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Ecoacoustic indices have been proposed as proxies for diversity measures such as species richness, however, their
effectiveness remains a subject of ongoing debate. We examined how variation in recording sampling rate and
computational parameters influences the strength of the relationship between bird species richness and two
widely used ecoacoustic indices: the Bioacoustic Index (BI) and the Acoustic Complexity Index (ACI).

We analyzed 5844 one-minute soundscape recordings from the Bialowieza Primeval Forest (Poland), down-
sampling them from 192 kHz to 96, 48, and 24 kHz. The ACI and BI were calculated for each recording sam-
pling rate using different configuration settings: seven Fast Fourier Transform (FFT) window lengths and two
frequency range settings. We then related bird species richness to the ACI and BI across all combinations of FFT
window length, sampling rate, and frequency range.

We demonstrated that the relationship between species richness and ecoacoustic indices ranged from signif-
icantly positive to significantly negative, depending on the technical parameters applied, with a stronger effect
observed for the ACI than for the BI. For both indices, adjusting the analysis frequency range to match the
frequency range of bird vocalizations in our study area strengthened the relationship compared to the default
settings, and the influence of technical parameters varied among habitats.

In conclusion, the effectiveness of the ACI and the BI in representing bird species richness relies on technical
parameters. When calculating ecoacoustic indices, particularly the ACI, we recommend adjusting the FFT win-
dow length to match the sampling rate of the recordings and the local ecoacoustic conditions. Furthermore, other
calculation settings, such as the analysis frequency range, should be adjusted to the vocalisation characteristics of
the studies taxa. Finally, we advise against using the ACI and BI without prior testing of their suitability to reflect
local biodiversity measures.

1. Introduction

With the increasing availability and use of autonomous recording
units, acoustic biodiversity monitoring can now cover vast areas and
extended time periods (Darras et al., 2025). This facilitates the identi-
fication of biodiversity hotspots and enables the detection of rare and
elusive species (e.g., Robert et al., 2015; Schroeder and McRae, 2020).
However, autonomous recording units generate vast amounts of data,
even in small-scale studies, making manual classification impractical.
Therefore, (semi-) automatic methods are required for signal detection
and classification or for measuring the overall acoustic complexity of
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recordings. For the second task, ecoacoustic indices have been proposed
as tools that can be particularly useful for representing measures of di-
versity (Alcocer et al., 2022). Ecoacoustic indices describe the distri-
bution of acoustic energy across time and frequency within a recording
(Sueur et al., 2014). This method generally assumes that communities
with greater richness, diversity, and abundance of vocalizing species
produce more complex soundscapes (Gasc et al., 2013; Sueur et al.,
2008b). Therefore, soundscape diversity, as measured by ecoacoustic
indices, can be used as an indicator of biodiversity (Pijanowski et al.,
2011a, 2011b).

Many studies have explored the relationships between ecoacoustic
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indices and species diversity measures, such as (vocalizing) species
richness (Budka et al., 2023; Depraetere et al., 2012; Diaz et al., 2023;
Shaw et al., 2021), often reporting inconsistent results (Alcocer et al.,
2022; Bateman and Uzal, 2022). Moreover, various methodologies have
been applied across studies—ranging from different methods used to
estimate animal diversity (e.g., field surveys versus species detected in
recordings; (Allen-Ankins et al., 2023; Diaz et al., 2023)), through the
sampling rate of field recordings (Fairbrass et al., 2017; Pieretti et al.,
2011), to differences in the calculation settings of ecoacoustic indices
(Boelman et al., 2007; Budka et al., 2024; Diaz et al., 2023). Hence, it is
difficult at this stage of knowledge to determine whether the contrasting
results regarding the relationships between ecoacoustic indices and
species richness reflect real ecological differences or are merely artefacts
of differing methodological approaches.

The results obtained from the application of ecoacoustic indices
depend on the recording sampling rate and the settings used in their
calculation (Bradfer-Lawrence et al., 2024; Kemp et al., 2025; MacPhail
et al., 2024). The sampling rate of a recording determines how many
samples of the acoustic signal are taken per second and consequently
sets the maximum frequency that can be recorded, which is half of the
sampling rate (the Nyquist frequency). In the Short-Time Fourier
Transform (STFT) method, the Fast Fourier Transform (FFT) window
length (hereafter referred to as ‘FFT window length’), along with the
frame size, window type and degree of overlap, determines how sound is
represented in both the temporal and spectral domains and acts as a
trade-off between temporal and spectral resolution (Allen and Rabiner,
1977; Cooley and Tukey, 1965). The frequency range used to calculate
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the ecoacoustic index also influences its value, depending on whether
the entire range or a limited frequency band is selected (e.g., to match
the frequency range of the vocalizations produced by animals in the
studied location; Boelman et al., 2007; Budka et al., 2023; Diaz et al.,
2023; Metcalf et al., 2021). Hence, the recording’s sampling rate, FFT
window length, and the frequency range applied in the analysis influ-
ence the ecoacoustic index outcome (Fig. 1). As a result, the association
between the indices and species richness (i.e., of vocalizing species) may
be affected by both the sampling rate of recording and the computa-
tional settings used. However, sampling rates vary greatly across studies
(Darras et al., 2025) and consequently, the applied FFT window length
and frequency range settings may not be the optimal settings for asso-
ciating the indices with species richness. Therefore, employing different
sampling rates without appropriate adjustment of the settings may
weaken the presumed relationship between the index value and species
richness and consequently bias the ecological interpretation of the index
value. Hence, to fully understand the association between ecoacoustic
indices and (vocalizing) species richness, it is essential to examine the
combined effects of these technical parameters (i.e., recording sampling
rate, the FFT window length and the frequency band limitation) on the
direction and strength of the richness-index relationship.

In this study, we examined whether different combinations of
computational parameters affect the association of bird species richness
with two commonly used ecoacoustic indices: the Bioacoustic Index (BI)
and the Acoustic Complexity Index (ACI). Both indices have recently
been reviewed in key meta-analyses, without considering how recording
sampling rates or the parameters used to calculate them affect the
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Fig. 1. A comparison of spectrograms visualizing soundscape complexity, measured using the ACI and the BI, calculated for the same recording at two different
sampling rates (recorded at 192 kHz/16 bit; A and B; downsampled to 24 kHz/16 bit; C and D), generated with two different FFT window lengths (512: A and C;
4096: B and D) and a frequency range limited to 0.5-10 kHz.
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direction and strength of the relationship between index value and
ecological characteristics (e.g., Alcocer et al., 2022; Allen-Ankins et al.,
2023; Bateman and Uzal, 2022). The BI quantifies the amount of
acoustic energy within the frequency range that predominantly contains
biophony (as opposed to anthropophony). It calculates the area under
the log amplitude spectrum curve (in dB*kHz, with the minimum dB
level set to zero; Boelman et al., 2007). The ACI quantifies the
complexity of soundscapes by measuring the variation in acoustic pat-
terns across a specified frequency range (i.e., it calculates the absolute
difference in amplitude between two adjacent time samples within a
frequency bin, relative to the total amplitude; Farina, 2025; Pieretti
et al., 2011). Both indices are often used in ecoacoustic studies and
interpreted as proxies for species richness (e.g., Bradfer-Lawrence et al.,
2020; McGrann et al., 2022; Rajan et al., 2019).

Here, we recorded the soundscape across four habitat types in a
temperate forest and nearby farmland, calculated various variants of the
BI and ACI using different technical parameters for one-minute sound
samples, and analyzed their relationship with bird species richness,
which was determined through manual classification of the same re-
cordings. In addition, we assessed the correlations among parameter-
derived variants of the two indices calculated from the same re-
cordings to determine whether changes in calculation parameters
merely shift index values or also alter the relationships between the
indices.

We hypothesize that for both the BI and the ACI, technical parame-
ters will alter the temporal and spectral resolution of sound analysis,
thereby affecting index values and, more importantly, modifying the
strength and direction of their relationship with bird species richness. In
addition, we expect that the technical parameters will affect the corre-
lations between the indices calculated from the same recording using
different parameter settings, thereby preventing interchangeable use of
different index variants without consequences for their ecological
interpretation. Finally, we expect that adjusting the calculation settings
of ecoacoustic indices to local acoustic conditions will enhance their
effectiveness in representing bird species richness compared to the
default settings commonly applied in ecoacoustic studies.

2. Methods
2.1. Study area and site selection

The study was conducted in the Biatowieza Primeval Forest, a forest
complex spanning Poland and Belarus, covering 150,582 ha, of which
41 % lies in Poland. Due to various levels of forest management across
forest stands, nature protection (UNESCO The World Heritage Com-
mittee, 2012; Puszcza Biatowieska, PLC200004) and disturbance in-
tensities, the forest landscape is best described as a mosaic of different
forest environments with generally a high level of naturalness
(Jaroszewicz et al., 2019).

In 2022 and 2023, 200 sites were selected in four forest habitat-
classes and in farmland adjacent to the forest. The forest habitats
covered the majority of the habitats that emerged after the most recent
bark-beetle outbreak (Ips typographus; 2012-2019; Kaminska et al.,
2021): spruce stands unaffected by the outbreak, spruce stands heavily
affected by the outbreak and left for natural regeneration, spruce stands
heavily affected by outbreak and logged, background forest stands
(detailed description of habitats and the sample size given in S1.1). Each
site was located at least 50 m from the road, at least 200 m away from
other sites (with two exceptions in 2022, where two pairs of points were
160 and 177 m from each other) and surrounded by the target habitat as
much as was feasible at the specific location (e.g., in a few cases, the site
bordered the target habitat instead of being surrounded by it, due to a
fence). As most roads in our study area were infrequently used unpaved
forest roads restricted from public access, our choice of a 50-m buffer
was linked to the road’s influence on the forest structure rather than the
direct impact of traffic on the bird community. Sites were selected
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randomly, with some adjustments based on field observations (a more
detailed description of the site selection methods can be found in S1.1).

2.2. Sound recordings and analyses

At each site two sampling rounds were conducted: one in April and
the second in May—June (i.e., the birds’ breeding season) of either 2022
or 2023 (Table S2). In a few cases, due to technical problems, sessions at
some sites were repeated within sixteen days of the original sampling
date (n = 14) and five points were later removed due to insufficient data
or distortion, leading to n = 390 in total (Table S2). Each round lasted
two days and during each day we recorded the soundscape from 1 h
before to 3 h after sunrise (i.e., during the dawn chorus, when most
songbirds are vocally active, providing the best representation of bird
species richness). Recordings were made for one minute every 20 min,
and every 10 min during the first hour after sunrise, using a 192 kHz
/16-bit bandwidth (AudioMoth 1.2.0/LunaMoth 1.1.0, firmware version
1.7.1, medium gain, deployed at 2 m height on a tree trunk). This
resulted in fifteen one-minute recordings per site per round, minus six
recordings that were not classified due to technical problems, totalling
5844 recordings and encompassing almost 100 h of recording time).

Species richness for each recording was determined by a single
ornithologist who classified all audible bird species in each one-minute
recording. Each recording was played once or twice, depending on the
level of background noise (e.g., quality reduced due to noise generated
by the recorder, wind or traffic). Playback was conducted using Win-
dows Media Player at maximum volume to enhance the audibility of
distant or faint bird calls, and recordings were listened to through JBL
TUNE 510BT or JBL WAVE BEAM headphones.

Each recording was down-sampled from 192 kHz to 96 kHz, 48 kHz,
and 24 kHz, using the R packages seewave, tuneR, doParallel and
foreach (Ligges et al., 2023; Microsoft Corporation, Weston, S, 2022a;
Microsoft Corporation, Weston, S, 2022b; Sueur et al., 2008a). Subse-
quently, the ACI and BI were calculated for each variant of all recordings
using the soundecology package (Villanueva-Rivera and Pijanowski,
2018).

A total of 14 variants of the ACI and the BI were calculated for each
sampling rate. In the first step, we applied the default settings provided
by the soundecology package for the frequency range limitation of ACI
(Minfreq = 0 kHz, Maxfreq = Nyquist) and BI (Minfreq = 2 kHz, Max-
freq = 8 kHz). In the next step, we restricted the frequency range to
0.5-10.0 kHz, an ecologically relevant bandwidth, as most bird species
in Biatowieza Forest vocalize within this range (i.e., pigeons at the lower
end, 0.5 kHz, and tits and Regulidae at the higher end, 10 kHz; Budka
et al., 2023). In both steps, we applied seven different FFT window
lengths (64, 128, 256, 512, 1024, 2048 and 4096), keeping the AIC j
parameter constant at 5 s (i.e., the complexity of the soundscape is
assessed in time windows of 5 s and then averaged for the entire one-
minute recording; Pieretti et al., 2011). For three combinations of
technical parameters (i.e., a sampling rate of 96 kHz in combination
with an FFT window length of 64 or a sampling rate of 192 kHz and an
FFT window length of 64 and 128, all with an adjusted frequency range;
i.e., 0.5 to 10 kHz), the ACI could not be calculated because the FFT
window length was too short relative to the sampling rate. These com-
binations were therefore excluded from the analyses. In total, 53 and 56
variants of the ACI and the BI were calculated, respectively.

The analyses were divided into three parts. In the first part, to assess
how FFT window length and sampling rate affected the relationship
between ACI and BI and species richness, we created linear mixed-effects
models for each variant of the indices (i.e., calculated for each combi-
nation of FFT, sampling rate, and frequency range). In these models, the
scaled ACI and BI (mean = 0, SD = 1 for each combination of FFT and
sampling rate) were modelled as a function of species richness, with
location ID and the date-time as random effects (Ime4 package; Bates
et al., 2015). The model formula was therefore: richness ~ index + (1|
location ID) + (1|date time). We extracted the model estimates for
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richness (mean and 95 % CI) using the ImerTest package (Kuznetsova
et al., 2017).

In the second part of the analyses, to assess how technical parameters
influenced the richness-index relationship of ACI and BI in different
habitats, we created linear mixed-effects models for each variant of each
index, as in the first part. However, here we included habitat as an
interaction with species richness. The model formula was therefore:
richness ~ index * habitat + (1|location ID) + (1|date time). We then
extracted the estimates for richness in each habitat (mean and 95 % CI)
using sim_slopes function from the interactions package (Long, 2024).

To evaluate the model performance, we calculated the marginal and
the conditional R? (hereafter R2, and Rg, respectively) for each model
using the r.squaredGLMM-function from the MuMIn-package (Barton,
2025). In addition, we calculated the correlation between predicted and
true species richness for each model. Finally, we performed a 10-fold
cross-validation on each model using the cv-function from the cv
package (Fox and Monette, 2023), to calculate the mean squared error
(MSE) and the root mean squared error (RMSE) of each model, with
RMSE providing the mean error in the same units as the response vari-
able (i.e., species richness; Hodson, 2022).

In the third part of the analyses, to assess how technical parameters
affected the correlation between the ACI and BI, we calculated Pearson
correlations for all variants of these indices. All analyses were conducted
in R version 4.4.1 (R Core Team, 2024). Data processing (i.e., preparing
the data for the analysis) was performed using the tidyverse (Wickham
et al., 2019), and data visualization was carried out with ggplot2
(Wickham, 2016), ggstance (for vertical dodging of points and error bars
using position_dodgev; Henry et al., 2024), and corrplot (for visualizing
the correlation matrix; Wei and Simko, 2024).

3. Results

The richness-index relationship of the ACI and BI ranged from
significantly positive to significantly negative, depending on the re-
cording’s sampling rate and the FFT window length (Fig. 2). The effect
of sampling rate and window length on the relationship between the
ecoacoustic index and species richness appeared to be stronger for the
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ACI than for the BI. For each index, the adjusting the frequency range
resulted in a stronger richness-index relationship (both for positive and
negative correlations) compared to the default settings.

For the ACI, at a sampling rate of 24 kHz, the richness-index rela-
tionship was significantly positive, except for FFT = 128 and 64, for
which the relationship was non-significant and negative, respectively.
At higher sampling rates, more settings produced non-significant or even
negative associations. For 192 kHz, the default settings did not result in
a significantly positive relationships at all, and the adjusted frequency
range produced a positive relationship only at FFT = 2048 and 4096 (see
Table S3.1 for the technical parameters and model output).

Regarding the BI, at sampling rates of 24 kHz and 48 kHz, all tested
window lengths and frequency ranges produced a positive richness-
index relationship. At 96 kHz, FFT = 64 resulted in a negative rela-
tionship for the default frequency range and a non-significant relation-
ship for the adjusted frequency range. At higher sampling rates, more
settings produced non-significant or even negative associations, but
larger window lengths consistently yielded significantly positive re-
lationships. The adjusted frequency range resulted in more significantly
positive associations than the default settings (see Table S3.1 for the
technical parameters and model output).

When forest habitats were assessed separately, the effects of the
technical parameters on the relationship between the two acoustic
indices (ACI and BI) and species richness varied across habitats. These
relationships were generally strongest when the frequency range was
adjusted (Figs. 3 and 4). For the ACI, most richness-index relationships
were non-significant. However, logged spruce stands showed relatively
many significantly positive relationships compared to other habitats.
Farmland habitats displayed a distinct pattern: the richness-index re-
lationships were significantly negative at larger FFT window lengths
compared to those observed in forest habitats. For the BI, adjusting the
frequency range resulted in significantly positive associations for most
habitats and for most combinations of FFT and sampling rates. Farmland
again deviated from this general pattern: most richness-index relation-
ships were non-significant, and at high sampling rates (i.e., 96 kHz and
192 kHz), some smaller FFT window lengths even produced significantly
negative associations (see Table S3.2 for the technical parameters and
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Fig. 2. Richness-index relationships of the scaled values of ACI and BI (scaled to mean = 0, SD = 1; mean model estimates with 95 % CI), as estimated by mixed effect
models, for different combinations of sampling rates (24, 48, 96, or 192 kHz), FFT window lengths (64, 128, 256, 512, 1024, 2048, or 4096) and frequency ranges
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this figure legend, the reader is referred to the web version of this article.)

model output).

Most variants of the ecoacoustic indices were positively correlated
with each other (Fig. 5). However, ACI variants calculated with small
FFT window lengths were negatively correlated with all BI variants,
except for a near-zero correlation with the BI calculated using FFT
window length of 64 and a sampling rate of 192 kHz. Additionally, ACI
variants calculated using small FFT window lengths were negatively
correlated with ACI variants calculated using large FFT window lengths.
This pattern was more pronounced at high sampling rates. When default

settings were used, the correlations between ACI and BI —both positive
and negative—were weaker.

4. Discussion

Our results demonstrate that the relationship between bird species
richness and the ecoacoustic indices analyzed here—the ACI and BI—, as
well as the correlation between these indices for the same recording,
strongly depends on the recording’s sampling rate and the calculation
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Fig. 4. The richness-index relationships of scaled values of BI (scaled to mean = 0,

SD = 1; mean model estimates with 95 % CI), as estimated by mixed effect models,

for different combinations of sampling rates (24, 48, 96, or 192 kHz), FFT window lengths (64, 128, 256, 512, 1024, 2048, or 4096) and frequency ranges (0.5-10
kHz, indicated with circles; default frequency range, i.e., 2-8 kHz, indicated with triangles) in four forest habitats and the adjacent farmland. The vertical solid line
indicates no effect, positive effects (right) are shown in blue, negative effects (left) in pink, and non-significant responses (p > 0.05) are indicated as transparent.
Points are vertically dodged, to avoid overlapping. Habitat icons were created by Tomek Samojlik. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

settings, including the FFT window length and the frequency range. For
the same set of recordings, different technical parameters can cause the
index-index correlation and the richness-index relationship to shift from
significantly positive to significantly negative. This means that ecosys-
tems with a complex soundscape and a high species richness could get a
lower acoustic complexity index value compared to ecosystems with a
less complex soundscape and a lower species richness, merely due to the
combination of technical parameters. Therefore, calculation settings
should be applied carefully when using these indices as proxies for

species richness. Adjusting the calculation settings of ecoacoustic indices
(i.e., limiting the frequency range and modifying the FFT window
length) enhanced their effectiveness in representing bird species rich-
ness, confirming the hypotheses proposed in the introduction. Technical
parameters considerably affect the relationship between the ACI and BI
and the bird species richness, and appropriate adjustments of the
calculation settings improve their performance. Between the two
indices, the BI proved to be more robust to changes in sampling rate and
FFT window length than ACI. Interestingly, the strength of the
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Fig. 5. Correlation matrix showing Pearson correlation coefficients among all variants of the ACI and BI, calculated for two frequency range limitation settings, four
different sampling rates and seven different FFT window lengths (FFT wl). To improve the readability of the figure axes, not all FFT window lengths are shown.
Instead, an enlarged fragment of the axes is shown to indicate the order at which the FFT window lengths occur.

association between ecoacoustic indices and bird species richness, as
well as the effect of technical parameters on this relationship, also
depended on habitat type, indicating the uneven effectiveness of
acoustic indices in predicting species richness across habitats, even
within the same study site. These results have important implications for
the application and interpretation of these ecoacoustic indices. In the
following discussion, we explore how these factors may influence the
outcomes of studies using these indices and provide practical recom-
mendations that, in our opinion, can greatly enhance the effectiveness of
the ACI and the BIL.

Across ecosystems and biomes, distinct sampling rates are used to
capture the soundscapes (Darras et al., 2025), as the sampling rate must

be tailored to the studied species, taxa, or soundscape —it should be at
least twice the maximum frequency of the target sounds, according to
the Nyquist-Shannon Sampling Theorem (Shannon, 1948; Sugai et al.,
2020). When applying the BI and ACI as proxies for bird species richness,
particularly the ACI, we demonstrated that different sampling rates
require specific FFT window length settings to maintain a consistent
richness-index relationship. Originally, the ACI was calculated using
recordings with a sampling rate of 22.05 kHz and an FFT window length
of 512, resulting in a temporal resolution of 0.023 s and a spectral res-
olution of 43 Hz (Pieretti et al., 2011). Currently, a 48 kHz sampling rate
is commonly used for monitoring bird species richness (e.g., Farina and
Mullet, 2025; Jorge et al., 2018; Mueller et al., 2024), often combined
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with an FFT window length of 512—the default setting in the sounde-
cology R-package (Villanueva-Rivera and Pijanowski, 2018). In our
study, this combination of parameters still produced a positive richness-
index relationship, despite the resulting resolution of 0.011 s per 94 Hz
differing from the initially assumed values. Therefore, with these pa-
rameters, the ACI likely still reflects bird species richness appropriately.
However, higher sampling rates may be required when monitoring birds
alongside other taxa, such as bats. This was the reason why we recorded
at 192 kHz sampling rate in this study and why, for example, Fairbrass
et al. (2017) used 96 kHz sampling rate in their work. Applying small
FFT window length (like the default of 512 in the ACI calculation) to
high sampling rate recordings (e.g., 192 kHz) may render the ACI to a
misleading proxy for bird species richness due to the resulting high
temporal (0.003 s) but low spectral (375 Hz) resolution. Indeed, a study
combining a high sampling rate (192 kHz) with a small FFT window
length (512) reported a negative association between bird species
richness and the ACI (Shamon et al., 2021). According to our findings,
such a combination of sampling rate and FFT window length is not
optimal for reflecting bird species richness and fails to capture the
soundscape complexity that the index was originally designed to mea-
sure. Given the growing popularity of ecoacoustic indices in ecological
studies, it is important to recognize this limitation of the ACI. Moreover,
generalizing the effectiveness of ecoacoustic indices—particularly the
ACI—based on studies using different sampling rates and calculation
settings (Alcocer et al., 2022; Bateman and Uzal, 2022) may lead to
misleading conclusions. Another issue is the lack of implementation of a
background filter on the Discrete Fourier Transform, which removes all
frequency components below a certain amplitudes threshold in the
spectrogram (Farina, 2025; Farina et al., 2021).

Hence, when calculating ecoacoustic indices, particularly the ACI,
we recommend adjusting the FFT window length to match the re-
cording’s sampling rate to maintain the index’s relationship with species
richness. In general, higher sampling rates require proportionally larger
FFT window lengths to achieve comparable temporal and spectral res-
olution in sound analysis. As explained above, the ACI was originally
calculated using a 512-point FFT window length for recordings at 22.05
kHz (Pieretti et al., 2011); therefore, a sampling rate of 192 kHz would
require an FFT window length of approximately 4096 to achieve com-
parable temporal and spectral resolution, as confirmed by our results.
Additionally, the combination of recording sampling rate and FFT
window length allows adjustment of the soundscape analysis resolution
to the acoustic characteristics of the studied animal assemblage.
Increasing the FFT window length improves the spectral resolution but
reduces the temporal resolution, which can be appropriate for commu-
nities where most species produce long, narrow-band vocalizations.
Conversely, decreasing the FFT window length may be more suitable for
vocalizations with short, wide-band frequency elements.

In addition, we recommend adjusting the calculation settings to align
with local ecological and, in particular, acoustic conditions. First, in line
with previous studies, we advise tailoring the frequency range used in
the index calculation to the frequency band of focal animal vocalizations
in the study area (Metcalf et al., 2021). As we have shown, this adjust-
ment strengthens the association with species richness, and by excluding
low frequencies, helps minimize the effects of background noise and
recorder’s self-noise. Second, we observed that the association between
the tested indices and bird species richness varied among habitats. This
suggests that identical technical parameters may produce different
richness-index relationships across habitats due to habitat-driven vari-
ations in bird song characteristics (Morton, 1975), species composition,
and soundscape phenology (Budka et al., 2023).

Moreover, in our study the richness-index relationships obtained for
farmland differed remarkably for both indices, suggesting that the
farmland soundscape itself differs substantially from forest soundscapes
due to, for example, distinct geophony characteristics and higher human
presence and anthropophony (for a more detailed explanation and the
NDSI, see S4). In addition, the high complexity of the songs of species
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forming the assemblages and the primary nature of the Biatowieza Pri-
meval Forest may have amplified differences in acoustic complexity
between habitats, particularly between forest and farmland. In forest,
the high number of vocalizing species within a small area must effi-
ciently share the common acoustic environment (Krause, 1993).
Therefore, we strongly advise against using the ACI and BI without first
testing of their suitability to reflect local components of diversity. We
recommend calculating these components (e.g., species richness) based
on direct observations, such as manual classification for at least a subset
of recordings, and testing various FFT window lengths to identify the
optimal calculation settings. Adjusting the calculation settings to the
local ecosystem will enhance the ability of the index to represent the
diversity components within the study area and may facilitate the
comparability of the indices across studies and regions.

In addition to the importance to disentangling ecological effects from
the influence of technical parameters, which are the primary focus of
this study, the interpretation of ecoacoustic indices as proxies for bird
species richness should be approached with caution. Although richness-
index relationships reported here were significant, the proportion of
index variance explained by species richness was relatively limited, as
indicated by the low R values obtained for the models. Most of the
variation was instead attributable to random effects, namely recording
location and time of recording (Table S3.1 and S3.2). This suggests that,
in near-natural temperate forests, the acoustic indices analyzed here
reflect the overall acoustic environment at the recording point, shaped
not only by species richness but also by species composition, the abun-
dance of individual species, and their population densities. Conse-
quently, ecoacoustic indices should be interpreted cautiously when used
as proxies for bird species richness.

4.1. Conclusions and practical recommendations

We conclude that the effectiveness of the ACI and the BI in repre-
senting bird species richness depends on technical parameters. Any
default settings in the software should therefore be regarded as a
simplification rather than a standard. When calculating ecoacoustic
indices, particularly the ACI, we recommend adjusting the FFT window
length to match the sampling rate of the recordings. In general, higher
sampling rates require proportionally larger FFT window lengths to
achieve comparable temporal and spectral resolution in sound analysis.
The combination of the recording sampling rate and the chosen FFT
window length, together with other calculation settings, allows the
temporal and spectral resolution of the analysis to be tailored to the local
ecological and acoustic characteristics of the vocalizing animal assem-
blages. An alternative is to use an index that does not require the
specifying the FFT window length and is not affected by the sampling
rate (e.g., the ADI, or its corrected version: the FADI; Villanueva-Rivera
et al., 2011; Xu et al., 2023). Moreover, we strongly advise estimating
diversity components (e.g., species richness) based on direct observa-
tions, such as manual classification, for at least a subset of recordings
and testing various FFT window lengths to determine the optimal
calculation settings.
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