PROCEEDINGS B

royalsocietypublishing.org/journal/rspb

Research

Cite this article: Ma B, Bose APH, Dunster B, Zhu B, Lein E, Li W, Jordan A. 2025 Social fish have larger brains and greater relative telencephalon sizes: support for the social brain hypothesis from wild, intraspecific comparisons. *Proc. R. Soc. B* **292**: 20251169.

https://doi.org/10.1098/rspb.2025.1169

Received: 5 May 2025

Accepted: 11 September 2025

Subject Category:

Behaviour

Subject Areas:

behaviour, ecology, neuroscience

Keywords:

brain size, cichlid, social complexity, social brain hypothesis

Author for correspondence:

Bin Ma

e-mail: bma@ab.mpg.de

Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.8075073.

THE ROYAL SOCIETY

Social fish have larger brains and greater relative telencephalon sizes: support for the social brain hypothesis from wild, intraspecific comparisons

Bin Ma^{1,2}, Aneesh P. H. Bose^{1,3}, Boyd Dunster¹, Boshan Zhu¹, Etienne Lein^{1,2}, Weiwei Li¹ and Alex Jordan^{1,2}

¹Behavioural Evolution Lab, Max Planck Institute of Animal Behavior, Radolfzell, Baden-Württemberg, Germany ²Department of Biology, University of Konstanz, Konstanz, Baden-Württemberg, Germany ³Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden

D BM, 0009-0009-7519-7390; AJ, 0000-0001-6131-9734

The social brain hypothesis (SBH) posits that complex social environments drive the evolution of larger brains and enlargement of specific brain regions. Among species comparisons often report contrasting relationships between social complexity and brain size, potentially due to confounding effects of phylogeny, morphology and ecology. Here, we explore this relationship in a single fish species, combining behavioural observations and brain measurements of two wild populations of the cichlid Neolamprologus brevis, which occupies similar ecological niches across its range but inhabits contrasting social environments depending on local shelter abundance. We quantified social behaviour and brain size to assess whether increased social interactions are associated with greater relative brain size or region-specific neuroanatomical adaptations. We found that individuals from the more socially complex population, which exhibited more frequent social interactions, had significantly larger total brain volumes compared to the less social population. We also found that the more social population exhibited relatively larger telencephalon and smaller hypothalamus volumes, suggesting mosaic adaptation to social demands. Feeding behaviour did not differ between populations, suggesting that differences in energy intake are unlikely to account for brain size variation. By integrating behavioural and neuroanatomical data, our study provides empirical support for the SBH in a natural, withinspecies comparison.

1. Introduction

Vertebrate species exhibit striking variation in brain size, ranging from a few milligrams in small-bodied fish to over 10 kilograms in large mammals. Importantly, larger relative brain size—or the enlargement of specific brain regions—is often associated with enhanced cognitive performance [1–5]. The brain is among the most metabolically costly organs to develop and maintain [6,7], and its size is thought to reflect a trade-off between the cognitive benefits it provides and the energetic costs it incurs. This trade-off may also shape investment in specific brain regions based on their functional relevance, and as such, the relative size of a given brain structure can serve as a proxy for its importance in mediating behavioural responses to environmental and social challenges [8–10].

© 2025 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.

Several hypotheses have been proposed to explain the evolution of brain size and structure across animal taxa [11-14]. The social brain hypothesis (SBH) proposes that species living in complex social environments evolve larger brains, or enlarged brain regions associated with cognitive processing and decision-making, to meet the increased cognitive demands of social interactions [11]. While many studies support this theory—showing a correlation between brain size and social group size in primates [11], for example—the hypothesis remains contentious. Studies on mammalian carnivores [13] and birds [14] have yielded conflicting results, with some suggesting that ecological and developmental factors may overshadow social influences on brain size. Although large-scale phylogenetic comparisons between species are crucial for revealing genetic adaptations on evolutionary time scales, comparisons within a species between divergent populations can be equally informative and even critically reduce confounding factors such as genomic and morphological variation.

While the SBH was originally developed to explain brain evolution among primates at an interspecific level, the application of this hypothesis has extended to multiple taxa and intraspecific variation. Fish can be a particularly useful group in such studies due to their high brain plasticity [15,16], allowing researchers to investigate the effects of social and ecological factors on neuroanatomy over shorter time scales compared to mammals [17]. Recent studies have highlighted the influence of social environments on fish brain size, with evidence suggesting that higher population densities can lead to increased forebrain sizes and enhanced cognitive abilities [18,19]. However, due to the difficulty in measuring direct social interactions in the wild, most studies have relied on proxies for social complexity, such as group size [4,11,20,21], population density [9,18,19] and mating systems [22–24], rather than direct behavioural measurements. Even fewer have linked observed social behaviours to neuroanatomical variations under natural conditions, leaving the connection between social interactions and brain morphology largely unexplored.

To address this gap, we investigate two divergent populations of the Lake Tanganyika shell-dwelling cichlid Neolamprologus brevis that differ markedly in social complexity, one population living in areas of dense shells, allowing multiple conspecifics to live in close proximity (hereafter referred to as the +social population), while the other population lives on sparsely populated sand and shell environments, with very few social partners (hereafter referred to as the -social population). The pronounced differences in social structure between these populations provide a valuable opportunity to test the SBH at the intraspecific level. By measuring in situ behaviour and examining overall brain size and structural variation, we tested whether greater social complexity is linked to either increased total brain volume and/or to a mosaic pattern [25] of brain evolution, characterized by the selective enlargement of functionally critical regions. We hypothesized that the +social population would exhibit more frequent social interactions due to the higher density and diversity of neighbouring individuals and would have larger total brain volumes (relative to body size) than individuals from the -social population. Additionally, we predicted a relative enlargement of specific brain regions involved in social information processing (such as the telencephalon, which is associated with social decision-making in fish [23,26–29]) in the +social population compared with the -social population.

2. Material and methods

Downloaded from https://royalsocietypublishing.org/ on 11 November 2025

(a) Study species and ecology

We studied two populations of the shell-dwelling cichlid N. brevis from Lake Tanganyika (figure 1) that share broadly similar ecological characteristics related to feeding and predation. We selected these geographically distant (14 km) populations to minimize the likelihood of gene flow between them, thereby ensuring that our comparisons reflect population-level differences. Like many other shell-dwelling cichlids, N. brevis exhibits extremely restricted home ranges, with daily activities almost entirely confined within a small area (~50 cm radius) around their shells [30,31]. Within this restricted range, individuals primarily feed on plankton from the water column and small benthic invertebrates from substrate [31,32]. Shells also offer essential protection against their main predator, Lepidiolamprologus elongatus, a widespread piscivore [31].

Due to differences in shell abundance and spatial distribution, these two populations differ markedly in their social structure (figure 1). In the +social population, located near Chikonde village on Mutondwe Island (8°42'43" S, 31°05'33" E), individuals inhabit densely packed shell beds (figure 1) where adult males and females are similar in size, preventing cohabitation in a single shell. This lack of obvious sexual dimorphism also makes field-based sex identification challenging. Although individuals do not form stable social groups, the high local density leads to frequent interactions with immediate neighbours, something that we quantify directly in this study. In contrast, the -social population, located near Chezi village (8°46'44.9" S, 31°00'25.2" E), inhabits a sandy-bottom habitat with sparsely distributed shells (figure 1), typically spaced around more than 10 metres apart. Adult females are smaller than males, and both sexes can cohabit a single 'home shell' as breeding pairs.

(b) Behavioural observation and neighbour density

We quantified social complexity using two complementary metrics: the frequency of direct social interactions and the neighbour density. Data were collected by SCUBA-based in situ underwater video recordings (GoPro Hero 6) on unmanipulated N. brevis individuals. Focal fish were haphazardly selected, but we attempted to capture a wide size range of adult individuals living in either population. In the +social population, nine widely spaced individuals were recorded in May 2022. In the -social population, eight individuals were recorded in May 2023. Seven of these were part of distinct breeding pairs, but only one individual per pair was selected for focal observation. The remaining individual was solitary. All focal individuals were located at least 10 metres apart to ensure behavioural independence.

Behaviour recording was conducted using GoPro cameras (Hero 6; 1080 p, 60 fps, wide field of view) placed in front of each fish's shell and territory. Video was recorded between 10.00 and 11.00 to standardize diurnal activity patterns. Due to

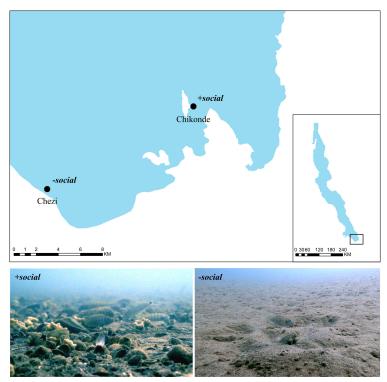


Figure 1. Field sites and two study populations of Neolamprologus brevis, illustrating contrasting social environments. Top: map showing the locations of the two study populations at the southern tip of Lake Tanganyika (black dots). Bottom left: representative photo of a +social population individual inhabiting continuous shell beds, surrounded by many neighbours, illustrating an environment with higher social complexity (photo credit: Zoë Goverts). Bottom right: representative photo of a -social population pair inhabiting sparsely distributed shells on an open sandy substrate, illustrating an environment with lower social complexity (photo credit: Etienne Lein).

field constraints, recording durations varied between 27 and 65 min. To ensure consistency and avoid disturbance artefacts, the first 10 min and last 2 min of each recording were excluded, resulting in scoring windows ranging from 15 to 53 min per fish. Behaviours were scored according to an ethogram adapted from Reyes-Contreras et al. [33] and categorized into social and feeding behaviours. Social behaviours included aggression (e.g. ramming, biting, mouth fighting, frontal approaches, S-bend displays), submissive displays (e.g. tail quivering, zig-zag swimming) and affiliative interactions (e.g. joining, bumping, following). Although heterospecific interactions are an important component of social environments in many species [34], interactions between N. brevis and other species were exceptionally rare in our observations (+social population: 0.025 per min; -social population: 0 per min), and thus our quantification of social complexity focused exclusively on conspecific interactions. Feeding behaviours included substrate and plankton pecking, used as a proxy for energy intake. Following each recording, a 50 cm radius ring (area ≈ 0.785 m²) was placed around the focal fish, and the number of conspecific individuals within this area was recorded as the measure of neighbour density.

(c) Sampling and brain morphology measurements

Brain sampling was conducted on a different set of individuals from those used in behavioural recordings, but all individuals were collected from the same populations and time periods to ensure comparability. In total, 19 individuals from the +social population and 24 individuals from the -social population were captured and euthanized using an overdose of MS-222 (tricaine methanesulfonate, 1 g l⁻¹). Sex was confirmed via gonadal examination post-dissection. Standard length and body weight was measured to the nearest 0.01 mm and 0.001 g, respectively. Fish heads were fixed in a solution of 4% paraformaldehyde and 1% glutaraldehyde in phosphate buffer at 4°C for 24 h. Brains were then extracted and preserved in fresh fixative for 1 week before morphological measurements. Brains were photographed from dorsal, ventral and lateral perspectives using a stereo zoom microscope (Axio Zoom.V16, Zeiss) equipped with a digital camera (Axiocam 503 mono, Zeiss). Five brain regions—the telencephalon, optic tectum, cerebellum, dorsal medulla and hypothalamus—were selected to measure the brain morphology [23]. Each region's length (L), width (W) and height (H) were measured using ImageJ software [35]. Volumes were calculated using the ellipsoid formula: $V = (L \times W \times H) \pi/6$. Total brain volume was calculated as the sum of the volumes of the five measured brain regions.

(d) Data analysis

Downloaded from https://royalsocietypublishing.org/ on 11 November 2025

All statistical analyses were conducted in R (v 4.4.1). Brain volumes and body size data were all log-transformed to meet parametric assumptions. Model fits were assessed via the DHARMa package [36]. Descriptive statistics are presented as mean and standard deviation (s.d.). Statistical significance was set at p < 0.05.

(i) Neighbour density and behaviour frequencies

Neighbour density (count of conspecifics within a 50 cm radius of each focal fish) was compared between the two populations using a generalized linear model (GLM) with a Poisson distribution and log link function using the *glmmTMB* package [37]. To assess differences in the frequencies of feeding and social behaviour between the two populations (+social and -social, with -social as the reference level), separate GLMs were fitted. For feeding behaviour, we fitted a negative binomial model to handle overdispersion, including the count of behaviour as the response variable. We also included population as a categorical predictor as well as the count of neighbours as an additional predictor variable. To account for differences in the time windows when behaviour was scored, we also included observation duration as a model offset (log-transformed). Social behaviour was modelled similarly, with an additional zero-inflation term to handle excess zeros. Sex of the fish could not be determined from the videos, and so sex was not included as a factor in either model.

(ii) Total brain volume

We analysed total brain volume using a linear model that controls for allometric scaling by including body size as a covariate [38–40]. We chose body weight over standard length because our weight measurements are more precise than the length measurements, especially given the relatively small sizes of these cichlids; nevertheless, parallel analyses using standard length (electronic supplementary material, table S2 and figure S1) are presented in the electronic supplementary materials, where we also discuss our rationale in greater detail. Body weight was first log-transformed and then meancentred based on the global *N. brevis* body size in our dataset, such that a body weight of 0 refers to an average-sized individual. The model of log-transformed total brain volume included the following predictors: mean-centred log-transformed body weight, social population (+social versus –social) and sex (male versus female). Inclusion of all pairwise interactions was tested with a likelihood ratio test to check whether each one significantly improved model fit (using the *drop1* function in R), which retained the interaction between body weight and population. Estimated marginal means (EMMs) were calculated using the *emmeans* package [41] for pairwise population comparisons at the average fish size.

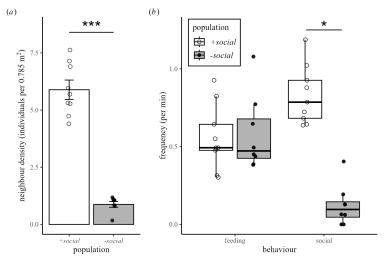
(iii) Relative brain region volumes

We conducted separate linear models to analyse five brain regions. In each model, the dependent variable was the log-transformed volume of a given brain region, predicted by population and sex and the log-transformed volume of the remaining brain (total brain volume minus the region of interest). Remaining brain volume was used as covariate following prior studies [42,43], to capture brain structure variation and identify potential selective enlargement in functionally relevant regions [44]. This scaling approach tests the mosaic brain hypothesis, which posits that specific brain regions may expand independently while the remainder of the brain remains unchanged [25].

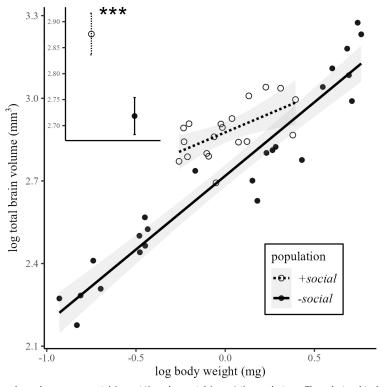
3. Results

Downloaded from https://royalsocietypublishing.org/ on 11 November 2025

(a) Neighbour density and behavioural differences


We found that neighbour density (number of conspecifics within 50 cm radius of focal individual) was significantly higher in the +social population compared to the -social population (+social versus -social: 5.89 ± 1.23 versus 0.88 ± 0.34 ; GLM: n = 17, estimate \pm s.e. = 1.91 ± 0.40 , z = 4.74, p < 0.001; figure 2a). Feeding behaviour frequency did not differ significantly between the two populations (+social versus -social: 0.56 ± 0.21 versus 0.58 ± 0.19 feeding behaviours per minute; GLM: n = 17; estimate \pm s.e. = -0.68 ± 0.48 , z = -1.41, p = 0.16; figure 2b). Social behaviour was significantly more frequent in the +social population compared to the -social population (+social versus -social: 0.83 ± 0.19 versus 0.12 ± 0.13 social behaviours per minute; GLM: n = 17; estimate \pm s.e. = 2.40 ± 0.38 , z = 6.39, p < 0.001; figure 2b).

(b) Differences in total brain volume


We detected a significant interaction between population and log-transformed body weight on total brain volume (LM, interaction effect: estimate \pm s.e. = -0.26 ± 0.10 , t = 2.44, n = 43, p < 0.05; figure 3). To assess brain volume differences at a common body size, we calculated EMMs of total brain volume at the average *N. brevis* body weight across the two populations. We found that the +social population exhibited significantly larger brain volumes than the -social population (post hoc pairwise comparisons: n = 43; EMM difference = 0.16 ± 0.03 , p < 0.001; figure 3, inset). This corresponds to an approximately 17.1% increase in brain volume in the +social population for an average-sized *N. brevis* compared with the -social population. Sex did not have a significant main effect on brain volume (LM: n = 43, estimate \pm s.e. = 0.01 ± 0.04 , t = 0.29, p = 0.774; see electronic supplementary material, table S2 for full model statistics and figure S2 for the sex distribution plot).

(c) Differences in relative brain region volumes

The telencephalon was significantly larger in the +social population compared with the -social population (LM: n = 43; estimate \pm s.e. = 0.14 \pm 0.04, t = 3.35, p < 0.05; figure 4a). In contrast, the hypothalamus was significantly smaller in the +social population

Figure 2. Differences in neighbour densities (the number of neighbours within a 50 cm radius of the focal individual) and behavioural frequencies between +social (n=9) and -social (n=8) population. (a) The +social population have more neighbours than the -social population (GLM: *** p < 0.001). Bar plot showing mean \pm s.e. of neighbour density. (b) Feeding frequency did not differ between two populations (GLM: p=0.16), whereas the +social population exhibited significantly higher frequencies of social behaviour than the -social population (GLM: *p < 0.05). Box plots display medians (horizontal line), interquartile ranges (boxes) and data no greater than 1.5 times the interquartile range (whiskers).

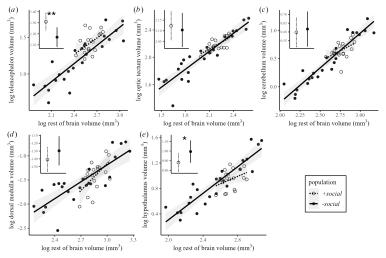


Figure 3. Differences in total brain volume between +social (n = 19) and -social (n = 24) populations. The relationship between log-transformed total brain volume and log-transformed body weight between populations. Regression lines represent model predictions with 95% CIs (shaded areas). The inset depicts estimated marginal means (EMMs) of total brain volume at average body weight with 95% CI calculated from the final model, indicating that the +social population had significantly larger brains than the -social population (post hoc pairwise comparisons: **** p < 0.001).

compared to the *-social* population (LM: n = 43; estimate \pm s.e. = -0.11 ± 0.05 , t = -2.13, p < 0.05; figure 4e). No significant population differences were found in the optic tectum (LM: n = 43; estimate \pm s.e. = 0.02 ± 0.04 , t = 0.54, p = 0.60), cerebellum (LM: n = 43; estimate \pm s.e. = -0.02 ± 0.05 , t = -0.4, p = 0.70), or dorsal medulla (LM: n = 43; estimate \pm s.e. = -0.11 ± 0.09 , t = -1.29, p = 0.21). See electronic supplementary material, table S2 for full model statistics.

4. Discussion

In this study, we tested the SBH at the intraspecific level by leveraging natural variation in the frequency of social behaviour among populations of the Lake Tanganyika cichlid fish N. brevis. We found that individuals from the +social population at

Figure 4. Individual brain region volumes relative to the rest of brain between +social (n=19) and -social (n=24) populations. Regression lines and 95% CI of log-transformed volume (mm³) of the brain region of interest ((a) telencephalon, (b) optic tectum, (c) cerebellum, (d) dorsal medulla and (e) hypothalamus) on the log-transformed rest of the brain without the volume of the corresponding region (mm³). Insets within each plot are the estimated marginal means (EMMs) of each brain region (log) at the mean rest of brain volume (log) for the +social and -social populations, with 95% CI calculated from the statistical models. The +social population exhibited significantly larger telencephalon and smaller hypothalamus volumes relative to the rest of brain compared with the -social population (LM: *p < 0.05, *** p < 0.01; electronic supplementary material, table S2).

Chikonde, which inhabit densely packed shell beds and experience a higher density of conspecific neighbours (averagely 5.89 \pm 1.23 in 50 cm radius), exhibited more frequent social interactions (6.7 times more frequent) and larger brain volumes (17.1%) relative to body size compared to individuals from the *-social* population at Chezi, which occupy more sparsely distributed shells on open sandy substrates with few neighbouring individuals (their only neighbours within 50 cm were their breeding partners with whom they shared a shelter). These findings align with the predictions of the SBH, suggesting that increased social complexity is associated with enlarged brain size. Furthermore, individuals from the *+social* population had a relatively larger telencephalon and a smaller hypothalamus compared to those from the *-social* population, suggesting that changes social environment influence both overall brain size and region-specific adaptations may be due to enhanced cognitive demands in complex social environments.

Traditionally, tests of the SBH have assessed social complexity using indirect proxies such as group size [45], population density [18] or mating system (e.g. monogamous versus polygamous [23]). Our study differs from the previous in that we quantified not only the neighbour density but also the frequency of social behaviours with these different social partners, providing a more direct and ecologically relevant assessment of social complexity. We suggest that *N. brevis* in the +social population are exposed to a more socially stimulating environment, where individuals encounter a greater number of conspecific neighbours, and interact with them more frequently (due to the populations higher local density and spatial proximity of shell shelters). Maintaining distinct social relationships with many neighbours is thought to be energetically and cognitively costly [46], and brain tissue is metabolically expensive to maintain, imposing strong selective pressures against nonadaptive changes [6,7,47]. Our study species is a continual forager from the benthos and water column, and the similar frequency of feeding behaviour, as well as shared foraging niche among populations suggests energy intake is similar across populations. Differences in brain size may therefore be more likely attributable to increased demands associated with frequent social interactions.

This interpretation—that differences in brain size reflect increased demands associated with social interaction—is further supported by the observed divergence in brain structure. Specifically, individuals from the +social population exhibited a larger telencephalon but a smaller hypothalamus compared to those from the -social population. Both these regions have been implicated in social behaviour [23]; the telencephalon is involved in mediating complex social behaviours such as decision-making [28,48,49], social recognition [50] and social hierarchy [51], while the hypothalamus regulates endocrine pathways that underlie affiliative behaviours, particularly in reproductive contexts [52–55]. In our study, the +social population inhabited socially dense environments where individuals frequently encountered multiple conspecifics, potentially necessitating enhanced cognitive processing related to individual recognition, perception of social status and social decision-making. The -social population, on the other hand, consisted mostly of stable mating pairs, which may require greater demands for hormonal regulation associated with affiliative behaviour and reproduction rather than complex social cognition. These findings support a functional trade-off in neural allocation between brain regions, consistent with the mosaic brain hypothesis [25], which posits that brain regions can evolve semi-independently in response to specific ecological or social challenges, often under constraints of total energetic investment.

It is important to note that increases in brain size or specific brain regions may not be driven solely by social complexity but also by environmental or ecological factors, such as habitat complexity or predation pressure [23,56–59]. In this study, we compared two populations without geographic replication, meaning unmeasured environmental factors could have influenced our results. The clever foraging hypothesis, for example, posits that structurally complex habitats promote the evolution of larger brains—particularly in the telencephalon, which is associated with spatial memory and navigation [60–62]. In natural

systems, social and physical environmental complexity often covary [63,64], raising the possibility that the observed brain differences in this study could be driven in-part by variation in habitat structure. However, the structural similarity among the environments in our study, both of which consist of snail shells on sandy substrates without large rocks reduces the likelihood of topography playing a major role (e.g. [65]). Moreover, individuals of this species exhibit highly localized movement, typically remaining within a 50 cm radius of their home shell, further reducing the demands on spatial cognition or visual perception. Another potential effect between these two populations is the local predation regime. Predation is known to affect brain size and morphology in fishes, over both evolutionary and developmental time scales [66–70], as well as affecting social organization in Tanganyikan cichlids [71]. While observing direct predation is difficult—and in this study we did not observe any such events-future work would benefit from an explicit analysis of (potential) predation pressure. Specifically, the inclusion of multiple independent +social and -social populations of N. brevis would further elucidate the relationship between social, environmental and ecological effects on brain volume.

A second potential factor to consider is sex, which is known to play a role in the relationship between brain and environment [72]. In our study females of the two populations differ in their size and use of home shells—either sharing them with the male (-social population at Chezi), or occupying their own shell (+social population at Chikonde). We observed pronounced sexual dimorphism in the -social population, but not in the +social population. This pattern is likely related to ecological constraints arising from differences in shell availability. In the -social population, where shells are scarce, females must remain smaller to allow both the female and male to shelter within the same shell. During sampling, we observed that females were often the first to retreat into the home shell, with males still able to fit inside afterward. In contrast, in the +social population, the abundant availability of shells allows every fish to occupy a separate shell, reducing selective pressure for females to remain smaller and resulting in similar body sizes between the sexes. Despite these body size differences, we confirmed that all sampled individuals were sexually mature through gonadal examination, making age or ontogenetic stage unlikely confounding factors. While we did not detect an effect of sex in our analyses, these differences in the use of shells and female body size among the population, and potentially therefore social interactions, warrant further attention in future studies.

Traditionally, the role of sociality in shaping brain size and structure has been tested primarily through interspecific comparisons, which have yielded mixed results. Positive associations between social complexity and brain size have been reported in carnivores and insectivores [73,74], ungulates [75] and primates [76], while similar interspecific comparisons in birds [14] and rodents [77] have either failed to detect such correlations or reported negative associations. These inconsistencies highlight the complex relationship between sociality and brain evolution and underscore the challenges posed by ecological confounding factors—such as foraging niche—inherent in interspecific approaches. Indeed, a recent large-scale comparative study of 1886 bird species found that developmental mode and foraging strategy were stronger predictors of brain size than sociality [14]. This inconsistency is also evident in Lake Tanganyika cichlids. One earlier phylogenetically controlled study of Ectodine species found larger telencephalic size in biparental compared to polygamous species [23], while another analysis of 16 lamprologine species showed that cooperative breeders did not have larger brains than independent breeders [78]. By focusing on naturally occurring variation of social complexity within N. brevis, our study was able to avoid many of these interspecific confounds and offers more direct support for the SBH. Although our findings support a positive association between social complexity and brain size, the observational nature of this study precludes any inference of causality. It remains unclear whether increased sociality drives brain enlargement, or whether individuals with larger brains are inherently more adept at navigating complex social environments. Studies tracking neuroanatomical changes in response to experimentally manipulated social environments, or that leverage natural variation within a population, are needed to disentangle these effects.

Overall, our study demonstrates that increased social complexity is associated with larger brain size and specific neuroanatomical adaptations in the cichlid N. brevis, providing empirical support for the SBH. Moreover, our findings emphasize the importance of integrating behavioural and neuroanatomical data to validate the social effect on brain anatomy. Finally, our research underscores the value of cichlid fish as a model for studying brain evolution and highlights the potential of using intraspecific design to explore the intricate interplay between sociality and brain morphology.

Ethics. All methods adhered to the ASAB/ABS Guidelines for the Use of Animals in Research. Field work was carried out with approval from the Zambian Department of Fisheries, under study permits issued by the government of Zambia (No. G7067690 and C3195368, SP260718/7-21, SP425444/4-24) and in conjunction with memorandum of understanding MOU 101/14/11. The study species is listed as 'least concern' on the IUCN Red List of Threatened Species.

Data accessibility. All data and R code supporting this study are publicly available in the Dryad Digital Repository [79].

Supplementary material is available online [80].

Downloaded from https://royalsocietypublishing.org/ on 11 November 2025

Declaration of Al use. We used AI tools (e.g. ChatGPT) to assist with language editing. All scientific content was created and verified by the authors. Authors' contributions. B.M.: conceptualization, data curation, formal analysis, investigation, methodology, project administration, resources, visualization, writing-original draft, writing-review and editing; A.P.H.B.: writing-review and editing; B.D.: conceptualization, writing review and editing; B.Z.: data curation, writing-review and editing; E.L.: data curation, resources, writing-review and editing; W.L.: conceptualization, data curation, resources, writing—review and editing; A.J.: conceptualization, resources, supervision, visualization, writing

All authors gave final approval for publication and agreed to be held accountable for the work performed therein. Conflict of interest declaration. We declare we have no competing interests.

Funding. Experiments and field work were supported by The Behavioural Evolution Lab, Max Planck Institute of Animal Behaviour and China Scholarship Council to B.M. (Grant/Award Number: 201908210336). A.P.H.B is supported by a starting grant from Vetenskapsrådet (grant number 2023-03866) and Olle Engkvists Foundation (grant number 224-0059).

Acknowledgements. We are grateful to Zoë Goverts for her assistance with diving and sampling. We thank the Department of Fisheries in Mpulungu, Zambia, for their kind support of our research at Lake Tanganyika. We also thank the staff at the Tanganyika Science Lodge and Kalambo Falls Lodge for their warm hospitality.

References

- Benson-Amram S, Dantzer B, Stricker G, Swanson EM, Holekamp KE. 2016 Brain size predicts problem-solving ability in mammalian carnivores. Proc. Natl Acad. Sci. USA 113, 2532–2537. (doi:10.1073/pnas.1505913113)
- Deaner RO, Isler K, Burkart J, van Schaik C. 2007 Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav. Evol. 70, 115–124. (doi:10.1159/000102973)
- 3. Jerison HJ (ed). 1975 Evolution of the brain and intelligence. *Curr. Anthropol.* **16**, 403–426.
- MacLean EL, Sandel AA, Bray J, Oldenkamp RE, Reddy RB, Hare BA. 2013 Group size predicts social but not nonsocial cognition in lemurs. PLoS One 8, e66359. (doi:10.1371/journal.pone.0066359)
- 5. Reader SM, Hager Y, Laland KN. 2011 The evolution of primate general and cultural intelligence. Phil. Trans. R. Soc. B 366, 1017—1027. (doi:10.1098/rstb.2010.0342)
- Aiello LC, Wheeler P. 1995 The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr. Anthropol. 36, 199–221. (doi:10.1086/ 204350)
- 7. Kotrschal A, Rogell B, Bundsen A, Svensson B, Zajitschek S, Brännström I, Immler S, Maklakov AA, Kolm N. 2013 Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. *Curr. Biol.* 23, 168–171. (doi:10.1016/j.cub.2012.11.058)
- 8. de Winter W, Oxnard CE. 2001 Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature 409, 710–714. (doi:10.1038/35055547)
- González-Suárez M, Gonzalez-Voyer A, von Hardenberg A, Santini L. 2021 The role of brain size on mammalian population densities. J. Anim. Ecol. 90, 653

 –661. (doi:10.1111/1365-2656.13397)
- 10. Krebs JR, Sherry DF, Healy SD, Perry VH, Vaccarino AL. 1989 Hippocampal specialization of food-storing birds. Proc. Natl Acad. Sci. USA 86, 1388–1392. (doi:10.1073/pnas.86.4.1388)
- 11. Dunbar RIM. 2009 The social brain hypothesis and its implications for social evolution. Ann. Hum. Biol. 36, 562–572. (doi:10.1080/03014460902960289)
- 12. Dunbar RIM, Shultz S. 2017 Why are there so many explanations for primate brain evolution? Phil. Trans. R. Soc. B 372, 20160244. (doi:10.1098/rstb.2016.0244)
- Finarelli JA, Flynn JJ. 2009 Brain-size evolution and sociality in Carnivora. Proc. Natl Acad. Sci. USA 106, 9345

 –9349. (doi:10.1073/pnas.0901780106)
- 14. Hardie JL, Cooney CR. 2023 Sociality, ecology and developmental constraints predict variation in brain size across birds. J. Evol. Biol. 36, 144–155. (doi:10.1111/jeb.14117)
- 15. Axelrod CJ, Yang Y, Grant E, Fleming J, Stone I, Carlson BA, Gordon SP. 2024 Evolutionary divergence of plasticity in brain morphology between ecologically divergent habitats of trinidadian guppies. *Evolution* 78, 1261–1274. (doi:10.1093/evolut/qpae055)
- 16. McCallum ES, Capelle PM, Balshine S. 2014 Seasonal plasticity in telencephalon mass of a benthic fish. J. Fish Biol. 85, 1785–1792. (doi:10.1111/jfb.12507)
- 17. Kotrschal K, van Staaden M, Huber R. 1998 Fish brains: evolution and environmental relationships. Rev. Fish Biol. Fish. 8, 373–408. (doi:10.1023/A:1008839605380)
- Triki Z, Levorato E, McNeely W, Marshall J, Bshary R. 2019 Population densities predict forebrain size variation in the cleaner fish Labroides dimidiatus. Proc. R. Soc. B 286, 20192108. (doi:10.1098/rspb.2019.2108)
- 19. Triki Z, Emery Y, Teles MC, Oliveira RF, Bshary R. 2020 Brain morphology predicts social intelligence in wild cleaner fish. Nat. Commun. 11, 6423. (doi:10.1038/s41467-020-20130-2)
- 20. Dunbar RIM. 1995 Neocortex size and group size in primates: a test of the hypothesis. J. Hum. Evol. 28, 287–296. (doi:10.1006/jhev.1995.1021)
- 21. Dunbar RIM, Shultz S. 2021 Social complexity and the fractal structure of group size in primate social evolution. Biol. Rev. 96, 1889–1906. (doi:10.1111/brv.12730)
- 22. Pitnick S, Jones KE, Wilkinson GS. 2006 Mating system and brain size in bats. Proc. R. Soc. B 273, 719–724. (doi:10.1098/rspb.2005.3367)
- 23. Pollen AA, Dobberfuhl AP, Scace J, Igulu MM, Renn SCP, Shumway CA, Hofmann HA. 2007 Environmental complexity and social organization sculpt the brain in Lake Tanganyikan cichlid fish. *Brain Behav. Evol.* **70**, 21–39. (doi:10.1159/000101067)
- 24. Schillaci MA. 2008 Primate mating systems and the evolution of neocortex size. J. Mammal. 89, 58–63. (doi:10.1644/06-mamm-a-417.1)
- Barton RA, Harvey PH. 2000 Mosaic evolution of brain structure in mammals. Nature 405, 1055–1058. (doi:10.1038/35016580)
- 26. Antunes DF, Teles MC, Zuelling M, Friesen CN, Oliveira RF, Aubin-Horth N, Taborsky B. 2021 Early social deprivation shapes neuronal programming of the social decision-making network in a cooperatively breeding fish. *Mol. Ecol.* **30**, 4118–4132. (doi:10.1111/mec.16019)
- 27. Messias JPM, Santos TP, Pinto M, Soares MC. 2016 Stimulation of dopamine D1 receptor improves learning capacity in cooperating cleaner fish. *Proc. R. Soc. B* **283**, 20152272. (doi: 10.1098/rspb.2015.2272)
- 28. Stednitz SJ, McDermott EM, Ncube D, Tallafuss A, Eisen JS, Washbourne P. 2018 Forebrain control of behaviorally driven social orienting in zebrafish. *Curr. Biol.* 28, 2445–2451.(doi: 10.1016/j.cub.2018.06.016)
- 29. Teles MC, Almeida O, Lopes JS, Oliveira RF. 2015 Social interactions elicit rapid shifts in functional connectivity in the social decision-making network of zebrafish. *Proc. R. Soc. B* **282**, 20151099. (doi:10.1098/rspb.2015.1099)
- 30. Bose APH, Dabernig-Heinz J, Oberkofler J, Koch L, Grimm J, Sefc KM, Jordan A. 2023 Aggression and spatial positioning of kin and non-kin fish in social groups. *Behav. Ecol.* **34**, 673–681. (doi:10.1093/beheco/arad036)
- 31. Lein E, Jordan A. 2021 Studying the evolution of social behaviour in one of Darwin's dreamponds: a case for the lamprologine shell-dwelling cichlids. *Hydrobiologia* **848**, 3699—3726. (doi:10.1007/s10750-020-04473-x)
- 32. Konings A. 2019 Tanganyika cichlids in their natural habitat. El Paso, TX: Cichlid Press.
- 33. Reyes-Contreras M, Glauser G, Rennison DJ, Taborsky B. 2019 Early-life manipulation of cortisol and its receptor alters stress axis programming and social competence. *Phil. Trans. R. Soc. B* **374**, 20180119. (doi:10.1098/rstb.2018.0119)
- 34. Oliveira RF, Bshary R. 2021 Expanding the concept of social behavior to interspecific interactions. Ethology 127, 758–773. (doi:10.1111/eth.13194)
- 35. Schneider CA, Rasband WS, Eliceiri KW. 2012 NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. (doi:10.1038/nmeth.2089)
- 36. Hartig F, Lohse L, leite M de S. 2024 DHARMa: residual diagnostics for hierarchical (multi-level / mixed) regression models. R package version 0.4.5. (doi:10.32614/CRAN.package. DHARMa)
- 37. Brooks M, Bolker B, Kristensen K, Maechler M, Magnusson A, Skaug H, Nielsen A, Berg C, Bentham K. 2017 glmmTMB: generalized linear mixed models using template model builder. 1.1.11. R package version 1.1.3. (doi:10.32614/CRAN.package.glmmTMB)
- 38. Gould SJ. 1975 Allometry in primates, with emphasis on scaling and the evolution of the brain. Contrib. Primatol. 5, 244–292.
- 39. Schmidt-NielsenK. 1984 Scaling: why is animal size so important?. Cambridge: Cambridge University Press.
- Smith RJ. 1984 Allometric scaling in comparative biology: problems of concept and method. Am. J. Physiol. Regul. Integr. Comp. Physiol. 246, R152

 –R160. (doi:10.1152/ajpregu. 1984.246.2:r152)
- 41. Lenth RV. 2017 emmeans: estimated marginal means, aka least-squares means. 1.11.1. R package version 1.1.3. (doi:10.32614/CRAN.package.emmeans)

- 42. Kolb EM, Rezende EL, Holness L, Radtke A, Lee SK, Obenaus A, Garland T. 2013 Mice selectively bred for high voluntary wheel running have larger midbrains: support for the mosaic model of brain evolution. *J. Exp. Biol.* **216**, 515–523. (doi:10.1242/jeb.076000)
- 43. Triki Z, Fong S, Amcoff M, Vasquez-Nilsson S, Kolm N. 2023 Experimental expansion of relative telencephalon size improves the main executive function abilities in guppy. *PNAS Nexus* 2, pgad129. (doi:10.1093/pnasnexus/pgad129)
- 14. Striedter GF. 2006 Précis of principles of brain evolution. *Behav. Brain Sci.* **29**, 1–12. (doi:10.1017/S0140525X06009010)
- 45. Morrison RE, Eckardt W, Stoinski TS, Brent LJN. 2020 Comparing measures of social complexity: larger mountain gorilla groups do not have a greater diversity of relationships. *Proc. R. Soc. B* **287**, 20201026. (doi:10.1098/rspb.2020.1026)
- 46. Dunbar RIM. 2018 The anatomy of friendship. *Trends Cogn. Sci.* 22, 32–51. (doi:10.1016/j.tics.2017.10.004)
- 47. Navarrete A, van Schaik CP, Isler K. 2011 Energetics and the evolution of human brain size. Nature 480, 91–93. (doi:10.1038/nature10629)
- Lau BYB, Mathur P, Gould GG, Guo S. 2011 Identification of a brain center whose activity discriminates a choice behavior in zebrafish. Proc. Natl Acad. Sci. USA 108, 2581–2586. (doi: 10.1073/pnas.1018275108)
- O'Connell LA, Hofmann HA. 2011 The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J. Comp. Neurol. 519, 3599–3639. (doi:10.1002/cne.22735)
- 50. Harvey-Girard E, Tweedle J, Ironstone J, Cuddy M, Ellis W, Maler L. 2010 Long-term recognition memory of individual conspecifics is associated with telencephalic expression of Egr-1 in the electric fish *Apteronotus leptorhynchus*. *J. Comp. Neurol.* **518**, 2666–2692. (doi:10.1002/cne.22358)
- 51. Tea J, Alderman SL, Gilmour KM. 2018 Social stress increases plasma cortisol and reduces forebrain cell proliferation in subordinate male zebrafish (*Danio rerio*). J. Exp. Biol. jeb.194894. (doi:10.1242/jeb.194894)
- 52. Maruska KP, Fernald RD. 2011 Social regulation of gene expression in the hypothalamic-pituitary-gonadal axis. Physiology 26, 412–423. (doi:10.1152/physiol.00032.2011)
- 53. Ross HE, Young LJ. 2009 Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front. Neuroendocrinol. **30**, 534–547. (doi:10.1016/j.yfrne.2009. 05.004)
- 54. Soma KK, Francis RC, Wingfield JC, Fernald RD. 1996 Androgen regulation of hypothalamic neurons containing gonadotropin-releasing hormone in a Cichlid fish: integration with social cues. *Horm. Behav.* **30**, 216–226. (doi:10.1006/hbeh.1996.0026)
- 55. Young LJ. 1999 Oxytocin and vasopressin receptors and species-typical social behaviors. Horm. Behav. 36, 212–221. (doi:10.1006/hbeh.1999.1548)
- 56. Harvey PH, Clutton-Brock TH, Mace GM. 1980 Brain size and ecology in small mammals and primates. Proc. Natl Acad. Sci. USA 77, 4387–4389. (doi:10.1073/pnas.77.7.4387)
- 57. Healy SD. 2021 Adaptation and the brain, pp. 35–50. Oxford, UK: Oxford University Press.(Oxford series in ecology and evolution). (doi:10.1093/oso/9780199546756.001.0001)
- 58. Shumway CA. 2008 Habitat complexity, brain, and behavior. Brain Behav. Evol. 72, 123–134. (doi:10.1159/000151472)
- 59. Huber R, van Staaden MJ, Kaufman LS, Liem KF. 1997 Microhabitat use, trophic patterns, and the evolution of brain structure in African Cichlids. *Brain Behav. Evol.* 50, 167–182. (doi:10.1159/000113330)
- 60. Ahmed NI, Thompson C, Bolnick DI, Stuart YE. 2017 Brain morphology of the threespine stickleback (*Gasterosteus aculeatus*) varies inconsistently with respect to habitat complexity: a test of the clever foraging hypothesis. *Ecol. Evol.* **7**, 3372–3380. (doi:10.1002/ece3.2918)
- 61. Striedter GF. 2005 Principles of brain evolution. Sunderland, MA: Sinauer Associates.
- 62. Park PJ, Bell MA. 2010 Variation of telencephalon morphology of the threespine stickleback (*Gasterosteus aculeatus*) in relation to inferred ecology. *J. Evol. Biol.* 23, 1261–1277. (doi: 10.1111/j.1420-9101.2010.01987.x)
- 63. Barton RA. 1997 Neocortex size and behavioural ecology in primates. Proc. R. Soc. B 263, 173–177. (doi:10.1098/rspb.1996.0028)
- 64. Luckhurst BE, Luckhurst K. 1978 Analysis of the influence of substrate variables on coral reef fish communities. Mar. Biol. 49, 317–323. (doi:10.1007/BF00455026)
- 65. Sylvester JB, Rich CA, Loh YHE, van Staaden MJ, Fraser GJ, Streelman JT. 2010 Brain diversity evolves via differences in patterning. *Proc. Natl Acad. Sci. USA* **107**, 9718–9723. (doi:10. 1073/pnas.1000395107)
- 66. Gonda A, Välimäki K, Herczeg G, Merilä J. 2012 Brain development and predation: plastic responses depend on evolutionary history. *Biol. Lett.* **8**, 249–252. (doi:10.1098/rsbl.2011. 0837)
- 67. van der Bijl W, Thyselius M, Kotrschal A, Kolm N. 2015 Brain size affects the behavioural response to predators in female guppies (*Poecilia reticulata*). *Proc. R. Soc. B* **282**, 20151132. (doi:10.1098/rspb.2015.1132)
- 68. Walsh MR, Broyles W, Beston SM, Munch SB. 2016 Predator-driven brain size evolution in natural populations of trinidadian killifish (*Rivulus hartii*). *Proc. R. Soc. B* **283**, 20161075. (doi:10.1098/rspb.2016.1075)
- 69. Reddon AR, Chouinard-Thuly L, Leris I, Reader SM. 2018 Wild and laboratory exposure to cues of predation risk increases relative brain mass in male guppies. *Funct. Ecol.* **32**, 1847–1856. (doi:10.1111/1365-2435.13128)
- 70. van der Bijl W, Kolm N. 2016 Why direct effects of predation complicate the social brain hypothesis: and how incorporation of explicit proximate behavioral mechanisms might help. Bioessays 38, 568–577. (doi:10.1002/bies.201500166)
- 71. Groenewoud F, Frommen JG, Josi D, Tanaka H, Jungwirth A, Taborsky M. 2016 Predation risk drives social complexity in cooperative breeders. *Proc. Natl Acad. Sci. USA* **113**, 4104–4109. (doi:10.1073/pnas.1524178113)
- 72. Gonzalez-Voyer A, Winberg S, Kolm N. 2009 Social fishes and single mothers: brain evolution in African cichlids. Proc. R. Soc. B 276, 161–167. (doi:10.1098/rspb.2008.0979)
- 73. Dunbar RIM, Bever J. 1998 Neocortex size predicts group size in carnivores and some insectivores. Ethology 104, 695–708. (doi:10.1111/j.1439-0310.1998.tb00103.x)
- 74. Pérez-Barbería FJ, Shultz S, Dunbar RIM. 2007 Evidence for coevolution of sociality and relative brain size in three orders of mammals. *Evolution* **61**, 2811–2821. (doi:10.1111/j. 1558-5646.2007.00229.x)
- 75. Shultz S, Dunbar RIM. 2006 Both social and ecological factors predict ungulate brain size. Proc. R. Soc. B 273, 207–215. (doi:10.1098/rspb.2005.3283)
- 76. Dunbar RIM. 1998 The social brain hypothesis. Evol. Anthropol. 6, 178–190. (doi:10.1002/(sici)1520-6505(1998)6:53.3.co;2-p)
- 77. Kverková K, Bělíková T, Olkowicz S, Pavelková Z, O'Riain MJ, Šumbera R, Burda H, Bennett NC, Němec P. 2018 Sociality does not drive the evolution of large brains in eusocial African mole rats. *Sci. Rep.* **8**, 9203. (doi:10.1038/s41598-018-26062-8)
- 78. Reddon AR, O'Connor CM, Ligocki IY, Hellmann JK, Marsh-Rollo SE, Hamilton IM, Balshine S. 2016 No evidence for larger brains in cooperatively breeding cichlid fishes. *Can. J. Zool.* **94**, 373–378. (doi:10.1139/cjz-2015-0118)
- 79. Ma B, Bose A, Dunster B, Zhu B, Lein E, Li W, Jordan A. 2025 Data and code from: Social fish have larger brains and greater relative telencephalon sizes: support for the social brain hypothesis from wild, intraspecific comparisons. Dryad Digital Repository. (doi:10.5061/dryad.pk0p2nh2d)
- 80. Ma B, Bose APH, Dunster B, Zhu B, Lein E, Li W *et al*. 2025 Supplementary material from: Social fish have larger brains and greater relative telencephalon sizes: support for the social brain hypothesis from wild, intraspecific comparisons. Figshare. (doi:10.6084/m9.figshare.c.8075073)