policymakers. The overlap and misclassification between 

streams and ditches from our outputs reflect how these systems have 

converged morphologically and ecologically, emphasizing that full 

restoration to pre-alteration conditions may not be realistic. Most channels 

adapted to the changes over time: ditches developed their own communities 

(Williams et al. 2004; Verdonschot et al. 2011) and altered the assemblage 

composition of non-aquatic biodiversity in forests (Remm et al. 2013). Also,  

the knowledge about natural processes in channels across Fennoscandia 

before the disturbances is limited (Nilsson et al. 2015; Mason & Polvi 2023). 

Wohl et al. (2015) point out that restoration focused on channel physical 

connectivity can be highly detailed, even though it may successfully restore 

ecological function. Instead of focusing on resetting the channel to a 

historical classification, a more sustainable alternative would be to restore 

community function and foster a system robust to perturbation, reaching a 

more dynamic and less degraded ecological state (Palmer et al. 1997; 2005). 

4.4 Limitations and future research 

The national LiDAR dataset (Lantmäteriet 2022), which forms the 

foundation of our approach to mapping streams and ditches, was collected at 

a density of 1–2 points per square meter, from which a digital elevation 

model (DEM) with a 0.5 m resolution was derived. Future LiDAR 

acquisitions with potentially higher point densities and DEMs at decimeter-

scale resolution are likely to improve the detection and differentiation of 

stream channels and ditches (Roelens et al. 2018; Song & Jung 2023). One 

limitation we faced with DL was the need for large, high-quality datasets 
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with ground truth data to train the models. It is common for published 

benchmarking datasets such as ImageNet (Deng et al. 2009) or Cityscapes 

(Cordts et al. 2016) to be massive, whereas creating custom labeled data is 

time-consuming. There is a possibility that, with more manually labeled data, 

our models could achieve even higher performance; however, Wang & Perez 

(2017) emphasize that increasing the dataset size does not necessarily 

improve a model. Also, the real-world data cannot be changed: only 14% of 

the channel length is natural streams. Studies III and IV demonstrated that 

adjustments to the architecture resulted in higher performance despite using 

the same dataset, suggesting that architecture design can play a greater role 

than data volume in some cases. Different weights during training could help 

improve the results at the cost of lower precision, with aggressive weights 

used for ditches and streams in the U-Net, and post-processing the results 

with a decision tree model, similar to what we have done in Study II, with 

improved performance.  

Our models did not determine whether the channels contained water or 

not. High-resolution (0.8 m) multispectral remote sensing imagery has been 

used to map streams before (Leckie et al. 2005) with an average 80% 

accuracy. This methodology could be combined with our data to improve 

channel classification, although dissolved organic carbon also needs to be 

taken into consideration. For this, one discerning method for verifying water 

presence in the channel could be data gathering during different seasons 

(Islam et al. 2022). However, this would not be a helpful practice in Swedish 

forest streams because of the dominance of evergreen conifers, which would 

keep the forest cover on these channels all year round. 

For Study II, the use of zonal statistics based on a fixed 3 m buffer 

provided valuable near-channel information but may have limited our ability 

to capture riparian zone characteristics. Expanding buffer analyses in future 

studies could provide additional ecological context and improve 

differentiation between channel types. Analyses that were initially performed 

on a smaller scale, for example, could now be applied to a larger extent. Take 

the buffer width estimation around natural streams. Kuglerová et al. (2020) 

used 111 Swedish small streams in their analysis. With our maps as input, 

the size of protective buffers could be automatically estimated using other 

remote sensing vegetation data (such as satellite images or LiDAR point 

clouds), creating a large-scale verification of whether the recommended 

buffer size is being followed or not.  
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With the uncertain FCP maps from Study III, we could verify that the 

presence of uncertain background pixels indirectly indicated undetected 

channels (Figure 19B, in pink). This illustrates the potential for improving 

the mapping of natural streams in the future using the highest uncertain 

background pixels as a proxy. In all our models, it was not uncommon to 

have interrupted stream segments in the prediction instead of a fully 

connected channel network. This could be caused by the LiDAR signal not 

reaching the ground in some areas with dense vegetation. A connection 

across the gap could be created to resemble traditional stream networks, but 

further studies are needed to quantify whether this would bring an 

improvement or new errors to the maps. 

Another limitation is that the classification presented here is strictly 

related to the channel's origin, either artificial or natural. An automatic 

classification between stream types (pools, riffles, rapids, etc.) would shift 

the act of mapping from a functional task to an ecologically and 

geomorphologically based classification. More specific in-channel 

information could be added, such as soil type, channel bed, and sediment 

granulometry, providing more data about the water ecosystem.  

While we produce maps of natural streams and ditches, we advise that 

this classification should not be trusted implicitly because errors are still 

present. For example, the model from Study IV still misclassified 20% of the 

stream observations as ditches, despite only 1% of the ditches being 

misclassified as streams (Figure 20). The streams predicted by the model in 

Study IV had a high F1-score compared to the topographical maps (Table 1). 

However, 74% were missing when compared to the NILS database. This 

highlights the challenges of mapping natural streams at a national scale and 

raises awareness when using our maps for management applications. From a 

legal perspective, to be certain that a channel is a ditch or a natural stream, 

the historical documentation (“vattenverksamhet”) needs to be consulted. 

However, these archives are from different agencies, regions, and 

landowners, making it unlikely to compile them into a national database. Our 

maps are useful to indicate “likely” ditches and streams. The drainage index 

is a valuable tool for restoration, carbon budgeting, and nutrient assessment, 

but it remains a model-based estimate unadjusted for soil and unvalidated in 

the field. Future work should include water table and biogeochemical 

measurements to improve its reliability across landscapes. 
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"Hiding the self through a faithful mapping of the universe is the only path to 

eternity." 

– Cixin Liu, The Dark Forest
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4.5 Conclusion 

Despite certain limitations and opportunities for further improvement, this 

study demonstrates that the novel approach of using deep learning to map 

small channels in the landscape has been successful. While existing 

topographical maps fail to distinguish between ditches and natural streams, 

this research represents, to our knowledge, the first attempt globally to map 

and classify these channel types separately. We showed that this can be 

achieved by training separate models for ditches and streams. However, 

using a deep learning model to first detect all channels and subsequently 

classify them into ditches and streams based on channel characteristics with 

machine learning further improved performance. 

The predicted ditch channels in Study IV showed both high precision and 

recall, achieving a higher F1-score (0.86) than the model implemented by 

Laudon et al. (2022)(0.71). This highlights the robustness of our model for 

large-scale ditch mapping and further analyses, such as the drainage index, a 

valuable tool to support future hydrological assessments, ecological studies, 

and landscape management decisions. However, 54% of the streams were 

still unmapped, and 20% were classified as ditches; hence, future research 

needs to focus on natural stream channels. The hybrid approach with 

XGBoost has yet to be implemented nationally, but so far, its use has resulted 

in the highest F1-score for streams (0.60). Combining it with the uncertainty 

analysis of background pixels could increase the number of mapped streams. 

Furthermore, employing a deep learning model significantly reduces the 

time required compared to manual digitization. To train these machine 

learning models, 315 km of natural streams and 2 235 km of ditches were 

manually digitized across 12 study areas. Had we continued with manual 

digitization at the same pace and staffing levels, mapping the entirety of 

Sweden would have taken approximately 90 years, a task that could now be 

achieved within this four-year PhD project. 

This work follows an operational mapping framework that can be 

continuously improved as new data becomes available. Beyond its scientific 

contribution, the resulting datasets and tools provide a guide for hydrological 

restoration, sustainable forest management, and national reporting under the 

goals of Agenda 2030 and the EU Nature Restoration Law. In doing so, this 

research connects environmental monitoring and decision support, offering 

a reproducible model for other boreal and temperate areas seeking to balance 

productivity with ecosystem resilience. 
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Popular science summary 

In the northern forests, the land is covered by a dense network of small streams and 

man-made ditches. Together, they control how water moves through the landscape, 

carry nutrients, and support a wide range of plants and animals. In the past, people 

altered many of these streams to float timber and dug ditches to dry out land for 

farming and forestry purposes. Even though digging new ditches has mostly stopped, 

the old ones are still draining today’s forests and affecting water systems. These 

small channels are like the capillaries of the landscape, but most of them are still 

missing from maps. This thesis focuses on that problem by exploring a new way to 

map small streams and ditches nationwide. The method uses detailed elevation data 

from laser scanning (LiDAR) together with artificial intelligence (AI) to find and 

classify channels automatically. By training AI models to tell the difference between 

natural streams and man-made ditches, the study shows that this can be done 

successfully on a national scale. The best model correctly found most ditches and 

improved the mapping of natural streams in comparison to topographic maps. 

Furthermore, we show that future mapping of natural streams can use our 

“uncertainty maps”. These are maps that indicate places where the models are less 

certain of a channel presence. This is the first time that streams and ditches have 

been separated on maps for an entire country. The results can help improve forest 

and water management, guide stream restoration, and support national 

environmental reporting. The method can also be used in other countries with high-

resolution LiDAR data and similar forested landscapes. 

  



84 

 

  

“Science is not about building a body of known ‘facts’. It is a method for 

asking awkward questions and subjecting them to a reality-check, thus 

avoiding the human tendency to believe whatever makes us feel good.” 

– Terry Pratchett, The Science of Discworld 
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Populärvetenskaplig sammanfattning  

I de boreala skogarna i norr finns ett tätt nätverk av små vattendrag och konstgjorda 

diken. Tillsammans styr de hur vattnet rör sig genom landskapet, transporterar 

näringsämnen och utgör habitat för många växter och djur. Tidigare förändrade 

människor majoriteten av dessa vattendrag för att flotta timmer, grävde diken för att 

dränera mark för jordbruk och skogsbruk. Även om ny dikning i stort har upphört, 

dränerar de gamla dikena fortfarande dagens skogar och påverkar vattensystemen. 

Dessa små kanaler är som landskapets kapillärer där marken står i kontakt med 

vattnet. Men de flesta små vattendragen saknas fortfarande på dagens kartor. De här 

avhandlingen fokuserar på det problemet genom att skapa en ny metod att kartlägga 

små vattendrag och diken på nationell skala. Metoden använder detaljerade höjddata 

från laserskanningar (LiDAR) tillsammans med artificiell intelligens (AI) för att 

automatiskt hitta och klassificera vattendrag som bäckar och diken. Genom att träna 

AI-modeller att skilja mellan naturliga vattendrag och konstgjorda diken visar 

studien att detta kan göras framgångsrikt på nationell nivå. Den bästa modellen 

identifierade majoriteten av alla diken korrekt och förbättrade kartläggningen av 

naturliga vattendrag jämfört med topografiska kartor. Dessutom visar vi att framtida 

kartläggning av naturliga vattendrag kan dra nytta av våra ”osäkerhetskartor”, som 

visar var modellerna är mindre pålitlig. Detta är första gången som vi kan särskilja 

naturliga vattendrag från diken på nationell nivå. Resultaten från den här 

avhandlingen kan bidra till bättre skogs- och vattenförvaltning, vägleda restaurering 

av vattendrag och stödja nationell miljörapportering. Metoden kan även användas i 

andra länder med liknande högupplöst laserdata och skogstäckta landskap. 
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A R T I C L E  I N F O

Keywords:
Streams
Ditches
Deep learning
LiDAR
Semantic segmentation

A B S T R A C T

Policies focused on waterbody protection and restoration have been suggested to European Union member 
countries for some time, but to adopt these policies on a large scale the quality of small water channel maps needs 
considerable improvement. We developed methods to detect and classify small stream and ditch channels using 
airborne laser scanning and deep learning. The research questions covered the influence of the resolution of the 
digital elevation model on channel extraction, the efficacy of different terrain indices to identify channels, the 
potential advantages of combining indices, and the performance of a U-net model in mapping both ditches and 
stream channels. Models trained in finer resolutions were more accurate than models trained with coarser res
olutions. No single terrain index consistently outperformed all others, but some combinations of indices had 
higher MCC values. Natural stream channels were not classified to the same extent as ditches. The model trained 
on the 0.5 m resolution had the most balanced performance using a combination of indices trained using the 
dataset with both types of channel separately. The deep learning model outperformed traditional mapping 
methods for ditches, increasing the recall from less than 10% to over 92%, while the recall for natural channels 
was around 71%. However, despite the successful detection of ditches, the models frequently misclassified 
streams as ditches. This poses a challenge, as natural channels are protected under land use management 
practices, while ditches are not.

1. Introduction

The primary objective of the United Nations Agenda 2030 for Sus
tainable Development is the protection of the planet from further 
environmental degradation (United Nations General Assembly, 2015), 
highlighting the importance of protecting and restoring water-related 
ecosystems. A similar goal is present in the European Water Frame
work Directive (where policy changes implemented in 2000 brought an 
integrated approach to the management and protection of aquatic en
vironments) adopted throughout the European Union. Furthermore, a 
proposal for new targets of nature restoration is currently being drawn 
up by the European Commission, aiming at successful restoration of 20% 
of the target area by 2030, and 90% by 2050 (Council of the European 
Union, 2023). However, the management strategies for applying these 
initiatives differ among countries.

Most countries use different sizes of riparian buffer zones to protect 
surface waters during land-use operations, but these policies vary when 
it comes to small streams. In Finland, for example, stream channels are 
protected through a forest buffer of minimum width (Ring et al., 2018). 
In Sweden, the Swedish Forest Act (Skogsstyrelsen, 2013) also pre
scribes forest water protection through riparian buffers of variable width 
(Hasselquist et al., 2020). This is a necessary measure because over 75% 
of the total river network is estimated to be small streams (Bishop et al., 
2008), and therefore even small changes in the network can impact 
downstream channels dramatically. Even so, the data shows that after 
2004 as few as 25% of the small streams in Sweden were protected in 
such a manner, and when a buffer is present it usually has a width of 4 ±
0.4 m (Kuglerová et al., 2020), despite the recommended 5–30 m width 
of no-harvesting zones.

Some laws only address watercourses in general and do not 

☆ Link to the code: https://github.com/mbusarello/Automatic-Detection-of-Ditches-and-Natural-Streams-from-Digital-Elevation-Models-Using-Deep-Learning.
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differentiate between natural channels and those altered or made by 
humans, while other laws go into more depth on different types of wa
tercourses. For example, according to the Swedish Forestry Act 
(September 1, 2022) ditches are divided into two categories: “ditches” 
and “protective ditches”. Simple “ditches” are dug for permanent soil 
drainage to change the land use of an area. “Protective ditches,” on the 
other hand, are temporarily dug to mitigate groundwater level rise 
following clear-cutting. Protective ditches must not be cleaned, as they 
are temporary, and should not be more than 50 cm deep. No permit is 
needed to clean ditches, while digging new ones does requires official 
permission (Swedish PEFC, 2023). The idea is that ditches should 
gradually fill in with sediments and vegetation, eventually disappearing 
with time. The management of ditches can also include dam
ming/plugging them to restore wetlands (Nieminen et al., 2018). 
Because of this variability in the practices which are allowed by law, 
knowing if a channel is natural or altered by man determines the best 
management choice.

Within the context of environmental impact, forest ditches can be 
strong anthropogenic emitters of greenhouse gases (Peacock et al., 
2021b), with methane offsetting the uptake from terrestrial CH4; they 
also transport suspended solids, which impacts water quality (Nieminen 
et al., 2018). Even though the differences between ditches and small 
natural streams are not always clear, factors such as morphology and 
hydrology do stress the distinction between channel types. Some of these 
attributes can also influence the quantity of methane being emitted 
(Peacock et al., 2021a), resulting in an annual flux slightly higher for 
ditches than for streams.

There is wide recognition of the importance of hydrological vari
ability to the ecology of small streams (Huryn and Wallace, 1987; Lanka 
et al., 1987; Wohl, 2017), after all, the characteristics of meandering, 
pools, and rapids can define habitats (Beschta and Platts, 1986; Wiens, 
2002; Martínez et al., 2013), nutrient cycling (Alexander et al., 2007; 
Claessens et al., 2010), and water quality (Cox et al., 2023). Yet, the 
mapping of small water channels (<6 m wide) on Sweden’s traditional 
digital maps was poor: 55% of the natural streams and 91% of ditches 
were not detected in the Swedish property map (Flyckt et al., 2022). 
Plus, the simplified digitized line from this dataset (Lantmäteriet, 2014) 
has limited usefulness for research in ecology when working across the 
landscape scale with geographic information system methods. Still, the 
number of mapped ditches was increased from 9% to 86% by Lidberg 
et al. (2023) using deep learning (LeCun et al., 2015) and remote 
sensing, turning the once laborious manual task with a substantial in
vestment of cost and time into an automated process. Many countries 
have already been scanned with airborne laser scanning (ALS), and, 
using the latest return data, digital elevation models (DEMs) can be 
constructed, revealing small-scale channels (Raber et al., 2002).

Deep learning approaches have been used to map stream channels 
based on satellite images and Digital Elevation Models (Mazhar et al., 
2022; Fei et al., 2022; Isikdogan et al., 2017). However, the main focus 
of these studies has been on larger rivers, while deep learning applica
tions in small streams is limited. Koski et al. (2023) mapped small 
channels but did not separate between ditches and natural streams, 
while others have focused only on ditches based on ALS data (Du et al., 
2024; Lidberg et al., 2023), or aerial photos (Robb et al., 2023). Despite 
these efforts, a research gap remains for small natural streams – the 
headwaters. Headwater streams are like the capillary system in the body 
– just as the health of the whole organism depends on a functioning 
capillary system, the health of larger streams and rivers depend upon an 
intact headwater stream network (Kuglerová et al., 2017), hence there is 
a large societal need for improving the mapping of the headwaters. 
Traditionally, headwaters are mapped from DEMs by calculating flow 
accumulation and applying a threshold to determine where streams 
begin (Ågren et al., 2015). However, the high natural variability in 
stream initiation thresholds makes these networks unreliable (Paul 
et al., 2023). Additionally, channel networks derived from flow accu
mulation are subject to further uncertainties because flow accumulation 

requires extensive preprocessing to of the DEM which introduces more 
uncertainties especially at stream/road crossings (Lidberg et al., 2017). 
Therefore, the goal of this study was to develop a method for mapping 
channels in the landscape without including upstream areas or consid
ering the presence of water. Instead, the focus was on detecting the 
physical structure of the channel, specifically the elongated depression 
visible in the DEM.

Building on the successful use of deep learning to map ditches in 
Lidberg et al. (2023), this article extends the methodology by incorpo
rating the digitization of small natural stream channels into a dataset 
that was previously limited to ditches and adding one more study area. 
Topographic indices derived from ALS data and the manually mapped 
channels were used to train a U-net model to detect small-scale channels 
(both ditches and natural streams). Here, we explore for the first time if 
deep learning can be used to detect small streams from the 
high-resolution DEM considering not only the channels’ location, but 
also their variable width instead of just buffering them. The following 
research questions were answered: 

1) How important is the resolution of the DEM for detecting ditches and 
natural channels? Here we explore two resolutions: 0.5 m and 1 m.

2) When highlighting the channels using digital terrain indices, is there 
a best one? Is the same index best for natural channels and ditches, or 
do they differ?

3) When detecting channels, is it better to work with just one terrain 
index, or to combine the information from many indices?

4) Can a U-net model be used to detect natural channels as well as 
ditches? Is it better to include ditches and natural channels in the 
same model, or to make separate models?

2. Methodology

Digital terrain indices were extracted from the DEM obtained from 
the high-resolution ALS data. These terrain indices were combined to 
form a database of manually mapped water channels, this then being 
used to train a deep neural network to detect and classify small-scale 
channels.

2.1. Study areas

We used remote sensing data and field data from the 12 regions 
described by Lidberg et al. (2023). The original dataset was exclusively 
composed of ditches; smaller (<6 m width) natural streams were added 
later by Paul et al. (2023). This data were revised and updated by 
comparing the location of the channels directly to orthophotos with a 
resolution ranging from 0.17 to 0.5 m (Lantmäteriet, 2021a) and the 
High-Pass Median Filter (HPMF) terrain analysis, increasing the length 
of channels to 2235 km of ditches and 315 km of natural streams.

Following Paul et al. (2023), these sites illustrated the diversity of 
the country’s landscape properties, with land use mainly represented by 
forests covering 86–99% of the area, and agriculture ranging from 0 to 
13.2% coverage among sites. Variability in characteristics such as soil 
type, tree species, runoff, and topography were considered in the site 
selection process. Overall, the Swedish landscape has been heavily 
ditched, tripling the originally unaltered channel length density, with 
the majority of the channels built being forest ditches. Most of the nat
ural channel heads can be found in the northern areas, but transition 
points (i.e., the connection between a natural channel and an upstream 
ditch network) happened more often in the south. Small natural chan
nels in Sweden are meandering and blend with the surrounding terrain, 
as boulders in their course minimize stark contrasts (Fig. 2B). Ditches 
are instead straight and smooth-looking, with generally well-defined 
borders resulting from the removal of boulders during the digging pro
cess. Most of the ditches in the dataset were forest ditches (56%), with 
road ditches in second (25%), and agricultural ditches last (6%, Paul 
et al. (2023)).
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2.2. Training data

2.2.1. Topographic indices
The ALS data (Lantmäteriet, 2021b) were collected by an aircraft 

flying at a height of 2888–3000 m with a compact laser-based system 
onboard (Leica ALS80-HP-8236) generating point clouds with a density 
of 1–2 points per square meter. LiDAR Tin Gridding from Whitebox 
Tools was used to create DEMs with 0.5 m and 1 m resolutions over the 
study areas, totaling 430 km2. We selected seven topographic indices 
that could visually highlight small-scale channels present in the DEMs 
(Fig. 2) as a proxy for the differences in elevation. Many indices could 
have been experimented on, but there is a limitation in the number of 
variables that could be used in the study considering the amount of time 
and effort involved in calculating new indices and preparing them as 
input for training the models. It was also observed that larger moving 
windows provided excessive smoothing, blending small channels in the 
landscape, while small scales introduced a high amount of noise. This is 
why the choice in scale relied on the visual evaluation for the cases 
where the size of the moving window was not arbitrarily defined by the 
tool in use.

The topographic indices were normalized between zero and one 
before being divided into chips of 500 × 500 pixels for input to the deep 
learning algorithm (Fig. 1B and C). Whitebox Tools was used to calculate 

all topographic indices, except for the Sky-view Factor, which was ob
tained using the Relief Visualization Toolbox v. 2.2.0 (Kokalj et al., 
2016).

2.2.2. High-Pass Median Filter
The HPMF (Lindsay, 2016) emphasizes short-range variability, sub

tracting the pixel value from the median value of the other pixels inside a 
window. The window size kernel is user-defined; this study used 11 in 
both X and Y directions. The data were normalized by applying the 
Min–Max Normalization. Negative values indicate depressions and can 
be used to highlight channels, i.e. elongated depressions in the soil. This 
index is similar to the topographic position index, which is obtained 
through the subtraction of the mean value of the area covered by a 
moving window, however, HPMF was chosen due to the previously 
successful application in Lidberg et al. (2023), and because the median is 
more resistant to extreme values in the data.

2.2.3. Hillshade
The shaded relief (Wilson and Gallant, 2000) makes it possible to 

visualize a three-dimensional surface considering its slope and aspect, 
with shadows distributed according to the illumination source position 
(altitude and azimuth). This study has used the fixed altitude of 30◦ and 
the azimuths 0◦, 45◦, 90◦, and 135◦. The values were normalized 

Fig. 1. Study areas. (A) 12 regions spread across Sweden where all ditches and streams were manually digitized; (B) Study regions split into 2.5 km× 2.5 km tiles. 
Locations of manually mapped water channels were separated by type, with ditches in orange and natural channels in turquoise, drawn over the hillshaded elevation 
model. Each grid cell represents chips with sides of 500 × 500 pixels. (C) An example of a 0.5 m resolution image chip obtained after splitting the tile. These chips are 
the images that the deep learning models will use as training data. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.)
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afterward through their division by the maximum value. The bottom of a 
channel would be shaded unless it was hit by sunlight along the direc
tion of the channel. To address this issue, we included hillshades from 
four different angles.

2.2.4. Sky-view factor
This index is defined by the ratio between the radiation received at a 

specific grid cell and the one emitted through the whole hemispheric 
environment around it (Zakšek et al., 2011). Considering a visual 
observation of the channels, the chosen radius was 5 m with 16 
directions.

2.2.5. Slope
This topographic index represents the change in elevation between 

every pixel in the DEM with a moving window sized 5 x 5 for increased 
accuracy and stronger reduction of high-frequency noise (Florinsky, 
2016), with the inclination displayed in degrees. To perform the 
normalization, all values were divided by the theoretical maximum 
value of 90◦.

2.2.6. Labels
When the word “channel” is used in this article, it includes both 

ditches and natural streams. Using Whitebox Tools, we started by 
obtaining the flow accumulation (O’Callaghan and Mark, 1984). First, 
we filled the single cell depressions in the DEM (FillDepressions), then 
burning streams at roads using data from the Swedish Property map 
(Lantmäteriet, 2014) to ensure stream continuity across roads (Burn
StreamsAtRoads). Remaining larger depressions were breached 
(BreachDepressionsLeastCost) to keep the flow continuity, using this as 
the input to calculate the D8 flow accumulation (D8FlowAccumulation). 
Streams were extracted (ExtractStreams) using the lowest stream initia
tion threshold from the distribution observed for natural channel heads 
in Paul et al. (2023): 2 ha.

Following this methodology, the channel heads and connections to 
the ditch network were identified, and downstream stream paths 
manually marked and edited. Ditches were visually identified from 
HPMF and ortophotos, being manually mapped as vector lines by a team 
of experts. We have utilized the HPMF values within the channels to give 
these lines a variable width, creating structures that more closely 
resemble the actual shape of the channels. Based on the method 
described in Lidberg et al. (2023), the HPMF analysis had its pixels 
reclassified based on the threshold of − 0.075 (determined through 

visual inspections), receiving the label 0 when they are above it, and 1 
when below. A 3 m buffer surrounding the vector lines was generated, 
later overlapping the relabeled data and extracting the non-null pixels 
within it. Finally, we applied the majority filter to these selected pixels 
to remove strays, preserving the continuity of the channels (Fig. 2A).

Eight different datasets were created (Fig. 3), initially separated by 
how the channels were represented: 

• Channels: all channels, merged to a combined dataset with no sep
aration of ditches and streams. Two class labels; channel and back
ground (Fig. 3A and E)

• Ditches: a separate dataset of only ditches. Two class labels; ditch 
and background (Fig. 3B and F).

• Streams: a separate dataset of only streams. Two class labels; streams 
and background (Fig. 3C and G)

• Ditches&Streams: a combined dataset with three class labels; 
ditches, streams, and background (Fig. 3D and H)

Each type of representation was calculated for both 0.5 m and 1 m 
resolution to analyze how this impacted the results; each one is noted as 
an added “0.5” or “1” the dataset names.

The datasets exhibited significant class imbalance. To compensate 
for that, only the chips containing more than 250 pixels with the positive 
label were selected for the analysis, resulting in 4615 chips in total. 
From these, 1.1% of the total pixels were ditches and 0.1% were streams. 
Not all chips contained both types of channels, so datasets with only 
streams or ditches had fewer chips (Busarello et al., 2024).

2.3. Semantic segmentation

The convolutional neural network (CNN) U-net (Ronneberger et al., 
2015) (Fig. 4) was chosen for having successful real-world applications 
in different scientific fields such as medicine (Siddique et al., 2021), 
geology (Gao et al., 2022), and forestry (Korznikov et al., 2021), being 
both robust and versatile. It also has the advantage of concatenating the 
feature maps of the downsampling path to the upsampling path, pre
venting the loss of information during downsampling. A limitation of the 
study was the amount of chips available in the datasets: CNN models 
usually require thousands of training data examples, and for this reason, 
acquiring training data is the most challenging part of the process. The 
use of data augmentation (Tanner and Wong, 1987) increased the 
number and diversity of training images by adding slightly different 

Fig. 2. Examples of the ground truth and topographic indices. Orange represents ditches and turquoise represents natural streams. Images displayed represent an 
area of 250 m × 250 m. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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copies of them to the dataset, obtained through transformations. The 
geometric transformations used in this work were the random rotation 
and random flips (horizontal and vertical). Random rotation rotated 
images in a random angle within the specified range of 0◦–360◦, helping 
improve the model’s generalization by increasing the pattern recogni
tion regardless of the object orientation in the image. The horizontal 
random flipping rotated the image along its vertical axis, swapping left 
and right, while the vertical random flipping flipped across the hori
zontal axis, swapping the top and bottom of the image instead.

Considering that the proportion between the classes of pixels showed 
considerable imbalance, median frequency balancing (Eigen and Fergus, 
2015) was used to establish the class weights used for training. Adam 
(Kingma and Ba, 2015) was used as the optimization algorithm, and the 
chosen batch size was 16. In the beginning, the topographical indices 
were used individually as input to train the first models, while the last 
model combines all indices, resulting in 64 different models. Later, all 
possible combinations were used as training data for the dataset 
Ditches&Streams to determine if combining indices is a better option 

than using them individually.
The general architecture of U-net incorporates two paths: encoding 

and decoding. During the encoding phase, hierarchical features are 
extracted by a combination of convolutions and the pooling of feature 
maps, down-sampling the data resulting in a compact representation of 
the input, with an increased number of channels. Subsequently, in the 
decoding phase, transposed convolutions are applied to upscale the 
spatial dimension until the output matches the input original size. After 
each transposed convolution, a skip connection happens between cor
responding layers in both paths. This allows the network to keep fine- 
grained details in the up-sampling process. The final convolution re
duces the number of channels, producing the final segmentation map. In 
it, each pixel is assigned a probability of belonging to a class.

The processing time for calculating the topographic indices was 
tracked, as well as the inference time, being further extrapolated for the 
whole area of Sweden to estimate how long it would take to detect the 
location of channels throughout the entire country. Training and infer
ence were done using an NVIDIA RTX A6000 GPU and AMD Ryzen 

Fig. 3. Training data chip examples of both resolutions. Top row represents 0.5 m, and bottom row shows 1 m resolution. Chip size is 250 m × 250 m for 0.5 m 
resolution and 500 m × 500 m for 1 m resolution. Yellow lines in dataset Channels represent channels, without distinction between stream channels and ditch 
channels. Ditch channels are represented in orange in the datasets Ditches and Ditches&Streams. Turquoise represents stream channels in datasets Streams and 
Ditches&Streams. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 4. U-net architecture. The left side shows the encoding/down-sampling process, where the main features are extracted while the input is compacted. On the 
right side is the decoding/up-sampling path, which upscales the features until it reaches the same size as the input.
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Threadripper 3990X Processor.

2.4. Evaluation

The data were split into two parts, 80% for training and 20% to 
evaluate the performance of all models, comparing the ground truth 
pixels with the detected pixels. Precision, Recall, F-score, and Matthews 
correlation coefficient (MCC; Matthews, 1975) were the key metrics 
used to evaluate the models, along with information retrieval tables. 
Precision is the metric that accounts for the accuracy of positive pre
dictions from a model, being affected by the number of false positives. It 
assesses how much of the detection and classification made by the model 
was right. Recall, on the other hand, accounts for how much of the 
ground truth was correctly detected. F-score is the harmonic average of 
precision and recall, and MCC is a special case of the phi coefficient. The 
F-score was calculated to easily compare the performance of this study 
with other publications, but MCC reports the overall quality of the 
classification performed by the model, being more reliable for imbal
anced datasets (Chicco and Jurman, 2020). The Precision-Recall curves 
were plotted to display the tradeoff between recall and precision in the 
highest-ranking models. In addition to these metrics, we also used 
models with the highest MCC values from each dataset to illustrate the 
location of detected channels. For the final evaluation, the inference of 
the best-performing models was compared to the ground truth in order 
to account for how much of each type of channel was detected by them.

2.5. Benchmark

We have used the traditional flow accumulation method of the 0.5m 
resolution as a benchmark to compare with our deep learning approach 
and our manually labeled dataset. The process to obtain the flow accu
mulation has been described in section 2.2.2, but now we have included 
the other two stream initiation thresholds of 6 ha and 10 ha, also 
observed in Paul et al. (2023). To make the comparison fair, the 
extracted streams went through the same described process to create the 
labels with natural contours: buffering, multiplying the buffer with the 
reclassified HPMF data, majority filtering, and combination with ras
terlines. Additionally, the Swedish property map (1:12 500) was also 
used for comparison. It was rasterized (VectorLinesToRaster) and un
derwent the same process described in section 2.2 to create natural 
contours. All of this data was compared pixel by pixel to the labeled 
dataset, counting how many pixels labeled as ditch or natural stream 
were identified as channel by the flow accumulation.

Furthermore, the inference results from the deep learning model 
from Lidberg et al. (2023) was also compared to our ground truth data. 
Despite their model being trained exclusively on ditches, it indirectly 
detected some natural channels, allowing for a relevant comparison. To 
ensure we did not evaluate on data that the previous model might have 
been trained on, we used data from the newly added study site for this 
process, as it was not included in the previous model’s training data.

3. Results and discussion

3.1. Importance of DEM scale for the modeling of channels using deep 
learning

The precision and recall values were higher for datasets with a 0.5 m 
resolution than for the 1 m counterpart. This was the case for all datasets 
and topographic indices (Fig. 5). Despite this, some models displayed 
higher values at either metric individually, and some overlap between 
the resolutions has been observed. This is partially in line with previous 
research on mapping terrain features with deep learning and DEM data, 
where higher resolution had better results (Chowdhuri et al., 2021) but 
also showed that the difference in performance between resolutions was 
not very strong (Robson et al., 2020).

The recall had different values for all datasets at 1 m resolution, with 

small differences between ditches and channels. The precision was 
similar for either resolution, with a variation of around 10%. We can 
assume that the performance of the models with 1 m resolution was 
impacted by the topographic index used in the training process. This 
impact was also observed in the 0.5 m resolution but to a lesser extent, 
which could indicate that models trained on a higher resolution were 
stable. The stability was not present on channels labeled as streams: in 
both scales and with any dataset, as seen in the black crosses in Fig. 5, 
the recall values were different while the precision was similar, not 
going over 25%.

The estimated processing time required to both extract the topo
graphical indices and apply the model differed substantially between the 
DEM resolutions (Table 1). The Sky-view Factor in particular was 
computationally demanding compared to the other topographical 
indices, regardless of resolution. This happens because the source-code 
for the RVT library was written in python, which is an interpreted lan
guage. The tools from WBT, on the other hand, were coded in Rust – a 
compiled language. Compiled programs are faster than those that have 
to be interpreted (Kwame et al., 2017), and one way to have similar 
processing times would be to have all the processing steps written in a 
compiled language. Furthermore, parallelizing the codes for execution 
on the GPU could potentially mean a considerable speed improvement. 
The inference time of the deep learning model was about the same for 

Fig. 5. Precision by Recall plot of the trained models, grouped by resolution 
and channel type. Black represents the 0.5 m resolution, while the 1 m reso
lution is represented by the white color. When referring to dataset Ditches&
Streams0.5, the channel types were analyzed separately. The “Ditches” 
identified in the legend refers to this class in dataset Ditches and Ditches&
Streams, while “Streams” addresses this class in dataset Streams and Ditch
es&Streams. “Channels” describes the models trained with the dataset 
Channels, combining ditch and stream channels in the same class.

Table 1 
Time spent to calculate each topographic index individually and in combina
tions, and the time spent to apply a deep learning model on new data (inference): 
both in two resolutions and measured in seconds by square kilometers. It was 
also estimated how long it would take (in days) to calculate the topographic 
index(es) and apply the model to the processed data for the whole surface area of 
Sweden (447 425 km2). Hillshade had the same processing time regardless of the 
angle.

Topographic Index Processing time 
(s/km2)

Inference time 
(s/km2)

Estimated time for 
Sweden (days)

0.5 m 1 m 0.5 m 1 m 0.5 m 1 m

HPMF 0.30 0.09 6.71 1.68 36 9
Hillshade 0.25 0.07 6.69 1.67 36 9
Slope 0.27 0.08 6.69 1.67 36 9
Sky-view Factor 3.01 0.68 6.64 1.67 50 12
Combination (all) 4.58 1.13 6.81 1.70 59 15

M.D.S.T. Busarello et al.                                                                                                                                                                                                                      Computers and Geosciences 196 (2025) 105875 

6 



models trained with one index or several combined.
As models trained on the 0.5 m resolution datasets had the highest 

recall, the rest of this work focused on the models trained on topo
graphical indices with a 0.5 m resolution. The analyses for 1 m resolu
tion are in Appendices A.1, A.2, A.3, and A.4.

3.2. Impact of different terrain indices for detecting ditch and stream 
channels

We did not find a particular topographical index that consistently 
outperformed the others in this study. Models trained on Hillshades had 
the highest recall, while models trained on HPMF and Hillshade 0◦ had 
the highest precision using the datasets Channels0.5 (Fig. 6A) and 
Ditches0.5 (Fig. 6B). The model trained on the dataset Streams0.5 had 
the highest recall when trained on a combination of all topographical 
indices (Fig. 6C). That model had a recall of 70%, but the precision was 
still low at 20%. The highest recall for ditches with dataset Ditches&
Streams0.5 was from the combination of all indices with 92% and 7% for 
streams using Hillshade 90◦ (Fig. 6D). The precision for the model 
trained on this dataset was highest with the HPMF for ditches, and Slope 
for streams. We believe that MCC gives the most balanced measure of the 
overall model performance, but there was no clear winner among 
models trained on different digital terrain indices (Table 2).

Indices not used in our work were listed as the most effective ones in 
studies focused on channels and fluvial features using the DEM (Du 
et al., 2019; Koski et al., 2023), or topographic positive openness for 
ditches (Du et al., 2024). Koski et al. (2023) detected channels using 
deep learning and several terrain indices besides the DEM, finding recall 
and precision values ranging 16–77% and 43–86%, respectively, while 
the F-score varied 0.23–0.81. The best terrain indices in our study for 
this type of dataset scored higher recall (83–93%), but lower precision 
(range 42–52%, Fig. 6A) and lower F-score (0.54–0.63, Table 3). The 
reasons for the differences are analyzed in section 3.4. Similarly, Du 
et al. (2024) detected ditches with deep learning, combining topo
graphic and other features. Recall and precision were in the range of 
73–76% and 63–69%, respectively, and F-score 0.69–0.71. Meanwhile, 
our similar dataset had higher recall (72–92%), lower precision 42–52% 
(Fig. 6B), and lower F-score 0.57–0.66 (Table 3). This difference could 

be because of the U.S. study having a higher resolution (0.3 m against 
our 0.5 m). Lidberg et al. (2023), however, obtained a higher MCC value 
than this study using the HPMF (0.78), which could be due to the 
different deep learning architecture.

The variation in the performance of the hillshade indices could be 
explained by the variation in channel orientation. In Fig. 2C, for 
example, part of the stream and the vertical ditch do not show because 
they were parallel to 0◦, while the channels oriented perpendicularly 
were highlighted. Therefore, no matter the amount of data acquired and 
data augmentation performed, when using an index there is a chance 
that the channels might not be visible at all. This further motivated our 
choice to combining them.

3.3. Combining topographic indices

Combining all of the topographic indices did not result in a higher 
MCC compared to using them individually as input training data for 
most datasets, except Streams0.5 (Table 2). This dataset (Fig. 6C) and 
Ditches&Streams0.5 (Fig. 6D) had higher recall values.

However, when all of the possible combinations between the indices 
with dataset Ditches&Streams0.5 were analyzed (Appendix B) we 
observed that, for ditches, the HPMF was surpassed by the combination 
of Sky-view Factor + Slope in the ditches class (MCC = 0.69 (Table 3) 
against 0.74 (Fig. 7)) and the streams class (MCC = 0.09 against 0.31). 
Furthermore, for streams the Slope was surpassed by the combination of 
Hillshade 45◦ + Hillshade 90◦ + Hillshade 135◦, not in the ditch class 
(MCC = 0.63 against 0.63) but in the stream class (MCC = 0.28 against 
0.36). These results are in line with Kazimi et al. (2020) and Du et al. 
(2019), where a combination outperformed the single index, even 
though both studies used a coarser resolution (50 m) to detect fluvial 
structures (among others). We believe that the resolution did not in
fluence this difference between combining indices or not, since these 
results also matched the coarser one analyzed by us (Appendix A.4).

Additionally to the observed trend that no single index was better 
than a combination of indices, we noted that the best performing com
binations are those that combined two or three indices (Fig. 7). This 
appears reasonable since each index extracted different information 
from the DEM and as such may not contain all necessary information. 

Fig. 6. Precision by Recall plots separated by dataset with 0.5 m resolution. Each color represents a topographic index, and each symbol represents a channel type. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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For example, ditches running from north to south were difficult to see in 
Hillshade 0◦ (Fig. 2C). However, adding indices to the considered 
combination, which introduce only slight variations of the information 
already provided by the considered indices, harmed performance, since 
it made the learning problem more difficult. This issue has been 
observed by others, for example by Yang et al. (2023) and Koski et al. 
(2023), who trained models directly on the DEM. These models per
formed similar or better than models trained on the DEM combined with 
indices derived from it, since all required information was already 
included in the DEM. Still, we argue that it is reasonable to assume that a 
model trained on topographic indices can generalize better due to the 
more uniform representation of the relevant topographic features.

Processing time could affect the decision to use multiple topo
graphical indices, considering that it can increase greatly with a higher 
resolution. It seems that combining multiple topographical indices 
derived from the same LiDAR data could be beneficial, and so, including 
aerial photographs in the topographical data is something that might be 
worth exploring. Robb et al. (2023) obtained a higher F-score than our 
study (0.79 against 0.66) using orthophotos with a 0.25 m resolution to 
detect ditches, but this was not observed by Koski et al. (2023), where 
combining the orthophotos had the worst performance detecting chan
nels. The aerial imagery data used by the Finnish study had a coarser 
resolution (0.5 m; NLS (2023)) which could be creating this difference. 
Koski et al. (2023) also points out that the extent of tree coverage 

hindered the performance of this input data to some extent, something 
that seems not to have happened in the UK publication, judging by the 
fact that the study area was less forested.

3.4. Evaluating model performance with different datasets

The models with the highest MCC values were selected for further 
evaluation under section 3.4. By “datasets” we mean if the model was 
trained to identify channels, streams, and/or ditches. The models 
trained with dataset Ditches0.5 with the highest MCC had a recall of 
92.1%, while models trained on the dataset Channels0.5 had a recall of 
83.7% (Table 3).). The same observation was made in the Precision- 
Recall curves, with AP = 0.76 for Channels0.5 (Fig. 8A) versus AP =
0.82 for Ditches0.5 (Fig. 8B).A Finnish dataset similar to Channels0.5 
was used by Koski et al. (2023), with lower recall values (77.3%) but 
notably greater precision (85.6% against our 54%, Table 3). Starting in 
the 1950s, the ditching process in peatlands that was conducted in 
Finland altered the shape of most small natural channels (Muotka et al., 
2002), with a low number of unaltered small streams left. This could 
mean that the uncertainty brought in by natural channels was smaller, as 
unaltered streams might be rarer in Finland, resulting in a higher pre
cision. This could be an indication that when streams and ditches had 
the same label, uncertainty was introduced in the training process, 
blurring the detection and classification of channels. With the streams 
labeled as background, the separation became clearer and more chan
nels were detected (despite the number of false positives also 
increasing).

The precision-recall curves strengthen the observations from Table 3. 
The average precision values reported were higher than the ones seen in 
the table because this metric is an approximation of the area under the 
precision-recall curve (Aslam et al., 2005), i.e., a summary of the 
precision-recall performance across all thresholds. However, we could 
still see similarities in the overall poor performance of the stream class in 
the Streams0.5 dataset (AP = 0.22, Fig. 8C), Ditches&Streams0.5 
trained with HPMF (AP = 0.06, Fig. 8D), and the improvement brought 
to it by combining Sky-View Factor and Slope (AP = 0.28, Fig. 8E). 
Overall, the ditch label performed better across all datasets, showing 
that whichever high-ranking model was chosen, their detection would 
be similar. The differences, though, could be seen in the inferences 
(Fig. 9), where the interruption in channels happened more often within 
Channels0.5 (Fig. 9B) than Ditches0.5 (Fig. 9C).

For the model where the channels were trained with three labels 
(ditches, streams, and background (Fig. 3D)) we evaluated the ditches 
and streams separately. Ditch channels were correctly classified 

Table 2 
MCC values for all datasets with the 0.5 m resolution. The terrain indices with the highest MCC are highlighted in bold.

Topographic Indices Channels0.5 Ditches0.5 Streams0.5 Ditches&Streams0.5 (ditches) Ditches&Streams0.5 (streams)

Combination 0.65 0.61 0.32 0.64 0.12
Hillshade 0◦ 0.63 0.68 0.31 0.57 0.11
Hillshade 45◦ 0.59 0.60 0.28 0.60 0.27
Hillshade 90◦ 0.64 0.69 0.30 0.65 0.22
Hillshade 135◦ 0.60 0.63 0.26 0.59 0.25
HPMF 0.67 0.67 0.25 0.69 0.09
Slope 0.64 0.68 0.13 0.63 0.28
Sky-view Factor 0.66 0.63 0.19 0.63 0.17

Table 3 
Evaluation metrics for each model, dataset, and its highest-performing topographic index. The recall, precision, F-score, and MCC values are also presented.

Model TP FP TN FN Recall Precision F-score MCC

Channels0.5 High-Pass Median Filter 2395624 2028771 224358343 467262 83.7% 54.1% 0.66 0.67
Ditches0.5 Hillshade 90◦ 2396057 2282997 203616321 204625 92.1% 51.2% 0.66 0.69
Streams0.5 Combination 185753 1040722 54697074 76451 70.8% 15.1% 0.25 0.32
Ditches&Streams0.5 High-Pass Median Filter (ditches) 2170656 1597868 224812682 430026 83.4% 57.6% 0.68 0.69
Ditches&Streams0.5 High-Pass Median Filter (streams) 18318 130158 226965020 243886 6.9% 12.3% 0.12 0.09

Fig. 7. Precision and Recall plots for all of the possible combinations of 
topographic indices. The color indicates the number of combined indices, and 
the shape represents the type of channel.
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frequently, which could mean that these channels had morphological 
attributes that made them more easily recognized by the neural 
network, while streams did not. Comparing this dataset (3-class) to 
dataset Ditches0.5 (binary), the recall was lower (83.4% against 92.1%), 
a result similar to Phinzi et al. (2020) when comparing the performance 
of a binary and a multiclass dataset to detect gullies with machine 
learning.

Models trained with the binary datasets had false positives more 
often, meaning that labeling streams and ditches separately in the 
training process could have helped distinguish both from the back
ground data. A visual analysis of the detection (Fig. 9E) demonstrates 
that the models were not able to separate ditches and streams, but the 
number of false positives for the stream channels and ditches was low 
(0.06% and 0.7%, respectively; Table 3). For the dataset Ditches0.5 
(Fig. 9C), stream channels were mainly misclassified as ditches despite 
being detected, while in the dataset Streams0.5 (Fig. 9D) the opposite 
happened, with frequent channel interruptions. This discontinuity was 
also observed in dataset Channels0.5 (Fig. 9B).

The channel interruptions were observed in small sections where the 

width was narrower than the average 3 m. In the ground truth data, 
these gaps were absent because the original polyline shapefile was 
converted to raster format and merged with HPMF-extracted values. 
This provided channel continuity, but limited their width to a single 
pixel. Gaps in the channel network are not unusual due to not only 
natural processes like sedimentation, falling trees and logs, but also to 
anthropogenic modifications such as culverts, bridges, road embank
ments (Lindsay and Dhun, 2015), which would explain why parts of the 
channel would be absent in ground truth. With that, they would not be 
detected in the inference either.

The highest-ranking models (Table 3) detected channels but were not 
as effective when classifying them, so we have calculated how much of 
each channel type was detected by each model regardless of the model’s 
classification (Table 4). For the binary datasets, “detection” was the 
same as recall (TP/TP + FN), while “classification” was the same as 
precision (TP/TP + FP). However, we also used the multilabel ground 
truth (with pixels labeled 0, 1, or 2) to evaluate the performance of the 
models on channels, calculating how much of each channel type was 
detected. For the multilabel dataset (Ditches&Streams0.5), “detection” 

Fig. 8. Precision-Recall curves of the highest-ranking trained models and their average precision (AP).
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meant not being predicted as background (label 0). At the same time, 
“classification” verified how many of the channel type predictions were 
correct, i.e., ditch pixels predicted to be ditches and stream pixels pre
dicted to be streams. This was done because, despite a pixel being 
classified incorrectly as either ditch or stream, as long as it was not 
classified as “background” (label 0), it was still counted as a channel per 
the definition we use in this work: the combination of ditches and 
streams.

When both channel types had the same label (Channels0.5), the 
detection was higher than when they were labeled separately in the 
same dataset (Ditches&Streams0.5). Models with only one channel type 
(Ditches0.5 and Streams0.5) detected the other class, and in the case of 
Streams0.5 more ditches were detected than stream channels. Streams 
can be characterized by relative depth, continuity, and high sinuosity. 
Ditches are also characterized by relative depth and continuity, and low 
sinuosity (more straight). However, not all streams are meandering and 
not all ditches are straight. These similarities make it challenging to 
distinguish between both channel types, while the straight aspect tends 
to simplify the recognition of ditches. Furthermore, we employed me
dian frequency balancing (Eigen and Fergus, 2015), which assigns larger 
class weights to less frequent classes, leading to larger errors when pixels 
of these classes are mislabeled. With this in mind, we observed how 
different labeling strategies affect the tradeoff different models made 
between precision and recall (Fig. 8).

In the three binary classification datasets (Channels0.5, Ditches05, 
and Streams0.5), misclassifying background as the respective positive 
class is comparatively inexpensive, due to the small class weight for the 

background class. Thus, the models favored higher recall despite an 
increase in false positives. In the 3-class dataset (Ditches&Streams0.5), 
labeling uncertain pixels as a minority class was costly due to the large 
class weights assigned to the ditch and the stream class. Mislabeling 
stream pixels as ditches incurred a significant penalty, while correctly 
identifying a small number of additional ditch pixels had limited bene
fits given their rarity. Conversely, background pixels offered the lowest 
relative cost, as they outnumbered the other two classes significantly. 
This led to higher precision but lower recall for ditches and streams. 
Additionally, the different recall values for ditches and streams in the 
three binary classification datasets were presumably due to the difficulty 
of identifying streams compared to ditches. When only streams were 
labeled (Stream0.5), the model needed to account for the meandering, 
sometimes nearly interrupted pattern of streams (Fig. 9A), which 
appeared to push the model toward recognizing other features in the 
landscape which have a similar pattern (Fig. 9D). This did not happen 
when only ditches were labeled (Fig. 9C), presumably because the model 
exploits the linear aspect of ditches, which allowed it to ignore other 
landscape features. When ditches and streams were labeled as channels 
(Channels0.5), the model needed to find a tradeoff between only 
focusing on the linear aspect, to allow it to find more streams than the 
ditch model, and recognizing too many landscape features, to achieve a 
better precision than the stream model. It appears to find this tradeoff by 
detecting more meandering interrupted features of the landscape as 
channels, while labeling more uncertain pixels as background, leading 
to more interrupted ditches (Fig. 9B).

Furthermore, because Ditches&Streams0.5 was a multilabel dataset 
we could verify how much of one label is classified as the other. In this 
case, from the number of ditches detected (83.8%), 99.5% were ground 
truth ditches. Meanwhile, only 12.7% of the streams detected by the 
model (54.9%) were correctly classified as streams. The difference in 
performance between stream and ditch channels in this dataset could be 
partially explained by the imbalance in the datasets. While the number 
of pixels with ditch labels was around 1.11% of the data, the stream 
pixels were underrepresented, with 0.01%. Contrasting class prior 
probabilities is a common occurrence in real-world data, and some 
techniques could be used to overcome it (Kotsiantis et al., 2006). In this 
work, the use of median frequency balancing (Eigen and Fergus, 2015) 
was motivated by its successful application in other studies such as Xu 
et al. (2022) and Kampffmeyer et al. (2016). However, despite the 
positive impact it had on the ditch class, an increase in performance of 
the stream class was not observed to the same extent. This represents a 
model limitation because the incorrect classification of streams as 
ditches is a regular occurrence. Adding more training data containing 
small natural streams would be an option to try to reduce the data 
imbalance, while an alternative would have been to perform a 
chip-based sampling, choosing chips that have more stream than ditch 
pixels in it. This would require further manual labor, though, where 
choices to reduce the costs of data acquisition could be explored, such as 
the use of semi-automated methods for labeling (Desmond et al., 2021) 
and crowdsourcing, despite the limitations that may arise regarding 
those who are not domain-specific experts (Clough et al., 2013).

3.5. Comparison to the benchmark

Our model (Streams0.5) had a recall of 70.8% of stream pixels, while 
the flow accumulation had the highest recall rate of stream pixels for 2 
ha and 6 ha of initiation threshold (Table 5). 76.0% of the natural stream 
network was detected by the flow accumulation of 2 ha of the catchment 
area, 71.3% by 6 ha, and 70.2% by 10 ha. The Swedish Property map 
had a recall of 27.5% of pixels from the same channel type, which could 
be explained by the fact that the stream headwaters have been digitized 
from grainy black-and-white orthophotos in this data, being often 
obscured by canopy cover, which impacted its performance. Meanwhile, 
Lidberg et al. (2023) had an indirect recall (i.e., how much of the label 
“stream” was detected despite the model being trained with only 

Fig. 9. Detected channels by the highest performing model from every dataset 
using the 0.5 m resolution, plotted over the hillshade. The colors represent 
channel type: ditch channels are orange, stream channels are turquoise, and 
combined channels are yellow. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.)

Table 4 
Amount of channel pixels detected by each model, separated by channel type. 
The last two columns are only relevant to the multilabel dataset and describe the 
quantity of detected channels that were correctly classified by the model as their 
ground truth channel type.

Dataset used to train 
the model

Detected 
ditches

Detected 
streams

Classified as 
ditches

Classified as 
streams

Channels0.5 85.9% 61.4% – –
Ditches0.5 92.1% 55.9% – –
Streams0.5 81.5% 70.8% – –
Ditches&Streams0.5 83.8% 54.9% 99.5% 12.7%
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ditches) of 16.9%.
For ditches, our model Ditches0.5 had the highest recall: 92.1% 

against the reported 86.0% of ditch pixels from Lidberg et al. (2023); 
33.8% (2 ha), 21.5% (6 ha), and 17.3% (10 ha) from the flow accu
mulation; and 27.5% from the Swedish property map. We believe that 
the differences between our deep learning model and the one from 
Lidberg et al. (2023), for either channel type, comes from the resolution: 
their model used 1 m, whereas our data was at a finer 0.5 m one. The 
lower recall rates of ditch pixels from the flow accumulation and 
Swedish property map could be explained by the absence of the ditch 
network, reported to be 91% missing from Swedish maps (Flyckt et al., 
2022) before the use of deep learning.

Despite having a high recall rate for stream pixels, the MCC values 
had a low performance in both the baseline data and deep learning 
models, showing that there could be a bias towards finding positives at 
the expense of accuracy. In conclusion, our deep learning-based method 
for detecting channels outperformed traditional methods regarding 
ditches, where the recall reached 92.1%, but did not outperform the 
detection of natural streams. However, while one might argue that 
missing 29.2% of headwaters still requires further improvement, these 
results demonstrate that deep learning holds significant promise for 
improving automatic headwater mapping.

3.6. Limitations and future research

We believe that more studies are needed to improve the performance 
of class separation. Extracting additional features to the channels and 
training a separate model with them might improve the classification, 
especially with attributes related to drainage. The use of hydrological 
features in the future might answer whether the channel contains water 
or not and improve the network connectivity, avoiding the interruption 
of channels in the inference (Fig. 9). However, defining the banks of low 
relief channels can be particularly challenging if there are wetlands 
along the river course (Wohl, 2017), something that was observed in the 
study areas, causing the interruption of visible channels in the HPMF. 
Adding future information about culverts (Lidberg, 2025) and bridges 
might impact the inference connectivity as well. To deal with these 
occurrences, traditional topographic modeling could be applied, and 
with techniques such as burning and breaching, it might be possible to 
create the missing connectivity in the ground truth.

The dense canopy cover could have impacted the classification of 
small streams, potentially affecting the comparison of resolution per
formance too. The number of laser points is directly related to the res
olution of the calculated DEM, however, as the canopy coverage 
becomes more dense in forested areas, the number of laser points that 
are able to penetrate it decreases (Chasmer et al., 2004). This could 
result in wrong terrain elevation estimates for densely covered areas, 
lowering the performance of the classification of small natural streams. 
With a higher amount of training data, it would be possible to separate 
the forested areas from the open ones to train the models, evaluating 
how much the tree tops were impacting the resolution performance. 
However, doing so with these datasets would result in a lower perfor
mance overall.

At the same time, while adding more data for this type of channel 
might seem like a solution, Yang et al. (2022) showed that this might not 
necessarily improve the models. Not only that, but the most 
time-consuming and expensive part of training a model with machine 
learning is acquiring the ground truth data, which in this study is due to 
the manual labeling and classification of channels relying on the terrain 
data and ortophotos. However, in dense vegetation covered sites, the 
ortophotos were not helpful, requiring an expert to visit the location and 
evaluate the channel type, which in turn increased the costs and time of 
the process. Despite these difficulties, the inclusion of aerial photo
graphs and other data sources combined with ALS might be beneficial to 
the models, adding new characteristics to the channels.

Forwarding ruts were not observed in our dataset, but we acknowl
edge that this could be a cause for false positives. Some publications 
have focused on their identification using image data from drones 
(Bhatnagar et al., 2022) or conventional cameras (Pierzchała et al., 
2016) unlike our study, which was based on the DEM. Another issue is 
that the vegetation can hinder the visual identification of these struc
tures, making it hard to remove them from the data.

3.7. Water channel management and policies

Knowing the ambitious scope of the suggested actions by Agenda 
(2030) regarding water ecosystems, the management of both types of 
channels needs to be addressed. The measures allowed depend on the 
type of channel: riparian buffers are prescribed around streams, while 
ditch channels can be cleaned without permits (Swedish PEFC, 2023). 
Most ditches were detected in this study; however, streams were often 
misclassified as ditches. This is a cause for concern as streams have 
stronger protection policies than ditches during forest management. For 
example, crossing streams with heavy forest machinery should be 
avoided according to best management practices (Skogsstyrelsen, 2016) 
to avoid disturbing soils near and in the stream; such disturbance causes 
downstream sedimentation (Bishop et al., 2009). Meanwhile, ditches are 
not protected, and the full length of the ditch can be dug out and 
cleaned, also causing downstream sedimentation (Bishop et al., 2009); 
management procedures applied on natural channels would negatively 
change their characteristics, such as flow patterns and retention po
tential of detritus input (Muotka et al., 2002). Therefore, streams mis
classified as ditches on maps could lead to the deterioration of both local 
and downstream environments if these maps were unquestioningly 
trusted by practitioners.

We suggest caution then when implementing models trained on just 
ditches: our model trained on this dataset misclassified 50% of the 
stream channels as ditch channels. This advice also concerns the ditch 
map developed by Lidberg et al. (2023). We are confident that further 
studies on how to separate ditches and streams on maps are needed.

A restoration process is currently underway to turn some of the 
Finnish channelized streams back to their natural status, thus improving 
sport fisheries (Erkinaro et al., 2011), while demonstration restorations 
have also been done in a number of Swedish rivers (Gardeström et al., 
2013). However, studies focused on the restoration of small stream 
channels (<6 m) of the sort that we investigated are still missing. A 

Table 5 
Comparison between the recall performance of different methods of channel 
detection separated by type of channel pixels. “Recall of ditch pixels” refers to 
how many ditch pixels could be detected when compared to the ground truth. 
“Recall of stream pixels” refers to how many stream pixels were detected. All 
methods were evaluated on the same study areas, except Lidberg et al. (2023), 
which was evaluated on the study area that was not included in its training data. 
The MCC values listed were calculated with only the streams as the positive class 
to make a fair comparison between the methods.

Method Recall of 
ditch pixels

Recall of 
stream 
pixels

MCC of 
ditches

MCC of 
natural 
streams

Swedish property 
map

8.1% 27.5% 0.16 0.28

Flow accumulation 
(2 ha)

33.8% 76.0% 0.32 0.21

Flow accumulation 
(6 ha)

21.5% 71.3% 0.26 0.26

Flow accumulation 
(10 ha)

17.3% 70.2% 0.24 0.29

Deep learning (
Lidberg et al., 
2023)

82.1% 25.7% 0.63 0.09

Deep learning 
(Ditches0.5)

92.1% 55.9% 0.68 0.29

Deep learning 
(Streams0.5)

81.5% 70.8% 0.59 0.32
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better classification of natural streams can benefit these studies and 
practices, further helping us to reach the water goals set by the Agenda 
2030.

4. Conclusion

With this work, we have identified several key findings: 

1) Resolution impact: The 0.5 m resolution significantly improved the 
detection of both ditches and natural stream channels, leading to 
higher overall performance. However, the finer resolution also 
required more computing power for processing the training data, 
training and testing the model, and running inference. highlighting 
the need for parallelizing the code and executing it on the GPU.

2) Topographic Index Performance: The highest-scoring topographic 
index varied depending on the dataset. The High-Pass Median Filter 
performed best for Channels0.5 and Ditches&Streams0.5 (ditch 
label), while the Hillshade 90◦ was the top-ranking for Ditches0.5. 
For Streams0.5, Hillshade 0◦ ranked higher.

3) Combining indices: Using a combination of indices resulted in higher 
values of MCC than single indices, with the combination of Sky-view 
Factor and Slope having the highest value for the stream label.

4) U-net performance: Our deep learning model Ditches0.5 was able to 
detect ditches better than any previous method (Table 5). In com
parison with traditional mapping methods, the detection for ditches 
increased from less than 40% to over 92%, while Streams0.5 could 
map 70.8% of stream pixels.

Hence, our study shows great potential for using deep learning for 
mapping small headwaters, whether natural or man-made. However, 
the detection of natural streams still needs improving as close to 30% of 
them are still missing on the resulting maps. Future research should 
focus on identifying shared morphological features between ditch and 
stream channels, exploring methods to reduce class imbalance, and 
incorporating additional data such as information on soils, catchment 
area, and channel morphology. Improving automatic channel detection 
and classification of natural and man-made channels can provide valu
able support for future improved management decisions for surface 
waters and optimize resource allocation for landscape planning.
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Laurén, A., Finér, L., 2018. Ditch network maintenance in peat-dominated boreal 
forests: review and analysis of water quality management options. Ambio 47, 
535–545. https://doi.org/10.1007/s13280-018-1047-6.

NLS, 2023. NLS orthophotos [WWW Document]. URL. https://www.maanmittauslaitos. 
fi/en/maps-and-spatial-data/datasets-and-interfaces/product-descriptions/ortho 
photos.

O’Callaghan, J.F., Mark, D.M., 1984. The extraction of drainage networks from digital 
elevation data. Comput. Vis. Graph Image Process 28, 323–344.

Paul, S.S., Hasselquist, E.M., Jarefjäll, A., Ågren, A.M., 2023. Virtual landscape-scale 
restoration of altered channels helps us understand the extent of impacts to guide 
future ecosystem management. Ambio 52, 182–194. https://doi.org/10.1007/ 
s13280-022-01770-8.

Peacock, M., Audet, J., Bastviken, D., Futter, M.N., Gauci, V., Grinham, A., Harrison, J. 
A., Kent, M.S., Kosten, S., Lovelock, C.E., Veraart, A.J., Evans, C.D., 2021a. Global 
importance of methane emissions from drainage ditches and canals. Environ. Res. 
Lett. 16, 044010. https://doi.org/10.1088/1748-9326/abeb36.
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 A B S T R A C T

This article compares novel and existing uncertainty quantification approaches for semantic segmentation used 
in remote sensing applications. We compare the probability estimates produced by a neural network with 
Monte Carlo dropout-based approaches, including predictive entropy and mutual information, and conformal 
prediction-based approaches, including feature conformal prediction (FCP) and a novel approach based on 
conformal regression. The chosen task focuses on identifying ditches and natural streams based on LiDAR 
derived digital elevation models. We found that FCP’s uncertainty estimates aligned best with the neural 
network’s prediction performance, leading to the lowest Area Under the Sparsification Error curve of 0.09. 
For finding misclassified instances, the network probability was most suitable, requiring a correction of only 
3% of the test instances to achieve a Matthews Correlation Coefficient (MCC) of 0.95. Conformal regression 
produced the best confident maps, which, at 90% confidence, covered 60% of the area and achieved an MCC 
of 0.82.

1. Introduction

Having accurate maps of a landscape is crucial for supporting 
informed decisions in various applications, including sustainable land-
use management (Pagella and Sinclair, 2014). Creating large-scale 
maps, such as those covering an entire country, is a labor-intensive 
process that requires significant human effort. Consequently, the au-
tomated analysis of remote sensing data has become a common solu-
tion (Blaschke, 2010). This involves the analysis of data from sources 
such as optical images, synthetic aperture radar, hyperspectral imaging, 
and Light Detection and Ranging (LiDAR) (Toth and Jóźków, 2016). 
Historically, traditional computer graphics-based approaches have been 
used for remote sensing applications (Savelonas et al., 2022), but more 
recently, deep learning-based methods have been used successfully in 
these applications (Yuan et al., 2020). Deep learning-based approaches 
tend to convert the remote sensing data into images, and apply seman-
tic segmentation to assign one of the classes of interest to every pixel 
of the image. For example, O’Neil et al. (2020) have mapped wetlands 
based on aerial images and topographic indices calculated based on 
a LiDAR derived digital elevation model (DEM). Similarly, Busarello 
et al. (2025) have investigated the use of different topographic indices 
as representation of a DEM derived from LiDAR data. Based on these 

∗ Corresponding author.
E-mail address: florian.westphal@ju.se (F. Westphal).

rasterized representations, they trained a neural network to detect 
ditches and natural streams.

One challenge when working with automatically generated maps is 
assessing their reliability. A common approach to estimating the quality 
of these maps is by comparing them with a representative portion of the 
actual landscape, which provides a good general estimate as long as the 
evaluated landscape is representative of the overall terrain. However, 
the actual quality can vary significantly depending on location, with 
some parts being more accurate and others less so (Kasraei et al., 2021). 
For decision-making purposes, it is important to have an estimate of 
reliability at specific locations, which can be achieved by quantifying 
the uncertainty of the used model at the point of interest (Xu et al., 
2022).

Quantifying uncertainty in deep learning models initially appears 
straightforward, as they typically provide class-wise probabilities for 
each pixel. However, research has shown that these estimates tend 
to be overconfident, due to the training process rewarding overconfi-
dent predictions (Guo et al., 2017; Sensoy et al., 2018). In response, 
various methods have been developed to quantify neural network un-
certainty, which Gawlikowski et al. (2023) categorize into four primary 
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Fig. 1. Illustration of the semantic segmentation task. Ditches (yellow) and natural streams (orange) should be identified in a given chip based on the slope image derived from 
the digital elevation model at a 0.5m resolution. The uncertainty of the 5% most uncertain pixels, as quantified by Feature Conformal Prediction is displayed using pink for 
background pixels, green for ditches and blue for streams. The strength of the color is determined by the uncertainty value.

directions: single network deterministic approaches, Bayesian methods, 
ensemble techniques, and test-time augmentation methods.

Deterministic methods, such as Dirichlet prior networks (Gaw-
likowski et al., 2022), have been used in remote sensing applications, 
as well as ensemble techniques, such as deep ensembles (Lakshmi-
narayanan et al., 2017). For example, Chaudhary et al. (2022) utilized 
deep ensembles to quantify uncertainty in generated maximum water 
depth hazard maps, which aid in estimating the risk of flooding. 
Additionally, deep ensembles have been leveraged to estimate the un-
certainty in wavelength bands from Sentinel-2 whose spatial resolution 
had been enhanced to a resolution of 10m (Iagaru and Gottschling, 
2023).

However, the primary focus has centered on Bayesian methods. 
The most prevalent approach among these Bayesian methods is Monte 
Carlo dropout (MC dropout) (Gal and Ghahramani, 2016), which has 
been used, for example, by Kampffmeyer et al. (2016) to quantify the 
uncertainty of their method on an urban object classification task based 
on a digital surface model (DSM). MC dropout has also been used 
by Martínez-Ferrer et al. (2022) for uncertainty quantification of their 
approach to retrieve different biophysical variables, such as leaf area 
index and canopy water content from surface reflectance data. Another 
notable Bayesian approach involves the application of Bayesian neural 
networks (Blundell et al., 2015; Goan and Fookes, 2020). Hertel et al. 
(2023) have conducted a comparative analysis of both methodologies 
and advocate for the use of Bayesian neural networks, as they tend to 
be less likely to indicate high confidence in incorrect predictions.

One other approach to uncertainty quantification is the conformal 
prediction framework (Vovk et al., 2005), which has been primar-
ily applied to simple classification and regression tasks, but more 
recently was adapted to semantic segmentation. For example, Wieslan-
der et al. (2021) have used conformal prediction for medical image 
segmentation, while Labuzzetta (2022) has applied subsample con-
formal prediction to the task of surface water and grassed waterway 
segmentation. Additionally, Singh et al. (2024) have demonstrated 
how conformal prediction can be applied to different tasks in earth 
observation, such as tree species mapping, land cover classification 
and canopy height estimation, and advocate for its more widespread 
use. While these works are based on more traditional formulations 
of conformal prediction, Teng et al. (2023) have proposed Feature 
Conformal Prediction (FCP), which is particularly adjusted to the use 
with deep neural networks, and has been shown to be more effective 
at quantifying the uncertainty of a neural network in general semantic 
segmentation tasks.

This article compares uncertainty estimates derived from the pre-
dictions of a neural network (network probability) with mutual infor-
mation and predictive entropy — two uncertainty metrics calculated 
through MC dropout — to those obtained via conformal regression 
and FCP. We focus on these methods, in contrast to Bayesian neural 
networks (Blundell et al., 2015) or deep ensembles (Lakshminarayanan 

et al., 2017), since they can be integrated into existing network archi-
tectures for semantic segmentation tasks, and do not incur extensive 
training times, due to the need to train multiple models. Notably, 
conformal prediction-based methods enable the production of predic-
tions with a specified confidence level. Ideally, this would result in 
a map featuring only confident predictions, such as those above a 
90% confidence level. Therefore, we investigate the usefulness of those 
confident maps.

For our comparison, we select the remote sensing task of detecting 
ditches and natural streams from a DEM (Fig.  1), which has been 
derived from LiDAR data. In particular, we perform this detection task 
on data derived from a DEM at 1m resolution, as well as at 0.5m
resolution. This task is especially challenging due to the narrowness of 
the objects of interest, requiring high detection precision. In contrast 
to other semantic segmentation problems, most pixels are background 
pixels, while only few represent ditches and even fewer represent 
natural streams, leading to a significant class imbalance. Additionally, 
distinguishing between streams and ditches in a DEM can be difficult, 
as they often appear similar. These challenges contribute to uncertainty 
in predictions, which we aim to estimate.

Uncertainty quantification is crucial in this context because it 
could help identify natural streams that have been erroneously pre-
dicted as ditches. This distinction is significant, as natural streams 
require distinct management strategies to preserve their ecological 
integrity (Swedish PEFC, 2023). For example, avoiding the crossing 
of these streams with heavy machinery can prevent soil disturbance, 
which otherwise can exacerbate sedimentation and disrupt ecological 
functions (Bishop et al., 2009). In contrast, ditches can be more easily 
cleaned or maintained without needing permits.

This article addresses the following research questions:

1. Which of the investigated uncertainty quantification approaches, 
i.e., network probability, mutual information, predictive en-
tropy, conformal regression, and FCP produces the most reliable 
uncertainty estimates?

2. To what degree does the resolution of the DEM impact the 
uncertainty estimates?

3. To what extent is it possible to generate useful maps with a 
specific confidence level using conformal regression and FCP?

2. Methodology

2.1. Mapping ditches and streams: Network probability

For mapping ditches and streams, our approach employs a U-Net 
architecture (Ronneberger et al., 2015) similar to that used by Busarello 
et al. (2025) (Fig.  2), which has been demonstrated to be effective for 
this task. The U-Net takes as input a 500 × 500 pixels large chip of 
the landscape represented by the local slope derived from a DEM. This 
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Fig. 2. U-Net architecture for mapping streams and ditches. The colored arrows show 
different processing steps, the dashed arrows indicate concatenation of feature maps, 
and the shaded feature maps indicate the ones being used for Feature Conformal 
Prediction.

input is then downsampled through a series of convolutional, dropout, 
and max pooling layers. Notably, our approach differs from Busarello 
et al. (2025) in that we utilize concrete dropout (Gal et al., 2017), 
which has been shown to improve uncertainty estimates obtained 
through MC dropout (Mukhoti and Gal, 2018).

After four downsampling steps, the extracted feature maps are up-
sampled using transposed convolutions, and processed by convolution 
and dropout layers to reach the original input size. At each upsampling 
step, the feature maps of the corresponding downsampling step are 
concatenated to ensure that no relevant information is lost. The final 
output is produced by applying a convolutional layer to the last feature 
maps (shaded feature maps in Fig.  2) . The output consists of three 
bands, each representing one of the considered classes: background, 
ditch, and natural stream.

In contrast to most U-Net architectures, our approach does not 
utilize a softmax layer, which would map the output at each pixel to a 
probability distribution over the three classes and be trained using cross 
entropy loss. Instead, we employ a linear activation function in the last 
convolutional layer and train the network using mean squared error, as 
proposed by Teng et al. (2023) to improve uncertainty estimates of FCP. 
Labels are mapped farther apart using a double log transform, resulting 
in large positive and negative values. Unlike Teng et al. (2023), who 
applied a Gaussian blur to the labels, we found this approach to be 
detrimental to performance, likely due to the narrow nature of our 
objects of interest, i.e., ditches and streams. To address class imbalance, 
we implement median frequency balancing (Eigen and Fergus, 2015) as 
suggested by Busarello et al. (2025).

Uncertainty estimates are derived from predicted network prob-
abilities. This involves reversing the double log transform to obtain 
probabilities between 0 and 1 for each pixel and class. It should be 
noted that these probabilities are not calibrated in any way. The class 
with the highest probability is selected for each pixel. Uncertainty 
values are then calculated as the difference between the predicted prob-
ability and 1. This approach assumes that high confidence predictions 
yield probabilities close to 1, whereas low confidence predictions result 
in lower probabilities and thus higher uncertainty values.

2.2. MC dropout: Predictive entropy and mutual information

MC dropout has been proposed by Gal and Ghahramani (2016) as a 
method for estimating the uncertainty of a neural network. The main 
idea behind MC dropout is that if a neural network is certain about 
its prediction, introducing small random changes in its execution will 
not affect its prediction. Conversely, when a network is uncertain about 
its prediction, these small changes will lead to large variations in the 
predicted outcome. Thus, the network’s uncertainty can be estimated 

by observing the variability in its predicted output when run multiple 
times. MC dropout introduces small random changes using dropout 
layers within the network architecture.

In a dropout layer (Srivastava et al., 2014), a randomly selected 
subset of neurons has its output set to zero. At each new input, a 
predefined probability determines which neurons are dropped. This 
probability is learned in concrete dropout (Gal et al., 2017), which we 
use in this study. Unlike the traditional use of dropout layers, which 
typically activates them only during training to promote robustness, MC 
dropout keeps those layers active during inference, resulting in varying 
outputs for identical inputs processed multiple times.

MC dropout estimates the uncertainty by using these varying out-
puts to compute two different metrics: predictive entropy and mutual 
information. These metrics measure different types of uncertainty, 
viz. aleatoric and epistemic uncertainty. Aleatoric uncertainty captures 
uncertainty caused by the data, such as ambiguity at the border be-
tween ditch and background, whereas epistemic uncertainty captures 
uncertainty caused by the model itself, for example, due to insufficient 
training data.

Predictive entropy captures both aleatoric and epistemic uncer-
tainty and is approximated for a given input 𝒙 and a given training 
set 𝑡𝑟𝑎𝑖𝑛 as: 
Ĥ[𝑦|𝒙,𝑡𝑟𝑎𝑖𝑛] =
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Here, 𝐶 is the set of classes, 𝑇  is the number of outputs 𝑦 to collect 
for variations of the neural network 𝑤̂𝑡, which are produced by the 
dropout layers, and 𝑝 (𝑦 = 𝑐|𝒙, 𝑤̂𝑡

) is the probability of input 𝒙 being 
in class 𝑐. In contrast, mutual information measures only the epistemic 
uncertainty and is approximated as: 
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This study computes predictive entropy and mutual information 
values for each pixel within every output chip, based on 1 000 outputs 
collected for each chip.

2.3. Conformal regression

Conformal regression is a part of the conformal prediction frame-
work (Vovk et al., 2005), offering guarantees for machine learning 
model predictions. Unlike standard regression, conformal regression 
generates prediction intervals rather than single numerical values. The 
framework ensures that, for a pre-defined percentage of predictions 
(e.g., 90%), the true value lies within the provided interval. While this 
can be achieved easily by making this interval arbitrarily large, the 
challenge lies in finding a narrow yet guarantee-ensuring interval.

While there are two types of conformal regression, this article 
focuses on the inductive case, as it does not require frequent re-training. 
Inductive conformal regression estimates the size of the prediction 
interval based on a calibration set, which is separate from the training, 
validation, and test datasets. The interval is derived by measuring 
the difference between the predicted value and the true value for all 
instances of the calibration set, using a non-conformity function, such 
as mean absolute error (MAE), resulting in a non-conformity score. 
Based on a pre-defined confidence-level, e.g., 90%, the difference or 
non-conformity score of the 90th percentile is selected, and the interval 
is set as the value predicted by the machine learning model plus or 
minus the selected value. This ensures that the true value of 90% of 
instances in the calibration set lies within the produced interval, since 
their prediction errors were smaller than the one chosen. Because the 
calibration set is required to be exchangeable with the test set, i.e., they 
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both come from the same distribution, it can be expected that this 
guarantee will hold also for unseen instances from the test set.

One issue with the described approach is that it assigns the same 
interval to all instances, leading to overly large intervals for most of 
them. This can be addressed by normalizing non-conformity scores 
through instance difficulty estimation. For example, Cortés-Ciriano and 
Bender (2019) estimate instance difficulty using MC dropout, recording 
predicted outputs for the same instance 𝑖 multiple times with enabled 
dropout layers and calculating mean 𝜇𝑖 and standard deviation 𝜎𝑖 over 
those outputs. The non-conformity score 𝛼𝑖 is then computed based on 
the corresponding true value 𝑦𝑖 over all instances in the calibration set 
𝑐𝑎𝑙, resulting in a list of non-conformity scores 𝑆, which is then sorted 
in ascending order. 

𝛼𝑖 =
|𝑦𝑖 − 𝜇𝑖|

𝑒𝜎𝑖
𝑆 = 𝛼1,… , 𝛼𝑞 , with 𝑞 = |𝑐𝑎𝑙| (3)

Based on this list, the non-conformity score 𝛼𝑝 is selected, which 
corresponds to the chosen confidence level 1 − 𝜖 (e.g., 0.9 for 𝜖 = 0.1). 
For a new instance 𝑗, the prediction interval around the mean of the 
MC dropout samples 𝜇𝑗 is then derived by multiplying the selected 𝛼𝑝
with the instance’s difficulty, as measured by the standard deviation 
over the MC dropout samples 𝜎𝑗 (Cortés-Ciriano and Bender, 2019). 
𝑝 = ⌈(1 − 𝜖)(𝑞 + 1)⌉ , for 𝛼𝑝
𝜇𝑗 ± 𝛼𝑝 ⋅ 𝑒

𝜎𝑗 (4)

Another challenge in deriving regression intervals is that the dis-
tribution of non-conformity scores may vary depending on certain 
properties of the instances. For example, when dealing with instances 
having large true values, the error may be greater than for those with 
small true values. If this difference in distribution is not taken into ac-
count, the derived regression intervals will be larger than necessary for 
instances with small true values and possibly too narrow for instances 
with large true values, depending on their prevalence in the calibration 
set.

For classification problems, Mondrian conformal prediction (Vovk 
et al., 2005) addresses these issues by categorizing instances based on a 
Mondrian taxonomy that considers certain properties of each instance. 
A separate conformal predictor is then built for each category. Mon-
drian regression, proposed by Boström and Johansson (2020), follows 
a similar approach. It divides the calibration instances into different 
categories based on a Mondrian taxonomy, specifically an estimate of 
difficulty. The prediction interval within each category is derived from 
the non-conformity score at a specific percentile. This methodology 
allows for more tailored prediction intervals that are narrower for 
instances belonging to simpler categories and wider for those in harder 
categories. Since simpler categories typically have low errors and thus 
low non-conformity scores, their prediction intervals can be narrower. 
In contrast, harder categories will have higher non-conformity scores, 
leading to broader prediction intervals.

In our implementation, each pixel in an input chip is associated 
with three real values indicating to which of the three classes it be-
longs. After reverting the double log transform, we perform conformal 
regression to derive a prediction interval for the three class values of 
each pixel. Since the class values can be seen as the probability of 
the pixel to belong to each of the classes, the estimated intervals can 
be interpreted as probability ranges. The estimation of these intervals 
involves calculating non-conformity scores per class for every pixel in 
all calibration set chips, followed by normalization using 100 Monte 
Carlo samples as proposed by Cortés-Ciriano and Bender (2019).

While we record non-conformity scores per class, we also employ 
Mondrian conformal regression to obtain more tailored intervals. This 
approach differs from the original Mondrian taxonomy by Boström 
and Johansson (2020), which utilized estimated instance difficulty. 
In contrast, our taxonomy categorizes predictions for each class into 
two categories: pixels with predicted probabilities close to zero and 

those near one. This distinction is important because we observed in 
initial experiments the tendency of classes with few pixels to have 
most commonly a predicted probability value of zero with a low 
non-conformity score. Conversely, when the actual class is predicted 
(i.e., the predicted probability exceeds 0.5), the non-conformity scores 
tend to be substantially higher. Given this observation, it is reasonable 
to create categories based on the predicted values.

Thus, we group the non-conformity scores of instances from the 
calibration set 𝑐𝑎𝑙 for each class individually into two lists, one for 
which the predicted probability is lower than 0.5, 𝑆<0.5, and one for 
which the predicted probability is larger or equal, 𝑆≥0.5. Those lists 
are then sorted in ascending order, and the non-conformity scores 
corresponding to the chosen confidence-level 1 − 𝜖 are selected as 
before. 
𝑆≥0.5 = 𝛼≥0.51 ,… , 𝛼≥0.5𝑟

𝑆<0.5 = 𝛼<0.51 ,… , 𝛼<0.5𝑠 , with 𝑟 + 𝑠 = |𝑐𝑎𝑙|

𝑡 = ⌈(1 − 𝜖)(𝑟 + 1)⌉ , for 𝛼≥0.5𝑡

𝑢 = ⌈(1 − 𝜖)(𝑠 + 1)⌉ , for 𝛼<0.5𝑢 (5)

We then calculate intervals for each pixel 𝑗 in a new chip by 
collecting 100 Monte Carlo samples of output predictions for the pixel 
and computing the respective mean 𝜇𝑗 and standard deviation 𝜎𝑗 . 
Given the selected non-conformity scores and the estimated means and 
standard deviations, the interval for one of the possible classes for pixel 
𝑗 is derived as follows: 
𝜇𝑗 ±

(

𝜇𝑗𝛼
≥0.5
𝑡 + (1 − 𝜇𝑗 )𝛼<0.5𝑢

)

⋅ 𝑒𝜎𝑗 (6)

By multiplying the selected non-conformity scores with the prob-
ability mean and its inverse respectively, the final interval is derived 
as combination of both scores depending on how much the pixel’s 
prediction agrees with the respective categories. This way of assigning 
the corresponding non-conformity score to a pixel is computationally 
more efficient than having to find the applicable score based on some 
other feature of the pixel, such as difficulty, via a look-up, as it 
is the case in the Mondrian approaches by Boström and Johansson 
(2020), Wieslander et al. (2021), and Labuzzetta (2022).

The uncertainty value for each class is determined by the size of 
the interval, where a larger interval indicates greater uncertainty in the 
prediction. Unlike MC dropout, which produces uncertainty values per 
pixel, the conformal regression approach derives an uncertainty value 
per pixel per class.

2.4. Feature conformal prediction (FCP)

In contrast to conformal regression, which computes non-conformity 
scores based on the output of a machine learning model, FCP (Teng 
et al., 2023) calculates these scores based on an intermediate feature 
representation of a neural network. This feature representation can be, 
for example, the feature maps produced by a convolutional layer. These 
feature maps are then converted into a single vector by flattening the 
corresponding tensor, enabling FCP to obtain a predicted output for an 
input instance as a point in a high-dimensional vector space.

When applying conformal regression, it is clear what constitutes a 
true value for computing the non-conformity score, i.e., the target value 
of an instance. In contrast, identifying the true feature representation of 
an instance is not straightforward. FCP assumes this true representation 
to be the infimum, which corresponds to the feature representation 
with the smallest numerical values, which produces the correct output. 
However, finding this optimal representation is challenging. As a re-
sult, FCP approximates the infimum by optimizing the original feature 
representation for a given input instance to produce the correct output 
using gradient descent. It should be noted that this approach modifies 
the values of the feature representation rather than adjusting neural 
network weights. The non-conformity score is then computed using a 
norm distance, such as the infinity norm, between the vector of the 

Environmental Modelling and Software 191 (2025) 106488 

4 



F. Westphal et al.

original representation and the one derived through gradient descent. 
This yields a single non-conformity score per instance, differing from 
the conformal regression case where multiple scores are generated 
corresponding to each output.

The base score is derived, similar to conformal regression, by com-
puting the non-conformity scores for the calibration set and selecting, 
for example, the 90th percentile. Given a test instance, FCP derives its 
corresponding feature representation and applies perturbations to this 
representation, ensuring that the resulting new feature representations 
do not deviate beyond the distance indicated by the base score. These 
perturbations are achieved using Linear Relaxation based Perturbation 
Analysis (LiRPA) (Xu et al., 2020). Subsequently, FCP estimates the 
resulting output intervals by applying the neural network to the per-
turbed feature representations. In summary, FCP performs conformal 
regression in feature space and derives output prediction intervals 
through perturbation analysis. Mathematical proofs of the correctness 
and efficiency of the method have been derived by Teng et al. (2023).

Our implementation utilizes feature maps generated prior to the 
output layer (shaded feature maps in Fig.  2) for FCP. In contrast to Teng 
et al. (2023), who found that features can be extracted from various 
layers without altering the prediction intervals, our findings suggest 
that using feature maps from any other layer results in unreasonably 
large prediction intervals for our task and network architecture. This 
may be because the skip connections in our U-Net architecture inter-
fered presumably with the perturbation step, as the perturbations were 
applied only to the feature maps of the upsampling path and not those 
of the downsampling path. We employ perturbation analysis to derive 
prediction intervals for every pixel and class. Similar to our conformal 
regression implementation, the size of the interval is interpreted as 
uncertainty, where larger intervals indicate higher uncertainty.

3. Experiments

3.1. Dataset

For this article, we used a dataset provided by Busarello et al. 
(2025)., consisting of LiDAR-derived DEMs for 12 distinct regions in 
Sweden, further described by Lidberg et al. (2023). The dataset is 
available in two resolutions, 0.5m and 1m, corresponding to input chips 
of 500 × 500 pixels representing areas of 250m×250m and 500m×500m, 
respectively. To address class imbalance, chips with less than 250 ditch 
or stream pixels were removed, resulting in a dataset where still only 
1.1% and 0.1% of all pixels belong to the ditch and natural stream class, 
respectively (Busarello et al., 2025).

Topographic indices are utilized to provide a rasterized represen-
tation of the DEM. In our experiments, the local slope was used, 
which signifies the change in elevation between every pixel in the 
DEM, with inclination displayed in degrees (Florinsky, 2016). This 
index was chosen due to its superior performance in stream detection 
and satisfactory results for ditch detection (Busarello et al., 2025). To 
reduce execution time, we focused on a single index; however, all 
uncertainty quantification methods remain applicable when multiple 
indices are considered.

To evaluate the chosen uncertainty quantification methods, we 
employed 10-fold cross-validation to facilitate statistical analysis. How-
ever, since conformal regression and FCP require a calibration set, the 
dataset was divided into 11 folds: nine for training, one for calibration, 
and one for testing to ensure exchangeability between folds. Stratified 
sampling by region ensured that chips in each fold cover the 12 dis-
tinct regions similarly well, preserving representativeness throughout 
training, calibration, and test set.

Apart from ensuring exchangeability, we needed to prevent infor-
mation about the test set from leaking into the training and calibration 
set to avoid biasing the evaluation and obtaining miscalibrated uncer-
tainty estimates. This was achieved using the following partitioning 
strategy. The dataset was divided into chips without overlap, ensuring 

Fig. 3. Number of chips in each of the 11 folds for the digital elevation model (DEM) 
with resolution 1m and 0.5m.

that no chip’s information was shared between training, calibration and 
test set. Within each region, chips were grouped to minimize borders 
with adjacent chips in other folds. To optimize this grouping, a heuristic 
algorithm was used due to the NP-hard nature of the problem1, yielding 
an approximate optimal solution for partitioning.

After splitting the chips from the 1m DEM into 11 folds, the cor-
responding chips were then selected for the 0.5m DEM, ensuring that 
both resolutions contained the same ditches and streams within each 
fold. This design prevented differences in performance between the two 
resolutions being attributed to varying levels of complexity, rather than 
resolution itself. While the number of chips for the 1m DEM was nearly 
the same for all folds, this number varied more for the 0.5m DEM (Fig. 
3). The reason for this variation was that a different number of chips 
was dropped in each fold, depending on the number of 0.5m DEM chips 
containing at least 250 ditch or stream pixels.

3.2. Performance metrics

The neural network’s performance in classifying pixels as back-
ground, ditch, or natural stream was evaluated using the Matthews 
Correlation Coefficient (MCC) (Matthews, 1975; Yule, 1912) and 𝐹1
score. Given that there were more than two classes, we used the multi-
class version of MCC proposed by Gorodkin (2004). MCC provides a 
balanced view of the classification performance across all classes, while 
𝐹1 score focuses on the performance for a specific class, making it 
particularly suitable for investigating the network’s performance for 
one class of interest (Chicco et al., 2021).

To evaluate the performance of uncertainty quantification
approaches, we utilized the Area Under the Sparsification Error Curve 
(AUSE) (Ilg et al., 2018). Unlike the commonly used Patch Accuracy 
vs. Patch Uncertainty (PAvPU) (Mukhoti and Gal, 2018), AUSE also 
considers the uncertainty estimates for accurate predictions and does 
not require parameter tuning (Dreissig et al., 2023). Furthermore, 
AUSE is more suitable than the Expected Calibration Error (ECE) (Pak-
daman Naeini et al., 2015) because ECE tends to overestimate cali-
bration performance on imbalanced datasets (Dreissig et al., 2023). 
In contrast, AUSE can be combined with a performance metric that 
is robust to imbalanced data, such as MCC (Chicco et al., 2021). The 
main idea behind AUSE is that network outputs should be correct when 

1 NP-hard problems are computational problems for which there is no 
known algorithm which finds a solution in a number of steps polynomial in 
its input (Garey and Johnson, 1979). There is no efficient algorithm to solve 
them.
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estimated to have low uncertainty, but may be incorrect when their 
uncertainty is high.

The sparsification curve is obtained by sorting pixels by their uncer-
tainty and removing a fraction of the most uncertain pixels. Then, clas-
sification performance is measured on the remaining pixels. Here, we 
used MCC for multi-class evaluation and 𝐹1 score for single-class eval-
uation. This process is repeated for increasing fractions of pixels. The 
resulting performance curve should gradually increase if uncertainty 
aligns with correctness.

The sparsification error curve is obtained by subtracting the spar-
sification curve for one uncertainty quantification approach from the 
oracle curve, i.e., the sparsification curve derived by sorting and remov-
ing pixels by actual distance between predicted and true values. This 
optimal sorting removes the most incorrect predictions first and is thus 
the best an uncertainty quantification method can achieve. For a good 
uncertainty quantification method, there will be a small area under 
the sparsification error curve, which can be used as single measure to 
compare between uncertainty quantification approaches.

Furthermore, we evaluated the practical use of those approaches 
using a correction curve, which we propose for this evaluation. This 
curve illustrates the impact different uncertainty quantification meth-
ods would have when used for correcting uncertain pixels, rather than 
removing them as is done for the sparsification curve. This correc-
tion curve shows how many pixels would need manual investigation 
to achieve a specified MCC value or 𝐹1 score, facilitating informed 
decision-making. The correction error curve can be obtained by sub-
tracting the correction curve of a particular uncertainty quantification 
method from the oracle correction curve. Based on this, we define 
the Area Under the Correction Error Curve (AUCE) as a metric for 
evaluating how well an uncertainty quantification approach identifies 
pixels that require correction relative to the optimal solution.

3.3. Experiment design

In our experiments, 10 U-Net models were trained on different fold 
combinations using a unique calibration and test set for each model. 
The implementation utilized pytorch 2.0.1 (Ansel et al., 2024) with 
training performed on a computer equipped with approximately 1TB
of RAM, two Intel Xeon Platinum processor with 32 cores each, and 
one 40GB partition of an NVIDIA A100 GPU. We performed training 
using the Adam optimizer (Kingma and Ba, 2015) and a batch size of 
16. Furthermore, each model was trained for 300 epochs in case of the 
1m DEM, and for 165 epochs, in case of the 0.5m DEM, as these values 
were determined to be optimal based on validation loss performance. 
Given the reduced instance count for the 1m DEM, training for more 
epochs was reasonable since there were fewer weight update steps per 
epoch.

After training the models, their performance was evaluated using 
MCC and 𝐹1 score on the respective test sets. A Bayesian t-test for 
correlated observations (Corani and Benavoli, 2015) was conducted 
to determine if there were significant differences between the models’ 
performance on the 1m and 0.5m DEM data. This statistical test was 
chosen, since it avoids the shortcomings of more traditional null hy-
pothesis significance tests (Benavoli et al., 2017). Basically, it computes 
the probability of the performance difference between two approaches 
to lie within or outside of a pre-defined region of practical equiva-
lence (ROPE). In our evaluation, we chose the ROPE to be a difference 
in MCC value of 0.05, meaning that the performance difference of two 
methods would have to be at least 0.05, for us to consider one method 
significantly better or worse than the other. Given that this test is a 
paired test, we paired the MCC result on one test fold from the 1m
DEM with its corresponding test fold from the 0.5m DEM, i.e., the fold 
which covers the same areas, just at a higher resolution.

Given the trained models, we calibrated the conformal regression 
and FCP approaches on the respective calibration sets. We then derived 
uncertainty estimates for the chips in the corresponding test sets using 

the investigated approaches, i.e., network probability, mutual informa-
tion, predictive entropy, conformal regression, and FCP. The execution 
time was measured for each approach. We then calculated the AUSE 
for all approaches on each test fold and both resolutions. This allowed 
us to investigate whether a lower resolution lead to poorer uncertainty 
estimates by comparing the AUSE scores between resolutions using the 
Bayesian t-test. Specifically, we paired the scores for each test fold 
and method of one resolution with those of the other resolution to 
determine if there were significant differences in uncertainty estimation 
quality.

Furthermore, we compared the AUSE scores for different uncer-
tainty quantification methods using the Bayesian t-test to determine 
which method performed best. This comparison involved pairing the 
AUSE score of each two methods based on the corresponding folds and 
resolution. When comparing the AUSE, we considered a ROPE of 0.05 
sufficient to identify practically relevant differences in performance 
among the evaluated methods. To facilitate efficient comparison of 
methods, high-density intervals (HDIs) were derived using the Bayesian 
t-test. The HDI plot displays the 95% probability intervals in which 
performance differences between methods lie, as well as the ROPE. 
By focusing on intervals not overlapping with the ROPE, statistically 
significant differences can be identified between methods.

To illustrate the practicality of these methods, we derived correction 
curves considering all classes, as well as curves focusing solely on 
predicted ditch and stream pixels. This allowed us to investigate the 
effort required to correct errors where natural streams were mistakenly 
predicted to be ditches or vice versa. Since, for illustrative purposes 
only, sparsification and correction curves displaying the performance 
of a single model had to be selected, the model with AUSE and 
AUCE values closest to the mean performance at both 1m and 0.5m
resolutions was selected. The chip used for illustration was chosen as 
the one containing the most ditch and stream pixels from the test set 
of this model.

Lastly, we explored the possibility of generating reliable prediction 
maps using conformal regression and FCP. To this end, we calibrated 
these methods for various confidence thresholds, spanning from 50% 
to 90%, and included only pixels for which the probability interval of 
the most probable class did not overlap with those of any other class. 
We then computed the recall for each class, as well as the average 
recall over all classes. The recall was derived by dividing the number 
of confidently and correctly predicted pixels of a class by the total 
number of pixels of that class in the test set. Thus, giving an indication 
of the percentage of classified pixels in those confident maps. We also 
evaluated the classification performance on only those pixels classified 
with high confidence, excluding the ground truth of all pixels to which 
no single class was assigned. This gave an indication of the correctness 
of those confident maps.

4. Results

4.1. Mapping performance

Our analysis of the mapping performance revealed that all trained 
models performed best on the background and second best on the ditch 
class, but struggled with natural streams (Table  1). Models trained on 
the 0.5m DEM outperformed those on the 1m DEM in terms of MCC. 
A Bayesian t-test confirmed a significant advantage for the 0.5m DEM 
models, estimating that with a probability of 100% they yielded a 
0.05 points higher MCC than their 1m DEM counterparts. This result 
remained the same even when increasing the ROPE to 0.1.
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Table 1
Mapping performance on the 1m and 0.5m resolution data as measured by the 
Matthews Correlation Coefficient (MCC) for all classes, and the 𝐹1 score for the 
background (𝐹 (𝑏)

1 ), ditches (𝐹 (𝑑)
1 ), and natural streams (𝐹 (𝑠)

1 ). The reported values 
indicate the mean and standard deviation over 10 test folds. Best performance indicated 
in bold. 
 Resolution 𝐹 (𝑏)

1 𝐹 (𝑑)
1 𝐹 (𝑠)

1 MCC  
 1m 𝟏.𝟎𝟎 ± 𝟎.𝟎𝟎 0.62 ± 0.02 0.39 ± 0.06 0.61 ± 0.02 
 0.5m 𝟏.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎.𝟕𝟕 ± 𝟎.𝟎𝟑 𝟎.𝟒𝟑 ± 𝟎.𝟎𝟖 𝟎.𝟕𝟔 ± 𝟎.𝟎𝟑 

Table 2
Area Under the Sparsification Error Curve (AUSE) for the 1m and 0.5m
resolution data derived for the background (𝐴𝑈𝑆𝐸(𝑏)), ditch (𝐴𝑈𝑆𝐸(𝑑)), 
and natural stream (𝐴𝑈𝑆𝐸(𝑠)) class using 𝐹1 score as performance 
metric, and the overall AUSE score using the Matthews Correlation Coef-
ficient for network probability (𝑝𝑟𝑜𝑏), predictive entropy (𝑝𝑒), mutual 
information (𝑚𝑖), conformal regression (𝑐𝑟), and feature conformal 
prediction (𝑓𝑐𝑝). The reported values indicate the mean and standard 
deviation over 10 test folds. Best result indicated in bold.
 𝐴𝑈𝑆𝐸(𝑏) 𝐴𝑈𝑆𝐸(𝑑) 𝐴𝑈𝑆𝐸(𝑠) AUSE  
 1m

 𝑝𝑟𝑜𝑏 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.46 ± 0.23 0.58 ± 0.22 0.42 ± 0.19 
 𝑝𝑒 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.96 ± 0.01 0.97 ± 0.03 0.95 ± 0.03 
 𝑚𝑖 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.95 ± 0.01 0.98 ± 0.00 0.95 ± 0.01 
 𝑐𝑟 0.02 ± 0.00 0.33 ± 0.03 0.52 ± 0.07 0.35 ± 0.03 
 𝑓𝑐𝑝 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎.𝟐𝟎 ± 𝟎.𝟏𝟎 𝟎.𝟑𝟗 ± 𝟎.𝟏𝟏 𝟎.𝟐𝟎 ± 𝟎.𝟏𝟎 
 0.5m

 𝑝𝑟𝑜𝑏 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.61 ± 0.28 0.64 ± 0.22 0.51 ± 0.21 
 𝑝𝑒 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.73 ± 0.16 0.84 ± 0.18 0.65 ± 0.14 
 𝑚𝑖 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.90 ± 0.07 0.96 ± 0.06 0.84 ± 0.09 
 𝑐𝑟 0.02 ± 0.00 0.20 ± 0.03 0.51 ± 0.09 0.23 ± 0.03 
 𝑓𝑐𝑝 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎.𝟎𝟗 ± 𝟎.𝟎𝟒 𝟎.𝟑𝟒 ± 𝟎.𝟏𝟐 𝟎.𝟎𝟗 ± 𝟎.𝟎𝟒 

4.2. Uncertainty quantification performance

MCC values increased faster for models trained on the 0.5m DEM 
compared to those on the 1m DEM when removing the most uncertain 
pixels, as indicated by the sparsification curves (Figs.  4(a) and 4(b)). 
This suggests that uncertainty quantification methods are more effec-
tive in identifying misclassified pixels for the 0.5m DEM than the 1m
DEM. Consequently, areas between sparsification curves and the oracle 
curve were smaller for the 0.5m DEM (Table  2).

The trend of improved identification of incorrect pixels with higher 
resolution did not hold for network probability (𝑝𝑟𝑜𝑏), where higher 
resolution resulted in worse identification. Nonetheless, the Bayesian t-
test found that a higher resolution (0.5m DEM) led to better uncertainty 
estimates than a lower resolution (1m DEM) with a probability of 
83% (ROPE=0.05). Excluding 𝑝𝑟𝑜𝑏 increased this probability to 99% 
(ROPE=0.05).

While the uncertainty quantification performance varied between 
resolutions for sparsification curves and AUSE, it showed mostly minor 
differences for correction curves (Figs.  4(c) and 4(d)) and AUCE scores 
(Table  3). The only exception was conformal regression (𝑐𝑟) for which 
correction curves and AUCE scores improved with higher resolution. A 
Bayesian t-test revealed that, with a probability of 85% (ROPE=0.05), 
the performances at different resolutions were practically equivalent, 
i.e, the performance differences lay within the ROPE. Without 𝑐𝑟, this 
probability rose to 98% (ROPE=0.05).

Comparative analysis of uncertainty quantification methods re-
vealed distinct differences in their sparsification curves (Figs.  4(a) 
and 4(b)). Notably, the MCC scores for methods, such as mutual 
information (𝑚𝑖), predictive entropy (𝑝𝑒), and network probabil-
ity (𝑝𝑟𝑜𝑏), decreased significantly, especially when the first 5% of 
uncertain pixels were removed (Fig.  4(b)). This drop in performance 
was caused by the fact that these methods assigned high uncertainty 
values to correctly classified pixels, particularly ditch and natural 
stream pixels (Fig.  5). This tendency is reflected in the higher AUSE 

Table 3
Area Under the Correction Error Curve (AUCE) for the 1m and 0.5m
resolution data derived for the background (𝐴𝑈𝐶𝐸(𝑏)), ditch (𝐴𝑈𝐶𝐸(𝑑)), 
and natural stream (𝐴𝑈𝐶𝐸(𝑠)) class using 𝐹1 score as performance 
metric, and the overall AUCE score using the Matthews Correlation Coef-
ficient for network probability (𝑝𝑟𝑜𝑏), predictive entropy (𝑝𝑒), mutual 
information (𝑚𝑖), conformal regression (𝑐𝑟), and feature conformal 
prediction (𝑓𝑐𝑝). The reported values indicate the mean and standard 
deviation over 10 test folds. Best result indicated in bold.
 𝐴𝑈𝐶𝐸(𝑏) 𝐴𝑈𝐶𝐸(𝑑) 𝐴𝑈𝐶𝐸(𝑠) AUCE  
 1m

 𝑝𝑟𝑜𝑏 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎.𝟎𝟏 ± 𝟎.𝟎𝟎 0.04 ± 0.01 0.02 ± 0.00 
 𝑝𝑒 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎.𝟎𝟏 ± 𝟎.𝟎𝟎 𝟎.𝟎𝟑 ± 𝟎.𝟎𝟏 𝟎.𝟎𝟏 ± 𝟎.𝟎𝟎 
 𝑚𝑖 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.02 ± 0.00 0.04 ± 0.01 0.02 ± 0.00 
 𝑐𝑟 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.29 ± 0.04 0.38 ± 0.06 0.29 ± 0.04 
 𝑓𝑐𝑝 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.10 ± 0.07 0.17 ± 0.12 0.10 ± 0.07 
 0.5m

 𝑝𝑟𝑜𝑏 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎.𝟎𝟏 ± 𝟎.𝟎𝟎 0.04 ± 0.01 0.01 ± 0.00 
 𝑝𝑒 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎.𝟎𝟏 ± 𝟎.𝟎𝟎 𝟎.𝟎𝟑 ± 𝟎.𝟎𝟏 𝟎.𝟎𝟏 ± 𝟎.𝟎𝟎 
 𝑚𝑖 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.01 ± 0.01 0.05 ± 0.02 0.02 ± 0.01 
 𝑐𝑟 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.19 ± 0.02 0.41 ± 0.07 0.20 ± 0.02 
 𝑓𝑐𝑝 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.06 ± 0.04 0.16 ± 0.11 0.06 ± 0.04 

scores for these classes (Table  2). The HDIs (Fig.  6), derived from the 
Bayesian t-test, confirmed that FCP (𝑓𝑐𝑝) outperformed MC Dropout 
based approaches, such as predictive entropy (𝑝𝑒) and mutual in-
formation (𝑚𝑖) with a 100% probability, even when assuming a 
ROPE of 0.4. Furthermore, 𝑓𝑐𝑝 was estimated to perform better than 
network probability (𝑝𝑟𝑜𝑏) with a probability of 99.4%, and better than 
conformal regression with a probability of 99.6% (ROPE=0.05).

The correction curves (Figs.  4(c) and 4(d)) revealed that 𝑐𝑟 and 
𝑓𝑐𝑝 exhibited inferior performance compared to 𝑝𝑟𝑜𝑏, 𝑝𝑒, and 𝑚𝑖. 
This indicates that correcting pixels identified by the latter enables 
faster achievement of higher performance. This is likely caused by 
their strong focus on ditches and natural streams (Fig.  5), which make 
up only a small portion of the dataset, but are frequently misclassi-
fied (Table  1). Specifically, an MCC of 0.95 was attainable with an 
average correction rate of 3% (approximately 2.87 million pixels) using 
𝑝𝑒. Using the Bayesian t-test, we found that the probability of 𝑝𝑒, 
𝑚𝑖, and 𝑝𝑟𝑜𝑏 being practically equivalent to be 100% (ROPE=0.05). 
Furthermore, the test suggested that 𝑐𝑟 performed significantly worse 
than all other methods with a probability of 100% (ROPE=0.05). 𝑓𝑐𝑝
was found to perform significantly worse than 𝑝𝑒, 𝑝𝑟𝑜𝑏, and 𝑚𝑖 with 
a probability of 78.1%, 73.5%, and 69.1% (ROPE=0.05) respectively.

When focusing solely on pixel classifications predicted to be ditches 
or streams, overall 𝑚𝑖 was found to be most effective in identifying 
misclassified streams and ditches (Figs.  7(a) and 7(b)). A Bayesian t-test 
revealed that for ditch pixels incorrectly classified as stream pixels, 𝑚𝑖
had a significantly higher AUCE score with a probability greater than 
95% (ROPE=0.05) when compared to 𝑝𝑟𝑜𝑏, 𝑐𝑟, and 𝑓𝑐𝑝. Using 𝑚𝑖
to correct these errors, on average 70.6% of stream pixels (≈ 40 000) 
needed to be corrected to achieve an 𝐹1 score of 0.95 for ditches. For 
correcting pixels classified as ditch, the Bayesian t-test revealed that 
𝑚𝑖 had a significantly higher AUCE score than 𝑐𝑟 with a probability 
of 99.1% (ROPE=0.05). However, we found that 𝑓𝑐𝑝 and 𝑝𝑟𝑜𝑏 lead 
to achieving an 𝐹1 score of 0.95 for the stream pixels with fewer 
corrections than 𝑚𝑖. Both required on average the correction of 75% 
pixels (≈ 714 000). In contrast, 𝑚𝑖 required a correction of 79.7%. It 
should be noted that these 𝐹1 scores were calculated not on all pixels, 
but only on those initially classified as ditch or natural stream.

𝑓𝑐𝑝 had significantly faster inference times compared to 𝑐𝑟 and 
the MC dropout-based 𝑝𝑒 and 𝑚𝑖 (Table  4). Specifically, processing 
the entire surface area of Sweden at a 0.5m resolution using 𝑓𝑐𝑝, pro-
ducing both the actual prediction and the uncertainty estimates, would 
take approximately 80 h, whereas an MC dropout-based approach 
would require around 3 years on the same hardware. It should be noted 
that both MC dropout-based approaches have the same execution time, 
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Fig. 4. Sparsification and correction curves for the oracle, network probability (𝑝𝑟𝑜𝑏), predictive entropy (𝑝𝑒), mutual information (𝑚𝑖), conformal regression (𝑐𝑟), and feature 
conformal prediction (𝑓𝑐𝑝) computed on one test fold. The curves are shown for both resolutions of the digital elevation model (DEM), 1m and 0.5m. The classification performance 
was measured across all classes using the Matthews Correlation Coefficient (MCC).

Table 4
Execution times in seconds for predictive 
entropy (𝑝𝑒), mutual information (𝑚𝑖), con-
formal regression (𝑐𝑟), and feature confor-
mal prediction (𝑓𝑐𝑝) on one chip covering 
an area of 500m ×500m (1m resolution) or 
250m ×250m (0.5m resolution). The reported 
values indicate the mean and standard devia-
tion over all chips in the 10 test sets. Fastest 
execution time indicated in bold.
 𝑡1m (s) 𝑡0.5m (s)  
 𝑝𝑒/𝑚𝑖 14.13 ± 0.78 14.00 ± 0.72 
 𝑐𝑟 1.75 ± 1.53 1.49 ± 0.22  
 𝑓𝑐𝑝 𝟎.𝟎𝟔 ± 𝟎.𝟎𝟏 𝟎.𝟎𝟒 ± 𝟎.𝟎𝟏  

since that time is dominated by the sampling process, which is the same 
for both approaches.

4.3. Conformal prediction performance

When generating confident maps using the conformal prediction 
approaches, FCP resulted in significantly lower recall for all confi-
dence levels than conformal regression (𝑓𝑐𝑝: 0.12–0.13; 𝑐𝑟: 0.60–0.66), 
prompting a focus on maps generated using the latter. As expected, 
recall increased with decreasing confidence (Table  5). However, even 
highly confident maps covered a sizeable portion of background (100%), 
ditch (56%), and natural stream pixels (24%).

Similarly to expectation, classification performance degraded with 
decreasing confidence levels, with one notable exception being the 

Table 5
Recall for the confident maps generated from the 0.5m resolution data using conformal 
regression for different confidence levels, measured for the background (𝑅𝑒𝑐𝑎𝑙𝑙(𝑏)), 
ditches (𝑅𝑒𝑐𝑎𝑙𝑙(𝑑)), natural streams (𝑅𝑒𝑐𝑎𝑙𝑙(𝑠)), and the class average (𝑅𝑒𝑐𝑎𝑙𝑙). The 
reported values indicate the mean and standard deviation over 10 test folds. 
 Confidence 𝑅𝑒𝑐𝑎𝑙𝑙(𝑏) 𝑅𝑒𝑐𝑎𝑙𝑙(𝑑) 𝑅𝑒𝑐𝑎𝑙𝑙(𝑠) 𝑅𝑒𝑐𝑎𝑙𝑙  
 90.0% 1.00 ± 0.00 0.56 ± 0.04 0.24 ± 0.08 0.60 ± 0.03 
 80.0% 1.00 ± 0.00 0.59 ± 0.04 0.25 ± 0.08 0.61 ± 0.04 
 70.0% 1.00 ± 0.00 0.62 ± 0.05 0.27 ± 0.08 0.63 ± 0.04 
 60.0% 1.00 ± 0.00 0.65 ± 0.05 0.29 ± 0.09 0.64 ± 0.04 
 50.0% 1.00 ± 0.00 0.67 ± 0.04 0.30 ± 0.09 0.66 ± 0.04 

background class, whose performance remained stable (Table  6). How-
ever, even at 50% confidence, the performance on confidently classified 
pixels, as measured by MCC, surpassed the overall performance on all 
pixels (Table  1).

5. Discussion

5.1. Choice of uncertainty quantification method

When comparing the evaluated uncertainty quantification approa-
ches, FCP outperformed others in terms of AUSE (Table  2) but not 
in terms of AUCE (Table  3). This discrepancy stems from AUSE and 
AUCE addressing different questions. AUSE assesses alignment between 
predictions and uncertainty estimates (Dreissig et al., 2023), while 
AUCE evaluates the ability to identify misclassified pixels. The choice 
of method depends on the goal: AUSE is more informative for creating 
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Fig. 5. Illustration of the groundtruth map, as well as the uncertainty maps for the 0.5m resolution showing the 5% most uncertain pixels as estimated by the evaluated uncertainty 
quantification approaches. The maps show the local slope image for certain background pixels and uncertain ones in pink. Furthermore, the maps show certain (yellow) and 
uncertain (green) ditches, as well as certain (orange) and uncertain (blue) streams.

Fig. 6. High-density intervals derived using a Bayesian t-test for correlated obser-
vations indicating the intervals in which the performance differences between the 
compared methods, network probability (𝑝𝑟𝑜𝑏), predictive entropy (𝑝𝑒), mutual 
information (𝑚𝑖), conformal regression (𝑐𝑟), and feature conformal prediction (𝑓𝑐𝑝), 
lie with a probability of 95%. The performance is measured as area under the 
sparsification error curve for all classes, and the Region of Practical Equivalence (ROPE) 
indicates a performance difference of 0.05.

Table 6
Mapping performance for only the pixels included in the confident maps generated 
using conformal regression on the 0.5m resolution data as measured by the Matthews 
Correlation Coefficient (MCC) for all classes, and the 𝐹1 score for the background (𝐹 (𝑏)

1 ), 
ditches (𝐹 (𝑑)

1 ), and natural streams (𝐹 (𝑠)
1 ). The reported values indicate the mean and 

standard deviation over 10 test folds. 
 Confidence 𝐹 (𝑏)

1 𝐹 (𝑑)
1 𝐹 (𝑠)

1 MCC  
 90.0% 1.00 ± 0.00 0.83 ± 0.03 0.44 ± 0.10 0.82 ± 0.03 
 80.0% 1.00 ± 0.00 0.82 ± 0.03 0.44 ± 0.10 0.81 ± 0.03 
 70.0% 1.00 ± 0.00 0.81 ± 0.03 0.44 ± 0.09 0.80 ± 0.03 
 60.0% 1.00 ± 0.00 0.80 ± 0.03 0.43 ± 0.09 0.79 ± 0.03 
 50.0% 1.00 ± 0.00 0.79 ± 0.02 0.43 ± 0.09 0.78 ± 0.03 

prediction uncertainty maps, whereas AUCE appears to be suitable for 
pixel-level correction.

Upon examining the uncertainty map generated by FCP for a 
broader area (Fig.  8(b)), it becomes clear that the model is generally 
confident in its ditch predictions, except in border regions or where 
ditches exhibit unusual bends. Additionally, while the two natural 
streams in the area (the orange lines in Fig.  8(a)) were not well 
identified by the model, it is relatively straightforward to trace their 
paths from the uncertainty maps due to the presence of uncertain 
background pixels on the map. This can help alert a human viewer 
to the presence of these streams, which would be imperceptible in the 
prediction map alone.

When examining the top-performing uncertainty quantification
methods according to AUCE, we found that network probability, predic-
tive entropy, and mutual information consistently identified predictions 
on ditch and natural stream pixels as the most uncertain ones, regard-
less of prediction correctness (Fig.  5). On the other hand, predictive 
entropy and mutual information tended to exhibit overconfidence in 
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Fig. 7. Correction curves for the network probability (𝑝𝑟𝑜𝑏), predictive entropy (𝑝𝑒), mutual information (𝑚𝑖), conformal regression (𝑐𝑟), and FCP (𝑓𝑐𝑝) computed only on 
pixels from one test fold on the 0.5m resolution data. The curves indicate the 𝐹1 score for the stream class (𝐹 (𝑠)

1 ) and the ditch class (𝐹 (𝑑)
1 ) respectively, considering only pixels 

previously classified as ditch or stream.

incorrect predictions, as evidenced by their low AUSE scores. This 
tendency aligns with findings by Hertel et al. (2023), who also observed 
this characteristic of MC dropout-based approaches. Given that only 
about 1% of pixels belong to ditches, and even fewer to natural streams, 
it is likely that the methods’ strong AUCE performance is an artifact of 
the highly skewed class distribution. This phenomenon arises because 
fixing a few pixels in classes with low instance counts and generally 
poorer performance can improve MCC scores more than correcting 
pixels from the mostly correct majority class (Table  1). As a result, one 
may find that for more balanced datasets, the AUCE scores of these 
methods may be lower compared to FCP. Additionally, the tendency 
to identify correctly classified pixels as uncertain can be problematic 
for their use in detecting incorrectly classified pixels, since the high 
false positive rate may lead people to dismiss detections of potentially 
misclassified pixels (Axelsson, 2000).

When specifically examining corrections of pixels misclassified as 
ditches or natural streams, we observed that mutual information out-
performed other approaches in identifying ditch pixels mistakenly clas-
sified as streams. Conversely, FCP and network probability were more 
effective at identifying stream pixels incorrectly classified as ditches. 
This disparity may stem from the fact that most ditch pixels were 
accurately predicted, leaving only few natural stream pixels to be de-
tected. In this scenario, overconfidence in incorrect predictions is more 
detrimental than when there is a larger number of misclassified pixels, 
as it was the case for the pixels classified as natural stream. Given that 
natural streams underlie stronger protections (Swedish PEFC, 2023), it 
is more important to identify stream pixels misclassified as ditch than 
vice versa.

One notable finding was that network probability achieved compa-
rable AUCE scores to MC dropout-based approaches, while outperform-
ing them in AUSE scores. The strong performance in identifying stream 
pixels among those classified as ditch is likely a consequence of that. 
Thus, it appears that network probability has effectively balanced high 
uncertainty values for ditches and streams with cautious avoidance of 
undue certainty in incorrectly classified pixels, at least for this dataset.

In Fig.  8(c), we observe the pixel corrections for pixels marked as 
most uncertain by network probability. It is evident that all predicted 
ditch and stream pixels were corrected due to their relatively high 
uncertainty. However, there are also instances where pixels were not 
corrected despite being wrongly predicted (stream pixels in Fig.  8(c), 
zoomed-in region), resulting from the model’s undue confidence in its 
predictions. This confidence can be attributed to the fact that the natu-
ral stream is not visible in the DEM, as indicated by the one pixel wide 
line in the ground truth. Given that the figure showcases the correction 
of the 5% most uncertain pixels, a significant number of background 
pixels were also corrected, even though they were correctly predicted. 

One notable aspect of these corrected background pixels is that they 
appear to follow a specific pattern. Upon analyzing the slope values of 
those corrected background pixels, we found them to be significantly 
higher than average slope values. Furthermore, similar patterns have 
been observed in data from other regions, but not consistently across 
all areas, suggesting that these may be caused by minor differences in 
the data collection process.

When evaluating execution performance, arguably, the fastest un-
certainty estimates were derived using network probability, since it 
equals the model’s inference speed of approximately 0.014 s per chip, 
resulting in an estimated processing time of 28 h for all of Sweden. 
While this was significantly shorter than the 80 h required for FCP, 
we deem FCP still feasible, especially when compared to the execution 
times for MC dropout-based approaches (≈ 3 years) or conformal 
regression (≈ 124 days). It is worth noting that these times can be 
significantly reduced by using fewer Monte Carlo samples. For example, 
utilizing just 10 samples, as Kampffmeyer et al. (2016), would reduce 
the time required for MC dropout and conformal regression to 280 h 
and 298 h, respectively. However, this may come at the cost of reduced 
uncertainty quantification performance.

In summary, our results show that FCP yielded the most accurate 
uncertainty estimates at a reasonable processing speed. Therefore, we 
believe it is well-suited as a method for generating uncertainty maps. 
However, when attempting to identify which pixels require correction 
in the generated ditch and stream maps, we found that using network 
probability was more effective. This approach identified the pixels that 
needed correction better and resulted in lower execution times.

5.2. Impact of resolution

The classification performance was improved when detecting ditches 
and streams on higher resolution data (Table  1). This is reasonable 
since landscape outlines were captured more accurately, which sim-
plified the detection problem. This finding aligns with the findings 
by Busarello et al. (2025) on mapping ditches and streams, but also 
with findings on mapping other terrain features, such as ephemeral 
gullies (Chowdhuri et al., 2021), and rock glaciers (Robson et al., 
2020).

Higher resolution DEMs also yielded more accurate uncertainty 
estimates as indicated by the obtained AUSE scores. While it is unsur-
prising, that a lower resolution leads to a higher uncertainty (Pogson 
and Smith, 2015; Wu et al., 2024), the observed reduced alignment 
between estimated model uncertainty and actual performance is likely 
due to the network’s generally poorer performance on lower resolution 
data. In contrast to AUSE, the AUCE scores were mostly unaffected 
by the resolution, presumably since AUCE performance was largely 
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Fig. 8. Illustration of the groundtruth, uncertainty, corrected, and confident map over an area of 1.5 km × 1.5 km at a 0.5m resolution. In all maps, certain or correct background 
pixels are shown by the local slope image, while ditches are shown in yellow, and streams in orange. The uncertainty map was generated using feature conformal prediction 
and displays the 5% most uncertain background (pink), ditch (green), and stream (blue) pixels. The corrected map was derived by correcting the 5% most uncertain pixels as 
estimated by network probability. Corrected pixels are shown with full intensity, while not corrected pixels have low intensity. The confident map was derived using conformal 
regression at a 90% confidence level, and pixels where the model did not commit to one class are shown in black.

improved by ditch and stream detection rather than uncertainty quan-
tification accuracy. Thus, as long as a method could identify most ditch 
and stream pixels it would get a high AUCE score, even if it marked 
many correctly classified pixels as uncertain.

Most methods showed increased uncertainty quantification per-
formance with higher resolutions, except network probability, which 
decreased due to overconfidence in its predictions. This overconfi-
dence was caused by the simplified learning problem, which allowed 
the model to assign more extreme probability estimates to pixels, as 
incentivized by the training process. As noted by Guo et al. (2017) 
and Sensoy et al. (2018), this leads to poorer uncertainty estimates.

There was no difference in processing time for a chip of 1m res-
olution versus one with a 0.5m resolution (Table  4), since both have 
the same number of pixels. However, four 0.5m resolution chips are 
required to cover the same area as one 1m resolution chip. This results 
in four times longer processing times for the 0.5m resolution. As such, it 

is important to consider whether the gained performance improvements 
justify the increased processing costs.

In summary, there is a motivation for conducting high-resolution 
LiDAR scans to improve ditch and stream detection and to obtain 
more accurate uncertainty estimates. However, this may decrease the 
accuracy of uncertainty estimates obtained by network probability as 
performance improves.

5.3. Confident segmentation maps

When generating confident segmentation maps, we found that only 
𝑐𝑟 consistently produced a reasonable number of single-class pre-
dictions for various confidence levels, ruling out 𝑓𝑐𝑝 from further 
evaluation. This appears contradictory to the findings by Teng et al. 
(2023), who showed that FCP produced shorter confidence bands than 
a baseline conformal prediction approach. It is reasonable to assume 
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that shorter confidence bands also would lead to a higher number of 
single-class predictions. However, it should be noted that the conformal 
prediction approach used by Teng et al. (2023) differs from 𝑐𝑟 used 
in this article, which is the likely reason for the observed differences.

For 𝑐𝑟, recall improved as the confidence level decreased (Table  5). 
This was expected since lower confidence thresholds allow 𝑐𝑟 to make 
more errors and thus commit to single-class predictions for more pixels. 
Similarly in line with expectations was the observed decrease in preci-
sion, indicated by lower MCC and 𝐹1 scores (Table  6). This decrease is 
caused by 𝑐𝑟 actually making more errors at lower confidence levels.

Compared to the models’ results on all pixels (Table  1), we observed 
improved classification performance for predictions with high confi-
dence levels (Table  6). Specifically, we achieved an MCC of 0.82 for 
90% confident predictions, surpassing the MCC of 0.76 obtained on all 
pixel predictions. This performance difference was largely due to clear 
improvement in the ditch class, which was attained through 𝑐𝑟 not 
assigning a class in border regions where it is challenging to determine 
where the ditch ends and the background begins, or areas where the 
ditch was not clearly visible in the DEM (Fig.  8(d), zoomed-in region). 
These observations align well with the findings by Koski et al. (2023), 
who found that the main causes of error in detecting small watercourses 
with deep learning were boundary issues and unclear visual expression 
in the DEM.

Despite committing to a single class with high confidence, it is 
possible for 𝑐𝑟 to make errors. For example, many natural stream 
pixels were confidently predicted as background (Fig.  8(d), zoomed-
in region), which was not unexpected. This outcome is consistent with 
the fact that 𝑐𝑟 allows for 10% errors at a 90% confidence level. It is 
important to note that the guarantees provided by this method apply 
to probability intervals rather than the classes themselves. A model 
that consistently missed to predict the natural stream class, would 
make significantly fewer errors than 10%, due to its low occurrence 
rate (less than 1%). Instead, it would in over 99% of the cases be 
correct in predicting the probability for the stream class to be close to 
0%. Consequently, 𝑐𝑟 primarily prevented overprediction in minority 
classes, such as ditch and stream, as observed in Fig.  8(d) and reflected 
in their low recall values (Table  5).

Our analysis revealed that neither 𝑐𝑟 nor 𝑓𝑐𝑝 are particularly 
suitable for generating confident maps of ditches and natural streams. 
Although 𝑐𝑟 produced more confident predictions than 𝑓𝑐𝑝, the 
generated maps only covered around 60% of all pixels, particularly 
omitting ditch and stream pixels. This means that the prediction sets 
for pixels of these classes frequently contained more than one possible 
prediction. This observation is in line with the findings by Ghosh et al. 
(2023), who show that conformal prediction tends to result in large 
prediction sets for challenging datasets, while obtaining narrower sets 
for simple ones. Apart from this issue, it also took a considerable 
amount of time to generate the confident maps (Table  4).

5.4. Limitations and future work

This article’s evaluation of uncertainty quantification methods is 
limited to one specific remote sensing task with an extreme class distri-
bution. This may have skewed results, as MC dropout-based solutions 
likely perform differently in terms of AUCE on tasks with more bal-
anced distributions. Although investigating extreme cases is valuable, 
given that classes with relatively few instances are not uncommon in 
remote sensing (Kossmann et al., 2021), it would be interesting to 
investigate if MC dropout’s AUCE performance would decrease when 
applied to tasks with more balanced distributions.

Furthermore, the dataset used in this study is limited by its two-
resolution format (1m and 0.5m). As demonstrated, classification and 
uncertainty quantification performance improve with increasing reso-
lution. However, it is plausible that returns diminish at some point, 
warranting investigation into the optimal resolution threshold. Addi-
tionally, the uncertainty quantification performance of 𝑝𝑟𝑜𝑏 has been 

observed to decrease with increased resolution, suggesting a possi-
ble trend where higher resolutions lead to overconfident predictions. 
Higher resolution datasets would aid in investigating this trend as well.

Another limitation of our study is that we have only investigated 
a restricted set of uncertainty quantification approaches. For example, 
Bayesian neural networks (Blundell et al., 2015) were excluded from 
this study since they cannot derive uncertainty estimates from the same 
model as the other investigated approaches. This would have compli-
cated direct comparisons between the methods, as it is less clear if 
differences in uncertainty quantification performance are due to differ-
ences in the used methods or due to the different models. Nevertheless, 
exploring Bayesian neural networks would be valuable for future re-
search as they have been shown to outperform MC dropout-based 
approaches by Hertel et al. (2023). Similarly, deep ensembles have 
been shown to perform better than MC dropout-based approaches (Lak-
shminarayanan et al., 2017). Investigating how they compare to the 
evaluated conformal prediction-based approaches could be worthwhile. 
However, due to their significant training time requirements, we ex-
cluded them from this article; using the recommended number of 
networks in the ensemble would have quintupled the necessary training 
time.

It should be noted that none of the investigated uncertainty quan-
tification approaches is able to handle out-of-distribution (OOD) data, 
i.e., data that is distinctively different from the training data. Alarab 
et al. (2021) have shown this for network probability and MC dropout-
based approaches, while this limitation of conformal prediction has 
been pointed out, for example, by Angelopoulos et al. (2022). This is 
not a big problem for the studied dataset, since it has been specifically 
designed to be representative of the Swedish landscape (Busarello et al., 
2025). However, in situations where OOD data is present, the obtained 
uncertainty estimates may not be reliable. One approach to handle 
OOD data would be to build on ideas from the ‘‘Learn then Test’’ 
framework (Angelopoulos et al., 2022).

Our investigation was further limited by focusing solely on con-
formal regression approaches within either feature space (𝑓𝑐𝑝) or 
output space (𝑐𝑟). The focus on probability ranges rather than actual 
class predictions may have hindered the utility of generated confidence 
maps, as they tended to suppress minority class predictions. In the 
future, this limitation could be addressed by exploring whether the 
conformal classification approach by Wieslander et al. (2021) can be 
made more computationally efficient or through further investigation 
into recent methods proposed by Mossina et al. (2024), Brunekreef 
et al. (2024). By focusing on conformal classification approaches, the 
guarantees provided by the conformal predictor would apply directly 
to the classification outcome, and thus might produce more usable 
confident maps.

6. Conclusions

In this article, we investigated various uncertainty quantification 
techniques, including network probability, predictive entropy, mutual 
information, conformal regression, and feature conformal prediction, 
and applied them to a specific remote sensing task: identifying ditches 
and natural streams from elevation data sourced from a digital eleva-
tion model (DEM). Additionally, the impact of different DEM resolu-
tions on classification and uncertainty quantification performance was 
explored. Furthermore, confident maps were generated using conformal 
prediction methods. Our key findings include:

• Feature conformal prediction (Teng et al., 2023) produces un-
certainty estimates most aligned with the actual neural network 
performance at a reasonable cost to the execution time. However, 
for correcting misclassified pixels, the network probability output 
is more suitable, at least for the investigated dataset.

• A higher resolution DEM leads to better classification perfor-
mance and better uncertainty estimates.
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• Conformal regression and feature conformal prediction are not 
suitable to generate confident maps, since they are overly con-
servative in their estimates and the model performance is too 
limited.
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