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Mapping small water channels using
machine learning

Abstract

Boreal landscapes are shaped by a dense network of natural streams, modified
streams, and ditches. Together, they regulate hydrology, nutrient transport, and
ecosystem function. Historically, streams were modified to accommodate log
transportation, and drainage ditches were dug to improve food and timber
production. Although new ditching has mostly stopped, historical changes to the
drainage network still affect forestry and water management. Small streams and
ditches are the landscape’s capillaries, but they remain poorly mapped despite their
vital hydrological and ecological roles. This thesis addresses this gap in knowledge
by developing a novel, national-scale framework for mapping small streams and
ditches using high-resolution topographic data and machine learning techniques.
Combining convolutional neural networks, XGBoost classification, uncertainty
quantification, and drainage analyses, this work identifies geomorphological and
hydrological indices that distinguish streams from ditches across the landscape. The
highest-performing model shows that integrating digital elevation models with
terrain indices and machine learning delineates the channel networks successfully
for ditches (recall=76%, precision=88%) and moderately for natural streams
(recall=58%, precision=56%). Furthermore, the produced uncertainty maps
highlight low-certainty pixels from the background that can be used to potentially
improve the mapping of streams in the future. To the best of our knowledge, this is
the first study that can separate streams and ditches on maps across an entire nation.
By providing consistent, scalable maps of small channels, this research supports
restoration prioritization, sustainable forestry planning, and national reporting under
EU and UN environmental frameworks. The methodology also offers a reproducible
approach for characterizing coupled natural-artificial drainage systems in boreal and
temperate regions worldwide.

Keywords: machine learning, deep learning, neural network, ditch, drainage, water
channels, XGBoost, U-Net



Kartlaggning av sma vattendrag och diken
med hjalp av maskininlarning

Abstract

Det boreala landskapet priaglas av ett omfattande nétverk av naturliga vattendrag,
modifierade vattendrag och diken som tillsammans reglerar hydrologi,
néringsflédden och ekosystemfunktioner. Historiskt har vattendrag rétats och rensats
for timmerflottning medan diken har grivts for att O0ka jordbruks- och
skogsproduktionen. Trots att nydikning numera &r ovanlig paverkar dessa historiska
ingrepp fortfarande vattenforvaltning och skogsbruk. Sma vattendrag och diken
fungerar som landskapets kapilldrer men &r fortfarande bristfélligt kartlagda, trots
deras centrala hydrologiska och ekologiska betydelse. Denna avhandling utvecklar
en metod for att kartligga sma vattendrag och diken pa nationell skala med
hogupplosta topografiska data och maskininldrning. Genom att kombinera
konvolutionella neurala ndtverk, XGBoost-klassificering, osdkerhetsanalys och data
pa flédesackumulering identifieras geomorfologiska och hydrologiska indicier som
skiljer diken fran naturliga vattendrag. Den bésta metoden visar att digitala
héjdmodeller och terrdngindicier kan anvindas for att effektivt avgriansa vattendrag
och diken. Metoden hade hog precision for diken (recall=76%, precision=88%) och
mer mattliga resultat for naturliga vattendrag (recall=58%, precision=56%).
Osékerhetskartor visar dessutom var framtida forbattringar av kartlaggningen bor
riktas.

Detta dr den forsta studien som framgéangsrikt sarskiljer vattendrag och diken for
ett helt land. Genom att skapa konsekventa, skalbara kartor 6ver sma vattendrag och
diken bidrar forskningen till restaureringsprioritering, héllbar skogsférvaltning och
nationell miljérapportering inom EU:s och FN:s ramar. Metoden erbjuder dven ett
reproducerbart sétt att beskriva sammankopplade naturliga och artificiella
dréneringssystem i boreala och tempererade regioner.

Keywords: maskininldrning, djupinlirning, neurala néitverk, diken, drinering,
vattendrag, XGBoost, U-Net



Mapeando cursos d’agua estreitos usando
aprendizado de maquina

Resumo

As paisagens boreais sdo moldadas por uma rede densa de cursos d’agua naturais,
cursos d’agua modificados e valas de drenagem. Juntos, eles regulam a hidrologia,
o transporte de nutrientes e o funcionamento dos ecossistemas. Historicamente, na
Suécia os cursos d’agua foram modificados para o transporte de madeira, e valas de
drenagem foram escavadas para melhorar a agricultura e produgao florestal. Embora
a abertura de novas valas ndo seja mais permitida, as alteragdes historicas na
drenagem ainda afetam o manejo florestal e a gestdo da agua. Pequenos cursos
d’agua e valas funcionam como as veias do terreno, mas continuam sendo pouco
mapeados, apesar do seu papel essencial em hidrologia e ecologia.

Esta tese foca nessa lacuna no conhecimento ao desenvolver um fluxo de trabalho
inédito, em escala nacional, para 0 mapeamento de pequenos cursos d’agua e valas,
utilizando dados topograficos de alta resolugdo e técnicas de aprendizado de
maquina. Combinando redes neurais convolucionais, classificagdio com XGBoost,
quantificacdo de incertezas e andlises de drenagem, o estudo identifica indices
geomorfologicos e hidrologicos que distinguem cursos d’agua de valas em toda a
paisagem. O modelo com melhor desempenho demonstra que a combinagdo de
modelos digitais de elevacdo com indices de terreno e aprendizado de méquina
mapeia com sucesso as valas (recall=76%, precisao=88%) e de forma moderada os
cursos d’agua naturais (recall=58%, precisao=56%). Além disso, os mapas de
incerteza produzidos destacam pixels de baixa confiabilidade do background, que
podem ser usados para aprimorar o mapeamento de cursos d’agua no futuro.

Até onde sabemos, este ¢ o primeiro estudo capaz de identificar separadamente
cursos d’agua naturais e valas de todo um pais. Ao fornecer mapas consistentes ¢
reprodutiveis de cursos d’agua estreitos, esta pesquisa ajuda a determinar a
prioridade para acdes de restauracdo, o planejamento florestal sustentavel e os
relatérios nacionais sob os marcos ambientais da UE e da ONU. A metodologia
também oferece uma abordagem reprodutivel para caracterizar sistemas de
drenagem naturais e artificiais interconectados em regides boreais e temperadas em
todo o mundo.

Keywords: aprendizado de maquina, aprendizagem profunda, redes neurais, valas,
drenagem, rios, cursos d’agua, XGBoost, U-Net
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Dedication

In memory of my grandmother Aracy Matheus dos Santos (705/02/2021). 1
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“Science isn’t about why. It’s about WHY NOT.”’

— Cave Johnson
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1. Introduction

Boreal forests are the largest biome on Earth (Sanderson et al. 2012),
spanning northern Europe, Asia, and North America (Figure 1). This global
forest contains dense networks of small streams, wetlands, and peatlands that
regulate hydrology and nutrient cycling (Pomeroy et al. 1998). Over
centuries, these water systems have been modified in Sweden, Finland, and
Canada (Lavoie et al. 2005), where ditches have drained the soil to improve
forest productivity and expand agricultural land (Jacks 2019)(Figure 2),
altering stream morphology, disrupting habitats, and impacting ecosystem
processes. Therefore, understanding how natural and artificial channels
interact is key to effectively managing and restoring water systems in these

countries.
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Figure 1. The coverage of boreal forests across the higher latitudes of the globe. Plotted
with data from Boucher et al. (2024).

21



Forest drainage in Sweden 1873-2003 (ha)
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Figure 2. The expansion, cleaning, and protection of forest drainages in Sweden, from
1873 to 2003. Adapted from (Jacks 2019).

In Sweden, the historical development of the forest industry further altered
watercourses. To transport logs downstream, streams and rivers were
modified: boulders were blasted or removed, watercourses were straightened
or redirected, and dams were built to retain water during low-flow periods
(Térnlund & Ostlund 2006). These interventions changed stream
morphology and ecology, disrupting habitats, reducing biodiversity, altering
flow regimes, and affecting nutrient cycling (Térnlund & Ostlund 2002).
When timber floating ceased and road transport became dominant, these
channel modifications remained, continuing to affect the local system.
Ditches are another form of human modification of the Swedish
landscape. Drainage ditches have been constructed since medieval times
(Jacks 2019) and today constitute about 67 % of the country’s total channel
network, which is currently estimated at 1.2 million km (Laudon et al.
2022a). This proportion corresponds to approximately 800 000 km of ditch
channels, the majority of which are forest ditches (Paul et al. 2023). Now,
ditches present a complex relationship with natural streams within the
Swedish hydrological network. Distinguishing one from the other may
appear straightforward: ditches are typically linear, straight channels, but not
always (Figure 3B, Figure 3D, Figure 3F), while natural streams tend to
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meander (Figure 3A, Figure 3C, Figure 3E), but not always. Furthermore,
ditches may have undergone naturalization processes over decades since they
were dug, developing their own ecosystems that support diverse fauna and
flora (Armitage et al. 2003; Herzon & Helenius 2008) and creating important
ecological functions. This creates challenges for restoration, management,
and compliance with environmental regulations.
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FEIEER 2 :
Figure 3. Natural streams (on the left) and ditches (on the right) share visual similarities.

Image credits: (A,B) Alejandro Gandara, (C,D) Cedrik Akermark, (E) Andreas Palmén.

24



Both ditches and natural streams are subject to hydrological processes
shaped by climate change. Global warming is predicted to increase
precipitation in boreal regions, raising discharge in streams and expanding
groundwater-fed areas along channels (Nilsson et al. 2013) which may
benefit plant species richness. Higher temperatures increase the occurrence
of heatwaves (Coumou & Rahmstorf 2012) and droughts (Trenberth 2011),
which affects the water quality of boreal streams (Gémez-Gener et al. 2020).
For streams in peatland-dominated boreal catchments, the DOC exports shift
due to changes in runoff and precipitation (Dore 2005; Gauthier et al. 2015;
Prijac et al. 2023). Earlier snowmelt affects spring flood peaks (Falloon &
Betts 2006), reducing the channel geomorphological activity because of
weaker extreme flood events (Andréasson et al. 2004), impacting channel
connectivity (Croke et al. 2013). This represents a challenge for forestry
practices because, following an initial increase in forest productivity with
warmer temperatures, the adverse consequences outweigh any benefit
(World Bank 2014).

Increasing the soil carbon sequestration is an important climate change
mitigation strategy (Minx et al. 2018). Peatlands, the predominant wetland
type in boreal landscapes, are efficient natural long-term carbon sinks and
help regulate water flow during dry periods (Karimi et al. 2025; Laudon et
al. 2025). Unfortunately, extensive ditching for forestry in Sweden (940.000
ha; Hénell 1990) and Finland (13% of the country’s area; Peltomaa 2007)
has drained these wetlands, reducing their hydrological and ecological
functions.

To prevent the expansion of ditched areas in Sweden, regulations were
implemented starting in 1986 (Hasselquist et al. 2020), such as the
requirement of permits to dig new ditches (Skogsstyrelsen 2022). However,
after one consults the Swedish Forest Agency (Swedish PEFC 2017), ditches
can be cleaned to improve drainage capability; that is, the accumulated
sediments can be removed using an excavator. This harms the established
ecosystem and releases more sediments and nutrients from the soil,
impacting the watercourses that receive this water (Nieminen et al. 2018).
Currently, natural streams are a target of protection at many levels. For
example, the Swedish Forest Agency recommends the use of a 30 m riparian
buffer along natural streams to protect the aquatic habitat from forestry and
agricultural practices (Skogsstyrelsen 2022). Such forest buffers act as a
nutrient sink on the channel margins and promote biodiversity by hosting
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different species than the surrounding area (Gundersen et al. 2010).
However, in practice, these buffers vary greatly in terms of width,
enforcement, and effectiveness. Adhesion by forest owners is voluntary and,
as estimated in Kuglerova et al. (2020), only 25% of small streams even have
said buffers. Also, the average width is +4 meters, far from the
recommended.

Restoration efforts in small waterways mostly focus on ditch blocking.
The aim is to reestablish wetland hydrology by blocking ditches to recover
groundwater storage and support ecological functions (Maanavilja et al.
2014; Bring et al. 2022)(Figure 4). However, rewetting drained peatlands can
conflict with forestry interests (Lohmus et al. 2015). The widespread high
drainage density across the Swedish landscape shows the impact of ditching
(Laudon et al. 2022), peaking 15 km/km? in some areas. Around 53% of
Sweden’s peatlands were altered, i.e., 23% of the national landscape
(Vasander et al. 2003). Since 21.6% of degraded peatlands are boreal, there
is an opportunity for large-scale rewetting and carbon storage: rewetting 60%
of today’s degraded peatlands could turn the global land system into a net
carbon sink by 2100 (Humpendder et al. 2020). Reflecting this potential,
studies on boreal peatland restoration have been conducted in Sweden
(Elenius et al. 2025; Laudon et al. 2025; Zannella et al. 2025), Finland
(Komulainen et al. 1999; Haapalehto et al. 2011), and Canada (Nugent et al.
2019).
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Figure 4. A ditch being filled during the restoration of the Stormyran mire, in the
Trollberget study site. Image credits: Andreas Palmén.

Restoration attempts of natural streams that were altered by timber floating
have been made (Gardestrom et al. 2013) with varying results (Helfield et al.
2007; Hasselquist et al. 2017; Frainer et al. 2018; Pilotto et al. 2018), but
recovering pre-floating conditions is still a challenge (Nilsson et al. 2005).
Meanwhile, the restoration of wetlands means removing the effect of ditches,
by blocking water using a plug or filling them in completely with an
excavator. The differences in legislation and management practices between
natural streams or ditches show the importance of classifying them correctly
to follow the goals of Agenda 2030.

The Nature Restoration Law sets a critical target for freshwater
ecosystems: restoring at least 20% of degraded ecosystems by 2030 and 90%
by 2050 (Council of the European Union 2023). On a larger scale, the
Sustainable Development goals listed in the United Nations Agenda 2030
focus on the importance of protecting water resources from degradation and
promoting their sustainable management (United Nations General Assembly
2015). This led the European Union to adopt the Water Framework Directive
guidelines (European Commission 2000), which require member states to
implement policies aimed at improving the ecological and chemical status of
water bodies. Consequently, the monitoring and management of freshwater
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ecosystems becomes a priority to achieve restoration goals, with mapping
being key to this development.

Planning the management of small waterways (<6 m width) has been a
challenge in Sweden because the majority of them were missing from
topographical maps, where, as reported in Flyckt et al. (2022), only 9% of
the ditches, 25% of the straightened watercourses, and 45% of the natural
watercourses were present. In fact, Bishop et al. (2008) named them the Aqua
Incognita - the unknown headwaters. While other studies have focused on
understanding the hydrology, water quality, and ecology of small waterways,
this thesis focuses on mapping the networks using novel technology.
Common tools to map and classify these channels are field surveys (Brookes
1987), comparing current and historical maps to aerial imagery (Ruuska &
Helenius 1996), and checking channel continuity (Zaharia et al. 2018).
However, such detailed work on a national scale has a high cost and takes a
long time to be completed: we estimated it would take 90 years to digitize all
the small water channels in Sweden, which does not match the urgency for
compliance with the Agenda 2030. Considering the limitations of large-scale
surveys, digital methods rose as an affordable alternative.

Topography-based methods using Digital Elevation Models (DEMs)
derived from Aerial Laser Scanning (ALS) can be scaled with robust results.
DEMs capture fine-scale elevation data, enabling the modelling of
hydrological features such as flow accumulation (Jenson & Domingue 1988;
Moore et al. 1991). However, these models are not without limitations: they
tend to misclassify depressions, often miss ditches due to their placement in
wetlands or flat terrain, and may require extensive preprocessing (e.g.,
stream burning, breaching) that introduces further uncertainties, especially
at road crossings (Lidberg et al. 2017).

The field of artificial intelligence has shown promise in overcoming these
limitations. This is a broad term encompassing, among other things, efforts
to make machines perform tasks that require cognitive capabilities, such as
reasoning, learning, and problem-solving (Russell & Norvig 2021). Using it,
complex, time-demanding tasks can be automated in many cases at a lower
cost. While this alone is not sufficient to classify a machine as an autonomous
intelligent agent in the same sense as humans (Korteling et al. 2021), the
automation of such tasks has many useful applications in many research
areas (Pham & Pham 1999; Hamet & Tremblay 2017; As et al. 2018; De
Almeida et al. 2019).
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Machine Learning (ML) is a subfield of artificial intelligence (Shinde &
Shah 2018). It involves using an algorithm that learns directly from the data
by applying statistical methods to address various tasks. Within the
environmental and ecological context, it has applications in species
distribution (Pasha & Reddy 2024), forest health assessment (Estrada et al.
2023), landslide susceptibility (Merghadi et al. 2020), and rainfall prediction
(Barrera-Animas et al. 2022), among others. For water channels, it was used
in river ice mapping (Han et al. 2024), streamflow (Szczepanek 2022),
evaluation of water quality (Khoi et al. 2022), and reach classification
(Guillon et al. 2020; Olusola et al. 2022).

Deep Learning (DL), a subset of ML, was inspired by the structure of the
human brain, using artificial neural networks to learn hierarchical
representations of data. It started with the creation of neuron models
(McCulloch & Pitts 1943), until reaching multi-layer perceptrons trained by
backpropagation (Rumelhart et al. 1986). Within it, convolutional neural
networks (CNN; LeCun et al. 1989) have several applications in forestry,
such as delineating tree crowns (Ball et al. 2023), mapping biomass (Fu et
al. 2024), and species identification (Zhang et al. 2022). In Earth Sciences, it
has been used for the analysis of mineral resource distribution (Li et al.
2024), mapping volcanic and glacial landforms (Kazemi Garajeh et al. 2022),
and simultaneous earthquake detection (Mousavi et al. 2020).

Surface waters have been mapped with satellite data and DL before
(Isikdogan et al. 2017; Jiang et al. 2018; Fei et al. 2022; Mazhar et al. 2022;
Thirumalraj et al. 2023). However, detecting small channels remains
challenging because satellite imagery typically has a spatial resolution of 10—
50 m. Orthophotos (Lantmateriet 2021) provide much higher resolution, but
in Sweden, dense tree cover often hides the terrain and the channels
underneath it. High-resolution digital elevation models (DEMs) derived
from ALS (Lantméteriet 2022) address this limitation: with resolutions of
0.10-2 m, they make it possible to filter out vegetation and focus on the
underlying terrain.

Small-scale channels have been extracted from topographic indices and
remote sensing data before (Koski et al. 2023; Du et al. 2024) using U-Net
(Ronneberger et al. 2015), a CNN architecture. It was used in Sweden, too,
where Lidberg et al. (2023) increased the mapping of ditches from 9% to
86% using ALS-derived data. Given these developments, there is a growing
opportunity to integrate machine learning tools to not only detect channels
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but also to classify them based on geomorphological and hydrological
attributes. Factors such as stream slope, length, and catchment area could aid
in distinguishing ditches from natural streams, which is crucial for both
regulatory compliance and ecological restoration.

By advancing the methodology to map and classify small water channels
in forested landscapes, this study aims to support better integration of
scientific data into environmental policy and land management, contributing
to the restoration and protection goals of both national and international
environmental agendas.
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2. Research objectives

The main goal of this thesis was to improve the automatic mapping and
classification of small water channels using data derived from high-
resolution DEMs.

Identifying the best settings to map channels using U-Net based
on individual and combined topographic indices, with different
dataset setups (using only ditches, only streams, ditches and
streams combined as ‘“channels”, and ditches and streams
separated) (Study I)

Improve the classification of the detected channels from Study [
with eXtreme Gradient Boosting (XGBoost), removing false
positives (FPs) and increasing the amount of stream channels
correctly classified (Study II)

Comparing the performance of different methods to measure
uncertainty when classifying pixels with concrete dropout (Study
1)

Determining if there is any location-specific variability in the U-
Net performance across Sweden (Study V)
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“‘They’re pretty high mountains,” said Azhural, his voice now edged with doubt.
‘Slopes go up, slopes go down,’ said M’bu gnomically.
‘That’s true,” said Azhural. ‘Like, on average, it’s flat all the way.””

— Terry Pratchett, Moving Pictures



3. Materials and Methods

3.1 Study areas

The twelve study areas used to train and test the models are distributed across
Sweden (Figure 5), a Scandinavian country with an area of 450.295 km?.
55% of its territory is covered in forests, mostly boreal in the northern and
central areas (Diekmann 1999). On a smaller scale, deciduous forests are
found in the south, where the fertile plains are also located, while peatlands
and wetlands are found in the central and northern areas (Sjors 1999). The
sites were selected to be 1) mainly forested areas (86-99% forest cover
(Busarello et al. 2025)); 2) as diverse as possible when it came to runoff
conditions, soil type, topographic variation, and tree species; and 3) within
the constraints of areas with available higher resolution LiDAR cover,

which, at the time, was limited to a few areas of the country.
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Figure 5. Swedish map with the location of the twelve study areas, plotted over the
elevation.
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3.2 Data collection

Using orthophotos and terrain visualization techniques, experts digitally
mapped small water channels (<6 m width) across the study areas' landscape
to create the data used to train the models. Ditches were visually identified
from terrain indices and high-resolution (0.17-0.5 m) orthophotos
(Lantmateriet 2021)(Figure 6A) and traced as vector data. After the channel
heads (> 2 ha) were located and the connections between the stream and ditch
network marked, their downstream stream paths were also manually edited.
In total, the dataset had 2235 km of ditches and 335 km of natural streams.

In all Studies, the indices that aided the mapping and classification were
derived from the 0.5 m resolution DEM, obtained from the ALS with 1-2
points per square meter (Lantmateriet 2022)(Figure 6B). All indices and their
applications are listed in Section 3.2.1.
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Figure 6. (A) An example of an orthophoto from Lantmiteriet (2021) and the channel
prediction from the inference output of Study IV, both plotted in 0.5 m resolution, and
with a cross-section a-b. (B) LiDAR point cloud from the cross-section a-b, plotted with
data from Lantmadteriet (2022). The cross-section cuts through two streams (in turquoise)
and a ditch (in orange), highlighted on the elevation surface. The opacity of the data
points represents the distance from the cross-section (maximum 20 m), with distant
points having a higher transparency.

The laser data from Lantmateriet (2022) were organized as square tiles with
a side of 2500 m (Figure 7). These tiles were further divided into chips with
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dimensions of 250 m x 250 m (Figure 7B) to be used by the ML models. In
Study I, 80% of the chips were randomly selected for training, while the 20%
remaining were used for testing. In Study II, chips from eight of the study
areas randomly selected were used to retrain a U-Net model, with chips from
the four remaining areas used to train the XGBoost model. In Study III and
IV, the chips were divided into nine folds for training, plus one for testing
and one for calibration, applying stratified sampling to preserve the

representativeness of all study areas.
£

- Ditches - Streams

Figure 7. (A) A hillshade tile of side 2500 m derived from the LiDAR data from
Lantmiteriet (2022). The tile is further divided into 100 chips, each with a side of 250
m, as shown in (B).

In Study IV, the U-Net model was used for a national-scale prediction. To
capture the Swedish landscape variability on such a large area, the
independent National Inventory of Landscapes in Sweden (NILS; Stahl et al.
2011)(Figure 8) was used for evaluation. In it, 631 line transects are
distributed across Sweden’s different land cover areas, including forests and
wetlands, providing reliable national estimates. In the study area, 6 576
channels were analyzed.
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Figure 8. (A) The line inventories of the NILS database distributed across Sweden
(n=631). (B) Example of a single line inventory and its small ditches and streams
observed.

The channels from the U-Net did not overlap perfectly with the NILS
database due to GPS uncertainties, so we used the snap function with a 25 m
radius to relocate channel observations to predicted channels.

3.2.1  Topographic and hydrological indices

Topographic indices were derived from DEMs to describe terrain
characteristics and explain how the topography influences landforms,
erosion, and water flow, among others. Hydrology indices are a part of them,
but focus on describing hydrological processes by encompassing water
dynamics to characterize different components of the flow regime (Olden &
Poff 2003). In this work, most of the indices were calculated using Whitebox
Tools (Lindsay 2016), an open-source geospatial analysis library for python
used for GIS and remote sensing applications. The only exception is the sky-
view factor, obtained using the Relief Visualization Toolbox (Zaksek et al.
2011), a relief visualization package for geospatial analysis.

In this thesis, we detected the water channels using only topographic
indices to train the U-Net models. Furthermore, in Study II, we built on those
results by combining the detected channel network with hydrological indices
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and morphology to improve the classification between ditches and streams.
Below, we list the most relevant indices used in our work (Figure 9).
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Ground truth Median Filter
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Figure 9. Chips of the topographical indices obtained from the DEM. The ground truth
is plotted over the hillshade at 90°.
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High-Pass Median Filter

The High-Pass Median Filter (HPMF) highlights short-range variability in
the elevation by a moving window that returns the difference between the
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pixel value and the median value of the pixels around it within the window.
The window size used in this study is 11x11 pixels, which in our resolution
means 5.5 m x 5.5 m. This index was combined with the vector lines from
the ground truth to create the labels to train the U-Net model used in our
studies.

Sky-View Factor

The sky-view factor is a terrain visualization technique that shows the
portion of the sky visible from each DEM cell, accounting for obstructions
caused by the surrounding terrain. Used in Studies I, II, and IV, combined
with the slope.

Slope

Slope is a terrain analysis that calculates the rate of maximum change in
elevation for each cell of a DEM, the steepness. It ranges from 0° to 90°,
where 0° is a completely flat terrain, and 90° is a vertical cliff. It was
calculated by a polynomial fit of the elevation using a 5x5 cell window (in
this case, 2.5 m x 2.5 m) for a more robust result. Used in Study III by itself
and combined with the sky-view factor in Studies I, II, and IV.

Flow Accumulation

The flow accumulation grid was calculated using the single-flow-direction
method with the D8 algorithm (O’Callaghan & Mark 1984), without flow
divergence. In this approach, water from each cell flows entirely into a single
downslope neighbouring cell.

Average Flowpath Slope

This tool calculates the slope steepness of the flowpaths passing through each
cell of the DEM.

Average Upslope Flowpath Length

This index is the calculation of the average length of the upslope flowpaths
that pass through each cell of the DEM.

Maximum Upslope Flowpath Length

This index 1s the same as the above, but instead it calculates the maximum
length of the upslope flowpaths that pass through each DEM cell.
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Upslope Depression Storage

Returns the average upslope depression depth, with smooth terrain having
lower values than rough terrain. It first calculates the upslope depth of the
depression storage, then divides it by the number of upslope cells. Uses the
FDS flow algorithm (Freeman 1991) for the calculation.

3.2.2 Additional data

Other data that were not derived from the DEM were added to train the
models in Study II. Sinuosity is an indicator of how straight a water channel
is (Lazarus & Constantine 2013), being calculated by dividing the length of
the channel by the distance between its start and end points. Data was also
extracted from the Study I inference by counting the frequency of each
channel class pixel within the channel buffer and obtaining which was the
majority class.

3.2.3 Drainage index

For Study IV, knowing that deeper ditches have stronger drainage effects
that decrease with distance, we calculated the drainage index. The ditch
influence was modelled by calculating the logarithmic decay of the
regression function described by Bring et al. (2022), resulting in:

Index = D — ( X In(d + 1))

D
In(M + 1)

D is the estimated ditch depth in meters, M is the maximum influence
distance (150 m), and d is the distance from a pixel to the nearest ditch in
meters.

3.3 Machine Learning approaches

3.3.1 Convolutional Neural Networks

CNNs (LeCun et al. 2015) are DL methods commonly used in computer
vision tasks for spatial data, such as image segmentation, classification, and
object detection. With one of their first applications being the recognition of
handwritten numbers (LeCun et al. 1989), CNNs have remained relevant in
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the fields of medicine (Polsinelli et al. 2020; Zuluaga-Gomez et al. 2021),
climate change (Kim et al. 2022; Elshewey et al. 2025), chemistry (Derry et
al. 2023), traffic flow forecasting (Sun et al. 2020), and several others.

These models offer an advantage by automatically extracting hierarchical
features from images and requiring fewer training instances than standard
vision transformers. Architecturally, CNNs consist of a sequence of
convolutional and pooling layers, which transform the input representation
several times before reaching one or more fully connected layers (Figure 10).
Within a convolutional layer (Figure 11), learnable filters (kernels) are
applied across the input image to detect basic visual features, such as edges
and corners. The resulting feature maps encode the spatial presence of these
patterns, where a non-linear activation function is subsequently applied,
allowing the network to model complex, non-linear relationships within the
data. Pooling layers then perform downsampling operations, reducing the
spatial dimensions of the feature maps while retaining important
information. This step enhances computational efficiency and improves
robustness to local variations and distortions.

conv:
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Figure 10. Example of a VGG-16 convolutional neural network (Simonyan & Zisserman
2015), with the convolutional layers in orange, and the three fully-connected layers in
purple. The third fully connected layer performs the classification, with a final softmax
layer computing the class probabilities. Image from
https://github.com/HarisIgbal88/PlotNeuralNet.

Through repeated convolution and pooling operations, CNNs progressively
capture higher-level, abstract features. Ultimately, the multidimensional
feature maps are flattened and passed into fully connected layers, where the
extracted features are combined to classify previously unseen data.

41



Figure 11. A convolutional layer. In the example, we assume zeroes fill the cells
surrounding the input layer (i.e., zero padding). The 3x3 learning filter, in grey, is
composed of trainable weights, the values within the cells. It moves through the input
layer, cell by cell, multiplying the elements that overlap and adding their values. Then,
an activation function, in purple, is applied to produce values for the feature map created
by this filter. In this example, we use ReLU (Rectified Linear Unit), which does not
change positive values and converts negative ones to zero. After this, a 2x2 maxpooling
window, in yellow, passes through the cells, outputting the maximum value from within
the window to the final output, which has reduced dimensions.

3.3.2 U-Net

U-Net (Ronneberger et al. 2015) is a CNN model known for its U-shape
(Figure 12) that comes from its downsampling encoding path and the
upsampling decoding path. The encoding path works similarly to the CNN
described before, pooling after each convolution and extracting relevant
features, increasing the number of feature channels. After that, the decoding
path performs transposed convolutions, reconstructing the original spatial
resolution and classifying pixels. At each level, skip connections link the
encoder and decoder paths, transferring feature maps to preserve spatial
details that may be lost during downsampling. In Study I, standard dropout
is used after the first convolutions in each block, randomly setting a fraction
of activations to zero during training, as specified by the dropout rate. In
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Study III, some changes were made in the U-Net architecture following Teng
et al. (2023), together with choosing specific angles for the data
augmentation translation (0°, 90°, 180°, and 270°). The model was retrained
using only the slope for a shorter processing time. In Study IV, the model
with the architecture from Study III was retrained too, this time using sky-
view factor and the slope.
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Figure 12. U-Net architecture.

3.3.3 XGBoost

XGBoost (Chen & Guestrin 2016) works differently from CNNs, not relying
on spatial structure. It is an ensemble learning method that implements the
boosting framework developed by Friedman (2001) for gradient-boosted
decision trees. Decision trees (Figure 13) are models that make predictions
by splitting data at nodes into branches based on feature values. The splitting
criteria vary depending on the algorithm: in standard decision trees, common
measures include entropy or Gini impurity, while XGBoost uses a
regularized gain function based on second-order gradient statistics. Splitting
stops when the maximum tree depth is reached, when each leaf contains
fewer than a minimum number of samples, or, in the case of XGBoost, when
the gain from a potential split falls below a predefined threshold. Boosting,
which is one ensemble learning approach, combines multiple models named
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“weak learners” to create a stronger one. The models are developed in
sequence, with each new one correcting the mistakes of the previous ones.
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Figure 13. The final decision tree from the XGBoost training model. In the example, the
maximum flow accumulation (facc_max) was used for the first decision split (node) by
a high threshold, with most samples split to the left side (branch) and only a few to the
right. Next, different lower thresholds are set for maximum flow accumulation again,
further separating the samples. In the final split layer, new thresholds of maximum flow
accumulation, maximum upslope depression storage (uds_max), and sinuosity are used
for the final classification (leaves). Ideally, most of the channels in a leaf after the final
division would be of the same type, something that can be observed in some leaves that
contain mostly streams. However, some leaves still show an even split between channel

types.

3.3.4 Feature Conformal Prediction

In Study III, several analyses were conducted to evaluate the model
uncertainty. Instead of using the standard dropout in the U-Net model,
concrete dropout was used, and the dropout rate was learned during training.
During the inference, dropout was kept active with the adoption of Monte
Carlo dropout (Gal & Ghahramani 2016): multiple stochastic forward passes
were run, with different units dropped at each run. At the end, the predictions
were aggregated by computing the mean and variance across the runs,
building uncertainty maps to produce more robust predictions.

The Feature Conformal Prediction (FCP; Teng et al. 2023) quantifies the
uncertainty of a neural network by estimating the range of output values that
would include the correct value with a specific probability, such as 90%. It
works by recording the feature representations produced by a chosen layer
of the network for all instances in a calibration set, which can be the
convolutional layer just before the output in a U-Net, for example. For each
instance, FCP measures the distance between the recorded feature
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representation and the minimal feature representation that would give the
correct output. These distances are then sorted, and a percentile (e.g., the
90th) is selected to determine the maximum allowable deviation from the
original feature representation that still guarantees the correct output. When
evaluating a new instance, FCP varies its feature representation within this
calculated distance and records the resulting changes in the network’s output.
This process identifies the highest and lowest possible outputs consistent
with the calibrated distance. The difference between these values serves as
an indication of uncertainty: larger differences indicate higher uncertainty,
while small differences indicate greater confidence in the prediction.

3.4 Evaluation

The U-Net evaluation of model performance was made on the pixel level,
i.e., how many pixels were correctly classified when comparing the inference
to the ground truth. The metrics used to verify the performance are derived
from the confusion matrix, a table that assesses not only how many instances
were correctly classified by the model, but also how many were incorrect,
and which class these instances were predicted to have instead. The class that
we want to evaluate is the positive one, while the other is the negative one.
Instances that are correctly predicted as positive are named true positives
(TPs). Those that are correctly predicted as being negative are named true
negatives (TNs). Those that are incorrectly predicted to be positive, false
positives (FPs). And those that were incorrectly predicted to be negative,
false negatives (FNs). These values are then used to calculate other relevant
metrics that better illustrate the model’s performance, such as recall,
precision, Fl-score, and the Matthew’s Correlation Coefficient (Matthews
1975).

Recall estimates the number of true positive instances predicted by the
model from all ground truth positive instances (TP and FN combined),
calculated by the ratio:

TP

recall = TP-I-—FIV

Precision is the number of true positive instances predicted by the model
from all those predicted to be positive (TP and FP combined), calculated
with:

45



TP

recision = ———
Prectston = rpy Fp

The F-1 score is the harmonic mean of precision and recall, returning a
number that shows the balance between them, obtained with:

precision X recall

F1=2x —
precision + recall

The MCC is also known as the phi-coefficient, a metric that measures the
correlation between the predicted labels and ground truth, and is considered
more reliable for very imbalanced datasets (Chicco & Jurman 2020).

TPXTN —FP XFN

McC =
J(TP+FP)(TP + FN)(TN + FP)(TN + FN)

In this thesis, we have a multiclass dataset with three classes (background,
ditch, and stream), which required a more complex 3x3 confusion matrix
(Figure 14). With a multiclass dataset, the metric needs to be calculated for
each class separately, which is done by considering the two other classes as
negative and combining their values.
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Figure 14. Confusion matrix structure for each channel class. In grey and yellow,
“background” is the positive class. In brown and orange, the positive class is “ditch”, and
in blue and purple, the positive class is “stream”.
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For XGBoost in Study II, we applied the same metrics but evaluated channel
segments instead of pixels, counting the number of instances correctly
classified when comparing the model inference to the ground truth polylines.
To quantify the impact of each index on the model prediction, we have used
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SHAP plots (Zhang et al. 2023). These are plots that show how each attribute
impacted the model classification, favoring one class or another, and how
much. This way, we can track which features contributed the most to the
model’s decision.

For Study IV, we also compared the classes observed in the NILS
database survey with the channel classes predicted by the U-Net retrained
model, then calculated the evaluation metrics.
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3.5 Workflow
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Figure 15. Combined workflow for the four articles. In purple, the steps involved in Study
I; in yellow, the steps involved in Study II; in light grey, the steps involved in Study III;
and in blue, the steps involved in Study IV. The dashed boxes highlight the steps
corresponding to each study.

All studies used topographic indices to train a DL (U-Net) model for
mapping water channels at the pixel level. Study II combined the output from
the highest-ranking model from Study I with hydrological indices to train an
ML (XGBoost) model, improving channel classification. Study III extended
the methodology with a new U-Net architecture trained with only slope to
evaluate different uncertainty quantification approaches. Study IV retrained
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the model from Study III using the highest-ranking combination (sky-view
factor and slope) and obtained a national-scale prediction of channels. A
national drainage index was calculated, and the location-variability was
assessed.
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“May whatever tests await you on the other side either support or disprove
your hypotheses.”

— GLaDOS



4. Summary of results and discussion

4.1 Channel detection and classification

In Study I, the highest-ranking model was the one combining the sky-view
factor and slope data in the training process. 89.7% of the ditches were
detected using it, but 6.2% were incorrectly classified as streams. 75.5% of
the stream channels were detected by the model too, with 15.8% of the
streams being incorrectly classified as ditches. The MCC was 0.74 for
ditches and 0.31 for streams.
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Figure 16. Prediction from the highest-ranking U-Net models. In (A), we have the ground
truth; (B) is the output of a model trained without a channel type specified; (C) is the
output of using only ditches in the training data; (D) is the output of using only streams
in the training data; (E) is the output of using ditches and streams for training with the

[ ] streams [ ] Channels
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HPMF; and (F) is the output of the model trained using ditches and streams with sky-
view factor and slope.

When converting these detected channels from raster to vector data and
reclassifying them with the hybrid model and hydrological data (Study II), a
new evaluation was made on the U-Net performance for channel segments
of several lengths (Figure 17). The U-Net model demonstrated a high recall
rate for ditch channels (79%) but with low precision (5%). In contrast, it
showed both low recall (8%) and precision (8%) for stream channels. When
XGBoost was applied to reclassify the channels, the precision for ditches
improved substantially to 50%, although recall decreased to 63%. For stream
channels, both recall (71%) and precision (52%) increased. The background
class was reported only in the hybrid plot, as it represents FPs from the U-
Net model that were reclassified by XGBoost. This class showed strong
performance, with a recall of 79% and a precision of 88%.
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Figure 17. Precision-recall plots of the U-Net model performance compared to the
ground truth (squares), and the XGBoost model performance compared to the ground
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truth (circles) across the different segment lengths. The grey lines are iso-F1 lines,
placing the trained models in a performance area according to their F1-scores.

A visual analysis showed that a substantial number of FPs were now properly
classified as background and could be removed from the maps (Figure 18),
illustrating that the channels detected in Study I were successfully
reclassified as stream TPs and FPs (background TPs).

U-Net prediction

Ground truth Hybrid model

2500 m

1250
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Figure 18. Prediction of the hybrid model compared to the ground truth and U-Net. On
the left is the ground truth data, which was manually labeled. The center shows the
predicted channels from the original U-Net model, and on the right are the predicted
channels after post-processing by the hybrid model.

In Study III, we found that FCP provided the most reliable uncertainty
estimates despite the higher execution time, and network probability was the
best for correcting misclassified pixels. Visual inspection (Figure 19) shows
that the top 5% most uncertain background pixels still outline a potential
channel, even though the model did not classify them as such.
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I:ICertain ditches - Uncertain ditches |:| Certain streams E Uncertain streams

Uncertain background pixels

Figure 19. (A) Ground truth map and (B) FCP uncertainty map for the 0.5 m resolution
over the slope index. The 5% most uncertain pixels from the uncertainty quantification
approaches are plotted. Wherever the slope is visible, it represents certain background
pixels. Image credits: Westphal et al. (2025).

In Study IV, the model predicted 1 153 749 km of ditch channels. With a
precision of 88%, we estimate that approximately 1 015 299 km of the
predicted ditches represent actual ditch channels. This is about a 20%
increase compared to the previous estimate by Laudon et al. (2022), who
estimated a total of 1.2 million kilometres of channels, of which 67% (about
800,000 km) were considered ditch channels. Further, 145 646 km of streams
were mapped, of which 56% (81 562 km) were estimated to be actual stream
channels. The model performance in Study IV improved compared to the
overprediction of the ditch channels in Study I. The recall for the ditch label
remained high (76%), while precision increased from moderate to high
(57.6% to 88%). For streams, performance also improved: the low precision
(16.4%) from Study I increased to moderate values (56%) despite a small
reduction in recall (5§9.7% to 58%). We have evaluated the new U-Net model
with an independent test dataset and the NILS database (Table 1), illustrating
the overall performance across the Swedish landscape. Ditches performed
better than streams, yet both channel types still surpassed the Swedish
topographical maps.
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Table 1. Summary of the different models when evaluated on test data and topographical
maps. The lines from the topographical maps were evaluated against both stream points
and ditch points in the NILS database separately.

Evaluation method Class Recall Precision F1-score
. Ditch 76% 88% 0.81
Model evaluation on test data
Stream 58% 56% 0.56
Ditch 83% 88% 0.86
NILS vs U-Net
Stream 26% 93% 041
NILS vs topographical maps | Ditch 11% 27% 0.16
Stream 36% 21% 0.27

The confusion matrix for the NILS dataset compared to the U-Net model
(Figure 20. Confusion matrix for Study IV’s model compared to NILS
channel observations. confirms the findings from the table, showing that
ditches have the largest number of TPs and only a few of them were
undetected (16%). Most of the streams, however, were still undetected, and
part of them (20%) were incorrectly classified as ditches.
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Figure 20. Confusion matrix for Study IV’s model compared to NILS channel
observations.

The distribution patterns of streams and ditches were different depending on
the channel type. The northwestern region had the highest concentration of
natural streams (Figure 21A), while fewer streams were found in the south.
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Ditch channels were very few in the mountainous areas and were instead
concentrated in the south and along the east coast (Figure 21B).

9°E 12°E_I15°E 18°E  21°E  24°E 9°E 12°E IS°E 18°E 21°E  24°E
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Figure 21. Density of channels predicted by Study IV’s model across Sweden. Darker
tones represent higher channel density. (A) Streams have been detected more often in the
northwest. (B) Ditches were often detected around the east coast and southern Sweden.

Evaluating the drainage index, we could verify that deeper ditches exert a
greater influence, which decreases logarithmically with distance (Figure 22).
With this, we developed a depth-weighted drainage index to map the spatial
influence of artificial drainage across Sweden. The index integrates
estimated ditch depths from high-resolution DEMs with a logarithmic
distance-decay function (maximum influence 150 m), producing a
continuous surface of drainage impact. The results suggest that drainage
effects on soil, greenhouse gas emissions, and vegetation are likely more
widespread than previously recognized.
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Figure 22. (A) Predicted ditch channels used to calculate the drainage index. (B) Deeper
ditches exert a greater influence that decreases logarithmically with distance.

4.2 Methodology reflection

Ditches were successfully mapped using the U-Net across all studies in this
thesis. Our work represents the first effort to map ditches and streams
separately using high-resolution LiDAR data and ML on a national scale.
Previous studies used a single index with DL to detect channels (Koski et al.
2023; Du et al. 2024), but the channel types were either not classified or were
exclusively ditches. The highest performing model was trained on a
combination of topographic indices (sky-view factor and slope), which
agrees with some other studies where a combination of indices had a higher
performance (Du et al. 2019; Kazimi et al. 2020), however, channels were
not the only thing they were detecting, and they used a coarser resolution.
Du et al. (2024) reported similar precision (88%) and higher recall (89%)
compared to Study III; however, our model additionally detected small
streams as separate features, making it more functional for management
applications.

We have also assessed the number of “channel” pixels that were detected,
i.e., how many pixels were not labelled as background. This was done to
compare the performance of the DL methodology with traditional methods
and available maps, since the channel network from flow accumulation
would not differentiate between ditches and streams. We then compared
these pixels with the ground truth to determine how many corresponded to
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ditches and how many to streams, thereby establishing a benchmark (Table
2). We observed that many stream pixels were detected using flow
accumulation alone; however, the ditches were not detected to the same
extent. This was expected because flow accumulation represents the points
in the landscape where water would converge, accumulating, meaning that
there’s an increased likelihood of it matching the location of natural streams.
Ditches were mostly placed where soil drainage was required, which is why
their locations do not necessarily match natural channels or the highest flow
accumulation. Using only flow accumulation would result in an acceptable
performance for detecting natural streams, but only with DL would one be
able to detect ditches in the same output.

Table 2. Comparison between the performance of different models from Study I, the
Swedish property map, and the traditional flow accumulation methodology. The
percentage of stream pixels refers to how many stream pixels were detected, even if
mislabeled as ditches. The Swedish property map and flow accumulation do not
differentiate by channel type; these numbers were obtained by comparing these channels
with our ground truth.

Method Detected ditch pixels | Detected stream pixels
Swedish property map 8.1% 27.5%

Flow accumulation (2 ha) 33.8% 76%

Study I 89.7% 75.5%

Our exploration of alternative ML architectures led to improved channel
reclassification. Using the hybrid model, the channels detected in Study I
were reclassified into ditches and streams, resulting in more accurate
classification. The stream morphology was initially considered one of the
most relevant characteristics to classify channels, but the measures of
sinuosity did not reflect this expectation. Most of the values were close to
1.0 for any channel type, meaning that they would be little meandering. With
this, the contribution of sinuosity was heavily reduced, as can be seen in the
absolute SHAP plot (Figure 23). Instead, the maximum flow accumulation
was the most important index for classifying both ditches and streams,
followed by the maximum average flowpath slope. This shows that
catchment-level hydrological dynamics had a more important role in the
channel classification.
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Figure 23. SHAP plot of mean absolute values for the data used in Study II, showing that
the sinuosity had a low impact on the classification of channels.

In Study IV, we have enhanced the understanding of the extent and
distribution of the Swedish drainage network. The location of ditches in
agricultural areas and managed forests across the landscape follows their
historical implementation for this purpose, with a density that surpassed 100
km/km2. The natural streams were concentrated in the northern boreal area,
where their density peaked 2 km/km™.

4.3 Ecology, management, and policy

Because boreal forests are major carbon stores that are increasingly
becoming carbon sources (Bradshaw & Warkentin 2015), their channel
networks play an important role in regulating climate-related processes.
Misclassifying streams as ditches (Figure 20) could lead to under-protection,
despite ditches supporting their own distinct biodiversity, while failing to
detect a stream may result in its disturbance during ditch cleaning or by
forestry machinery. Such errors can impact flow patterns, reduce organic
matter retention (Muotka et al. 2002), and increase downstream
sedimentation (Bishop et al. 2009), with cumulative effects across the
channel network.

In Study II, we addressed this issue by improving the initial channel
classification produced by the model from Study I through a hybrid
approach. One relevant challenge was selecting an appropriate segment
length, as that could affect both classification accuracy and practical
management decisions. Although uniform segment lengths simplify model

59



evaluation, natural channels rarely follow such regular patterns. We therefore
tested multiple segment sizes and identified 50 m segments as the most
balanced option, offering a compromise between model performance and
operational feasibility for management planning.

Our models not only improved channel mapping but also provided the
spatial and geomorphic context needed for catchment-scale restoration
planning. Creating high-resolution, reliable maps is valuable not only for
identifying drainage patterns and supporting ecological applications such as
stream and riparian restoration (Baker et al. 2007; Gergel et al. 2007). With
more accurately delineated channels, our results enable representative
assessments of the condition and extent of ditches and natural streams across
Sweden, guiding restoration priorities.

Stream restoration measures vary depending on project objectives and
may include reconnecting floodplains, modifying flow regimes, or
reconfiguring channels (Wohl et al. 2015). Some restoration initiatives have
already been tested in Sweden, such as the demonstration project described
by (Gardestrom et al. 2013), where several methods were evaluated in a
previously channelized wide stream. Similarly, Negishi & Richardson
(2003) restored narrow boreal streams (<6 m) by increasing habitat
heterogeneity with in-stream boulders. This intervention led to short-term
improvements in detritivore productivity, but long-term monitoring is still
required to evaluate long-term ecological restoration.

In Study IV, we quantified the extensive ditch network and high-
resolution drainage density across the Swedish landscape, increasing the
information available to support future analyses. In peatlands, the ditch-
induced lowering of the groundwater table increases peat decomposition,
leading to emissions of up to 7 Mtonnes CO»eq per year in fertile forested
soils (He et al. 2016). With our model outputs, these emissions can be better
assessed to coordinate climate change mitigation plans. Rewetting after
clear-cutting restores the water table (Bring et al. 2022), but an effective
implementation relies on policymakers. Restoration effects also require post-
restoration monitoring and management. Bring et al. (2022) showed that
ditch blocking raised the groundwater levels near the blocked ditch, though
the effect was halved after a 9 m distance, while the drainage effect persisted
until 21 m before being halved. Moreover, these interventions on nutrient-
rich peatlands can increase the export of DOC and nutrients, impacting the
water quality (Koskinen et al. 2017). These findings highlight the need for
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careful monitoring of interventions to ensure that rewetting achieves its
intended ecological and climate benefits.

Laine et al. (2024) suggested converting forestry-drained, nutrient-rich
peatlands into tree-covered pine or spruce mires with a sub-surface water
level. Our fine-scale assessment of drainage density can guide this type of
implementation, ensuring that restoration targets are both realistic and
compatible with land-use priorities. This balance is particularly relevant
given that these areas are also highly suitable for forestry, where climate
mitigation and forest production goals often compete.

Achievable goals must be defined for restoration, however. While
Agenda 2030 calls for the restoration of water systems, it leaves the
methodology to policymakers. The overlap and misclassification between
streams and ditches from our outputs reflect how these systems have
converged morphologically and ecologically, emphasizing that full
restoration to pre-alteration conditions may not be realistic. Most channels
adapted to the changes over time: ditches developed their own communities
(Williams et al. 2004; Verdonschot et al. 2011) and altered the assemblage
composition of non-aquatic biodiversity in forests (Remm et al. 2013). Also,
the knowledge about natural processes in channels across Fennoscandia
before the disturbances is limited (Nilsson et al. 2015; Mason & Polvi 2023).
Wohl et al. (2015) point out that restoration focused on channel physical
connectivity can be highly detailed, even though it may successfully restore
ecological function. Instead of focusing on resetting the channel to a
historical classification, a more sustainable alternative would be to restore
community function and foster a system robust to perturbation, reaching a
more dynamic and less degraded ecological state (Palmer et al. 1997; 2005).

4.4 Limitations and future research

The national LiDAR dataset (Lantmiteriet 2022), which forms the
foundation of our approach to mapping streams and ditches, was collected at
a density of 1-2 points per square meter, from which a digital elevation
model (DEM) with a 0.5 m resolution was derived. Future LiDAR
acquisitions with potentially higher point densities and DEMs at decimeter-
scale resolution are likely to improve the detection and differentiation of
stream channels and ditches (Roelens et al. 2018; Song & Jung 2023). One
limitation we faced with DL was the need for large, high-quality datasets

61



with ground truth data to train the models. It is common for published
benchmarking datasets such as ImageNet (Deng et al. 2009) or Cityscapes
(Cordts et al. 2016) to be massive, whereas creating custom labeled data is
time-consuming. There is a possibility that, with more manually labeled data,
our models could achieve even higher performance; however, Wang & Perez
(2017) emphasize that increasing the dataset size does not necessarily
improve a model. Also, the real-world data cannot be changed: only 14% of
the channel length is natural streams. Studies III and IV demonstrated that
adjustments to the architecture resulted in higher performance despite using
the same dataset, suggesting that architecture design can play a greater role
than data volume in some cases. Different weights during training could help
improve the results at the cost of lower precision, with aggressive weights
used for ditches and streams in the U-Net, and post-processing the results
with a decision tree model, similar to what we have done in Study II, with
improved performance.

Our models did not determine whether the channels contained water or
not. High-resolution (0.8 m) multispectral remote sensing imagery has been
used to map streams before (Leckie et al. 2005) with an average 80%
accuracy. This methodology could be combined with our data to improve
channel classification, although dissolved organic carbon also needs to be
taken into consideration. For this, one discerning method for verifying water
presence in the channel could be data gathering during different seasons
(Islam et al. 2022). However, this would not be a helpful practice in Swedish
forest streams because of the dominance of evergreen conifers, which would
keep the forest cover on these channels all year round.

For Study II, the use of zonal statistics based on a fixed 3 m buffer
provided valuable near-channel information but may have limited our ability
to capture riparian zone characteristics. Expanding buffer analyses in future
studies could provide additional ecological context and improve
differentiation between channel types. Analyses that were initially performed
on a smaller scale, for example, could now be applied to a larger extent. Take
the buffer width estimation around natural streams. Kuglerova et al. (2020)
used 111 Swedish small streams in their analysis. With our maps as input,
the size of protective buffers could be automatically estimated using other
remote sensing vegetation data (such as satellite images or LiDAR point
clouds), creating a large-scale verification of whether the recommended
buffer size is being followed or not.

62



With the uncertain FCP maps from Study III, we could verify that the
presence of uncertain background pixels indirectly indicated undetected
channels (Figure 19B, in pink). This illustrates the potential for improving
the mapping of natural streams in the future using the highest uncertain
background pixels as a proxy. In all our models, it was not uncommon to
have interrupted stream segments in the prediction instead of a fully
connected channel network. This could be caused by the LiDAR signal not
reaching the ground in some areas with dense vegetation. A connection
across the gap could be created to resemble traditional stream networks, but
further studies are needed to quantify whether this would bring an
improvement or new errors to the maps.

Another limitation is that the classification presented here is strictly
related to the channel's origin, either artificial or natural. An automatic
classification between stream types (pools, riffles, rapids, etc.) would shift
the act of mapping from a functional task to an ecologically and
geomorphologically based classification. More specific in-channel
information could be added, such as soil type, channel bed, and sediment
granulometry, providing more data about the water ecosystem.

While we produce maps of natural streams and ditches, we advise that
this classification should not be trusted implicitly because errors are still
present. For example, the model from Study IV still misclassified 20% of the
stream observations as ditches, despite only 1% of the ditches being
misclassified as streams (Figure 20). The streams predicted by the model in
Study IV had a high F1-score compared to the topographical maps (Table 1).
However, 74% were missing when compared to the NILS database. This
highlights the challenges of mapping natural streams at a national scale and
raises awareness when using our maps for management applications. From a
legal perspective, to be certain that a channel is a ditch or a natural stream,
the historical documentation (“vattenverksamhet”) needs to be consulted.
However, these archives are from different agencies, regions, and
landowners, making it unlikely to compile them into a national database. Our
maps are useful to indicate “likely” ditches and streams. The drainage index
is a valuable tool for restoration, carbon budgeting, and nutrient assessment,
but it remains a model-based estimate unadjusted for soil and unvalidated in
the field. Future work should include water table and biogeochemical
measurements to improve its reliability across landscapes.
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"Hiding the self through a faithful mapping of the universe is the only path to
eternity."

— Cixin Liu, The Dark Forest
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4.5 Conclusion

Despite certain limitations and opportunities for further improvement, this
study demonstrates that the novel approach of using deep learning to map
small channels in the landscape has been successful. While existing
topographical maps fail to distinguish between ditches and natural streams,
this research represents, to our knowledge, the first attempt globally to map
and classify these channel types separately. We showed that this can be
achieved by training separate models for ditches and streams. However,
using a deep learning model to first detect all channels and subsequently
classify them into ditches and streams based on channel characteristics with
machine learning further improved performance.

The predicted ditch channels in Study IV showed both high precision and
recall, achieving a higher F1-score (0.86) than the model implemented by
Laudon et al. (2022)(0.71). This highlights the robustness of our model for
large-scale ditch mapping and further analyses, such as the drainage index, a
valuable tool to support future hydrological assessments, ecological studies,
and landscape management decisions. However, 54% of the streams were
still unmapped, and 20% were classified as ditches; hence, future research
needs to focus on natural stream channels. The hybrid approach with
XGBoost has yet to be implemented nationally, but so far, its use has resulted
in the highest F1-score for streams (0.60). Combining it with the uncertainty
analysis of background pixels could increase the number of mapped streams.

Furthermore, employing a deep learning model significantly reduces the
time required compared to manual digitization. To train these machine
learning models, 315 km of natural streams and 2 235 km of ditches were
manually digitized across 12 study areas. Had we continued with manual
digitization at the same pace and staffing levels, mapping the entirety of
Sweden would have taken approximately 90 years, a task that could now be
achieved within this four-year PhD project.

This work follows an operational mapping framework that can be
continuously improved as new data becomes available. Beyond its scientific
contribution, the resulting datasets and tools provide a guide for hydrological
restoration, sustainable forest management, and national reporting under the
goals of Agenda 2030 and the EU Nature Restoration Law. In doing so, this
research connects environmental monitoring and decision support, offering
a reproducible model for other boreal and temperate areas seeking to balance
productivity with ecosystem resilience.
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Popular science summary

In the northern forests, the land is covered by a dense network of small streams and
man-made ditches. Together, they control how water moves through the landscape,
carry nutrients, and support a wide range of plants and animals. In the past, people
altered many of these streams to float timber and dug ditches to dry out land for
farming and forestry purposes. Even though digging new ditches has mostly stopped,
the old ones are still draining today’s forests and affecting water systems. These
small channels are like the capillaries of the landscape, but most of them are still
missing from maps. This thesis focuses on that problem by exploring a new way to
map small streams and ditches nationwide. The method uses detailed elevation data
from laser scanning (LiDAR) together with artificial intelligence (Al) to find and
classify channels automatically. By training AI models to tell the difference between
natural streams and man-made ditches, the study shows that this can be done
successfully on a national scale. The best model correctly found most ditches and
improved the mapping of natural streams in comparison to topographic maps.
Furthermore, we show that future mapping of natural streams can use our
“uncertainty maps”. These are maps that indicate places where the models are less
certain of a channel presence. This is the first time that streams and ditches have
been separated on maps for an entire country. The results can help improve forest
and water management, guide stream restoration, and support national
environmental reporting. The method can also be used in other countries with high-
resolution LiDAR data and similar forested landscapes.



“Science is not about building a body of known ‘facts’. It is a method for
asking awkward questions and subjecting them to a reality-check, thus
avoiding the human tendency to believe whatever makes us feel good.”

— Terry Pratchett, The Science of Discworld



Popularvetenskaplig sammanfattning

I de boreala skogarna i norr finns ett titt ndtverk av sma vattendrag och konstgjorda
diken. Tillsammans styr de hur vattnet ror sig genom landskapet, transporterar
ndringsdmnen och utgér habitat for manga véxter och djur. Tidigare fordndrade
ménniskor majoriteten av dessa vattendrag for att flotta timmer, griavde diken for att
driinera mark for jordbruk och skogsbruk. Aven om ny dikning i stort har upphort,
drénerar de gamla dikena fortfarande dagens skogar och paverkar vattensystemen.
Dessa sma kanaler dr som landskapets kapilldrer dar marken star i kontakt med
vattnet. Men de flesta sma vattendragen saknas fortfarande pa dagens kartor. De hér
avhandlingen fokuserar pa det problemet genom att skapa en ny metod att kartldgga
sma vattendrag och diken pa nationell skala. Metoden anvander detaljerade hojddata
frén laserskanningar (LiDAR) tillsammans med artificiell intelligens (Al) for att
automatiskt hitta och klassificera vattendrag som béackar och diken. Genom att trédna
Al-modeller att skilja mellan naturliga vattendrag och konstgjorda diken visar
studien att detta kan goéras framgéngsrikt pa nationell nivd. Den bdsta modellen
identifierade majoriteten av alla diken korrekt och forbéttrade kartliggningen av
naturliga vattendrag jamfort med topografiska kartor. Dessutom visar vi att framtida
kartldggning av naturliga vattendrag kan dra nytta av véra “osékerhetskartor”, som
visar var modellerna dr mindre palitlig. Detta ar forsta gangen som vi kan sérskilja
naturliga vattendrag frdn diken p& nationell niva. Resultaten fr&n den hir
avhandlingen kan bidra till battre skogs- och vattenforvaltning, vigleda restaurering
av vattendrag och stodja nationell miljorapportering. Metoden kan dven anvéndas i
andra lander med liknande hogupplost laserdata och skogstickta landskap.
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ARTICLE INFO ABSTRACT

Keywords: Policies focused on waterbody protection and restoration have been suggested to European Union member
Streams countries for some time, but to adopt these policies on a large scale the quality of small water channel maps needs
Ditches . considerable improvement. We developed methods to detect and classify small stream and ditch channels using
E;prRleaml"g airborne laser scanning and deep learning. The research questions covered the influence of the resolution of the

digital elevation model on channel extraction, the efficacy of different terrain indices to identify channels, the
potential advantages of combining indices, and the performance of a U-net model in mapping both ditches and
stream channels. Models trained in finer resolutions were more accurate than models trained with coarser res-
olutions. No single terrain index consistently outperformed all others, but some combinations of indices had
higher MCC values. Natural stream channels were not classified to the same extent as ditches. The model trained
on the 0.5 m resolution had the most balanced performance using a combination of indices trained using the
dataset with both types of channel separately. The deep learning model outperformed traditional mapping
methods for ditches, increasing the recall from less than 10% to over 92%, while the recall for natural channels
was around 71%. However, despite the successful detection of ditches, the models frequently misclassified
streams as ditches. This poses a challenge, as natural channels are protected under land use management
practices, while ditches are not.

Semantic segmentation

1. Introduction

The primary objective of the United Nations Agenda 2030 for Sus-
tainable Development is the protection of the planet from further
environmental degradation (United Nations General Assembly, 2015),
highlighting the importance of protecting and restoring water-related
ecosystems. A similar goal is present in the European Water Frame-
work Directive (where policy changes implemented in 2000 brought an
integrated approach to the management and protection of aquatic en-
vironments) adopted throughout the European Union. Furthermore, a
proposal for new targets of nature restoration is currently being drawn
up by the European Commission, aiming at successful restoration of 20%
of the target area by 2030, and 90% by 2050 (Council of the European
Union, 2023). However, the management strategies for applying these
initiatives differ among countries.

Most countries use different sizes of riparian buffer zones to protect
surface waters during land-use operations, but these policies vary when
it comes to small streams. In Finland, for example, stream channels are
protected through a forest buffer of minimum width (Ring et al., 2018).
In Sweden, the Swedish Forest Act (Skogsstyrelsen, 2013) also pre-
scribes forest water protection through riparian buffers of variable width
(Hasselquist et al., 2020). This is a necessary measure because over 75%
of the total river network is estimated to be small streams (Bishop et al.,
2008), and therefore even small changes in the network can impact
downstream channels dramatically. Even so, the data shows that after
2004 as few as 25% of the small streams in Sweden were protected in
such a manner, and when a buffer is present it usually has a width of 4 +
0.4 m (Kuglerova et al., 2020), despite the recommended 5-30 m width
of no-harvesting zones.

Some laws only address watercourses in general and do not
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differentiate between natural channels and those altered or made by
humans, while other laws go into more depth on different types of wa-
tercourses. For example, according to the Swedish Forestry Act
(September 1, 2022) ditches are divided into two categories: “ditches”
and “protective ditches”. Simple “ditches” are dug for permanent soil
drainage to change the land use of an area. “Protective ditches,” on the
other hand, are temporarily dug to mitigate groundwater level rise
following clear-cutting. Protective ditches must not be cleaned, as they
are temporary, and should not be more than 50 cm deep. No permit is
needed to clean ditches, while digging new ones does requires official
permission (Swedish PEFC, 2023). The idea is that ditches should
gradually fill in with sediments and vegetation, eventually disappearing
with time. The management of ditches can also include dam-
ming/plugging them to restore wetlands (Nieminen et al., 2018).
Because of this variability in the practices which are allowed by law,
knowing if a channel is natural or altered by man determines the best
management choice.

Within the context of environmental impact, forest ditches can be
strong anthropogenic emitters of greenhouse gases (Peacock et al.,
2021b), with methane offsetting the uptake from terrestrial CHy; they
also transport suspended solids, which impacts water quality (Nieminen
et al., 2018). Even though the differences between ditches and small
natural streams are not always clear, factors such as morphology and
hydrology do stress the distinction between channel types. Some of these
attributes can also influence the quantity of methane being emitted
(Peacock et al., 2021a), resulting in an annual flux slightly higher for
ditches than for streams.

There is wide recognition of the importance of hydrological vari-
ability to the ecology of small streams (Huryn and Wallace, 1987; Lanka
et al., 1987; Wohl, 2017), after all, the characteristics of meandering,
pools, and rapids can define habitats (Beschta and Platts, 1986; Wiens,
2002; Martinez et al., 2013), nutrient cycling (Alexander et al., 2007;
Claessens et al., 2010), and water quality (Cox et al., 2023). Yet, the
mapping of small water channels (<6 m wide) on Sweden’s traditional
digital maps was poor: 55% of the natural streams and 91% of ditches
were not detected in the Swedish property map (Flyckt et al., 2022).
Plus, the simplified digitized line from this dataset (Lantmateriet, 2014)
has limited usefulness for research in ecology when working across the
landscape scale with geographic information system methods. Still, the
number of mapped ditches was increased from 9% to 86% by Lidberg
et al. (2023) using deep learning (LeCun et al., 2015) and remote
sensing, turning the once laborious manual task with a substantial in-
vestment of cost and time into an automated process. Many countries
have already been scanned with airborne laser scanning (ALS), and,
using the latest return data, digital elevation models (DEMs) can be
constructed, revealing small-scale channels (Raber et al., 2002).

Deep learning approaches have been used to map stream channels
based on satellite images and Digital Elevation Models (Mazhar et al.,
2022; Fei et al., 2022; Isikdogan et al., 2017). However, the main focus
of these studies has been on larger rivers, while deep learning applica-
tions in small streams is limited. Koski et al. (2023) mapped small
channels but did not separate between ditches and natural streams,
while others have focused only on ditches based on ALS data (Du et al.,
2024; Lidberg et al., 2023), or aerial photos (Robb et al., 2023). Despite
these efforts, a research gap remains for small natural streams — the
headwaters. Headwater streams are like the capillary system in the body
— just as the health of the whole organism depends on a functioning
capillary system, the health of larger streams and rivers depend upon an
intact headwater stream network (Kuglerova et al., 2017), hence there is
a large societal need for improving the mapping of the headwaters.
Traditionally, headwaters are mapped from DEMs by calculating flow
accumulation and applying a threshold to determine where streams
begin (Agren et al., 2015). However, the high natural variability in
stream initiation thresholds makes these networks unreliable (Paul
et al., 2023). Additionally, channel networks derived from flow accu-
mulation are subject to further uncertainties because flow accumulation
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requires extensive preprocessing to of the DEM which introduces more
uncertainties especially at stream/road crossings (Lidberg et al., 2017).
Therefore, the goal of this study was to develop a method for mapping
channels in the landscape without including upstream areas or consid-
ering the presence of water. Instead, the focus was on detecting the
physical structure of the channel, specifically the elongated depression
visible in the DEM.

Building on the successful use of deep learning to map ditches in
Lidberg et al. (2023), this article extends the methodology by incorpo-
rating the digitization of small natural stream channels into a dataset
that was previously limited to ditches and adding one more study area.
Topographic indices derived from ALS data and the manually mapped
channels were used to train a U-net model to detect small-scale channels
(both ditches and natural streams). Here, we explore for the first time if
deep learning can be used to detect small streams from the
high-resolution DEM considering not only the channels’ location, but
also their variable width instead of just buffering them. The following
research questions were answered:

1) How important is the resolution of the DEM for detecting ditches and
natural channels? Here we explore two resolutions: 0.5 m and 1 m.

2) When highlighting the channels using digital terrain indices, is there
a best one? Is the same index best for natural channels and ditches, or
do they differ?

3) When detecting channels, is it better to work with just one terrain
index, or to combine the information from many indices?

4) Can a U-net model be used to detect natural channels as well as
ditches? Is it better to include ditches and natural channels in the
same model, or to make separate models?

2. Methodology

Digital terrain indices were extracted from the DEM obtained from
the high-resolution ALS data. These terrain indices were combined to
form a database of manually mapped water channels, this then being
used to train a deep neural network to detect and classify small-scale
channels.

2.1. Study areas

We used remote sensing data and field data from the 12 regions
described by Lidberg et al. (2023). The original dataset was exclusively
composed of ditches; smaller (<6 m width) natural streams were added
later by Paul et al. (2023). This data were revised and updated by
comparing the location of the channels directly to orthophotos with a
resolution ranging from 0.17 to 0.5 m (Lantmateriet, 2021a) and the
High-Pass Median Filter (HPMF) terrain analysis, increasing the length
of channels to 2235 km of ditches and 315 km of natural streams.

Following Paul et al. (2023), these sites illustrated the diversity of
the country’s landscape properties, with land use mainly represented by
forests covering 86-99% of the area, and agriculture ranging from 0 to
13.2% coverage among sites. Variability in characteristics such as soil
type, tree species, runoff, and topography were considered in the site
selection process. Overall, the Swedish landscape has been heavily
ditched, tripling the originally unaltered channel length density, with
the majority of the channels built being forest ditches. Most of the nat-
ural channel heads can be found in the northern areas, but transition
points (i.e., the connection between a natural channel and an upstream
ditch network) happened more often in the south. Small natural chan-
nels in Sweden are meandering and blend with the surrounding terrain,
as boulders in their course minimize stark contrasts (Fig. 2B). Ditches
are instead straight and smooth-looking, with generally well-defined
borders resulting from the removal of boulders during the digging pro-
cess. Most of the ditches in the dataset were forest ditches (56%), with
road ditches in second (25%), and agricultural ditches last (6%, Paul
et al. (2023)).
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2.2. Training data

2.2.1. Topographic indices

The ALS data (Lantmateriet, 2021b) were collected by an aircraft
flying at a height of 2888-3000 m with a compact laser-based system
onboard (Leica ALS80-HP-8236) generating point clouds with a density
of 1-2 points per square meter. LIDAR Tin Gridding from Whitebox
Tools was used to create DEMs with 0.5 m and 1 m resolutions over the
study areas, totaling 430 km?. We selected seven topographic indices
that could visually highlight small-scale channels present in the DEMs
(Fig. 2) as a proxy for the differences in elevation. Many indices could
have been experimented on, but there is a limitation in the number of
variables that could be used in the study considering the amount of time
and effort involved in calculating new indices and preparing them as
input for training the models. It was also observed that larger moving
windows provided excessive smoothing, blending small channels in the
landscape, while small scales introduced a high amount of noise. This is
why the choice in scale relied on the visual evaluation for the cases
where the size of the moving window was not arbitrarily defined by the
tool in use.

The topographic indices were normalized between zero and one
before being divided into chips of 500 x 500 pixels for input to the deep
learning algorithm (Fig. 1B and C). Whitebox Tools was used to calculate
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all topographic indices, except for the Sky-view Factor, which was ob-
tained using the Relief Visualization Toolbox v. 2.2.0 (Kokalj et al.,
2016).

2.2.2. High-Pass Median Filter

The HPMF (Lindsay, 2016) emphasizes short-range variability, sub-
tracting the pixel value from the median value of the other pixels inside a
window. The window size kernel is user-defined; this study used 11 in
both X and Y directions. The data were normalized by applying the
Min-Max Normalization. Negative values indicate depressions and can
be used to highlight channels, i.e. elongated depressions in the soil. This
index is similar to the topographic position index, which is obtained
through the subtraction of the mean value of the area covered by a
moving window, however, HPMF was chosen due to the previously
successful application in Lidberg et al. (2023), and because the median is
more resistant to extreme values in the data.

2.2.3. Hillshade

The shaded relief (Wilson and Gallant, 2000) makes it possible to
visualize a three-dimensional surface considering its slope and aspect,
with shadows distributed according to the illumination source position
(altitude and azimuth). This study has used the fixed altitude of 30° and
the azimuths 0°, 45°, 90°, and 135°. The values were normalized

1250 2500 m

250 m

Fig. 1. Study areas. (A) 12 regions spread across Sweden where all ditches and streams were manually digitized; (B) Study regions split into 2.5 kmx 2.5 km tiles.
Locations of manually mapped water channels were separated by type, with ditches in orange and natural channels in turquoise, drawn over the hillshaded elevation
model. Each grid cell represents chips with sides of 500 x 500 pixels. (C) An example of a 0.5 m resolution image chip obtained after splitting the tile. These chips are
the images that the deep learning models will use as training data. (For interpretation of the references to color in this figure legend, the reader is referred to the Web

version of this article.)
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Hillshade 0° Hillshade 45°

Fig. 2. Examples of the ground truth and topographic indices. Orange represents ditches and turquoise represents natural streams. Images displayed represent an
area of 250 m x 250 m. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

afterward through their division by the maximum value. The bottom of a
channel would be shaded unless it was hit by sunlight along the direc-
tion of the channel. To address this issue, we included hillshades from
four different angles.

2.2.4. Sky-view factor

This index is defined by the ratio between the radiation received at a
specific grid cell and the one emitted through the whole hemispheric
environment around it (Zaksek et al., 2011). Considering a visual
observation of the channels, the chosen radius was 5 m with 16
directions.

2.2.5. Slope

This topographic index represents the change in elevation between
every pixel in the DEM with a moving window sized 5 x 5 for increased
accuracy and stronger reduction of high-frequency noise (Florinsky,
2016), with the inclination displayed in degrees. To perform the
normalization, all values were divided by the theoretical maximum
value of 90°.

2.2.6. Labels

When the word “channel” is used in this article, it includes both
ditches and natural streams. Using Whitebox Tools, we started by
obtaining the flow accumulation (O’Callaghan and Mark, 1984). First,
we filled the single cell depressions in the DEM (FillDepressions), then
burning streams at roads using data from the Swedish Property map
(Lantmateriet, 2014) to ensure stream continuity across roads (Burn-
StreamsAtRoads). Remaining larger depressions were breached
(BreachDepressionsLeastCost) to keep the flow continuity, using this as
the input to calculate the D8 flow accumulation (D8FlowAccumulation).
Streams were extracted (ExtractStreams) using the lowest stream initia-
tion threshold from the distribution observed for natural channel heads
in Paul et al. (2023): 2 ha.

Following this methodology, the channel heads and connections to
the ditch network were identified, and downstream stream paths
manually marked and edited. Ditches were visually identified from
HPMF and ortophotos, being manually mapped as vector lines by a team
of experts. We have utilized the HPMF values within the channels to give
these lines a variable width, creating structures that more closely
resemble the actual shape of the channels. Based on the method
described in Lidberg et al. (2023), the HPMF analysis had its pixels
reclassified based on the threshold of —0.075 (determined through

visual inspections), receiving the label 0 when they are above it, and 1
when below. A 3 m buffer surrounding the vector lines was generated,
later overlapping the relabeled data and extracting the non-null pixels
within it. Finally, we applied the majority filter to these selected pixels
to remove strays, preserving the continuity of the channels (Fig. 2A).

Eight different datasets were created (Fig. 3), initially separated by
how the channels were represented:

e Channels: all channels, merged to a combined dataset with no sep-
aration of ditches and streams. Two class labels; channel and back-
ground (Fig. 3A and E)

e Ditches: a separate dataset of only ditches. Two class labels; ditch
and background (Fig. 3B and F).

o Streams: a separate dataset of only streams. Two class labels; streams
and background (Fig. 3C and G)

o Ditches&Streams: a combined dataset with three class labels;
ditches, streams, and background (Fig. 3D and H)

Each type of representation was calculated for both 0.5 m and 1 m
resolution to analyze how this impacted the results; each one is noted as
an added “0.5” or “1” the dataset names.

The datasets exhibited significant class imbalance. To compensate
for that, only the chips containing more than 250 pixels with the positive
label were selected for the analysis, resulting in 4615 chips in total.
From these, 1.1% of the total pixels were ditches and 0.1% were streams.
Not all chips contained both types of channels, so datasets with only
streams or ditches had fewer chips (Busarello et al., 2024).

2.3. Semantic segmentation

The convolutional neural network (CNN) U-net (Ronneberger et al.,
2015) (Fig. 4) was chosen for having successful real-world applications
in different scientific fields such as medicine (Siddique et al., 2021),
geology (Gao et al., 2022), and forestry (Korznikov et al., 2021), being
both robust and versatile. It also has the advantage of concatenating the
feature maps of the downsampling path to the upsampling path, pre-
venting the loss of information during downsampling. A limitation of the
study was the amount of chips available in the datasets: CNN models
usually require thousands of training data examples, and for this reason,
acquiring training data is the most challenging part of the process. The
use of data augmentation (Tanner and Wong, 1987) increased the
number and diversity of training images by adding slightly different
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Fig. 3. Training data chip examples of both resolutions. Top row represents 0.5 m, and bottom row shows 1 m resolution. Chip size is 250 m x 250 m for 0.5 m
resolution and 500 m x 500 m for 1 m resolution. Yellow lines in dataset Channels represent channels, without distinction between stream channels and ditch
channels. Ditch channels are represented in orange in the datasets Ditches and Ditches&Streams. Turquoise represents stream channels in datasets Streams and
Ditches&Streams. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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=) Transposed Conv
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Fig. 4. U-net architecture. The left side shows the encoding/down-sampling process, where the main features are extracted while the input is compacted. On the
right side is the decoding/up-sampling path, which upscales the features until it reaches the same size as the input.

copies of them to the dataset, obtained through transformations. The
geometric transformations used in this work were the random rotation
and random flips (horizontal and vertical). Random rotation rotated
images in a random angle within the specified range of 0°-360°, helping
improve the model’s generalization by increasing the pattern recogni-
tion regardless of the object orientation in the image. The horizontal
random flipping rotated the image along its vertical axis, swapping left
and right, while the vertical random flipping flipped across the hori-
zontal axis, swapping the top and bottom of the image instead.
Considering that the proportion between the classes of pixels showed
considerable imbalance, median frequency balancing (Eigen and Fergus,
2015) was used to establish the class weights used for training. Adam
(Kingma and Ba, 2015) was used as the optimization algorithm, and the
chosen batch size was 16. In the beginning, the topographical indices
were used individually as input to train the first models, while the last
model combines all indices, resulting in 64 different models. Later, all
possible combinations were used as training data for the dataset
Ditches&Streams to determine if combining indices is a better option

than using them individually.

The general architecture of U-net incorporates two paths: encoding
and decoding. During the encoding phase, hierarchical features are
extracted by a combination of convolutions and the pooling of feature
maps, down-sampling the data resulting in a compact representation of
the input, with an increased number of channels. Subsequently, in the
decoding phase, transposed convolutions are applied to upscale the
spatial dimension until the output matches the input original size. After
each transposed convolution, a skip connection happens between cor-
responding layers in both paths. This allows the network to keep fine-
grained details in the up-sampling process. The final convolution re-
duces the number of channels, producing the final segmentation map. In
it, each pixel is assigned a probability of belonging to a class.

The processing time for calculating the topographic indices was
tracked, as well as the inference time, being further extrapolated for the
whole area of Sweden to estimate how long it would take to detect the
location of channels throughout the entire country. Training and infer-
ence were done using an NVIDIA RTX A6000 GPU and AMD Ryzen
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Threadripper 3990X Processor.
2.4. Evaluation

The data were split into two parts, 80% for training and 20% to
evaluate the performance of all models, comparing the ground truth
pixels with the detected pixels. Precision, Recall, F-score, and Matthews
correlation coefficient (MCC; Matthews, 1975) were the key metrics
used to evaluate the models, along with information retrieval tables.
Precision is the metric that accounts for the accuracy of positive pre-
dictions from a model, being affected by the number of false positives. It
assesses how much of the detection and classification made by the model
was right. Recall, on the other hand, accounts for how much of the
ground truth was correctly detected. F-score is the harmonic average of
precision and recall, and MCC is a special case of the phi coefficient. The
F-score was calculated to easily compare the performance of this study
with other publications, but MCC reports the overall quality of the
classification performed by the model, being more reliable for imbal-
anced datasets (Chicco and Jurman, 2020). The Precision-Recall curves
were plotted to display the tradeoff between recall and precision in the
highest-ranking models. In addition to these metrics, we also used
models with the highest MCC values from each dataset to illustrate the
location of detected channels. For the final evaluation, the inference of
the best-performing models was compared to the ground truth in order
to account for how much of each type of channel was detected by them.

2.5. Benchmark

We have used the traditional flow accumulation method of the 0.5m
resolution as a benchmark to compare with our deep learning approach
and our manually labeled dataset. The process to obtain the flow accu-
mulation has been described in section 2.2.2, but now we have included
the other two stream initiation thresholds of 6 ha and 10 ha, also
observed in Paul et al. (2023). To make the comparison fair, the
extracted streams went through the same described process to create the
labels with natural contours: buffering, multiplying the buffer with the
reclassified HPMF data, majority filtering, and combination with ras-
terlines. Additionally, the Swedish property map (1:12 500) was also
used for comparison. It was rasterized (VectorLinesToRaster) and un-
derwent the same process described in section 2.2 to create natural
contours. All of this data was compared pixel by pixel to the labeled
dataset, counting how many pixels labeled as ditch or natural stream
were identified as channel by the flow accumulation.

Furthermore, the inference results from the deep learning model
from Lidberg et al. (2023) was also compared to our ground truth data.
Despite their model being trained exclusively on ditches, it indirectly
detected some natural channels, allowing for a relevant comparison. To
ensure we did not evaluate on data that the previous model might have
been trained on, we used data from the newly added study site for this
process, as it was not included in the previous model’s training data.

3. Results and discussion

3.1. Importance of DEM scale for the modeling of channels using deep
learning

The precision and recall values were higher for datasets with a 0.5 m
resolution than for the 1 m counterpart. This was the case for all datasets
and topographic indices (Fig. 5). Despite this, some models displayed
higher values at either metric individually, and some overlap between
the resolutions has been observed. This is partially in line with previous
research on mapping terrain features with deep learning and DEM data,
where higher resolution had better results (Chowdhuri et al., 2021) but
also showed that the difference in performance between resolutions was
not very strong (Robson et al., 2020).

The recall had different values for all datasets at 1 m resolution, with
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Fig. 5. Precision by Recall plot of the trained models, grouped by resolution
and channel type. Black represents the 0.5 m resolution, while the 1 m reso-
lution is represented by the white color. When referring to dataset Ditches&-
Streams0.5, the channel types were analyzed separately. The ‘“Ditches”
identified in the legend refers to this class in dataset Ditches and Ditches&-
Streams, while “Streams” addresses this class in dataset Streams and Ditch-
es&Streams. “Channels” describes the models trained with the dataset
Channels, combining ditch and stream channels in the same class.

small differences between ditches and channels. The precision was
similar for either resolution, with a variation of around 10%. We can
assume that the performance of the models with 1 m resolution was
impacted by the topographic index used in the training process. This
impact was also observed in the 0.5 m resolution but to a lesser extent,
which could indicate that models trained on a higher resolution were
stable. The stability was not present on channels labeled as streams: in
both scales and with any dataset, as seen in the black crosses in Fig. 5,
the recall values were different while the precision was similar, not
going over 25%.

The estimated processing time required to both extract the topo-
graphical indices and apply the model differed substantially between the
DEM resolutions (Table 1). The Sky-view Factor in particular was
computationally demanding compared to the other topographical
indices, regardless of resolution. This happens because the source-code
for the RVT library was written in python, which is an interpreted lan-
guage. The tools from WBT, on the other hand, were coded in Rust - a
compiled language. Compiled programs are faster than those that have
to be interpreted (Kwame et al., 2017), and one way to have similar
processing times would be to have all the processing steps written in a
compiled language. Furthermore, parallelizing the codes for execution
on the GPU could potentially mean a considerable speed improvement.
The inference time of the deep learning model was about the same for

Table 1

Time spent to calculate each topographic index individually and in combina-
tions, and the time spent to apply a deep learning model on new data (inference):
both in two resolutions and measured in seconds by square kilometers. It was
also estimated how long it would take (in days) to calculate the topographic
index(es) and apply the model to the processed data for the whole surface area of
Sweden (447 425 km?). Hillshade had the same processing time regardless of the
angle.

Tc hic Index P ing time time Estimated time for
(s/km?) (s/km?) Sweden (days)
05m 1m 05m 1m 05m 1m

HPMF 0.30 0.09 6.71 1.68 36 9

Hillshade 0.25 0.07 6.69 1.67 36 9

Slope 0.27 0.08 6.69 1.67 36 9

Sky-view Factor 3.01 0.68 6.64 1.67 50 12

Combination (all) 4.58 113 6.81 1.70 59 15
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models trained with one index or several combined.

As models trained on the 0.5 m resolution datasets had the highest
recall, the rest of this work focused on the models trained on topo-
graphical indices with a 0.5 m resolution. The analyses for 1 m resolu-
tion are in Appendices A.1, A.2, A.3, and A.4.

3.2. Impact of different terrain indices for detecting ditch and stream
channels

We did not find a particular topographical index that consistently
outperformed the others in this study. Models trained on Hillshades had
the highest recall, while models trained on HPMF and Hillshade 0° had
the highest precision using the datasets Channels0.5 (Fig. 6A) and
Ditches0.5 (Fig. 6B). The model trained on the dataset Streams0.5 had
the highest recall when trained on a combination of all topographical
indices (Fig. 6C). That model had a recall of 70%, but the precision was
still low at 20%. The highest recall for ditches with dataset Ditches&-
Streams0.5 was from the combination of all indices with 92% and 7% for
streams using Hillshade 90° (Fig. 6D). The precision for the model
trained on this dataset was highest with the HPMF for ditches, and Slope
for streams. We believe that MCC gives the most balanced measure of the
overall model performance, but there was no clear winner among
models trained on different digital terrain indices (Table 2).

Indices not used in our work were listed as the most effective ones in
studies focused on channels and fluvial features using the DEM (Du
et al., 2019; Koski et al., 2023), or topographic positive openness for
ditches (Du et al., 2024). Koski et al. (2023) detected channels using
deep learning and several terrain indices besides the DEM, finding recall
and precision values ranging 16-77% and 43-86%, respectively, while
the F-score varied 0.23-0.81. The best terrain indices in our study for
this type of dataset scored higher recall (83-93%), but lower precision
(range 42-52%, Fig. 6A) and lower F-score (0.54-0.63, Table 3). The
reasons for the differences are analyzed in section 3.4. Similarly, Du
et al. (2024) detected ditches with deep learning, combining topo-
graphic and other features. Recall and precision were in the range of
73-76% and 63-69%, respectively, and F-score 0.69-0.71. Meanwhile,
our similar dataset had higher recall (72-92%), lower precision 42-52%
(Fig. 6B), and lower F-score 0.57-0.66 (Table 3). This difference could
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be because of the U.S. study having a higher resolution (0.3 m against
our 0.5 m). Lidberg et al. (2023), however, obtained a higher MCC value
than this study using the HPMF (0.78), which could be due to the
different deep learning architecture.

The variation in the performance of the hillshade indices could be
explained by the variation in channel orientation. In Fig. 2C, for
example, part of the stream and the vertical ditch do not show because
they were parallel to 0°, while the channels oriented perpendicularly
were highlighted. Therefore, no matter the amount of data acquired and
data augmentation performed, when using an index there is a chance
that the channels might not be visible at all. This further motivated our
choice to combining them.

3.3. Combining topographic indices

Combining all of the topographic indices did not result in a higher
MCC compared to using them individually as input training data for
most datasets, except Streams0.5 (Table 2). This dataset (Fig. 6C) and
Ditches&Streams0.5 (Fig. 6D) had higher recall values.

However, when all of the possible combinations between the indices
with dataset Ditches&Streams0.5 were analyzed (Appendix B) we
observed that, for ditches, the HPMF was surpassed by the combination
of Sky-view Factor + Slope in the ditches class (MCC = 0.69 (Table 3)
against 0.74 (Fig. 7)) and the streams class (MCC = 0.09 against 0.31).
Furthermore, for streams the Slope was surpassed by the combination of
Hillshade 45° + Hillshade 90° + Hillshade 135°, not in the ditch class
(MCC = 0.63 against 0.63) but in the stream class (MCC = 0.28 against
0.36). These results are in line with Kazimi et al. (2020) and Du et al.
(2019), where a combination outperformed the single index, even
though both studies used a coarser resolution (50 m) to detect fluvial
structures (among others). We believe that the resolution did not in-
fluence this difference between combining indices or not, since these
results also matched the coarser one analyzed by us (Appendix A.4).

Additionally to the observed trend that no single index was better
than a combination of indices, we noted that the best performing com-
binations are those that combined two or three indices (Fig. 7). This
appears reasonable since each index extracted different information
from the DEM and as such may not contain all necessary information.
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Fig. 6. Precision by Recall plots separated by dataset with 0.5 m resolution. Each color represents a topographic index, and each symbol represents a channel type.
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Table 2

Computers and Geosciences 196 (2025) 105875

MCC values for all datasets with the 0.5 m resolution. The terrain indices with the highest MCC are highlighted in bold.

Topographic Indices Channels0.5 Ditches0.5 Streams0.5 Ditches&Streams0.5 (ditches) Ditches&Streams0.5 (streams)
Combination 0.65 0.61 0.32 0.64 0.12
Hillshade 0° 0.63 0.68 0.31 0.57 0.11
Hillshade 45° 0.59 0.60 0.28 0.60 0.27
Hillshade 90° 0.64 0.69 0.30 0.65 0.22
Hillshade 135° 0.60 0.63 0.26 0.59 0.25
HPMF 0.67 0.67 0.25 0.69 0.09
Slope 0.64 0.68 0.13 0.63 0.28
Sky-view Factor 0.66 0.63 0.19 0.63 0.17

Table 3

Evaluation metrics for each model, dataset, and its highest-performing topographic index. The recall, precision, F-score, and MCC values are also presented.
Model TP FP TN FN Recall Precision F-score MCC
Channels0.5 High-Pass Median Filter 2395624 2028771 224358343 467262 83.7% 54.1% 0.66 0.67
Ditches0.5 Hillshade 90° 2396057 2282997 203616321 204625 92.1% 51.2% 0.66 0.69
Streams0.5 Combination 185753 1040722 54697074 76451 70.8% 15.1% 0.25 0.32
Ditches&Streams0.5 High-Pass Median Filter (ditches) 2170656 1597868 224812682 430026 83.4% 57.6% 0.68 0.69
Ditches&Streams0.5 High-Pass Median Filter (streams) 18318 130158 226965020 243886 6.9% 12.3% 0.12 0.09
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Fig. 7. Precision and Recall plots for all of the possible combinations of
topographic indices. The color indicates the number of combined indices, and
the shape represents the type of channel.

For example, ditches running from north to south were difficult to see in
Hillshade 0° (Fig. 2C). However, adding indices to the considered
combination, which introduce only slight variations of the information
already provided by the considered indices, harmed performance, since
it made the learning problem more difficult. This issue has been
observed by others, for example by Yang et al. (2023) and Koski et al.
(2023), who trained models directly on the DEM. These models per-
formed similar or better than models trained on the DEM combined with
indices derived from it, since all required information was already
included in the DEM. Still, we argue that it is reasonable to assume that a
model trained on topographic indices can generalize better due to the
more uniform representation of the relevant topographic features.
Processing time could affect the decision to use multiple topo-
graphical indices, considering that it can increase greatly with a higher
resolution. It seems that combining multiple topographical indices
derived from the same LiDAR data could be beneficial, and so, including
aerial photographs in the topographical data is something that might be
worth exploring. Robb et al. (2023) obtained a higher F-score than our
study (0.79 against 0.66) using orthophotos with a 0.25 m resolution to
detect ditches, but this was not observed by Koski et al. (2023), where
combining the orthophotos had the worst performance detecting chan-
nels. The aerial imagery data used by the Finnish study had a coarser
resolution (0.5 m; NLS (2023)) which could be creating this difference.
Koski et al. (2023) also points out that the extent of tree coverage

hindered the performance of this input data to some extent, something
that seems not to have happened in the UK publication, judging by the
fact that the study area was less forested.

3.4. Evaluating model performance with different datasets

The models with the highest MCC values were selected for further
evaluation under section 3.4. By “datasets” we mean if the model was
trained to identify channels, streams, and/or ditches. The models
trained with dataset Ditches0.5 with the highest MCC had a recall of
92.1%, while models trained on the dataset Channels0.5 had a recall of
83.7% (Table 3).). The same observation was made in the Precision-
Recall curves, with AP = 0.76 for Channels0.5 (Fig. 8A) versus AP =
0.82 for Ditches0.5 (Fig. 8B).A Finnish dataset similar to Channels0.5
was used by Koski et al. (2023), with lower recall values (77.3%) but
notably greater precision (85.6% against our 54%, Table 3). Starting in
the 1950s, the ditching process in peatlands that was conducted in
Finland altered the shape of most small natural channels (Muotka et al.,
2002), with a low number of unaltered small streams left. This could
mean that the uncertainty brought in by natural channels was smaller, as
unaltered streams might be rarer in Finland, resulting in a higher pre-
cision. This could be an indication that when streams and ditches had
the same label, uncertainty was introduced in the training process,
blurring the detection and classification of channels. With the streams
labeled as background, the separation became clearer and more chan-
nels were detected (despite the number of false positives also
increasing).

The precision-recall curves strengthen the observations from Table 3.
The average precision values reported were higher than the ones seen in
the table because this metric is an approximation of the area under the
precision-recall curve (Aslam et al., 2005), i.e., a summary of the
precision-recall performance across all thresholds. However, we could
still see similarities in the overall poor performance of the stream class in
the Streams0.5 dataset (AP = 0.22, Fig. 8C), Ditches&Streams0.5
trained with HPMF (AP = 0.06, Fig. 8D), and the improvement brought
to it by combining Sky-View Factor and Slope (AP = 0.28, Fig. 8E).
Overall, the ditch label performed better across all datasets, showing
that whichever high-ranking model was chosen, their detection would
be similar. The differences, though, could be seen in the inferences
(Fig. 9), where the interruption in channels happened more often within
Channels0.5 (Fig. 9B) than Ditches0.5 (Fig. 9C).

For the model where the channels were trained with three labels
(ditches, streams, and background (Fig. 3D)) we evaluated the ditches
and streams separately. Ditch channels were correctly classified
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Fig. 8. Precision-Recall curves of the highest-ranking trained models and their average precision (AP).

frequently, which could mean that these channels had morphological
attributes that made them more easily recognized by the neural
network, while streams did not. Comparing this dataset (3-class) to
dataset Ditches0.5 (binary), the recall was lower (83.4% against 92.1%),
a result similar to Phinzi et al. (2020) when comparing the performance
of a binary and a multiclass dataset to detect gullies with machine
learning.

Models trained with the binary datasets had false positives more
often, meaning that labeling streams and ditches separately in the
training process could have helped distinguish both from the back-
ground data. A visual analysis of the detection (Fig. 9E) demonstrates
that the models were not able to separate ditches and streams, but the
number of false positives for the stream channels and ditches was low
(0.06% and 0.7%, respectively; Table 3). For the dataset Ditches0.5
(Fig. 9C), stream channels were mainly misclassified as ditches despite
being detected, while in the dataset Streams0.5 (Fig. 9D) the opposite
happened, with frequent channel interruptions. This discontinuity was
also observed in dataset Channels0.5 (Fig. 9B).

The channel interruptions were observed in small sections where the

width was narrower than the average 3 m. In the ground truth data,
these gaps were absent because the original polyline shapefile was
converted to raster format and merged with HPMF-extracted values.
This provided channel continuity, but limited their width to a single
pixel. Gaps in the channel network are not unusual due to not only
natural processes like sedimentation, falling trees and logs, but also to
anthropogenic modifications such as culverts, bridges, road embank-
ments (Lindsay and Dhun, 2015), which would explain why parts of the
channel would be absent in ground truth. With that, they would not be
detected in the inference either.

The highest-ranking models (Table 3) detected channels but were not
as effective when classifying them, so we have calculated how much of
each channel type was detected by each model regardless of the model’s
classification (Table 4). For the binary datasets, “detection” was the
same as recall (TP/TP + FN), while “classification” was the same as
precision (TP/TP + FP). However, we also used the multilabel ground
truth (with pixels labeled 0, 1, or 2) to evaluate the performance of the
models on channels, calculating how much of each channel type was
detected. For the multilabel dataset (Ditches&Streams0.5), “detection”
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Fig. 9. Detected channels by the highest performing model from every dataset
using the 0.5 m resolution, plotted over the hillshade. The colors represent
channel type: ditch channels are orange, stream channels are turquoise, and
combined channels are yellow. (For interpretation of the references to color in
this figure legend, the reader is referred to the Web version of this article.)

Table 4

Amount of channel pixels detected by each model, separated by channel type.
The last two columns are only relevant to the multilabel dataset and describe the
quantity of detected channels that were correctly classified by the model as their
ground truth channel type.

Dataset used to train Detected Detected Classifiedas  Classified as
the model ditches streams ditches streams
Channels0.5 85.9% 61.4% - -
Ditches0.5 92.1% 55.9% - -
Streams0.5 81.5% 70.8% - -
Ditches&Streams0.5 83.8% 54.9% 99.5% 12.7%

meant not being predicted as background (label 0). At the same time,
“classification” verified how many of the channel type predictions were
correct, i.e., ditch pixels predicted to be ditches and stream pixels pre-
dicted to be streams. This was done because, despite a pixel being
classified incorrectly as either ditch or stream, as long as it was not
classified as “background” (label 0), it was still counted as a channel per
the definition we use in this work: the combination of ditches and
streams.

When both channel types had the same label (Channels0.5), the
detection was higher than when they were labeled separately in the
same dataset (Ditches&Streams0.5). Models with only one channel type
(Ditches0.5 and Streams0.5) detected the other class, and in the case of
Streams0.5 more ditches were detected than stream channels. Streams
can be characterized by relative depth, continuity, and high sinuosity.
Ditches are also characterized by relative depth and continuity, and low
sinuosity (more straight). However, not all streams are meandering and
not all ditches are straight. These similarities make it challenging to
distinguish between both channel types, while the straight aspect tends
to simplify the recognition of ditches. Furthermore, we employed me-
dian frequency balancing (Eigen and Fergus, 2015), which assigns larger
class weights to less frequent classes, leading to larger errors when pixels
of these classes are mislabeled. With this in mind, we observed how
different labeling strategies affect the tradeoff different models made
between precision and recall (Fig. 8).

In the three binary classification datasets (Channels0.5, Ditches05,
and Streams0.5), misclassifying background as the respective positive
class is comparatively inexpensive, due to the small class weight for the
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background class. Thus, the models favored higher recall despite an
increase in false positives. In the 3-class dataset (Ditches&Streams0.5),
labeling uncertain pixels as a minority class was costly due to the large
class weights assigned to the ditch and the stream class. Mislabeling
stream pixels as ditches incurred a significant penalty, while correctly
identifying a small number of additional ditch pixels had limited bene-
fits given their rarity. Conversely, background pixels offered the lowest
relative cost, as they outnumbered the other two classes significantly.
This led to higher precision but lower recall for ditches and streams.
Additionally, the different recall values for ditches and streams in the
three binary classification datasets were presumably due to the difficulty
of identifying streams compared to ditches. When only streams were
labeled (Stream0.5), the model needed to account for the meandering,
sometimes nearly interrupted pattern of streams (Fig. 9A), which
appeared to push the model toward recognizing other features in the
landscape which have a similar pattern (Fig. 9D). This did not happen
when only ditches were labeled (Fig. 9C), presumably because the model
exploits the linear aspect of ditches, which allowed it to ignore other
landscape features. When ditches and streams were labeled as channels
(Channels0.5), the model needed to find a tradeoff between only
focusing on the linear aspect, to allow it to find more streams than the
ditch model, and recognizing too many landscape features, to achieve a
better precision than the stream model. It appears to find this tradeoff by
detecting more meandering interrupted features of the landscape as
channels, while labeling more uncertain pixels as background, leading
to more interrupted ditches (Fig. 9B).

Furthermore, because Ditches&Streams0.5 was a multilabel dataset
we could verify how much of one label is classified as the other. In this
case, from the number of ditches detected (83.8%), 99.5% were ground
truth ditches. Meanwhile, only 12.7% of the streams detected by the
model (54.9%) were correctly classified as streams. The difference in
performance between stream and ditch channels in this dataset could be
partially explained by the imbalance in the datasets. While the number
of pixels with ditch labels was around 1.11% of the data, the stream
pixels were underrepresented, with 0.01%. Contrasting class prior
probabilities is a common occurrence in real-world data, and some
techniques could be used to overcome it (Kotsiantis et al., 2006). In this
work, the use of median frequency balancing (Eigen and Fergus, 2015)
was motivated by its successful application in other studies such as Xu
et al. (2022) and Kampffmeyer et al. (2016). However, despite the
positive impact it had on the ditch class, an increase in performance of
the stream class was not observed to the same extent. This represents a
model limitation because the incorrect classification of streams as
ditches is a regular occurrence. Adding more training data containing
small natural streams would be an option to try to reduce the data
imbalance, while an alternative would have been to perform a
chip-based sampling, choosing chips that have more stream than ditch
pixels in it. This would require further manual labor, though, where
choices to reduce the costs of data acquisition could be explored, such as
the use of semi-automated methods for labeling (Desmond et al., 2021)
and crowdsourcing, despite the limitations that may arise regarding
those who are not domain-specific experts (Clough et al., 2013).

3.5. Comparison to the benchmark

Our model (Streams0.5) had a recall of 70.8% of stream pixels, while
the flow accumulation had the highest recall rate of stream pixels for 2
ha and 6 ha of initiation threshold (Table 5). 76.0% of the natural stream
network was detected by the flow accumulation of 2 ha of the catchment
area, 71.3% by 6 ha, and 70.2% by 10 ha. The Swedish Property map
had a recall of 27.5% of pixels from the same channel type, which could
be explained by the fact that the stream headwaters have been digitized
from grainy black-and-white orthophotos in this data, being often
obscured by canopy cover, which impacted its performance. Meanwhile,
Lidberg et al. (2023) had an indirect recall (i.e., how much of the label
“stream” was detected despite the model being trained with only
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Table 5

Comparison between the recall performance of different methods of channel
detection separated by type of channel pixels. “Recall of ditch pixels” refers to
how many ditch pixels could be detected when compared to the ground truth.
“Recall of stream pixels” refers to how many stream pixels were detected. All
methods were evaluated on the same study areas, except Lidberg et al. (2023),
which was evaluated on the study area that was not included in its training data.
The MCC values listed were calculated with only the streams as the positive class
to make a fair comparison between the methods.

Method Recall of Recall of MCC of MCC of
ditch pixels ~ stream ditches natural
pixels streams
Swedish property 8.1% 27.5% 0.16 0.28
map
Flow accumulation 33.8% 76.0% 0.32 0.21
(2 ha)
Flow accumulation 21.5% 71.3% 0.26 0.26
(6 ha)
Flow accumulation 17.3% 70.2% 0.24 0.29
(10 ha)
Deep learning ( 82.1% 25.7% 0.63 0.09
Lidberg et al.,
2023)
Deep learning 92.1% 55.9% 0.68 0.29
(Ditches0.5)
Deep learning 81.5% 70.8% 0.59 0.32

(Streams0.5)

ditches) of 16.9%.

For ditches, our model Ditches0.5 had the highest recall: 92.1%
against the reported 86.0% of ditch pixels from Lidberg et al. (2023);
33.8% (2 ha), 21.5% (6 ha), and 17.3% (10 ha) from the flow accu-
mulation; and 27.5% from the Swedish property map. We believe that
the differences between our deep learning model and the one from
Lidberg et al. (2023), for either channel type, comes from the resolution:
their model used 1 m, whereas our data was at a finer 0.5 m one. The
lower recall rates of ditch pixels from the flow accumulation and
Swedish property map could be explained by the absence of the ditch
network, reported to be 91% missing from Swedish maps (Flyckt et al.,
2022) before the use of deep learning.

Despite having a high recall rate for stream pixels, the MCC values
had a low performance in both the baseline data and deep learning
models, showing that there could be a bias towards finding positives at
the expense of accuracy. In conclusion, our deep learning-based method
for detecting channels outperformed traditional methods regarding
ditches, where the recall reached 92.1%, but did not outperform the
detection of natural streams. However, while one might argue that
missing 29.2% of headwaters still requires further improvement, these
results demonstrate that deep learning holds significant promise for
improving automatic headwater mapping.

3.6. Limitations and future research

We believe that more studies are needed to improve the performance
of class separation. Extracting additional features to the channels and
training a separate model with them might improve the classification,
especially with attributes related to drainage. The use of hydrological
features in the future might answer whether the channel contains water
or not and improve the network connectivity, avoiding the interruption
of channels in the inference (Fig. 9). However, defining the banks of low
relief channels can be particularly challenging if there are wetlands
along the river course (Wohl, 2017), something that was observed in the
study areas, causing the interruption of visible channels in the HPMF.
Adding future information about culverts (Lidberg, 2025) and bridges
might impact the inference connectivity as well. To deal with these
occurrences, traditional topographic modeling could be applied, and
with techniques such as burning and breaching, it might be possible to
create the missing connectivity in the ground truth.
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The dense canopy cover could have impacted the classification of
small streams, potentially affecting the comparison of resolution per-
formance too. The number of laser points is directly related to the res-
olution of the calculated DEM, however, as the canopy coverage
becomes more dense in forested areas, the number of laser points that
are able to penetrate it decreases (Chasmer et al., 2004). This could
result in wrong terrain elevation estimates for densely covered areas,
lowering the performance of the classification of small natural streams.
With a higher amount of training data, it would be possible to separate
the forested areas from the open ones to train the models, evaluating
how much the tree tops were impacting the resolution performance.
However, doing so with these datasets would result in a lower perfor-
mance overall.

At the same time, while adding more data for this type of channel
might seem like a solution, Yang et al. (2022) showed that this might not
necessarily improve the models. Not only that, but the most
time-consuming and expensive part of training a model with machine
learning is acquiring the ground truth data, which in this study is due to
the manual labeling and classification of channels relying on the terrain
data and ortophotos. However, in dense vegetation covered sites, the
ortophotos were not helpful, requiring an expert to visit the location and
evaluate the channel type, which in turn increased the costs and time of
the process. Despite these difficulties, the inclusion of aerial photo-
graphs and other data sources combined with ALS might be beneficial to
the models, adding new characteristics to the channels.

Forwarding ruts were not observed in our dataset, but we acknowl-
edge that this could be a cause for false positives. Some publications
have focused on their identification using image data from drones
(Bhatnagar et al., 2022) or conventional cameras (Pierzchata et al.,
2016) unlike our study, which was based on the DEM. Another issue is
that the vegetation can hinder the visual identification of these struc-
tures, making it hard to remove them from the data.

3.7. Water channel management and policies

Knowing the ambitious scope of the suggested actions by Agenda
(2030) regarding water ecosystems, the management of both types of
channels needs to be addressed. The measures allowed depend on the
type of channel: riparian buffers are prescribed around streams, while
ditch channels can be cleaned without permits (Swedish PEFC, 2023).
Most ditches were detected in this study; however, streams were often
misclassified as ditches. This is a cause for concern as streams have
stronger protection policies than ditches during forest management. For
example, crossing streams with heavy forest machinery should be
avoided according to best management practices (Skogsstyrelsen, 2016)
to avoid disturbing soils near and in the stream; such disturbance causes
downstream sedimentation (Bishop et al., 2009). Meanwhile, ditches are
not protected, and the full length of the ditch can be dug out and
cleaned, also causing downstream sedimentation (Bishop et al., 2009);
management procedures applied on natural channels would negatively
change their characteristics, such as flow patterns and retention po-
tential of detritus input (Muotka et al., 2002). Therefore, streams mis-
classified as ditches on maps could lead to the deterioration of both local
and downstream environments if these maps were unquestioningly
trusted by practitioners.

We suggest caution then when implementing models trained on just
ditches: our model trained on this dataset misclassified 50% of the
stream channels as ditch channels. This advice also concerns the ditch
map developed by Lidberg et al. (2023). We are confident that further
studies on how to separate ditches and streams on maps are needed.

A restoration process is currently underway to turn some of the
Finnish channelized streams back to their natural status, thus improving
sport fisheries (Erkinaro et al., 2011), while demonstration restorations
have also been done in a number of Swedish rivers (Gardestrom et al.,
2013). However, studies focused on the restoration of small stream
channels (<6 m) of the sort that we investigated are still missing. A
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better classification of natural streams can benefit these studies and
practices, further helping us to reach the water goals set by the Agenda
2030.
4. Conclusion

With this work, we have identified several key findings:
1) Resolution impact: The 0.5 m resolution significantly improved the
detection of both ditches and natural stream channels, leading to
higher overall performance. However, the finer resolution also
required more computing power for processing the training data,
training and testing the model, and running inference. highlighting
the need for parallelizing the code and executing it on the GPU.
Topographic Index Performance: The highest-scoring topographic
index varied depending on the dataset. The High-Pass Median Filter
performed best for Channels0.5 and Ditches&Streams0.5 (ditch
label), while the Hillshade 90° was the top-ranking for Ditches0.5.
For Streams0.5, Hillshade 0° ranked higher.
Combining indices: Using a combination of indices resulted in higher
values of MCC than single indices, with the combination of Sky-view
Factor and Slope having the highest value for the stream label.
U-net performance: Our deep learning model Ditches0.5 was able to
detect ditches better than any previous method (Table 5). In com-
parison with traditional mapping methods, the detection for ditches
increased from less than 40% to over 92%, while Streams0.5 could
map 70.8% of stream pixels.

2

-

3

o

4)

Hence, our study shows great potential for using deep learning for
mapping small headwaters, whether natural or man-made. However,
the detection of natural streams still needs improving as close to 30% of
them are still missing on the resulting maps. Future research should
focus on identifying shared morphological features between ditch and
stream channels, exploring methods to reduce class imbalance, and
incorporating additional data such as information on soils, catchment
area, and channel morphology. Improving automatic channel detection
and classification of natural and man-made channels can provide valu-
able support for future improved management decisions for surface
waters and optimize resource allocation for landscape planning.
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ARTICLE INFO ABSTRACT

Dataset link: Uncertainty Quantification for LiD
AR-based Maps of Ditches and Natural Streams
(Original data), Automatic Detection of Ditches
and Natural Streams from Digital Elevation Mo
dels Using Deep Learning (Reference data)

This article compares novel and existing uncertainty quantification approaches for semantic segmentation used
in remote sensing applications. We compare the probability estimates produced by a neural network with
Monte Carlo dropout-based approaches, including predictive entropy and mutual information, and conformal
prediction-based approaches, including feature conformal prediction (FCP) and a novel approach based on
conformal regression. The chosen task focuses on identifying ditches and natural streams based on LiDAR
derived digital elevation models. We found that FCP’s uncertainty estimates aligned best with the neural
network’s prediction performance, leading to the lowest Area Under the Sparsification Error curve of 0.09.
For finding misclassified instances, the network probability was most suitable, requiring a correction of only
3% of the test instances to achieve a Matthews Correlation Coefficient (MCC) of 0.95. Conformal regression
produced the best confident maps, which, at 90% confidence, covered 60% of the area and achieved an MCC
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of 0.82.

1. Introduction

Having accurate maps of a landscape is crucial for supporting
informed decisions in various applications, including sustainable land-
use management (Pagella and Sinclair, 2014). Creating large-scale
maps, such as those covering an entire country, is a labor-intensive
process that requires significant human effort. Consequently, the au-
tomated analysis of remote sensing data has become a common solu-
tion (Blaschke, 2010). This involves the analysis of data from sources
such as optical images, synthetic aperture radar, hyperspectral imaging,
and Light Detection and Ranging (LiDAR) (Toth and J6zkéw, 2016).
Historically, traditional computer graphics-based approaches have been
used for remote sensing applications (Savelonas et al., 2022), but more
recently, deep learning-based methods have been used successfully in
these applications (Yuan et al., 2020). Deep learning-based approaches
tend to convert the remote sensing data into images, and apply seman-
tic segmentation to assign one of the classes of interest to every pixel
of the image. For example, O’Neil et al. (2020) have mapped wetlands
based on aerial images and topographic indices calculated based on
a LiDAR derived digital elevation model (DEM). Similarly, Busarello
et al. (2025) have investigated the use of different topographic indices
as representation of a DEM derived from LiDAR data. Based on these
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rasterized representations, they trained a neural network to detect
ditches and natural streams.

One challenge when working with automatically generated maps is
assessing their reliability. A common approach to estimating the quality
of these maps is by comparing them with a representative portion of the
actual landscape, which provides a good general estimate as long as the
evaluated landscape is representative of the overall terrain. However,
the actual quality can vary significantly depending on location, with
some parts being more accurate and others less so (Kasraei et al., 2021).
For decision-making purposes, it is important to have an estimate of
reliability at specific locations, which can be achieved by quantifying
the uncertainty of the used model at the point of interest (Xu et al.,
2022).

Quantifying uncertainty in deep learning models initially appears
straightforward, as they typically provide class-wise probabilities for
each pixel. However, research has shown that these estimates tend
to be overconfident, due to the training process rewarding overconfi-
dent predictions (Guo et al., 2017; Sensoy et al., 2018). In response,
various methods have been developed to quantify neural network un-
certainty, which Gawlikowski et al. (2023) categorize into four primary
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(a) Groundtruth Labels

(b) Predicted Labels

Fig. 1. Illustration of the semantic segmentation task. Ditches (

) and natural streams (

(¢) Visualized Uncertainty

) should be identified in a given chip based on the slope image derived from

the digital elevation model at a 0.5m resolution. The uncertainty of the 5% most uncertain pixels, as quantified by Feature Conformal Prediction is displayed using pink for

background pixels, green for ditches and

directions: single network deterministic approaches, Bayesian methods,
ensemble techniques, and test-time augmentation methods.

Deterministic methods, such as Dirichlet prior networks (Gaw-
likowski et al., 2022), have been used in remote sensing applications,
as well as ensemble techniques, such as deep ensembles (Lakshmi-
narayanan et al., 2017). For example, Chaudhary et al. (2022) utilized
deep ensembles to quantify uncertainty in generated maximum water
depth hazard maps, which aid in estimating the risk of flooding.
Additionally, deep ensembles have been leveraged to estimate the un-
certainty in wavelength bands from Sentinel-2 whose spatial resolution
had been enhanced to a resolution of 10m (lagaru and Gottschling,
2023).

However, the primary focus has centered on Bayesian methods.
The most prevalent approach among these Bayesian methods is Monte
Carlo dropout (MC dropout) (Gal and Ghahramani, 2016), which has
been used, for example, by Kampffmeyer et al. (2016) to quantify the
uncertainty of their method on an urban object classification task based
on a digital surface model (DSM). MC dropout has also been used
by Martinez-Ferrer et al. (2022) for uncertainty quantification of their
approach to retrieve different biophysical variables, such as leaf area
index and canopy water content from surface reflectance data. Another
notable Bayesian approach involves the application of Bayesian neural
networks (Blundell et al., 2015; Goan and Fookes, 2020). Hertel et al.
(2023) have conducted a comparative analysis of both methodologies
and advocate for the use of Bayesian neural networks, as they tend to
be less likely to indicate high confidence in incorrect predictions.

One other approach to uncertainty quantification is the conformal
prediction framework (Vovk et al., 2005), which has been primar-
ily applied to simple classification and regression tasks, but more
recently was adapted to semantic segmentation. For example, Wieslan-
der et al. (2021) have used conformal prediction for medical image
segmentation, while Labuzzetta (2022) has applied subsample con-
formal prediction to the task of surface water and grassed waterway
segmentation. Additionally, Singh et al. (2024) have demonstrated
how conformal prediction can be applied to different tasks in earth
observation, such as tree species mapping, land cover classification
and canopy height estimation, and advocate for its more widespread
use. While these works are based on more traditional formulations
of conformal prediction, Teng et al. (2023) have proposed Feature
Conformal Prediction (FCP), which is particularly adjusted to the use
with deep neural networks, and has been shown to be more effective
at quantifying the uncertainty of a neural network in general semantic
segmentation tasks.

This article compares uncertainty estimates derived from the pre-
dictions of a neural network (network probability) with mutual infor-
mation and predictive entropy — two uncertainty metrics calculated
through MC dropout — to those obtained via conformal regression
and FCP. We focus on these methods, in contrast to Bayesian neural
networks (Blundell et al., 2015) or deep ensembles (Lakshminarayanan

for streams. The strength of the color is determined by the uncertainty value.

et al., 2017), since they can be integrated into existing network archi-
tectures for semantic segmentation tasks, and do not incur extensive
training times, due to the need to train multiple models. Notably,
conformal prediction-based methods enable the production of predic-
tions with a specified confidence level. Ideally, this would result in
a map featuring only confident predictions, such as those above a
90% confidence level. Therefore, we investigate the usefulness of those
confident maps.

For our comparison, we select the remote sensing task of detecting
ditches and natural streams from a DEM (Fig. 1), which has been
derived from LiDAR data. In particular, we perform this detection task
on data derived from a DEM at 1m resolution, as well as at 0.5m
resolution. This task is especially challenging due to the narrowness of
the objects of interest, requiring high detection precision. In contrast
to other semantic segmentation problems, most pixels are background
pixels, while only few represent ditches and even fewer represent
natural streams, leading to a significant class imbalance. Additionally,
distinguishing between streams and ditches in a DEM can be difficult,
as they often appear similar. These challenges contribute to uncertainty
in predictions, which we aim to estimate.

Uncertainty quantification is crucial in this context because it
could help identify natural streams that have been erroneously pre-
dicted as ditches. This distinction is significant, as natural streams
require distinct management strategies to preserve their ecological
integrity (Swedish PEFC, 2023). For example, avoiding the crossing
of these streams with heavy machinery can prevent soil disturbance,
which otherwise can exacerbate sedimentation and disrupt ecological
functions (Bishop et al., 2009). In contrast, ditches can be more easily
cleaned or maintained without needing permits.

This article addresses the following research questions:

1. Which of the investigated uncertainty quantification approaches,
i.e., network probability, mutual information, predictive en-
tropy, conformal regression, and FCP produces the most reliable
uncertainty estimates?

2. To what degree does the resolution of the DEM impact the
uncertainty estimates?

3. To what extent is it possible to generate useful maps with a
specific confidence level using conformal regression and FCP?

2. Methodology
2.1. Mapping ditches and streams: Network probability

For mapping ditches and streams, our approach employs a U-Net
architecture (Ronneberger et al., 2015) similar to that used by Busarello
et al. (2025) (Fig. 2), which has been demonstrated to be effective for
this task. The U-Net takes as input a 500 x 500 pixels large chip of
the landscape represented by the local slope derived from a DEM. This
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Fig. 2. U-Net architecture for mapping streams and ditches. The colored arrows show
different processing steps, the dashed arrows indicate concatenation of feature maps,
and the shaded feature maps indicate the ones being used for Feature Conformal
Prediction.

input is then downsampled through a series of convolutional, dropout,
and max pooling layers. Notably, our approach differs from Busarello
et al. (2025) in that we utilize concrete dropout (Gal et al., 2017),
which has been shown to improve uncertainty estimates obtained
through MC dropout (Mukhoti and Gal, 2018).

After four downsampling steps, the extracted feature maps are up-
sampled using transposed convolutions, and processed by convolution
and dropout layers to reach the original input size. At each upsampling
step, the feature maps of the corresponding downsampling step are
concatenated to ensure that no relevant information is lost. The final
output is produced by applying a convolutional layer to the last feature
maps (shaded feature maps in Fig. 2) . The output consists of three
bands, each representing one of the considered classes: background,
ditch, and natural stream.

In contrast to most U-Net architectures, our approach does not
utilize a softmax layer, which would map the output at each pixel to a
probability distribution over the three classes and be trained using cross
entropy loss. Instead, we employ a linear activation function in the last
convolutional layer and train the network using mean squared error, as
proposed by Teng et al. (2023) to improve uncertainty estimates of FCP.
Labels are mapped farther apart using a double log transform, resulting
in large positive and negative values. Unlike Teng et al. (2023), who
applied a Gaussian blur to the labels, we found this approach to be
detrimental to performance, likely due to the narrow nature of our
objects of interest, i.e., ditches and streams. To address class imbalance,
we implement median frequency balancing (Eigen and Fergus, 2015) as
suggested by Busarello et al. (2025).

Uncertainty estimates are derived from predicted network prob-
abilities. This involves reversing the double log transform to obtain
probabilities between 0 and 1 for each pixel and class. It should be
noted that these probabilities are not calibrated in any way. The class
with the highest probability is selected for each pixel. Uncertainty
values are then calculated as the difference between the predicted prob-
ability and 1. This approach assumes that high confidence predictions
yield probabilities close to 1, whereas low confidence predictions result
in lower probabilities and thus higher uncertainty values.

2.2. MC dropout: Predictive entropy and mutual information

MC dropout has been proposed by Gal and Ghahramani (2016) as a
method for estimating the uncertainty of a neural network. The main
idea behind MC dropout is that if a neural network is certain about
its prediction, introducing small random changes in its execution will
not affect its prediction. Conversely, when a network is uncertain about
its prediction, these small changes will lead to large variations in the
predicted outcome. Thus, the network’s uncertainty can be estimated
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by observing the variability in its predicted output when run multiple
times. MC dropout introduces small random changes using dropout
layers within the network architecture.

In a dropout layer (Srivastava et al., 2014), a randomly selected
subset of neurons has its output set to zero. At each new input, a
predefined probability determines which neurons are dropped. This
probability is learned in concrete dropout (Gal et al., 2017), which we
use in this study. Unlike the traditional use of dropout layers, which
typically activates them only during training to promote robustness, MC
dropout keeps those layers active during inference, resulting in varying
outputs for identical inputs processed multiple times.

MC dropout estimates the uncertainty by using these varying out-
puts to compute two different metrics: predictive entropy and mutual
information. These metrics measure different types of uncertainty,
viz. aleatoric and epistemic uncertainty. Aleatoric uncertainty captures
uncertainty caused by the data, such as ambiguity at the border be-
tween ditch and background, whereas epistemic uncertainty captures
uncertainty caused by the model itself, for example, due to insufficient
training data.

Predictive entropy captures both aleatoric and epistemic uncer-
tainty and is approximated for a given input x and a given training

set D,,;, as:
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Here, C is the set of classes, T is the number of outputs y to collect
for variations of the neural network w,, which are produced by the
dropout layers, and p (y = c|x,1,) is the probability of input x being
in class c. In contrast, mutual information measures only the epistemic
uncertainty and is approximated as:
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This study computes predictive entropy and mutual information
values for each pixel within every output chip, based on 1000 outputs
collected for each chip.

2.3. Conformal regression

Conformal regression is a part of the conformal prediction frame-
work (Vovk et al.,, 2005), offering guarantees for machine learning
model predictions. Unlike standard regression, conformal regression
generates prediction intervals rather than single numerical values. The
framework ensures that, for a pre-defined percentage of predictions
(e.g., 90%), the true value lies within the provided interval. While this
can be achieved easily by making this interval arbitrarily large, the
challenge lies in finding a narrow yet guarantee-ensuring interval.

While there are two types of conformal regression, this article
focuses on the inductive case, as it does not require frequent re-training.
Inductive conformal regression estimates the size of the prediction
interval based on a calibration set, which is separate from the training,
validation, and test datasets. The interval is derived by measuring
the difference between the predicted value and the true value for all
instances of the calibration set, using a non-conformity function, such
as mean absolute error (MAE), resulting in a non-conformity score.
Based on a pre-defined confidence-level, e.g., 90%, the difference or
non-conformity score of the 90th percentile is selected, and the interval
is set as the value predicted by the machine learning model plus or
minus the selected value. This ensures that the true value of 90% of
instances in the calibration set lies within the produced interval, since
their prediction errors were smaller than the one chosen. Because the
calibration set is required to be exchangeable with the test set, i.e., they
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both come from the same distribution, it can be expected that this
guarantee will hold also for unseen instances from the test set.

One issue with the described approach is that it assigns the same
interval to all instances, leading to overly large intervals for most of
them. This can be addressed by normalizing non-conformity scores
through instance difficulty estimation. For example, Cortés-Ciriano and
Bender (2019) estimate instance difficulty using MC dropout, recording
predicted outputs for the same instance i multiple times with enabled
dropout layers and calculating mean y; and standard deviation ¢; over
those outputs. The non-conformity score «; is then computed based on
the corresponding true value y; over all instances in the calibration set
D, resulting in a list of non-conformity scores S, which is then sorted
in ascending order.

1yi — il
eci

S =ay,...,a, with ¢ = [D,,| 3

Based on this list, the non-conformity score a, is selected, which
corresponds to the chosen confidence level 1 — ¢ (e.g., 0.9 for € = 0.1).
For a new instance j, the prediction interval around the mean of the
MC dropout samples y; is then derived by multiplying the selected a,
with the instance’s difficulty, as measured by the standard deviation
over the MC dropout samples ¢; (Cortés-Ciriano and Bender, 2019).

p=[0-e)g+ D], fora,
,u,iap-e"l 4

Another challenge in deriving regression intervals is that the dis-
tribution of non-conformity scores may vary depending on certain
properties of the instances. For example, when dealing with instances
having large true values, the error may be greater than for those with
small true values. If this difference in distribution is not taken into ac-
count, the derived regression intervals will be larger than necessary for
instances with small true values and possibly too narrow for instances
with large true values, depending on their prevalence in the calibration
set.

For classification problems, Mondrian conformal prediction (Vovk
et al., 2005) addresses these issues by categorizing instances based on a
Mondrian taxonomy that considers certain properties of each instance.
A separate conformal predictor is then built for each category. Mon-
drian regression, proposed by Bostrom and Johansson (2020), follows
a similar approach. It divides the calibration instances into different
categories based on a Mondrian taxonomy, specifically an estimate of
difficulty. The prediction interval within each category is derived from
the non-conformity score at a specific percentile. This methodology
allows for more tailored prediction intervals that are narrower for
instances belonging to simpler categories and wider for those in harder
categories. Since simpler categories typically have low errors and thus
low non-conformity scores, their prediction intervals can be narrower.
In contrast, harder categories will have higher non-conformity scores,
leading to broader prediction intervals.

In our implementation, each pixel in an input chip is associated
with three real values indicating to which of the three classes it be-
longs. After reverting the double log transform, we perform conformal
regression to derive a prediction interval for the three class values of
each pixel. Since the class values can be seen as the probability of
the pixel to belong to each of the classes, the estimated intervals can
be interpreted as probability ranges. The estimation of these intervals
involves calculating non-conformity scores per class for every pixel in
all calibration set chips, followed by normalization using 100 Monte
Carlo samples as proposed by Cortés-Ciriano and Bender (2019).

While we record non-conformity scores per class, we also employ
Mondrian conformal regression to obtain more tailored intervals. This
approach differs from the original Mondrian taxonomy by Bostrom
and Johansson (2020), which utilized estimated instance difficulty.
In contrast, our taxonomy categorizes predictions for each class into
two categories: pixels with predicted probabilities close to zero and
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those near one. This distinction is important because we observed in
initial experiments the tendency of classes with few pixels to have
most commonly a predicted probability value of zero with a low
non-conformity score. Conversely, when the actual class is predicted
(i.e., the predicted probability exceeds 0.5), the non-conformity scores
tend to be substantially higher. Given this observation, it is reasonable
to create categories based on the predicted values.

Thus, we group the non-conformity scores of instances from the
calibration set D, for each class individually into two lists, one for
which the predicted probability is lower than 0.5, $<*3, and one for
which the predicted probability is larger or equal, S2°°. Those lists
are then sorted in ascending order, and the non-conformity scores
corresponding to the chosen confidence-level 1 — ¢ are selected as
before.

§205 _ alzo,s’ @205
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We then calculate intervals for each pixel j in a new chip by
collecting 100 Monte Carlo samples of output predictions for the pixel
and computing the respective mean y; and standard deviation o;.
Given the selected non-conformity scores and the estimated means and
standard deviations, the interval for one of the possible classes for pixel

Jj is derived as follows:
Hjx (M/“:ZU'S +(1- M/)“;Oj) - ©

By multiplying the selected non-conformity scores with the prob-
ability mean and its inverse respectively, the final interval is derived
as combination of both scores depending on how much the pixel’s
prediction agrees with the respective categories. This way of assigning
the corresponding non-conformity score to a pixel is computationally
more efficient than having to find the applicable score based on some
other feature of the pixel, such as difficulty, via a look-up, as it
is the case in the Mondrian approaches by Bostrom and Johansson
(2020), Wieslander et al. (2021), and Labuzzetta (2022).

The uncertainty value for each class is determined by the size of
the interval, where a larger interval indicates greater uncertainty in the
prediction. Unlike MC dropout, which produces uncertainty values per
pixel, the conformal regression approach derives an uncertainty value
per pixel per class.

2.4. Feature conformal prediction (FCP)

In contrast to conformal regression, which computes non-conformity
scores based on the output of a machine learning model, FCP (Teng
et al., 2023) calculates these scores based on an intermediate feature
representation of a neural network. This feature representation can be,
for example, the feature maps produced by a convolutional layer. These
feature maps are then converted into a single vector by flattening the
corresponding tensor, enabling FCP to obtain a predicted output for an
input instance as a point in a high-dimensional vector space.

When applying conformal regression, it is clear what constitutes a
true value for computing the non-conformity score, i.e., the target value
of an instance. In contrast, identifying the true feature representation of
an instance is not straightforward. FCP assumes this true representation
to be the infimum, which corresponds to the feature representation
with the smallest numerical values, which produces the correct output.
However, finding this optimal representation is challenging. As a re-
sult, FCP approximates the infimum by optimizing the original feature
representation for a given input instance to produce the correct output
using gradient descent. It should be noted that this approach modifies
the values of the feature representation rather than adjusting neural
network weights. The non-conformity score is then computed using a
norm distance, such as the infinity norm, between the vector of the
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original representation and the one derived through gradient descent.
This yields a single non-conformity score per instance, differing from
the conformal regression case where multiple scores are generated
corresponding to each output.

The base score is derived, similar to conformal regression, by com-
puting the non-conformity scores for the calibration set and selecting,
for example, the 90th percentile. Given a test instance, FCP derives its
corresponding feature representation and applies perturbations to this
representation, ensuring that the resulting new feature representations
do not deviate beyond the distance indicated by the base score. These
perturbations are achieved using Linear Relaxation based Perturbation
Analysis (LiRPA) (Xu et al., 2020). Subsequently, FCP estimates the
resulting output intervals by applying the neural network to the per-
turbed feature representations. In summary, FCP performs conformal
regression in feature space and derives output prediction intervals
through perturbation analysis. Mathematical proofs of the correctness
and efficiency of the method have been derived by Teng et al. (2023).

Our implementation utilizes feature maps generated prior to the
output layer (shaded feature maps in Fig. 2) for FCP. In contrast to Teng
et al. (2023), who found that features can be extracted from various
layers without altering the prediction intervals, our findings suggest
that using feature maps from any other layer results in unreasonably
large prediction intervals for our task and network architecture. This
may be because the skip connections in our U-Net architecture inter-
fered presumably with the perturbation step, as the perturbations were
applied only to the feature maps of the upsampling path and not those
of the downsampling path. We employ perturbation analysis to derive
prediction intervals for every pixel and class. Similar to our conformal
regression implementation, the size of the interval is interpreted as
uncertainty, where larger intervals indicate higher uncertainty.

3. Experiments
3.1. Dataset

For this article, we used a dataset provided by Busarello et al.
(2025)., consisting of LiDAR-derived DEMs for 12 distinct regions in
Sweden, further described by Lidberg et al. (2023). The dataset is
available in two resolutions, 0.5m and 1 m, corresponding to input chips
of 500 x 500 pixels representing areas of 250 mx250 m and 500 mx500 m,
respectively. To address class imbalance, chips with less than 250 ditch
or stream pixels were removed, resulting in a dataset where still only
1.1% and 0.1% of all pixels belong to the ditch and natural stream class,
respectively (Busarello et al., 2025).

Topographic indices are utilized to provide a rasterized represen-
tation of the DEM. In our experiments, the local slope was used,
which signifies the change in elevation between every pixel in the
DEM, with inclination displayed in degrees (Florinsky, 2016). This
index was chosen due to its superior performance in stream detection
and satisfactory results for ditch detection (Busarello et al., 2025). To
reduce execution time, we focused on a single index; however, all
uncertainty quantification methods remain applicable when multiple
indices are considered.

To evaluate the chosen uncertainty quantification methods, we
employed 10-fold cross-validation to facilitate statistical analysis. How-
ever, since conformal regression and FCP require a calibration set, the
dataset was divided into 11 folds: nine for training, one for calibration,
and one for testing to ensure exchangeability between folds. Stratified
sampling by region ensured that chips in each fold cover the 12 dis-
tinct regions similarly well, preserving representativeness throughout
training, calibration, and test set.

Apart from ensuring exchangeability, we needed to prevent infor-
mation about the test set from leaking into the training and calibration
set to avoid biasing the evaluation and obtaining miscalibrated uncer-
tainty estimates. This was achieved using the following partitioning
strategy. The dataset was divided into chips without overlap, ensuring

Environmental Modelling and Software 191 (2025) 106488

. . . . . . . . . . .
450 ImDEM 7 -
0.5m DEM
o

400

350
300
250
200

Number of Patches

150
100
50

Fig. 3. Number of chips in each of the 11 folds for the digital elevation model (DEM)
with resolution 1 m and 0.5m.

that no chip’s information was shared between training, calibration and
test set. Within each region, chips were grouped to minimize borders
with adjacent chips in other folds. To optimize this grouping, a heuristic
algorithm was used due to the NP-hard nature of the problem!, yielding
an approximate optimal solution for partitioning.

After splitting the chips from the 1 m DEM into 11 folds, the cor-
responding chips were then selected for the 0.5m DEM, ensuring that
both resolutions contained the same ditches and streams within each
fold. This design prevented differences in performance between the two
resolutions being attributed to varying levels of complexity, rather than
resolution itself. While the number of chips for the 1 m DEM was nearly
the same for all folds, this number varied more for the 0.5 m DEM (Fig.
3). The reason for this variation was that a different number of chips
was dropped in each fold, depending on the number of 0.5 m DEM chips
containing at least 250 ditch or stream pixels.

3.2. Performance metrics

The neural network’s performance in classifying pixels as back-
ground, ditch, or natural stream was evaluated using the Matthews
Correlation Coefficient (MCC) (Matthews, 1975; Yule, 1912) and F;
score. Given that there were more than two classes, we used the multi-
class version of MCC proposed by Gorodkin (2004). MCC provides a
balanced view of the classification performance across all classes, while
F, score focuses on the performance for a specific class, making it
particularly suitable for investigating the network’s performance for
one class of interest (Chicco et al., 2021).

To evaluate the performance of uncertainty quantification
approaches, we utilized the Area Under the Sparsification Error Curve
(AUSE) (Ilg et al., 2018). Unlike the commonly used Patch Accuracy
vs. Patch Uncertainty (PAvPU) (Mukhoti and Gal, 2018), AUSE also
considers the uncertainty estimates for accurate predictions and does
not require parameter tuning (Dreissig et al., 2023). Furthermore,
AUSE is more suitable than the Expected Calibration Error (ECE) (Pak-
daman Naeini et al., 2015) because ECE tends to overestimate cali-
bration performance on imbalanced datasets (Dreissig et al., 2023).
In contrast, AUSE can be combined with a performance metric that
is robust to imbalanced data, such as MCC (Chicco et al., 2021). The
main idea behind AUSE is that network outputs should be correct when

1 NP-hard problems are computational problems for which there is no
known algorithm which finds a solution in a number of steps polynomial in
its input (Garey and Johnson, 1979). There is no efficient algorithm to solve
them.
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estimated to have low uncertainty, but may be incorrect when their
uncertainty is high.

The sparsification curve is obtained by sorting pixels by their uncer-
tainty and removing a fraction of the most uncertain pixels. Then, clas-
sification performance is measured on the remaining pixels. Here, we
used MCC for multi-class evaluation and F, score for single-class eval-
uation. This process is repeated for increasing fractions of pixels. The
resulting performance curve should gradually increase if uncertainty
aligns with correctness.

The sparsification error curve is obtained by subtracting the spar-
sification curve for one uncertainty quantification approach from the
oracle curve, i.e., the sparsification curve derived by sorting and remov-
ing pixels by actual distance between predicted and true values. This
optimal sorting removes the most incorrect predictions first and is thus
the best an uncertainty quantification method can achieve. For a good
uncertainty quantification method, there will be a small area under
the sparsification error curve, which can be used as single measure to
compare between uncertainty quantification approaches.

Furthermore, we evaluated the practical use of those approaches
using a correction curve, which we propose for this evaluation. This
curve illustrates the impact different uncertainty quantification meth-
ods would have when used for correcting uncertain pixels, rather than
removing them as is done for the sparsification curve. This correc-
tion curve shows how many pixels would need manual investigation
to achieve a specified MCC value or F, score, facilitating informed
decision-making. The correction error curve can be obtained by sub-
tracting the correction curve of a particular uncertainty quantification
method from the oracle correction curve. Based on this, we define
the Area Under the Correction Error Curve (AUCE) as a metric for
evaluating how well an uncertainty quantification approach identifies
pixels that require correction relative to the optimal solution.

3.3. Experiment design

In our experiments, 10 U-Net models were trained on different fold
combinations using a unique calibration and test set for each model.
The implementation utilized pytorch 2.0.1 (Ansel et al., 2024) with
training performed on a computer equipped with approximately 1TB
of RAM, two Intel Xeon Platinum processor with 32 cores each, and
one 40GB partition of an NVIDIA A100 GPU. We performed training
using the Adam optimizer (Kingma and Ba, 2015) and a batch size of
16. Furthermore, each model was trained for 300 epochs in case of the
1 m DEM, and for 165 epochs, in case of the 0.5 m DEM, as these values
were determined to be optimal based on validation loss performance.
Given the reduced instance count for the 1 m DEM, training for more
epochs was reasonable since there were fewer weight update steps per
epoch.

After training the models, their performance was evaluated using
MCC and F; score on the respective test sets. A Bayesian t-test for
correlated observations (Corani and Benavoli, 2015) was conducted
to determine if there were significant differences between the models’
performance on the 1m and 0.5m DEM data. This statistical test was
chosen, since it avoids the shortcomings of more traditional null hy-
pothesis significance tests (Benavoli et al., 2017). Basically, it computes
the probability of the performance difference between two approaches
to lie within or outside of a pre-defined region of practical equiva-
lence (ROPE). In our evaluation, we chose the ROPE to be a difference
in MCC value of 0.05, meaning that the performance difference of two
methods would have to be at least 0.05, for us to consider one method
significantly better or worse than the other. Given that this test is a
paired test, we paired the MCC result on one test fold from the 1m
DEM with its corresponding test fold from the 0.5 m DEM, i.e., the fold
which covers the same areas, just at a higher resolution.

Given the trained models, we calibrated the conformal regression
and FCP approaches on the respective calibration sets. We then derived
uncertainty estimates for the chips in the corresponding test sets using
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the investigated approaches, i.e., network probability, mutual informa-
tion, predictive entropy, conformal regression, and FCP. The execution
time was measured for each approach. We then calculated the AUSE
for all approaches on each test fold and both resolutions. This allowed
us to investigate whether a lower resolution lead to poorer uncertainty
estimates by comparing the AUSE scores between resolutions using the
Bayesian t-test. Specifically, we paired the scores for each test fold
and method of one resolution with those of the other resolution to
determine if there were significant differences in uncertainty estimation
quality.

Furthermore, we compared the AUSE scores for different uncer-
tainty quantification methods using the Bayesian t-test to determine
which method performed best. This comparison involved pairing the
AUSE score of each two methods based on the corresponding folds and
resolution. When comparing the AUSE, we considered a ROPE of 0.05
sufficient to identify practically relevant differences in performance
among the evaluated methods. To facilitate efficient comparison of
methods, high-density intervals (HDIs) were derived using the Bayesian
t-test. The HDI plot displays the 95% probability intervals in which
performance differences between methods lie, as well as the ROPE.
By focusing on intervals not overlapping with the ROPE, statistically
significant differences can be identified between methods.

To illustrate the practicality of these methods, we derived correction
curves considering all classes, as well as curves focusing solely on
predicted ditch and stream pixels. This allowed us to investigate the
effort required to correct errors where natural streams were mistakenly
predicted to be ditches or vice versa. Since, for illustrative purposes
only, sparsification and correction curves displaying the performance
of a single model had to be selected, the model with AUSE and
AUCE values closest to the mean performance at both 1m and 0.5m
resolutions was selected. The chip used for illustration was chosen as
the one containing the most ditch and stream pixels from the test set
of this model.

Lastly, we explored the possibility of generating reliable prediction
maps using conformal regression and FCP. To this end, we calibrated
these methods for various confidence thresholds, spanning from 50%
to 90%, and included only pixels for which the probability interval of
the most probable class did not overlap with those of any other class.
We then computed the recall for each class, as well as the average
recall over all classes. The recall was derived by dividing the number
of confidently and correctly predicted pixels of a class by the total
number of pixels of that class in the test set. Thus, giving an indication
of the percentage of classified pixels in those confident maps. We also
evaluated the classification performance on only those pixels classified
with high confidence, excluding the ground truth of all pixels to which
no single class was assigned. This gave an indication of the correctness
of those confident maps.

4. Results

4.1. Mapping performance

Our analysis of the mapping performance revealed that all trained
models performed best on the background and second best on the ditch
class, but struggled with natural streams (Table 1). Models trained on
the 0.5m DEM outperformed those on the 1 m DEM in terms of MCC.
A Bayesian t-test confirmed a significant advantage for the 0.5m DEM
models, estimating that with a probability of 100% they yielded a
0.05 points higher MCC than their 1 m DEM counterparts. This result
remained the same even when increasing the ROPE to 0.1.
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Table 1
Mapping performance on the 1m and 0.5m resolution data as measured by the
Matthews Correlation Coefficient (MCC) for all classes, and the F, score for the
background (Fl""], ditches (F‘(‘”), and natural streams (F\"). The reported values
indicate the mean and standard deviation over 10 test folds. Best performance indicated
in bold.

Resolution FP F& FY MCC

Im 1.00 + 0.00 0.62 +0.02 0.39 +0.06 0.61 +0.02

0.5m 1.00 + 0.00 0.77 + 0.03 0.43 +0.08 0.76 +0.03
Table 2

Area Under the Sparsification Error Curve (AUSE) for the 1 m and 0.5m
resolution data derived for the background (AU S E®), ditch (AUSE@),
and natural stream (AUSE®) class using F, score as performance
metric, and the overall AUSE score using the Matthews Correlation Coef-
ficient for network probability (V,,,), predictive entropy (V,), mutual
information (), conformal regression (V/,,), and feature conformal
prediction (U},,). The reported values indicate the mean and standard
deviation over 10 test folds. Best result indicated in bold.

AUSE® AUSE@ AUSE®Y AUSE

Im
Viros 0.00 = 0.00 0.46 +0.23 0.58 +0.22 0.42+0.19
v, 0.00 + 0.00 0.96 +0.01 0.97 £0.03 0.95+0.03
U, 0.00 + 0.00 0.95+0.01 0.98 +0.00 0.95+0.01
v, 0.02 0.00 0.33+0.03 0.52+0.07 0.35+0.03
Vyep 0.00 +0.00 0.20 +0.10 0.39 + 0.11 0.20 +0.10

0.5m
Viprob 0.00 + 0.00 0.61+0.28 0.64 +0.22 0.51+0.21
v, 0.00 + 0.00 0.73+0.16 0.84+0.18 0.65+0.14
v, 0.00 = 0.00 0.90 +0.07 0.96 + 0.06 0.84+0.09
v, 0.02 +0.00 0.20 +0.03 0.51+0.09 0.23+0.03
V., 0.00 + 0.00 0.09 +0.04 0.34+0.12 0.09 +0.04

4.2. Uncertainty quantification performance

MCC values increased faster for models trained on the 0.5m DEM
compared to those on the 1 m DEM when removing the most uncertain
pixels, as indicated by the sparsification curves (Figs. 4(a) and 4(b)).
This suggests that uncertainty quantification methods are more effec-
tive in identifying misclassified pixels for the 0.5 m DEM than the 1 m
DEM. Consequently, areas between sparsification curves and the oracle
curve were smaller for the 0.5m DEM (Table 2).

The trend of improved identification of incorrect pixels with higher
resolution did not hold for network probability (V/,,,,), where higher
resolution resulted in worse identification. Nonetheless, the Bayesian t-
test found that a higher resolution (0.5 m DEM) led to better uncertainty
estimates than a lower resolution (1m DEM) with a probability of
83% (ROPE=0.05). Excluding U,,,, increased this probability to 99%
(ROPE=0.05).

While the uncertainty quantification performance varied between
resolutions for sparsification curves and AUSE, it showed mostly minor
differences for correction curves (Figs. 4(c) and 4(d)) and AUCE scores
(Table 3). The only exception was conformal regression (V) for which
correction curves and AUCE scores improved with higher resolution. A
Bayesian t-test revealed that, with a probability of 85% (ROPE=0.05),
the performances at different resolutions were practically equivalent,
i.e, the performance differences lay within the ROPE. Without V., this
probability rose to 98% (ROPE=0.05).

Comparative analysis of uncertainty quantification methods re-
vealed distinct differences in their sparsification curves (Figs. 4(a)
and 4(b)). Notably, the MCC scores for methods, such as mutual
information (V,,), predictive entropy (V.), and network probabil-
ity (V,,,), decreased significantly, especially when the first 5% of
uncertain pixels were removed (Fig. 4(b)). This drop in performance
was caused by the fact that these methods assigned high uncertainty
values to correctly classified pixels, particularly ditch and natural
stream pixels (Fig. 5). This tendency is reflected in the higher AUSE
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Table 3

Area Under the Correction Error Curve (AUCE) for the Im and 0.5m
resolution data derived for the background (AUCE®), ditch (AUCE“),
and natural stream (AUCE®) class using F, score as performance
metric, and the overall AUCE score using the Matthews Correlation Coef-
ficient for network probability (V,,,,), predictive entropy (), mutual
information (V,,), conformal regression (V;,), and feature conformal
prediction (U7,,). The reported values indicate the mean and standard
deviation over 10 test folds. Best result indicated in bold.

AUCE® AUCE@Y AUCE® AUCE

Im
Vs 0.00 + 0.00 0.01 +0.00 0.04+0.01 0.02 +0.00
v, 0.00 + 0.00 0.01 +0.00 0.03 +0.01 0.01 +0.00
U, 0.00 + 0.00 0.02 +0.00 0.04+0.01 0.02 £0.00
v, 0.00 + 0.00 0.29 +0.04 0.38 +0.06 0.29+0.04
Uy, 0.00 + 0.00 0.10 +0.07 0.17+£0.12 0.10 +0.07

0.5m
Voo 0.00 + 0.00 0.01 +0.00 0.04+0.01 0.01 +0.00
v, 0.00 + 0.00 0.01 + 0.00 0.03 +0.01 0.01 +0.00
U, 0.00 + 0.00 0.01+0.01 0.05+0.02 0.02+0.01
v, 0.00 + 0.00 0.19+0.02 0.41+0.07 0.20 +0.02
Vyep 0.00 + 0.00 0.06 +0.04 0.16 +0.11 0.06 +0.04

scores for these classes (Table 2). The HDIs (Fig. 6), derived from the
Bayesian t-test, confirmed that FCP (qu,) outperformed MC Dropout
based approaches, such as predictive entropy (V},) and mutual in-
formation (V,,) with a 100% probability, even when assuming a
ROPE of 0.4. Furthermore, U, was estimated to perform better than
network probability (U,,,,,) with a probability of 99.4%, and better than
conformal regression with a probability of 99.6% (ROPE=0.05).

The correction curves (Figs. 4(c) and 4(d)) revealed that U, and
Uy., exhibited inferior performance compared to Uy, Uj, and U,,;.
This indicates that correcting pixels identified by the latter enables
faster achievement of higher performance. This is likely caused by
their strong focus on ditches and natural streams (Fig. 5), which make
up only a small portion of the dataset, but are frequently misclassi-
fied (Table 1). Specifically, an MCC of 0.95 was attainable with an
average correction rate of 3% (approximately 2.87 million pixels) using
U, Using the Bayesian t-test, we found that the probability of V,,
U,i» and U,,,,, being practically equivalent to be 100% (ROPE=0.05).
Furthermore, the test suggested that V., performed significantly worse
than all other methods with a probability of 100% (ROPE=0.05). Usep
was found to perform significantly worse than U, U, and U,,; with
a probability of 78.1%, 73.5%, and 69.1% (ROPE=0.05) respectively.

When focusing solely on pixel classifications predicted to be ditches
or streams, overall V;,, was found to be most effective in identifying
misclassified streams and ditches (Figs. 7(a) and 7(b)). A Bayesian t-test
revealed that for ditch pixels incorrectly classified as stream pixels, U},
had a significantly higher AUCE score with a probability greater than
95% (ROPE=0.05) when compared to U, U.,, and U,,. Using U,
to correct these errors, on average 70.6% of stream pixels (= 40000)
needed to be corrected to achieve an F; score of 0.95 for ditches. For
correcting pixels classified as ditch, the Bayesian t-test revealed that
V,,; had a significantly higher AUCE score than V., with a probability
of 99.1% (ROPE=0.05). However, we found that V', and V,,,, lead
to achieving an F, score of 0.95 for the stream pixels with fewer
corrections than V;,;. Both required on average the correction of 75%
pixels (= 714000). In contrast, V,,; required a correction of 79.7%. It
should be noted that these F; scores were calculated not on all pixels,
but only on those initially classified as ditch or natural stream.

Uy, had significantly faster inference times compared to V., and
the MC dropout-based U, and V,,; (Table 4). Specifically, processing
the entire surface area of Sweden at a 0.5 m resolution using U, pro-
ducing both the actual prediction and the uncertainty estimates, would
take approximately 80 h, whereas an MC dropout-based approach
would require around 3 years on the same hardware. It should be noted
that both MC dropout-based approaches have the same execution time,
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was measured across all classes using the Matthews Correlation Coefficient (MCC).

Table 4

Execution times in seconds for predictive
entropy (), mutual information (V,,,), con-
formal regression (), and feature confor-
mal prediction (Uy.,) on one chip covering
an area of 500m x500m (I m resolution) or
250m x250m (0.5 m resolution). The reported
values indicate the mean and standard devia-
tion over all chips in the 10 test sets. Fastest
execution time indicated in bold.

i (5) fosm (5)
U,/ Uiy 14.13 £0.78 14.00 +£0.72
v, 175+ 1.53 1494022
Uy 0.06 +0.01 0.04 +0.01

since that time is dominated by the sampling process, which is the same
for both approaches.

4.3. Conformal prediction performance

When generating confident maps using the conformal prediction
approaches, FCP resulted in significantly lower recall for all confi-
dence levels than conformal regression (Uyp: 0.12-0.13; V., 0.60-0.66),
prompting a focus on maps generated using the latter. As expected,
recall increased with decreasing confidence (Table 5). However, even
highly confident maps covered a sizeable portion of background (100%),
ditch (56%), and natural stream pixels (24%).

Similarly to expectation, classification performance degraded with
decreasing confidence levels, with one notable exception being the

Table 5

Recall for the confident maps generated from the 0.5m resolution data using conformal
regression for different confidence levels, measured for the background (Recall®),
ditches (Recall®), natural streams (Recall®), and the class average (Recall). The
reported values indicate the mean and standard deviation over 10 test folds.

Confidence Recall® Recall® Recall® Recall

90.0% 1.00 £ 0.00 0.56 + 0.04 0.24 £0.08 0.60 +0.03
80.0% 1.00 £ 0.00 0.59 +0.04 0.25+£0.08 0.61 +0.04
70.0% 1.00 + 0.00 0.62 +0.05 0.27 +£0.08 0.63 +0.04
60.0% 1.00 + 0.00 0.65 +0.05 0.29 +0.09 0.64 +0.04
50.0% 1.00 + 0.00 0.67 +0.04 0.30 +0.09 0.66 +0.04

background class, whose performance remained stable (Table 6). How-
ever, even at 50% confidence, the performance on confidently classified
pixels, as measured by MCC, surpassed the overall performance on all
pixels (Table 1).

5. Discussion
5.1. Choice of uncertainty quantification method

When comparing the evaluated uncertainty quantification approa-
ches, FCP outperformed others in terms of AUSE (Table 2) but not
in terms of AUCE (Table 3). This discrepancy stems from AUSE and
AUCE addressing different questions. AUSE assesses alignment between
predictions and uncertainty estimates (Dreissig et al., 2023), while
AUCE evaluates the ability to identify misclassified pixels. The choice
of method depends on the goal: AUSE is more informative for creating
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Fig. 5. Illustration of the groundtruth map, as well as the uncertainty maps for the 0.5m resolution showing the 5% most uncertain pixels as estimated by the evaluated uncertainty
quantification approaches. The maps show the local slope image for certain background pixels and uncertain ones in pink. Furthermore, the maps show certain ( ) and

uncertain (green) ditches, as well as certain (orange) and uncertain (blue) streams.
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Fig. 6. High-density intervals derived using a Bayesian t-test for correlated obser-
vations indicating the intervals in which the performance differences between the
compared methods, network probability (1/;,,”), predictive entropy (U‘P(,), mutual
information (7/;,,), conformal regression (V,,), and feature conformal prediction Wy, P),
lie with a probability of 95%. The performance is measured as area under the
sparsification error curve for all classes, and the Region of Practical Equivalence (ROPE)
indicates a performance difference of 0.05.

Table 6

Mapping performance for only the pixels included in the confident maps generated
using conformal regression on the 0.5m resolution data as measured by the Matthews
Correlation Coefficient (MCC) for all classes, and the F, score for the background (Fl“”),
ditches (F‘('”), and natural streams (F:”). The reported values indicate the mean and
standard deviation over 10 test folds.

Confidence Y F@ FY MCC

90.0% 1.00+0.00 0.83£0.03 044£0.10 0.82:£0.03
80.0% 1.00+0.00 0.82:+0.03 044£0.10 0.81:+£0.03
70.0% 100 £ 0.00 0.81+0.03 044£0.09 0.80+0.03
60.0% 100 £ 0.00 0.80+0.03 043009 0.79 £0.03
50.0% 1.00 £ 0.00 0.79 £0.02 043£0.09 0.78 £ 0.03

prediction uncertainty maps, whereas AUCE appears to be suitable for
pixel-level correction.

Upon examining the uncertainty map generated by FCP for a
broader area (Fig. 8(b)), it becomes clear that the model is generally
confident in its ditch predictions, except in border regions or where
ditches exhibit unusual bends. Additionally, while the two natural
streams in the area (the orange lines in Fig. 8(a)) were not well
identified by the model, it is relatively straightforward to trace their
paths from the uncertainty maps due to the presence of uncertain
background pixels on the map. This can help alert a human viewer
to the presence of these streams, which would be imperceptible in the
prediction map alone.

When examining the top-performing uncertainty quantification
methods according to AUCE, we found that network probability, predic-
tive entropy, and mutual information consistently identified predictions
on ditch and natural stream pixels as the most uncertain ones, regard-
less of prediction correctness (Fig. 5). On the other hand, predictive
entropy and mutual information tended to exhibit overconfidence in
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incorrect predictions, as evidenced by their low AUSE scores. This
tendency aligns with findings by Hertel et al. (2023), who also observed
this characteristic of MC dropout-based approaches. Given that only
about 1% of pixels belong to ditches, and even fewer to natural streams,
it is likely that the methods’ strong AUCE performance is an artifact of
the highly skewed class distribution. This phenomenon arises because
fixing a few pixels in classes with low instance counts and generally
poorer performance can improve MCC scores more than correcting
pixels from the mostly correct majority class (Table 1). As a result, one
may find that for more balanced datasets, the AUCE scores of these
methods may be lower compared to FCP. Additionally, the tendency
to identify correctly classified pixels as uncertain can be problematic
for their use in detecting incorrectly classified pixels, since the high
false positive rate may lead people to dismiss detections of potentially
misclassified pixels (Axelsson, 2000).

When specifically examining corrections of pixels misclassified as
ditches or natural streams, we observed that mutual information out-
performed other approaches in identifying ditch pixels mistakenly clas-
sified as streams. Conversely, FCP and network probability were more
effective at identifying stream pixels incorrectly classified as ditches.
This disparity may stem from the fact that most ditch pixels were
accurately predicted, leaving only few natural stream pixels to be de-
tected. In this scenario, overconfidence in incorrect predictions is more
detrimental than when there is a larger number of misclassified pixels,
as it was the case for the pixels classified as natural stream. Given that
natural streams underlie stronger protections (Swedish PEFC, 2023), it
is more important to identify stream pixels misclassified as ditch than
vice versa.

One notable finding was that network probability achieved compa-
rable AUCE scores to MC dropout-based approaches, while outperform-
ing them in AUSE scores. The strong performance in identifying stream
pixels among those classified as ditch is likely a consequence of that.
Thus, it appears that network probability has effectively balanced high
uncertainty values for ditches and streams with cautious avoidance of
undue certainty in incorrectly classified pixels, at least for this dataset.

In Fig. 8(c), we observe the pixel corrections for pixels marked as
most uncertain by network probability. It is evident that all predicted
ditch and stream pixels were corrected due to their relatively high
uncertainty. However, there are also instances where pixels were not
corrected despite being wrongly predicted (stream pixels in Fig. 8(c),
zoomed-in region), resulting from the model’s undue confidence in its
predictions. This confidence can be attributed to the fact that the natu-
ral stream is not visible in the DEM, as indicated by the one pixel wide
line in the ground truth. Given that the figure showcases the correction
of the 5% most uncertain pixels, a significant number of background
pixels were also corrected, even though they were correctly predicted.

10

One notable aspect of these corrected background pixels is that they
appear to follow a specific pattern. Upon analyzing the slope values of
those corrected background pixels, we found them to be significantly
higher than average slope values. Furthermore, similar patterns have
been observed in data from other regions, but not consistently across
all areas, suggesting that these may be caused by minor differences in
the data collection process.

When evaluating execution performance, arguably, the fastest un-
certainty estimates were derived using network probability, since it
equals the model’s inference speed of approximately 0.014 s per chip,
resulting in an estimated processing time of 28 h for all of Sweden.
While this was significantly shorter than the 80 h required for FCP,
we deem FCP still feasible, especially when compared to the execution
times for MC dropout-based approaches (x 3 years) or conformal
regression (~ 124 days). It is worth noting that these times can be
significantly reduced by using fewer Monte Carlo samples. For example,
utilizing just 10 samples, as Kampffmeyer et al. (2016), would reduce
the time required for MC dropout and conformal regression to 280 h
and 298 h, respectively. However, this may come at the cost of reduced
uncertainty quantification performance.

In summary, our results show that FCP yielded the most accurate
uncertainty estimates at a reasonable processing speed. Therefore, we
believe it is well-suited as a method for generating uncertainty maps.
However, when attempting to identify which pixels require correction
in the generated ditch and stream maps, we found that using network
probability was more effective. This approach identified the pixels that
needed correction better and resulted in lower execution times.

5.2. Impact of resolution

The classification performance was improved when detecting ditches
and streams on higher resolution data (Table 1). This is reasonable
since landscape outlines were captured more accurately, which sim-
plified the detection problem. This finding aligns with the findings
by Busarello et al. (2025) on mapping ditches and streams, but also
with findings on mapping other terrain features, such as ephemeral
gullies (Chowdhuri et al., 2021), and rock glaciers (Robson et al.,
2020).

Higher resolution DEMs also yielded more accurate uncertainty
estimates as indicated by the obtained AUSE scores. While it is unsur-
prising, that a lower resolution leads to a higher uncertainty (Pogson
and Smith, 2015; Wu et al., 2024), the observed reduced alignment
between estimated model uncertainty and actual performance is likely
due to the network’s generally poorer performance on lower resolution
data. In contrast to AUSE, the AUCE scores were mostly unaffected
by the resolution, presumably since AUCE performance was largely



F. Westphal et al.

Environmental Modelling and Software 191 (2025) 106488

(a) Groundtruth Map

(b) Uncertainty Map

-/
N L
wd

(¢) Corrected Map

(d) Confident Map

Fig. 8. Illustration of the groundtruth, uncertainty, corrected, and confident map over an area of 1.5km x 1.5km at a 0.5m resolution. In all maps, certain or correct background

pixels are shown by the local slope image, while ditches are shown in
and displays the 5% most uncertain background ( ), ditch (green), and stream (

improved by ditch and stream detection rather than uncertainty quan-
tification accuracy. Thus, as long as a method could identify most ditch
and stream pixels it would get a high AUCE score, even if it marked
many correctly classified pixels as uncertain.

Most methods showed increased uncertainty quantification per-
formance with higher resolutions, except network probability, which
decreased due to overconfidence in its predictions. This overconfi-
dence was caused by the simplified learning problem, which allowed
the model to assign more extreme probability estimates to pixels, as
incentivized by the training process. As noted by Guo et al. (2017)
and Sensoy et al. (2018), this leads to poorer uncertainty estimates.

There was no difference in processing time for a chip of 1 m res-
olution versus one with a 0.5m resolution (Table 4), since both have
the same number of pixels. However, four 0.5m resolution chips are
required to cover the same area as one | m resolution chip. This results
in four times longer processing times for the 0.5 m resolution. As such, it

, and streams in

. The uncertainty map was generated using feature conformal prediction

) pixels. The corrected map was derived by correcting the 5% most uncertain pixels as
estimated by network probability. Corrected pixels are shown with full intensity, while not corrected pixels have low intensity. The confident map was derived using conformal
regression at a 90% confidence level, and pixels where the model did not commit to one class are shown in black.

is important to consider whether the gained performance improvements
justify the increased processing costs.

In summary, there is a motivation for conducting high-resolution
LiDAR scans to improve ditch and stream detection and to obtain
more accurate uncertainty estimates. However, this may decrease the
accuracy of uncertainty estimates obtained by network probability as
performance improves.

5.3. Confident segmentation maps

When generating confident segmentation maps, we found that only
V., consistently produced a reasonable number of single-class pre-
dictions for various confidence levels, ruling out U, from further
evaluation. This appears contradictory to the findings by Teng et al.
(2023), who showed that FCP produced shorter confidence bands than
a baseline conformal prediction approach. It is reasonable to assume
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that shorter confidence bands also would lead to a higher number of
single-class predictions. However, it should be noted that the conformal
prediction approach used by Teng et al. (2023) differs from v, used
in this article, which is the likely reason for the observed differences.

For V,,, recall improved as the confidence level decreased (Table 5).
This was expected since lower confidence thresholds allow U, to make
more errors and thus commit to single-class predictions for more pixels.
Similarly in line with expectations was the observed decrease in preci-
sion, indicated by lower MCC and F; scores (Table 6). This decrease is
caused by U, actually making more errors at lower confidence levels.

Compared to the models’ results on all pixels (Table 1), we observed
improved classification performance for predictions with high confi-
dence levels (Table 6). Specifically, we achieved an MCC of 0.82 for
90% confident predictions, surpassing the MCC of 0.76 obtained on all
pixel predictions. This performance difference was largely due to clear
improvement in the ditch class, which was attained through V. not
assigning a class in border regions where it is challenging to determine
where the ditch ends and the background begins, or areas where the
ditch was not clearly visible in the DEM (Fig. 8(d), zoomed-in region).
These observations align well with the findings by Koski et al. (2023),
who found that the main causes of error in detecting small watercourses
with deep learning were boundary issues and unclear visual expression
in the DEM.

Despite committing to a single class with high confidence, it is
possible for U, to make errors. For example, many natural stream
pixels were confidently predicted as background (Fig. 8(d), zoomed-
in region), which was not unexpected. This outcome is consistent with
the fact that U, allows for 10% errors at a 90% confidence level. It is
important to note that the guarantees provided by this method apply
to probability intervals rather than the classes themselves. A model
that consistently missed to predict the natural stream class, would
make significantly fewer errors than 10%, due to its low occurrence
rate (less than 1%). Instead, it would in over 99% of the cases be
correct in predicting the probability for the stream class to be close to
0%. Consequently, U, primarily prevented overprediction in minority
classes, such as ditch and stream, as observed in Fig. 8(d) and reflected
in their low recall values (Table 5).

Our analysis revealed that neither U, nor Uy, are particularly
suitable for generating confident maps of ditches and natural streams.
Although U, produced more confident predictions than U, the
generated maps only covered around 60% of all pixels, particularly
omitting ditch and stream pixels. This means that the prediction sets
for pixels of these classes frequently contained more than one possible
prediction. This observation is in line with the findings by Ghosh et al.
(2023), who show that conformal prediction tends to result in large
prediction sets for challenging datasets, while obtaining narrower sets
for simple ones. Apart from this issue, it also took a considerable
amount of time to generate the confident maps (Table 4).

5.4. Limitations and future work

This article’s evaluation of uncertainty quantification methods is
limited to one specific remote sensing task with an extreme class distri-
bution. This may have skewed results, as MC dropout-based solutions
likely perform differently in terms of AUCE on tasks with more bal-
anced distributions. Although investigating extreme cases is valuable,
given that classes with relatively few instances are not uncommon in
remote sensing (Kossmann et al., 2021), it would be interesting to
investigate if MC dropout’s AUCE performance would decrease when
applied to tasks with more balanced distributions.

Furthermore, the dataset used in this study is limited by its two-
resolution format (1 m and 0.5 m). As demonstrated, classification and
uncertainty quantification performance improve with increasing reso-
lution. However, it is plausible that returns diminish at some point,
warranting investigation into the optimal resolution threshold. Addi-
tionally, the uncertainty quantification performance of ,,, has been
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observed to decrease with increased resolution, suggesting a possi-
ble trend where higher resolutions lead to overconfident predictions.
Higher resolution datasets would aid in investigating this trend as well.

Another limitation of our study is that we have only investigated
a restricted set of uncertainty quantification approaches. For example,
Bayesian neural networks (Blundell et al., 2015) were excluded from
this study since they cannot derive uncertainty estimates from the same
model as the other investigated approaches. This would have compli-
cated direct comparisons between the methods, as it is less clear if
differences in uncertainty quantification performance are due to differ-
ences in the used methods or due to the different models. Nevertheless,
exploring Bayesian neural networks would be valuable for future re-
search as they have been shown to outperform MC dropout-based
approaches by Hertel et al. (2023). Similarly, deep ensembles have
been shown to perform better than MC dropout-based approaches (Lak-
shminarayanan et al., 2017). Investigating how they compare to the
evaluated conformal prediction-based approaches could be worthwhile.
However, due to their significant training time requirements, we ex-
cluded them from this article; using the recommended number of
networks in the ensemble would have quintupled the necessary training
time.

It should be noted that none of the investigated uncertainty quan-
tification approaches is able to handle out-of-distribution (OOD) data,
i.e., data that is distinctively different from the training data. Alarab
et al. (2021) have shown this for network probability and MC dropout-
based approaches, while this limitation of conformal prediction has
been pointed out, for example, by Angelopoulos et al. (2022). This is
not a big problem for the studied dataset, since it has been specifically
designed to be representative of the Swedish landscape (Busarello et al.,
2025). However, in situations where OOD data is present, the obtained
uncertainty estimates may not be reliable. One approach to handle
OOD data would be to build on ideas from the “Learn then Test”
framework (Angelopoulos et al., 2022).

Our investigation was further limited by focusing solely on con-
formal regression approaches within either feature space (U7.,) or
output space (V,,). The focus on probability ranges rather than actual
class predictions may have hindered the utility of generated confidence
maps, as they tended to suppress minority class predictions. In the
future, this limitation could be addressed by exploring whether the
conformal classification approach by Wieslander et al. (2021) can be
made more computationally efficient or through further investigation
into recent methods proposed by Mossina et al. (2024), Brunekreef
et al. (2024). By focusing on conformal classification approaches, the
guarantees provided by the conformal predictor would apply directly
to the classification outcome, and thus might produce more usable
confident maps.

6. Conclusions

In this article, we investigated various uncertainty quantification
techniques, including network probability, predictive entropy, mutual
information, conformal regression, and feature conformal prediction,
and applied them to a specific remote sensing task: identifying ditches
and natural streams from elevation data sourced from a digital eleva-
tion model (DEM). Additionally, the impact of different DEM resolu-
tions on classification and uncertainty quantification performance was
explored. Furthermore, confident maps were generated using conformal
prediction methods. Our key findings include:

« Feature conformal prediction (Teng et al., 2023) produces un-
certainty estimates most aligned with the actual neural network
performance at a reasonable cost to the execution time. However,
for correcting misclassified pixels, the network probability output
is more suitable, at least for the investigated dataset.

« A higher resolution DEM leads to better classification perfor-
mance and better uncertainty estimates.



F. Westphal et al.

« Conformal regression and feature conformal prediction are not
suitable to generate confident maps, since they are overly con-
servative in their estimates and the model performance is too
limited.
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