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Denitrification is a community trait with
partial pathways dominating across
microbial genomes and biomes

Grace Pold 1, Aurélien Saghaï 2, Christopher M. Jones2 & Sara Hallin 2

Diverse microorganisms can execute one or more steps in denitrification,
during which nitrate or nitrite is successively reduced into nitric oxide, nitrous
oxide, and ultimately dinitrogen. Many of the best-characterized denitrifiers
are complete denitrifiers capable of executing all steps in the pathway, but
their dominance in natural communities and what metabolic traits and
environmental factors drive the global distribution of complete vs. partial
denitrifiers are unclear. To address this, we conducted a comparative analysis
of denitrification genes in 61,293 genomes, 3991 metagenomes, and 413 ter-
restrial and aquatic metatranscriptomes. We show that partial denitrifiers
outnumber complete denitrifiers and the potential to initiate denitrification is
more common than the potential to terminate it, particularly in nutrient rich
environments. Our results further indicate that complete denitrifiers tend to
be fast-growing organisms, favoring organic acid over sugar metabolism, and
encoding the ability to oxidize and reduce a broader range of organic and
inorganic compounds compared topartial denitrifiers. This suggests complete
denitrifiers are metabolically flexible opportunists. Together, our results
indicate an environmental footprint on the presence of denitrification genes
which favors the genomic potential for partial over complete denitrification in
most biomes and highlight that completion of the denitrification pathway is a
community effort.

The potent greenhouse gas and ozone depleting agent nitrous oxide
(N2O) is produced in several microbial N-cycle processes, of which
denitrificationplays a dual role in both producing and consumingN2O.
In this facultative anaerobic microbial respiratory pathway, nitrate
(NO3

−) or nitrite (NO2
−) are used as electron acceptors and successively

reduced into nitric oxide (NO), N2O, and dinitrogen (N2) by a diverse
range of predominantly bacterial species. As the genes encoding the
enzymes involved in these reductive steps can be independently
gained and lost1–3, they are found in different combinations among
genomes4, such that denitrification can be executed by complete
denitrifiers with genes encoding enzymes for all steps or, alternatively,
split between multiple partial denitrifier community members. Recent

studies suggest that genetically complete denitrifiers are scarce among
genomes assembled from environmental data5–10. However, much of
our understanding of the physiology and regulation of denitrification
is based on studies of a very phylogenetically restricted set of com-
plete denitrifiers11–15. Thus, there is pressing need for a broader look at
the prevalence, diversity and ecology of organisms genetically capable
of complete and partial denitrification, particularly considering their
differential roles in serving as sources and sinks of N2O

16.
Split pathways divide the protein production costs for a pathway

between multiple cells and may enable higher ATP flux17,18, increasing
the specific growth rate. Although this could be a fitness advantage
under nitrite-rich conditions, ATP yields per molecule nitrate or nitrite
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would be lower for partial compared to complete denitrification. This
is expected to lead to partial denitrification being favored when elec-
tron acceptor supply is not limiting, but complete denitrification being
favored when the flux of electron donors such as carbon (C com-
pounds is high relative to electron acceptor availability). Splitting the
denitrification pathway also increases dependencies between com-
munity members, not only because the denitrification product of one
organism serves as the electron acceptor for another19,20, but also
because the regulation of specific reactions may rely on intermediates
that those executing the reaction themselves cannot use21. Further,
there is less buildup of toxic intermediate compounds, which may
allow microorganisms only capable of carrying out the initial steps of
denitrification avoid the cytotoxic effects of NO2

−, particularly under
low pH environments11,22. This jointly indicates that split pathwaysmay
open more niches, thereby supporting a greater diversity of

denitrifiers20. If organisms encoding partial vs. complete denitrifica-
tion fulfill different niches, this should also be reflected in additional
traits, suchasgrowth rate, abioticoptima, and the ability tometabolize
different substrates and use electron acceptors beyond those in the
denitrification pathway. For instance, if complete denitrification is
indeed associated with C influx, complete denitrifiers would be
expected to be capable of higher growth and broader substrate cata-
bolism compared to partial denitrifiers. Addressing the linkages
between the complete or partial denitrification and the capacity for
other traits can help identify the broader roles and conditions that
favor each denitrifier type.

Here we combined comparative genomics (Fig. 1a) with a global
survey of denitrification gene ratios in environmental metagenomes
and metatranscriptomes to evaluate the diversity of bacterial deni-
trifier types, their metabolic traits, and their distribution across

Fig. 1 | Methods overview and phylogenetic distribution of denitrifier types.
a Overview of experimental approach for comparative genomics. Metagenome-
assembled, single cell and isolate bacterial genomes covering environmental, host-
associated, and engineered biomes were extracted from GTDB v.214.1 (Supple-
mentary Data 2). Denitrification genes were annotated using a combination of
HMM-based searches, phylogeny construction, and manual inspection of align-
ments. Denitrifier genomes were then searched for additional functional traits
including maximum growth rate, transcription factors and potential to use various
electron donors and acceptors. b Venn diagram of prevalence of denitrifier types.
The number inside each circle denotes the percentage of denitrifier genomes with
that genotype. Letters in italics denote whether genotype is considered an initiator
(i), terminator (t) or is capable of both (init-term; it). Reactions completed by each
enzyme and corresponding denitrifier type name are listed below the diagram,with

the lines under each step defining the colors used in the Venn diagram. Genomes
encoding norwithout accompanying nir or nosZ genes are marked with an asterisk
and classified as non-denitrifiers. c Stacked bar charts denoting relative proportion
of genomes belonging to phyla within each denitrifier type, with non-denitrifiers
defined as containing neither nir nor nosZ, or being archaeal nitrifiers or anammox
bacteria (see “Methods”). The number of genomes corresponding to each deni-
trifier type is indicated above the corresponding bar. Phyla represented by fewer
than 100 denitrifier genomes are aggregated under “other” and can be found in
Supplementary Data 11. d Proportion of denitrifier genomeswithin dominant phyla
encoding each denitrification enzyme gene as well as the complete denitrification
pathway. Numbers to the right in (d) indicate the number of denitrifier genomes
belonging to each phylum denoted in the graph. Source data are provided as a
Source Data file.

Article https://doi.org/10.1038/s41467-025-65319-5

Nature Communications |         (2025) 16:9495 2

www.nature.com/naturecommunications


engineered, environmental and host-associated biomes. We posited
that environmental factors favoring or disfavoring execution of the
different steps leave a genetic footprint in the form of presence and
absence of genes encoding the enzymes responsible for them, as well
as via differential associations between denitrification enzyme genes
and redox traits. Furthermore, considering organisms encoding a
complete denitrification pathway are able to use a broader range of
nitrogenous terminal electron acceptors than those encoding fewer,
we hypothesized that the former would have broader metabolic flex-
ibility. We used a framework in which partial denitrifiers include
genetically defined initiators,which encode genes involved inNO2

− but
not N2O reduction, and terminators, which encode genes for N2O but
not NO2

− reduction (Fig. 1b).We usedNO2
− reduction, the decisive step

of denitrification23, as the first point of our analysis. We combined
comparative genomics of 61,293 non-redundant bacterial isolate,
metagenome assembled (MAGs), and single cell genomes with 3991
metagenomes derived from all major biomes and 413 terrestrial and
aquaticmetatranscriptomes to determine the frequency of a complete
vs. partial denitrification pathway and the genetic potential to initiate
vs. terminate denitrification at the genome and community level. Here
we show evidence for dominance of partial over complete denitrifiers
in genomes,metagenomes, andmetatranscriptomes.We interpret our
results in the context of resource availability and complementary
genomic traits associated with the denitrifier types in our framework
and propose that complete denitrifiers are metabolically flexible
generalists.

Results
Partial denitrification dominates microbial genomes
We assessed the prevalence of partial and complete denitrification
pathways among 61,293 bacterial genomes represented in GTDB
release 214.1 (Fig. 1a). Genes for the denitrification enzymes NirK (nirK)
and NirS (nirS) catalyzing NO2

− reduction to NO, all proposed NO-
reducing heme copper oxidases (i.e., Nor (nor)24), and NosZ (nosZI,
nosZII) catalyzing N2O reduction were annotated using hiddenMarkov
models trained on manually curated databases of these genes25. Gen-
omes carrying nor but not nir or nosZ accounted for 5% of the total
number of assemblies and were excluded in downstream analyses
because Nor in nor-only genomes are likely involved in detoxification
rather than respiration. With this conservative approach, 18% of the
genomes (n = 11,126) were considered denitrifiers and included nir
and/or nosZwith or without nor. Among these, 23% encoded genes for
completeNO2

− reduction toN2 (complete denitrifiers; Fig. 1b), with the
complete denitrification trait more prevalent among isolates com-
pared to MAGs (29% vs. 17%, respectively, Supplementary Table 1).
However, there was considerable variation between phyla (Fig. 1c,
Supplementary Fig. 1). Twenty-eight different bacterial phyla encoded
the complete denitrification trait, with an overwhelming dominance of
Pseudomonadota in our dataset (Fig. 1c). Among phyla represented by
at least 100 denitrifier genomes, complete denitrifiers were most
prevalent within Campylobacterota (38% of denitrifiers), Pseudomo-
nadota (37%), and Myxococcota (26%, Fig. 1d).

Using our framework of initiators and terminators, we found that
initiators encoding nir with or without nor but not nosZ were broadly
more prevalent than terminators having nosZ with or without nor but
not nir (49% vs. 24% of genomes with denitrification genes, respec-
tively). Thismay represent the potentially divergent functions for NO2

−

versus N2O reduction as a means of growth or detoxification vs.
maintenance26. Partial denitrifiers occurred in 68 bacterial phyla, with
initiators being overrepresented within Actinomycetota (98% initia-
tors, 1% terminators) and Nitrospirota (88%, 8%) (Fig. 1d). However,
Nitrospirota accounted for just a small fraction of initiator genomes
(2.7%), while the majority were Pseudomonadota (47%) and Actino-
mycetota (22%) (Fig. 1c). We found a higher proportion of terminators
than initiators within Planctomycetota (76% terminators, 19%

initiators) and Bacteroidota (60%, 18%) (Fig. 1d), with the latter phylum
accounting for themajority of terminators in the dataset (53%; Fig. 1c).
We also found genomes carrying nir and nosZbut not nor, suggesting a
third category: the initiator-terminators. They accounted for just 4% of
genomes with denitrification genes, including 13% of Gemmatimona-
dota, 13% of Chloroflexota, 9% of Bacteroidota and 5% of Verrucomi-
crobiota (Fig. 1c). It is possible that these organisms either depend on
NO reductionby other organismsor produceN2Oviapathways that do
not depend on Nor27–30.

Among all genomes carrying nosZ (i.e., terminators, initiator-ter-
minators, and complete denitrifiers), those encoding clade I nosZwere
more likely to encode the complete denitrification trait compared to
genomes encoding clade II (74% in clade I vs. 26% in clade II; Supple-
mentary Fig. 2), as previously observed4. Within clade II, complete
denitrificationwasmost prevalent in Pseudomonadota and Aquificota,
with 80% of Pseudomonadota and 94% of Aquificota encoding com-
plete denitrification compared to an average of 20% in the remaining
phyla. This suggests that the difference in clade I vs. clade II prevalence
can be used as a proxy for complete vs. partial denitrifier prevalence
within the N2O reducing community, but not if clade II is dominated by
Pseudomonadota or Aquificota.

Inferred ecological preferences of complete vs. partial
denitrifiers
We next assessed whether the genetic potential for complete deni-
trification or for initiating rather than terminating denitrification was
associated with the predicted growth rate and resource use patterns
among bacteria. Using the codon bias-based maximum growth rate
prediction tool gRodon31, we categorized genomes into fast- (growth
rate faster than 0.2 h−1) and slow-growing (growth rate lower than
0.2 h−1)31. Rapid growth was more common among complete deni-
trifiers (83%) compared to initiators (70%), terminators (65%) and
initiator-terminators (62%; Fig. 2a upper panel) and for genomes
encoding clade I (85%) compared to clade II NosZ (65%; Fig. 2a lower
panel). Similarly, estimated median growth rates of complete deni-
trifiers (0.46 h−1) were greater than that of initiators (0.28 h−1), termi-
nators (0.23 h−1) and initiator-terminators (0.20h−1; overall Kruskall-
Wallis χ2 = 401, Dunn P < 0.0001 in all cases). This faster potential
growth rate was associated with a lower sugar to acid preference of
complete denitrifiers compared to all three of the categories of partial
denitrifiers, basedon the total sumof genes involved in eachpathway32

(Fig. 2b). This was accompanied by a higher density of transcription
factors (Fig. 2c) and transporters (68Mbp−1 in complete denitrifiers vs.
65Mbp−1 in initiators, 40Mbp−1 in terminators, and 42 Mbp−1 in initia-
tor-terminators, P < 2 × 10−16). Furthermore, complete denitrifiers were
inferred to grow on more of the 56 organic substrates examined
(median of 20 corresponding to 4.75Mbp−1), compared to initiators
(13; 3.32Mbp−1), terminators (11; 2.90Mbp−1), and initiator-terminators
(9; 2.55Mbp−1; Fig. 2d). Thiswas driven by complete denitrifiers using a
broader range of organic and amino acids compared to partial deni-
trifiers (median of 15 vs. 6–7), rather than sugars (median of 2 vs. 2–3).

We subsequently examined the potential for partial and complete
denitrifiers to use a range of inorganic compounds as electron donors
and acceptors (Fig. 2e). While the ability to oxidize inorganic com-
pounds such as hydrogenmay be associated with an ability to tolerate
energy-limited conditions33, the ability to reduce inorganic com-
pounds may indicate that one type or another of denitrifiers is better
able to tolerate lower redox conditions. Although most genomes
lacked the genetic potential to oxidize inorganic substances or reduce
non-nitrogenous terminal electron acceptors (median = 0) other than
oxygen, complete denitrifiers had the genetic potential to both oxidize
and reduce more compounds than partial denitrifiers (Kolmogorov-
Smirnov statistic P <0.0001 in all cases). Almost all (99%) genomes
encoded the potential for aerobic respiration, with low affinity oxi-
dases more prevalent in complete denitrifiers (87%) than initiators
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(83%; χ2 = 15.03, P = 0.0001), and similar in prevalence to terminators
(85%; χ2 = 0.083, P = 0.7734) and initiator-terminators (86%; χ2 = 0.91,
P =0.3397). High affinity variants were more prevalent among com-
plete denitrifiers (99%) vs. initiators (89%; χ2 = 228, P < 2.2 × 10−16), ter-
minators (94%; χ2 = 84.63, P < 2.2 × 10−16) and initiator-terminators
(88%; χ2 = 142.82, P < 2.2 × 10−16).

The inferred abiotic niche breadths of complete denitrifiers were
not uniformly broader than that of partial denitrifiers. Complete
denitrifiers had slightly broader inferred temperature ranges com-
pared to initiators (26.84 vs. 25.12 °C; t = −24.583, P < 2 × 10−16), termi-
nators (25.54 °C, t = −18.569, P < 2 × 10−16) and initiator-terminators
(25.93 °C, t = −8.038, P = 1.02 × 10−15). pH ranges were narrower in
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complete denitrifiers compared to initiators (3.75 vs. 3.83; t = 8.136,
P = 4.44 × 10−16) and broader compared to terminators (3.58; t = −6.756,
P = 1.50× 10−11). Salinity ranges were broader in complete denitrifiers
than initiators (5.64 vs. 5.31; t = −3.775, P = 0.000162) but narrower
than in initiator-terminators (5.92; t = −2.441, P =0.014665).

We subsequently assessed the degree to which complete and
partial denitrifiers were associated with high or low resource avail-
ability using CoverM34 tomap reads from the TARAOceans35 project to
MAGs derived from the same data36. No subset of the metagenome
data we collected or other databases we screened had a sufficient
number of complete denitrifierMAGs and environmental data to allow
for this analysis, highlighting the rarity of complete denitrifiers in
global ecosystems. Nitrate was used as a proxy for denitrification
electron acceptor availability and chlorophyll concentration as a proxy
for electrondonor supply becauseof its positive associationwith gross
primary productivity37. The proportion of reads mapping to the col-
lection of 170MAGs in the dataset differed by sample and ranged from
5 to 30%. We calculated a standardized environmental response by
correlating the proportion of reads mapping the denitrifier types
among the MAGs (7 complete, 13 initiators, 14 terminators, 134 non-
denitrifiers and 2 initiator-terminators) with chlorophyll and NO3

−

concentrations in different samples and standardizing this to the
maximum observed relative abundance of each MAG. We found that
terminators and complete denitrifiers tended to have a greater
increase in relative abundance with increasing NO3

− than non-deni-
trifiers, but there was no difference between complete denitrifiers and
partial denitrifiers (Supplementary Fig. 3a). Mean standardized chlor-
ophyll and chlorophyll: NO3

− ratio responses were similar across all
groups of organisms, independent of denitrifier type (Supplementary
Fig. 3b, c). One possible reason for the apparent lack of correlation
between denitrifier type and resource availability is that these bulk
measurements likely do not represent the microhabitat that deni-
trifiers experience. For instance, pre-filtering of the samples depleted
muchof the particulate organicmatter, where denitrification activity is
concentrated38, and where modeling indicates that complete deni-
trifiers are favored20. Nonetheless, the results from this pelagic marine
dataset do not indicate that measured resource availability affects the
prevalence of complete or partial denitrifier genomes.

Prevalence of denitrification initiators and terminators varies
across global biomes
Next, we assessed variation in denitrification initiator and terminator
prevalence and complete and partial denitrifiers among terminators
(i.e., N2O reducers) at the community level in a broad range of envir-
onments. We screened 3991 metagenomes derived from soil, aquatic,
engineered and host-associated biomes for nirK, nirS, and nosZ clades I
and II using an HMM-based search and phylogenetic placement
approach39. The difference in the copy number of nosZ and nir genes
normalized to Gbp sequenced in each metagenome (δnos-nir) was
used as a proxy for the genetic potential for termination compared to
initiation of denitrification, and nosZ clade I vs. clade II (δnosZI-nosZII)
as a proxy for complete denitrifier dominancewithin the N2O reducing
community. Delta values were chosen for their ability to account for

differences in overall denitrifier prevalence between biomes, including
cases where one or both of the denitrification genes being compared
were not detected.

Across the majority of biomes, nir gene fragments were typically
more abundant than nosZ, indicating a greater or similar potential to
initiate than terminate denitrification within the denitrifier commu-
nities (Fig. 3a). Marine mats served as an exception, and nosZ pre-
valence exceeded that of nir by 60%. This would occur if there were
higher rates of NO3

− assimilation or low inputs of NO2
− from

nitrification40, as suggested by the overall low prevalence of nir and
lack of ammonifier associated nirK clades observed previously in these
samples25. nosZ Clade II wasmore prevalent than nosZ Clade I in nearly
all biomes considered, (Fig. 3b). This indicates that partial denitrifiers
generally dominate terminator communities because partial deni-
trification is more prevalent among Clade II nosZ. This is further sup-
portedbyour observation thatphyladepleted in complete denitrifiers,
such as Bacteroidetes, Chloroflexota and Gemmatimonadota, domi-
nated nosZ clade II across biomes (Fig. 3c, d). Therefore, we can con-
clude that the majority of organisms capable of terminating
denitrification in global biomes do not also initiate this process. This is
particularly the case in croplands, marshes, and activated sludge from
municipal wastewater treatment plants, which were the biomes where
δnosZI-nosZII is lowest for terrestrial, marine, and engineered envir-
onments (Fig. 3b). The dominance of nosZII coincides with the highest
totalnosZ and nir gene abundances (SupplementaryData 1), indicating
conditions that are overall more favorable for denitrification also
promote N2O reducers that are partial rather than complete deni-
trifiers. A notable exception to this pattern is sewage communities,
which were dominated by clade I nosZ despite having high overall nir
gene fragment prevalence, and seems to largely reflect the pre-
ponderance of Acidovorax in these samples41.

We also assessed the correlation between the diversity of deni-
trifiers based on phylogenetic diversity of the dominant nitrite
reductase gene, nirK and potential initiator-terminator or clade I and II
differential abundance25. We found that nirK phylogenetic diversity
was positively correlated with δnos-nir in soils (Spearman’s ρ = 0.46,
P < 2.2 ×10−16) andmarine samples (ρ =0.19, P = 1.18 × 10−11), while nirK
diversity was positively correlated with δnosZI-nosZII in soils (ρ =0.29,
P < 2.2 × 10−16) and uncorrelated in marine samples (ρ =0.03, P =0.35).
These results indicate thatmore diverse denitrifier communities occur
where capacities for initiating and terminating denitrification are
relatively more balanced, such that complete denitrification at the
community level is associated with greater niche partitioning.

Environmental drivers of nir vs. nosZ and nosZ clade prevalence
were assessed using random forest modeling on the largest soil and
marine datasets with completemetadata represented in our analysis42.
Wegenerated accumulated local effectplots to show themain effectof
the target variable on predicted δnos-nir (Fig. 4) and δnosZI-nosZII
(Fig. 5), while accounting for the other predictors. Models explained
less than half of the variance in gene differences, except for δnosZI-
nosZII in soils. Increases in soil organic carbon content up to ~1%
positively affected δnos-nir, while the effect of soil NO3

− content was
always negative (Fig. 4a). nosZ was also predicted to become less

Fig. 2 | Genome-inferred traits of complete and partial denitrifier bacteria.
a Estimated maximum growth rate of organisms based on codon usage bias.
Stacked bar charts show the maximum predicted growth rate for genomes sepa-
rated by denitrifier type (upper panel) and NosZ clade (lower panel). Slow-growing
taxa (maximum growth rate <0.2 h−1) are depicted to the left on the horizontal axis
and fast-growing taxa to the right. Numbers to the right denotenumber of genomes
used inmaximumgrowth rate predictions and exclude genomeswith fewer than 10
ribosomal proteins annotated. b Boxplots of sugar and organic acid preference of
denitrifiers, based on KEGG annotation ratios32. cGenomic density of transcription
factors inferred usingDeepTFactor.dBoxplot of substrate use counts bydenitrifier
type and substrate category based on GapMind, with colors following (b, c).

e Heatmap of terminal electron acceptors and donors, with intensity of color and
number denoting proportion of genomes within denitrifier type encoding redox
ability. Terminal oxidases are near-ubiquitous and are not included in figure or
totals. In (b–d), box boundaries represent first and third quartiles, with midline
denotingmedian.Whiskers denote the 1.5 IQR, and outliers are shown as individual
points. Asterisks above boxes indicate a difference between complete denitrifiers
and thepartial denitrifier typeandno comparisons between partial denitrifier types
were made. Numbers to the right in (e) denote number of genomes used in (b–e).
Elemental S elemental sulfur, Init-term initiator-terminator. Source data are pro-
vided as a Source Data file.
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Fig. 3 | Balance in prevalence of denitrification genes shows dominance of
initiators at the community level across global biomes. Boxplots showing dif-
ference in nos versus nir counts ((nosZ I + nosZ II) – (nirK + nirS)) (a); and clade I and
clade IInosZ counts (b) perGb sequenced. Biomeswere comparedusing Benjamini-
Hochberg FDR-corrected pairwise ranked comparisons following Kruskall-Wallis,
and common letters to the right in each boxplot denotes biomes with similar
median gene prevalences. Numbers to the right denote the number of metagen-
omes included for each biome. Box boundaries represent first and third quartiles,

with midline denoting the median and whiskers the 1.5 IQR. Mean composition of
clade I (c) and clade II nosZ reads (d), organized by biome and colored by phylum.
Biomes represented by fewer than 20 metagenomes are excluded from the figure.
The percentage of genomes having clade II nosZ and a complete denitrification
pathway are indicated for each phylum in the legend and can be seen for both
clades in Supplementary Fig. 2. Standard errors corresponding for eachphylumare
available in Supplementary Data 12. Host assoc. host-associated, Engineer. engi-
neered. Source data are provided as a Source Data file.
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prevalent compared to nir as available phosphorus increased, indi-
cating that high nutrient conditions in soils favor NO2

− reducers over
N2O reducers.Within themarine dataset, predicted δnos-nirwas lower
at the highest concentrations of the sum of NO3

− and NO2
− compared

to the lowest concentrations, and showed a dramatic shift in predic-
tion from a decreasing to increasing relationship with temperature at
22 °C (Fig. 4b).

Available NO3
−, phosphorus, potassium, and zinc had a negative

effect on predicted δnosZI-nosZII (Fig. 5a), which suggest that partial
N2O reducers increase with increasing nutrient levels. pH and clay
content also had a negative effect on predicted δnosZI-nosZII, though
only pH had a negative effect over the entirety of measured values.
Increases in elevation at low altitude were associated with increased
predicted δnosZI-nosZII, but additional increases in elevation were not
associated with further increases. In the marine study, temperature
and ammonium concentrations had opposing unimodal effects on
predicted values over their observed ranges (Fig. 5b).

Expression of denitrification termination and initiation in the
environment
We subsequently quantified the presence of nosZ and nir transcripts in
413 metatranscriptomes from soils and aquatic environments, dis-
tributed among five biomes, to assess whether the biome-level dif-
ferences and associations between environmental variables and
δnosZI-nosZII and δnos-nir gene abundance were also apparent in gene
expression. nirK transcripts were strongly dominated by archaeal
nitrifier reads (median 50%, range 0–100%), which we excluded in our
analysis (see “Methods”). Consistentwith themetagenome analysis,nir
was more prevalent than nosZ and clade II nosZ was more prevalent

than clade I nosZ (Fig. 6a). The soil studies either directly or indirectly
manipulated carbon availability, and soils associated with higher car-
bon availability had higher δnos-nir expression than their paired lower-
carbon samples (SMD 0.75, p = 0.015) but did not have higher δnosZI-
nosZII (SMD 0.06, p = 0.73). Among aquatic studies, which were all
observational, correlation coefficients were negative between δnos-nir
and the NO3

− +NO2
− (mean −0.27, CI: −0.53 to 0.00) and positive

between δnos-nir and chlorophyll concentrations (0.22, CI: 0.04, 0.41;
Fig. 6b). δnos-nir was not correlated with dissolved oxygen or phos-
phate concentrations, or with bacterial production, another proxy for
resource availability. δnosZI-nosZII was positively correlated with dis-
solved oxygen content, which would occur if the dominant organisms
encoding clade I NosZ lowered oxygen concentrations around their
N2O reductase better than those encoding clade II43.

Discussion
By combining a comparative analysis of genomes with broad meta-
genomic and metatranscriptomic surveys, we provide fresh insight
into the prevalence of the complete and partial denitrification trait
among global microbial communities. In contrast to a previous com-
parative genomics study based on a small set of isolatedmicrobes4 but
consistent with more recent studies of MAGs from different
environments5,9,44–47, we found that the genetic potential for complete
denitrification is less common than that for partial denitrification,
among both genome-sequenced microorganisms and environmental
communities from allmajor biomes. Our results show denitrification is
primarily a community trait based on division of labor, thereby relying
cross feeding between microorganisms producing and consuming
NO2

−, NO andN2O to complete the pathway. Furthermore, other genes

Fig. 4 | Environmental predictors of balance between nos and nir counts using
random forest models. Abiotic predictors of the difference in nos and nir gene
counts, calculated as (nosZ I + nosZ II) – (nirK + nirS) and normalized per Gb
sequenced in soil (a) andmarinemetagenomes (b). Accumulated local effects plots
show the differences in prediction of the δnos-nir (y-axis) compared to the mean
prediction along the range of eachpredictor (x-axis),while accounting for potential
correlations amongpredictor values. Values abovezero indicate themodel predicts
higher than average dominance of nosZ over nir at a given value of the predictor

variable. The analyses were performed on a subset of the soil (n = 298) and marine
(n = 89) metagenomes for which relevant environmental metadata was available
(see “Methods”). Rootmeansquareerror and varianceexplainedwere37and27% in
the soil (a) and 19 and 26% inmarine (b) models, respectively. Verticalmarks on the
x axis in each panel denote data density. Five hundred trees were run, and mtry,
nodesize, and sampsize parameters were 4, 8, and 238 for soil and 2, 3, and 71 for
the marine models, respectively. Source data are provided as a Source Data file.
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and genomic traits implicate complete denitrifiers as metabolically
flexible generalists compared to any partial denitrifier type.

Various explanations exist for the dominance of partial deni-
trifiers. We show that partial denitrification enables greater overall
niche partitioning, whichwas supported by narrower substrate ranges,
lower capacity for oxidizing and reducing various inorganic electron
donors and acceptors, and a lower genomic density of transcription
factors and transporters among partial denitrifiers compared to
complete denitrifiers. In the environment, higher nirK phylogenetic
diversity, an indication of greater functional diversity among nitrite
reducers25, was associated with an increasing balance between capa-
city to initiate and terminate denitrification at the community level.
This would further support niche partitioning if the pathways were
split among partial denitrifiers, which is likely considering that that we
mainly observed negative δnos-nir values in the environment and the
fact that MAGs are predominantly (84%) partial denitrifiers. Partial
denitrifiers may also dominate communities due to the presence of a
rate-efficiency tradeoff, i.e., that energy flux is slower through long
pathways but potentially enablesmore complete usage of the terminal
electron acceptor when it is limiting18. However, the dominance of
partial denitrifiers among N2O reducers in the environment was not
coherently explained by a rate-efficiency tradeoff. If this were the case,
we would expect complete denitrification to decline as NO3

− increases
or as C:NO3

− and C:NO2
− ratios decrease, assuming denitrifiers are

predominantly heterotrophs in the environment. This agrees with

predictions based on modeling and observations in oxygen minimum
zones in the oceans, proposing that the prevalence of a complete
pathway increases as the limiting substrate shifts from C to N20.
Accordingly, our random forest modeling inferred that the N2O
reducing community in higher NO3

− soils became more dominated by
partial denitrifiers, i.e., those carrying nosZ clade II, and fertilized
croplands had more negative δnosZI-nosZII than other soils in our
cross-biome study. However, a similar reduction in δnosZI-nosZII was
not associated with increasing NO3

− +NO2
− in aquatic metagenomes

and metatranscriptomes or in the analysis mapping reads to marine
MAGs. In addition, there was no relationship between increasing car-
bon content in soil or higher chlorophyll concentrations in aquatic
samples and higher prevalence of complete denitrifiers in either
metagenomes or metatranscriptomes. This is consistent with a recent
qualitative analysis of ~1600 MAGs44, which concluded that a rate-
efficiency tradeoff cannot explain observed partial denitrifier dom-
inance. Based on our findings of broader substrate ranges and greater
genomic allocation to substrate uptake and transcriptional regulation,
we instead propose that complete denitrifiers are adapted to flexibly
take advantage of resources varying in time and space, while partial
denitrifiers are restricted to slower and therefore less variable growth
rates. This may explain the over-representation of complete deni-
trifiers among model denitrifiers and isolates that grow readily under
standard resource-rich lab conditions. Under carbon-rich conditions
supporting rapid growth in the environment, complete denitrifiers

Fig. 5 | Environmental predictors of balance between nosZ clade I and clade II
using random forest models. Abiotic predictors of the difference in nosZ clade I
and II gene counts normalized per Gb sequenced in soil (a) and marine metagen-
omes (b). Accumulated local effects plots show the differences in prediction of the
δnosZI-nosZII (y-axis) compared to the mean prediction along the range of each
predictor (x-axis), while accounting for potential correlations among predictor
values. Values above zero indicate the model predicts higher than average dom-
inance of nosZ clade I over nosZ clade II at a given value of the predictor variable.

The analyses were performed on a subset of the soil (n = 298) and marine (n = 89)
metagenomes for which relevant environmental metadata was available (see
“Methods”). Root mean squared error and variance explained were 41 and 58% in
the soil (a) and 14 and 30% inmarine (b)models, respectively. Verticalmarks on the
x axis in each panel denote data density. Five hundred trees were run, and mtry,
nodesize, and sampsize parameters were 7, 8, and 238 for soil and 2, 10, and 62 for
the marine models, respectively. Source data are provided as a Source Data file.
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may benefit from using available NO3
−/NO2

− more efficiently20, while
under rapidly fluctuating conditions many have the flexibility to use
whichever electron donor and terminal electron acceptors are most
readily available, including oxygen via high affinity terminal oxidases.
This indicates that partial denitrifiers dominate because they have
cheaper metabolisms to run, that do not require such complex reg-
ulatory mechanisms. This is consistent with the overall dominance of
slow-growing organisms in natural environments31,48,49.

The community level genetic balance between initiation and ter-
mination of denitrification indicates a higher capacity for N2O pro-
duction than reduction in nearly all biomes. The variations between
biomes and among the specific ecosystems within biome categories
were readily explained by environmental variables.We found that high
NO3

− levels were associated with lower δnos-nir in both soils and
aquatic systems, indicating greater imbalance between the two genes
and a decrease in the relative importance of N2O reducers. In soils, the
same pattern was observed for phosphorous. High concentrations of
NO3

− may also allow denitrifiers to outcompete ammonifiers, which
both theoretical50,51 and empirical evidence indicate prevail under high
C:NO3

− 52,53, including in the soil metagenomes used in this study42.
Overall, this shows that nutrient rich environments promote denitrifier
communities dominated by initiators and similar patterns were
observed at the transcriptional level in aquatic environments (no data
for soils). The observed imbalance in the denitrifier community could
explain why nutrient loaded environments like agricultural soils are
major sources of N2O. However, complete denitrifiers have been
observed to express only enzymes involved in denitrification initiation
under high NO3

− and/or NO2
− 54,55, which also lead to accumulation of

N2O. Furthermore, high fertilization rates commonly favor nitrifier-
denitrification56, and hydroxylamine from nitrification and high NO2

−

concentrations can both induce N2O production from
chemodenitrification56,57. Finally, N2Omay alsobeproduced during the
detoxification of NO from host immune responses58,59. Therefore,
there are awealth of pathways that are distinct fromdenitrification and

can reduce NO2
− and/or produce N2O, and it is plausible that inter-

pathway competition for NO2
− favors the presence of initiators ready

to consume NO2
− in denitrification rather than letting it enter other

pathways. Terminators could conceivably take advantage of the
accumulatedN2O fromall these possible sources, in particular obligate
terminators (i.e., predominantly nosZ clade II) which use N2O as
terminal electron acceptor and thereby serve as important N2O
sinks16,60. This reasoning agrees with the observed low δnosZI-nosZII in
metagenomes fromagricultural soils andwastewater treatment plants.
We conclude that high levels of NO3

− allow both initiation and termi-
nation specialists to prevail, but with a dominance of initiators which
altogether increase the risk of N2O emissions.

Fixed carbon availability was associated with reduced dominance
of nir over nosZ in aquatic transcriptomes and soil metagenomes, in
particular in soils with less than 1% SOC. The soil metatranscriptomes
also indicated increased carbon availability could help NosZ overcome
a low competitiveness for electrons61–63. However, the chemical com-
position of the available carbon is expected to affect the balance
between initiation and termination of denitrification and complete vs.
partial denitrifiers. Organic acids have short catabolic pathways and
fewer opportunities for enzyme bottlenecks to slow the flow of elec-
trons into the electron transport chain compared to sugars and should
favor complete denitrifiers able to use an array of terminal electron
acceptors, in agreement with our comparative genome analysis. At the
community level however, organisms metabolize and co-metabolize64

substrates from among tens of thousands of molecularly-distinct
potential electron donors of varying bioavailability65,66, leading to
conflicting effects of sugar and organic acids addition on N2O to N2

production from soils67–69. High dissolved oxygen concentrations were
also positively associatedwith dominance of clade I over clade II nosZ I
expression but not gene abundance in aquatic samples. There is no
clear consensus on clade I being less sensitive to high oxygen than
clade II NosZ70,71, and oxygen niche of N2O reducers may be a function
of organism oxygen consumption43 or even indirectly their

Fig. 6 | Balance in prevalence of denitrification gene transcripts shows dom-
inance of initiators at the community level in terrestrial and aquatic biomes.
a δnos-nir and δnosZI-nosZII normalized perGbpmRNA sequenced across different
biomes. Numbers to the right denote number of metatranscriptomes included in
each category. b Mean and 95 % confidence intervals of spearman correlation
coefficients between δnos-niror δnosZI-nosZII and environmental factors in aquatic

metatranscriptomes. Coloring follows gold forδnos-nir and red for δnosZI-nosZII as
in (a). Circle size and numbers to the right denote the number of studies the effect
size is calculated from. Soil samples with root exudate addition are categorized
under rhizosphere in (a). Box boundaries represent first and third quartiles, with
midline denoting median and whiskers the 1.5 IQR. Source data are provided as a
Source Data file.
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competition for NO2
− with nitrite oxidizing bacteria20. Thus, while the

mechanism for oxygen preference cannot be inferred from our data,
our results nonetheless indicate that terminators and complete deni-
trifiers make distinct contributions to N2O reduction as a function of
environmental conditions.

Our results indicate that the prevalence of denitrification func-
tional typeswithin andbetween environments should be considered in
light of not only the potential organism level advantages to having a
particular denitrification genotype under given environmental condi-
tions, but also through biotic interactions. Denitrification does not
occur in isolation, and its steps may occur in response to its inter-
mediates being produced by other pathways. Further, spatiotemporal
variation in electron donor and acceptor ratios can enable coexistence
of organisms completing different steps of denitrification. Futurework
addressing phenotypic plasticity of denitrifiers under realistic envir-
onmental conditions is necessary to resolve this uncertainty and dis-
entangle biotic and abiotic drivers of denitrifier community assembly.
This will be particularly enhanced by improved generation of high-
quality assemblies of representative environmental genomes, and by
the ability to samplemicrobial communities on the scale at which they
interact with one another and the environment.

Methods
Denitrification enzyme databases
Alignments and phylogenies for NirK and NirS were obtained from
Pold et al.25. The Nor reference database was derived from Murali
et al.24 and consisted of 67 Nor sequences (cNOR, qNOR, bNOR, eNOR,
gNOR and sNOR, and nNOR) and 865 other heme copper oxidases. A
hidden Markov model for NosZ was generated downloading all bac-
teria and archaea genomes from NCBI (7 October 2021) and using
hmmsearch v.3.2.172 to identify NosZ using an HMM built from the
alignment from in Graf et al.73. DNA sequences were translated to
amino acids before being dereplicated at 100% identity with CD-HIT (v
4.674). After initial maximum likelihood (ML) trees reconstruction with
FastTree v. 2.1.1175, removal of sequences derived from genomes either
identified as contaminated in the GenBank metadata or as <80%
complete or >5% contaminated by BUSCO v. 5.3.176, we manually
checked the alignment for conserved residues, aligned poorly-
conserved regions of the sequence, trimmed the alignment to its
conserved core in Arb v.7.077, and built a phylogeny using IQ-TREE v.
2.1.3with thebestmodel identifiedbymodelfinder (LG + R10)78. Nitrate
reductases, catalyzing thefirst step in thedenitrificationpathway,were
excluded from the analyses because they are found in a wide variety of
microorganisms and their activity often occurs in isolation from the
characteristic gas-producing denitrification process itself23,79.

Genome annotation
We used the representative set of genomes and associated genome
quality metadata from GTDB v214.1 for our analysis (Supplementary
Data 280). Genomes less than 80% complete, more than 5% con-
taminated, or which failed taxonomic consistency of contigs based on
GUNC v.1.0.681 were excluded from our analysis, resulting in 61,293
genomes in our final dataset. We included both isolate (49% of
assemblies) and culture-independent genome assemblies (metagen-
omeassembled and single cell genomes; 51%) in our analysis to balance
genome quality with inclusion of genetic diversity representative of
environmental samples. We identified genes for NirK, NirS, Nor, and
NosZ in each genome using an HMMsearch72 against the correspond-
ing amino acid databases as described above. After aligning potential
proteins to the reference, we imported them into ARB v.7.077 and used
a combination of phylogeny building with FastTreeMP v.2.1.1175 and
manual curation to exclude reads lacking conserved ligand binding
domains. Nor and NosZ were also classified according to protein class
(i.e., bNOR, cNOR, eNOR, gNOR, nNOR, qNOR and sNOR for Nor and
halophiles, clade I and clade II for NosZ). We then classified each

genome into non-denitrifiers (lacking nir and nosZ), complete deni-
trifiers (nir, nor, and nosZ), and partial denitrifiers (lacking nir or nosZ),
with partial denitrifiers further divided into initiators (nir with or
without nor), terminators (nosZ with or without nor) and initiator-
terminators (nir and nosZ; Fig. 1b). Anammox genomes carrying nir
(n = 47) were classified as non-denitrifiers because their nitrite reduc-
tase is not thought to be involved in denitrification82. Similarly, gen-
omes encoding just nor were denoted as non-denitrifiers (n = 3064) as
a conservative measure since they are likely involved in detoxification
rather than respiration. Since we only used bacterial genomes, our
analysis includes ammonia oxidizing bacteria potentially capable of
nitrifier-denitrification, but not ammonia oxidizing archaea forwhich a
respiratory function for nitrite reductase has not yet been
established83.

A range of tools were used to identify and validate genes asso-
ciated with potential electron donors and acceptors used by micro-
organisms. Genes for proteins involved in arsenite oxidation (AioBA;
validated with alignment from Quemeneur et al.84), anammox (Hzs,
Hdh) and iron redox were identified in genomes using MagicLamp
v.1.0 with final annotations curated to match minimum subunit com-
position proposed for each enzyme85. We used AmoA as a marker for
ammonia oxidation in bacteria using anHMMbuilt from the alignment
of AmoA,HmoAandPmoA fromDiamondet al.5. Respiratory reductive
dehalogenases were identified using the RDaseDB alignment
(v.202086) combined with a literature search to exclude catabolic
enzymes; we note that the TAT motif proposed to be indicative of
respiratory enzymes was absent from the majority of sequences and
could not be used. Sulfur redox genes were identified using HMSS2
and categorized into oxidation or reduction-associated enzymes fol-
lowing Tanabe and Dahl87. Sulfide: quinone reductase (SQR) enzymes
were excluded fromour analysis, both because their physiological role
is variable, and because we found the HMMs were unspecific. Hydro-
genases were identified using MagicLamp v.1.0, refined using the
residues in Greening et al.33, and verified as to their clade and probable
physiological function using the HydDB web server88. Clades 1a–d, 1 g,
h and j and clade 2 were considered involved in hydrogen oxidation,
and clades 4a, b, c, and h were considered involved in reduction. ArrA
and ArxA involved in arsenate reduction and arsenite oxidation,
respectively, were identified using anHMMbuilt from sequences from
Wells et al.89, and validated using the residues from Ospino et al.90.
Genomic potential for aerobic respiration was identified by screening
the HMM-based HCO family search used to annotate Nor for HCO
classes A, B and C, and completing a second HMM-based search using
the cytochrome bd oxidase family reference alignment from Murali
et al.91. The proteins were categorized into high (HCO classes B and C
and cytochrome bd oxidase) and low affinity oxidases (HCO class A)92.
All redox gene annotations are reported in Supplementary Data 3.

Sugar-acid preference of organismswas inferred using the sum of
KEGG orthologues identified by enrichM (v0.6.3, default settings) that
were annotated to sugar vs. acidmetabolism32, noting that themajority
of the genomes fall outside the originally-calibrated range of GC con-
tents (Supplementary Data 4). GapMind carbon93 (March 22nd, 2021
database version) was run to infer ability to grow on 62 compounds.
We used custom pathway completeness cutoff scores for each path-
way based on annotations for organisms for which growth had been
reported on that substrate in BacDive (Supplementary Data 5). Our
positive controls dataset did not have data for 6 substrates, leaving 56
for analysis. Transporters were annotated using DIAMOND
(2.1.6.16094) against the TCDB database (download date: 16th May
2023)95, with hits showing at least 40% identity to the reference and
70% coverage of both reference and query sequence, with no more
than 10% difference in alignment length kept for analysis96. Tran-
scription factors were annotated using DeepTFactor97 (v. 2020-11-09)
with default settings (Supplementary Data 6). We used GenomeSPOT
v.1.0.1 to infer temperature, pH, and salinity ranges98, and used the
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difference between the maximum and minimum values for each gen-
ome in our analysis (Supplementary Data 7).

Unless otherwise noted, all subsequent analyses were completed
in R v.4.199. The maximum growth rate of each taxon was estimated
using gRodon231, which used codon usage bias of ribosomal proteins
annotated in the genomes using hmmearch against the ribosomal
proteins extracted from Uniprot PFAM v. 35.0 with profile-specific
cutoffs (Supplementary Data 8100). Differences in growth rates
between denitrifier types were assessed using Kruskall-Wallis tests
(stats::kruskal.test) followed by Dunn tests with Benjamini-Hochberg
correction for multiple testing (FSA::dunnTest), where all maximum
growth rates less than 0.2 doublings h−1 were given the same rank. This
cutoff was needed because codon use bias saturates with growth rates
slower than this31.

To determine whether complete and partial denitrifiers differ in
transcription factor, transporter, carbohydrate-active enzyme, or cat-
abolized substrate count or sugar acid preference, wefit linearmodels,
logging or taking the exponent of variables where needed. However,
we analyzed GapMind data with a generalized linearmixedmodel with
a Tweedie distribution in glmmTMB101 (v.1.1.10) due to the poor fit of
OLS and high proportion (10-37%) of assemblies where no substrates
within a chemical class were predicted to be used. We subsequently
ascertained that the model residuals were not phylogenetically clus-
tered using phytools::phylosig (v.2.3.0102) and an organism tree
derived from the GTDB reference tree80. This tree was rerooted in
Fusobacteriota103 and forced to be ultrametric using the castor::da-
te_tree_red function104 (v.1.8.2). Blomberg’s K105 of model residuals was
less than one in all instances (P < 0.05), so we did not include phylo-
genetic relatedness as a random effect in our analysis. We evaluated
differences between complete and partial denitrifier genome content
using post-hoc multiple comparisons with the sandwich::vcovHC
function (v.3.1.1106) to account for heteroskedasticity. Due to the large
number of zeroes, we assessed the hypothesis that partial denitrifiers
encode the potential to oxidize and reduce a smaller number of
inorganic compounds than complete denitrifiers by comparing the
cumulative density distributions using a one-sided Kolmogorov-Smir-
nov test using stats::ks.test.

Metagenome and metadata collection
To assess the dominance of complete vs. partial denitrifier communities
across biomes, we selected metagenomes with at least 100,000 reads
≥150nt, primarily from larger sampling campaigns where uniform
metadata were available (Supplementary Data 9). The majority of soil
metagenomes came from the Australian Microbiome Project/BASE107,
the National Ecological Observatory Network108, Topsoils Microbiome
Project109, Long-Term Soil Productivity experiment110, and the Stordalen
Mire111. The majority of aquatic metagenomes came from the Australian
Microbiome Project112, Linnaeus Microbial Observatory113, the Amazon
Continuum Project114 and BATS, GEOTRACE and HOTS115. Engineered
metagenomes included those from drinking water116 sewage41, and
wastewater treatment plants117. The host-associated metagenomes
dataset consists primarily of plant-associated sequences, such as from
leafy greens118, beans119, citrus rhizosphere120, switchgrass121 and
Arabidopsis118, though we also included a handful of sequences from
invertebrates such as sponges and gutless marine worms. For unpub-
lished metagenomes where contact details were provided, we emailed
authors to request permission to use them.

We completed a similar search for metatranscriptomes, focusing
on soil (including rhizosphere) and marine studies where carbon and/
or nutrient availability had either been manipulated or logic or meta-
data indicated they differed between samples (Supplemental Data
S10). These metatranscriptomes were identified based on searching
the American Society for Microbiology journals website for meta-
transcriptomes and google databases for the terms “soil” or “marine”
and “carbon” or “nutrient” and “metatranscript*”.

Where multiple sequencing runs or files existed for the same
sample, we combined the fastq files prior to searching. We used only
the forward read in the case of paired end reads, and only the first
150 nt of any reads longer than that. In total, our dataset comprised
3991 metagenomes, with 1489 from aquatic habitats, 1642 from soil,
658 host-associated, and 202 from engineered habitats. Our final set of
metatranscriptomes overlapsminimallywith ourmetagenome dataset
and contains 413metatranscriptomes (64 rhizosphere or soil with root
exudates added, 92 other soil, 185 primarily coastal and estuarine
marine, 24 lake sediment, and 48 river metatranscriptomes).

Biomes were assigned to metagenomes based on The Nature
Conservancy Terrestrial Ecoregions for terrestrial samples122 and lati-
tude for marine samples (polar: latitude > 60°; westerlies: latitude
30–60°; trades: latitude 0–30°). Terrestrial biome assignment
required use of the packages sp v.1.4-5123, rgdal v.1.523124, and rgeos
v0.5-5125. Soils under cultivation were excluded from the biome-based
approach and instead categorized as croplands.

Dominance of complete vs. partial denitrifier communities
based on proxy gene searches across biomes
We selected mRNA reads from metranscriptomes using SortMeRNA
v.4.3.7 with the smr_v4.3_default_db database and settings “--other
--fastx --num-alignments 1 --no-best”. We used GraftM v.0.13.1 to
identify denitrification genes (nirK, nirS and nosZ) in themetagenomes
and metatranscriptomes, as previously described25. Briefly, GraftM
uses a two-step process in which a HMM search identifies candidate
reads, followed by phylogenetic placement on a reference tree using
pplacer (v.1.1.19126;). We used the accumulate function in gappa
v.0.8.0127 to find the position on the treewhere at least 95% of themass
for each read descended from, and excluded all reads with any mass
placed in the outgroup. We further excluded sequences placed in the
non-denitrifying anammox NirS clade 1 h (median 0% of nirS reads in
metagenomes and 0% in metatranscriptomes), archaeal nitrifier NirK
clades 2 and 4 (1.4% of nirK reads in metagenomes and 50% in meta-
transcriptomes), aswell as the eukaryoticNirK clades 1b and 1e (0%and
0%)25. Our analysis also excluded the reads placed in the recently
reported clade III nosZ128, which forms the outgroup in our reference
tree. This metagenome and metatranscriptome search depended on:
hmmer (v.3.2.172;), OrfM (v.0.7.1129;), bbtools (v.38.90; https://
sourceforge.net/projects/bbmap/), lbzip2 (v.2.5; https:// lbzip2.org/),
and fxtract (v.2.3; https://github.com/ctSkennerton/fxtract).

We validated these search and placement and post-processing
parameters by generating 150nt fragments of full-length sequences
that were picked up by the NirK, NirS and NosZ HMMs, which in
addition to the target proteins also included homologousmulticopper
oxidase proteins from Cyanobacteriota and Thermoprotetoa, NirN
and NirF, and various members of clade III NosZ, respectively. Sensi-
tivity is the fraction of total ingroup fragments searched which were
placed in the ingroup, and specificity is one minus the fraction of
outgroup fragments incorrectly placed in the ingroup (or, in the case
of nosZ, in a clade other than the target clade). Sensitivity was 76% for
nirK, 93% for nirS, 91% for clade I nosZ and 94% for clade II nosZ.
Specificity was 97% for nirK, 100% for nirS, 100% for clade I nosZ and
100% for clade II nosZ. These specificity scores do not preclude the
possibility of reads from other related proteins not included in these
outgroups from being placed within the phylogeny.

We compared gene prevalence across biomes using the absolute
difference in counts of clade I and II nosZ or nir and nosZ genes stan-
dardized by the number of Gbp sequenced (or Gbp mRNA sequenced
for metatranscriptomes) to account for differences in sequencing
depth. For nir vs. nosZ abundance we used Eq. 1 such that positive
values denote nosZ is more abundant than nir:

δnos � nir = 109x ððnosZI +nosZIIÞ � ðnirS+nirKÞÞ=ð150 x readsÞ ð1Þ
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For nosZ, we used Eq. 2 such that positive values denote clade I is
more abundant than clade II:

δnosZI� nosZII = 10
9x ðnosZI� nosZIIÞ=ð150 x readsÞ ð2Þ

This method of calculating gene prevalence enables the abun-
dance of both genes to be considered concurrently. This is particularly
relevant for the 14% of metagenomes and 26% of metatranscriptomes
where nosZI was not detected but nosZII was found in 1–13,041
(1–10,926 in metatranscriptomes) copies, and the 0.8% of metagen-
omes where nosZwas not found but 3-28 copies of nirwere identified.

Environmental correlates with biome gene counts and
denitrifier MAGs
We used the TARA Oceans35 MAGs present in the OceanDNA MAG
database to test the hypothesis that complete denitrifiers are more
abundant under conditionswith high electron donor to acceptor ratios.
TheseMAGs were chosen because the database is sufficiently large that
multiple MAGs from each denitrifier type category were present, and
wheremultiple conspecificMAGswere present, those with inconsistent
denitrification gene repertoires could be excluded. After quality-
controlling the raw paired-end reads with cutadapt (-m 100 -q 20
–max-n 0 –trim-n), we mapped them to all MAGs using CoverM (v.
0.6.134; -m relative abundance –min-read-aligned-percent 0.75 –min-
read-percent-identity 0.95 –min-covered-fraction 0) then determined
the total relative abundance of each MAG-OTU in each sample (95%
ANI). Only the reads for the 3 µm filter fractionwere used in this analysis
to allow for bigger cells or cell aggregates than using the 0.22 µm
fraction. We subsequently determined the standardized relative abun-
dance by dividing the observed relative abundance within each sample
to the maximum relative abundance observed across all samples. We
then fit a linear model predicting the standardized relative abundance
of each MAG OTU based on the combination of NO3

− and chlorophyll
concentrations (i.e., NO3

− after accounting for chlorophyll, chlorophyll
after accounting for NO3

−, and the logarithm of chlorophyll: NO3
−). The

mean slope and standard error for each MAG OTU were extracted and
used to calculate the weighted mean response and 95% confidence
intervals for eachdenitrifier type.Differences inmean response toNO3

−,
chlorophyll and their ratios between denitrifier types were established
based on non-overlapping 95% confidence intervals.

We evaluated the relationship between differences in normalized
gene counts and resource availability using random forests. This ana-
lysis was restricted to metagenomes from the BASE and Australian
marine projects107,112 as examples of studies with a large number of
metagenomes with uniformly-collected metadata for variables asso-
ciatedwith denitrification, includingNO3

−/NO2
− levels, pH, carbon, and

micronutrients. A pre-selection of variables for inclusion in the model
was completed to exclude collinear variables (Spearman’s ρ > 0.7 or
variance inflation factor > 4); in the collinear groups, the variable
hypothesized to bemost strongly and directly explicable of gene ratio
was retained (Supplementary Fig. 3; Supplementary Tables 2 and 3).
We subsequently ran VSURF v. 1.1.0130 100 times to identify the best
predictors for each ratio and biome, keeping only those variables
retained in at least 95 of the 100 iterations. We then used the ran-
domForest package v. 4.7.1–1 to model the relationship between gene
ratios and the final set of retained variables. A grid search was used to
find the combination of tuning parameters yielding lowest out-of-bag
root-mean-square error. Accumulated local effects plots were gener-
ated to visualize results using iml v. 0.11131.

Finally, we verified whether high carbon and/or low nutrient
availability favored the transcription of nosZ over nir or clade I nosZ
over clade II nosZ by calculating δnos− nir and δnosZI-nosZII in the
metatranscriptomes, respectively. We calculated Hedges G in a meta-
analysis of effect sizes for soil studies (meta::metacont v 8.2.1), taking
the lower carbon soil as the reference and carbon-enriched soil as the

treatment (e.g., bulk soil or unamended soil compared to rhizosphere,
glucose, glycine, or root exudate amended soils). Aquatic studies were
observational, so we fit a Spearman correlation coefficient between
δnos-nir or δnosZI-nosZII and environmental variables (NO3

− +NO2
−,

phosphate, bacterial production and chlorophyll A concentrations as
proxies of resourceavailability, andoxygen).Wherecommunitieswere
captured and analyzed on two different filter sizes from the same
sample, we determined the correlation separately for the two size
fractions but counted them as a single study in our overall effect size
calculations. We used psychmeta::ma_r (v2.7.0) to calculate overall
correlations in the aquatic data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The annotation data generated in this study are provided in the Sup-
plementary Information. All genomes, metagenomes, and metatran-
scriptomes used are publicly available in NCBI or other sources under
the identifiers denoted in Supplementary Data 2, 9, and 10. Hidden
Markov Models, and reference databases used for denitrification gene
searches are available in FigShare (https://doi.org/10.6084/m9.
figshare.23913078 for NirK and NirS and https://doi.org/10.6084/m9.
figshare.30122335 for NosZ). Source data are provided with this paper.

Code availability
Scripts used to generate figures and annotate genomes are available in
FigShare under (https://doi.org/10.6084/m9.figshare.30122335).
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