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ABSTRACT

Climate change is predicted to lower yields through increased disease pressure. Yet, we often lack insights into
how climate affects disease dynamics, and how we can manage the environment to reduce the impact of climate
change. This knowledge gap is especially prominent for stem and root diseases that concern smallholder farmers
in low-income countries. To provide insights into the patterns and drivers of stem and root diseases, and how
they will be affected by climate change, we surveyed the prevalence and incidence of a major stem (coffee wilt
disease; Gibberella xylarioides) and root disease (Armillaria root rot; Armillaria mellea) attacking Arabica coffee in
58 sites in southwestern Ethiopia, and simultaneously recorded climatic, habitat, spatial and management var-
iables. Coffee wilt disease was found in all but four sites, and the incidence of coffee wilt disease was positively
affected by temperature and soil moisture, negatively affected by coffee density and lower in sites with a more
forest-like shade tree species composition. Armillaria root rot was found in 29 out of 58 sites. While none of the
factors explained the prevalence of Armillaria root rot, Armillaria root rot incidence was, in contrast to coffee
wilt disease, negatively affected by temperature. Armillaria root rot was positively affected by soil moisture and
surrounding forest cover. Canopy cover affected the two diseases through opposing direct and indirect pathways,
resulting in non-significant total effects. Neither of the two diseases was affected by coffee structure index
(reflecting e.g. pruning), the proportion of coffee berry disease resistant cultivars, or each other’s presence.
Overall, our findings shed light on the patterns and drivers of stem and root diseases, and provide management
guidelines to reduce the devastating impact of these diseases for smallholder farmers.

Introduction

productivity (Singh et al., 2018). This knowledge gap is especially
concerning for smallholder farmers in low-income countries, as these

Climate change poses a major threat to global crop production, not
only directly by affecting crop growth and yield but also indirectly by
increasing pest and disease levels (Juroszek & von Tiedemann, 2011;
Skendzic et al., 2021). Understanding the relationship between climate,
management and disease pressure is thus important for developing
farming practices in a changing climate (Ayalew et al., 2024a; Gagliardi
et al., 2021). We particularly lack insights into the relationship between
climate, management and disease pressure for stem and root diseases,
even though they can have large impacts on plant health and

* Corresponding author.
E-mail address: biruk.ayalew2@gmail.com (B. Ayalew).

https://doi.org/10.1016/j.baae.2025.10.005
Received 18 August 2025; Accepted 9 October 2025
Available online 10 October 2025

diseases directly threaten their livelihoods. By establishing the link be-
tween climate, management and disease dynamics for often-ignored
pathogens in often-ignored regions, we can develop sustainable
ecologically-informed strategies to reduce crop losses by pests and dis-
eases under climate change for smallholder farmers.

As global temperatures increase and precipitation patterns shift, the
incidence and severity of plant diseases are likely to change as infection,
colonization, sporulation, and dispersal of pathogens may be either
favoured or hindered (Singh et al., 2023). Moreover, pathogens can
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rapidly evolve to changing climatic conditions, in contrast to many
(perennial) crops (Burdon & Laine, 2019). Understanding the relation-
ship between climate and disease levels in natural and agricultural
systems may enable us to predict the impact of climate change on crop
diseases and develop effective ecologically-informed strategies to reduce
crop losses by diseases under climate change (Zhang et al., 2023).
Agroforestry can be leveraged as a climate-smart and sustainable agri-
cultural system where agricultural crops such as coffee and cacao are
cultivated under a canopy of shade trees (Altieri & Nicholls, 2004;
Perfecto et al., 2014). Shade trees within agroforestry modify the
microclimate by buffering extreme temperatures and increasing hu-
midity, though they may reduce dew formation compared to open areas
(Dobhal et al., 2024; Kemppinen et al., 2024). The shaded microclimate
may reduce environmental stress on the understory plants, thereby
enhancing crop growth and reducing disease levels. For example,
Mensah et al. (2022) and Wagner (2022) reported shade enhanced
resilience to drought and heat stress in East African coffee systems, and
Lopez-Bravo et al. (2012) showed that shaded coffee systems had a
lower severity of coffee leaf rust compared to unshaded monocultures in
Latin America.

Local, spatial and management factors such as canopy cover, plant
density, the composition of shade tree species, surrounding forest cover
and pruning can play an important role in reducing diseases levels in
agricultural systems (Juroszek & von Tiedemann, 2011; Schroth et al.,
2000; Tscharntke et al., 2011). For example, managing the canopy cover
by shade trees can regulate microclimatic conditions such as tempera-
ture and soil moisture (Tscharntke et al., 2011), and plant density can
affect disease transmission (Sseremba et al., 2021). The diversity of
shade tree species in coffee and cacao agroforests not only enhances
biodiversity but also supports natural pest control mechanisms through
increased predator and parasitoid abundance (Bisseleua et al., 2013;
Burger et al., 2022; Stiiber et al., 2021) and improves soil health
(N’Guessan Diby, 2024). From a spatial perspective, the surrounding
forest cover can act as a buffer, providing habitat for beneficial organ-
isms that suppress pest populations and diseases (Ratnadass et al.,
2012). Finally, pruning of the crop can enhance airflow and sunlight
penetration (Beer et al., 1998; Gagliardi et al., 2021), which in turn
reduces humidity levels, which can inhibit pathogen dispersal and spore
germination (Avelino et al., 2004; Finch-Boekweg et al., 2016).
Together, these integrated practices have the potential to create a
resilient agricultural system that enhances the health and productivity
of crops under climate change. Beyond local, spatial and management
factors, interactions between co-occurring plant pathogens may also
intensify disease incidence or alter transmission dynamics (Susi et al.,
2015; Zhou et al., 2023). In some cases, one pathogen may indirectly
favor another by weakening the host, thereby increasing host suscepti-
bility (Abdullah et al., 2017). As two examples, co-infection by Fusarium
aglaonematis and Fusarium elaeidis in Aglaonema modestum led to an
increased incidence of stem rot disease (Zhang et al., 2022), and Fusa-
rium oxysporum f. sp. medicaginis and Rhizoctonia solani co-infections
caused more severe disease in alfalfa than either pathogen did alone
(Fang et al., 2021). These interspecific interactions among pathogens
sharing the same host highlight the importance of considering pathogen
interactions in integrated disease management strategies.

Arabica coffee is attacked by a diverse community of fungal patho-
gens, and several reports have warned that climate change might in-
crease the incidence and severity of these diseases (Groenen, 2018;
Pham et al., 2019). In southwestern Ethiopia, coffee wilt disease (tra-
cheomycosis) and Armillaria root rot rank among the most destructive
fungal diseases (Adugna et al., 2009). Coffee wilt disease, caused by
Fusarium xylarioides (asexual form; sexual form: Gibberella xylarioides), is
endemic to Africa, attacks coffee plants at all growth stages, and even-
tually kills the infected plant (Adugna et al., 2009; Zhang et al., 2023).
This soil-borne pathogen invades through the roots, colonizing the
xylem vessels and disrupting water transport (Flood, 2023; Rutherford,
2006). The resulting vascular blockage induces wilting, defoliation and
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necrosis in wood below the bark, and in advanced stages the coffee plant
dies (Fig. 1b) (Flood, 2023; Peck & Boa, 2024). The fungus produces
asexual conidia on dead leaves and ascospores within root and stem bark
of infected shrubs (Zhang et al., 2023). The most reliable way to detect
the disease is to scrape off the stem bark; internally, brown or blue-black
discoloured bands are seen on the exposed wood of the stem. In addition,
these trees cannot be easily pushed over and uprooted as opposed to
coffee trees that have died from root rot disease (Armillaria mellea)
(Adugna et al., 2009; Zewdie et al., 2020). The intravascular nature of
the infection poses challenges for natural and chemical treatments, and
the disease causes substantial production losses of up to 80 % in plan-
tations and, in some instances, complete loss in smallholder farms.
Typical management actions include uprooting and burning infected
material, as well as other sanitary measures such as (i) avoiding
wounding the stems during weeding and cultivation of the coffee, (ii)
avoiding shrubs with wilting symptom during pruning, and (iii) regu-
larly disinfecting pruning shears (Adugna et al., 2009; Flood, 2023).
Coffee wilt disease is currently confined to central and eastern Africa
(Flood, 2023).

Armillaria root rot is caused by Armillaria mellea (Ayalew et al.,
2024c; Zewdie et al., 2020). Armillaria root rot is a globally distributed,
soil-borne fungal pathogen that causes the rotting of roots, which in time
kills the coffee plant (Ayalew et al., 2024c; Zewdie et al., 2020). A coffee
shrub infected with Armillaria root rot shows symptoms of yellowish
leaves, die-back, and cracking of the stem at the collar region (Fig. 1c)
(Roux & Coetzee, 2016). The infected shrub has black threadlike rhi-
zomorphs in the cracked stem, which are particularly easy to see during
the wet season, and a diseased shrub can be easily pushed over and
uprooted (Girma et al., 2001), allowing for easy identification of the
disease in the field. Armillaria root rot spreads primarily through
root-to-root contact between trees (Adugna et al., 2009; Waller et al.,
2007) and growth is closely linked to soil moisture conditions (Gezahgne
et al., 2004). The pathogen can persist in root pieces within the soil for
extended periods and the presence often goes unnoticed until coffee
canopies wilt and succumb to the disease. Typical management actions
include sanitary measures, and promptly uprooting and burning infected
trees (Waller et al., 2007). Armillaria root rot is not only a primary
pathogen, but also a secondary pathogen on stressed trees and a
saprophyte on dead trees (Wargo & Shaw, 1985). The disease is
particularly problematic in areas where native forests have been cleared
to establish plantations, with tree mortality often concentrated around
stumps and large woody debris left after cutting (Waller et al., 2007).
The mycelium can survive saprophytically in residual woody roots after
cutting of trees and can remain buried in the soil to serve as inoculum for
infection of the next crop (Redfern & Filip, 1991). After the host plant
has died, the pathogen can survive as a saprophyte. Depending on
environmental conditions, stump size, and other factors, Armillaria
species may survive for decades in stumps. Management of Armillaria
root rot is often unsuccessful due to the persistence of fungal inoculum in
roots, stumps, and soil.

In southwestern Ethiopia, Arabica coffee Coffea arabica grows wild,
and natural populations are characterized by a high genetic diversity
(Anthony et al., 2001). Within the same landscape, coffee is cultivated
along a broad gradient of management intensity, ranging from coffee
growing with little management in the natural forest to smallholder
farms and a few larger commercial plantations (Ayalew et al., 2024a;
Zewdie et al., 2020). Arabica coffee is the region’s major agricultural
commodity, providing a livelihood income for millions of people (Moat
etal., 2017). Arabica coffee is attacked by a diverse community of fungal
pathogens, and several reports have warned that climate change might
increase the incidence and severity of these diseases (Groenen, 2018;
Pham et al., 2019).

Our overarching aim was to identify the patterns and drivers of stem
and root diseases on Arabica coffee. For this, we surveyed the prevalence
and incidence of a major stem (coffee wilt disease) and root disease
(Armillaria root rot) attacking Arabica coffee in 58 sites across
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Fig. 1. Overview of the study location and system. The inset in panel a) shows the location of the study area (red rectangle) in Jimma zone in southwestern Ethiopia.
The 58 sites (coffee beans) are plotted on the map of the study area. The gray and green background colours represent open and forested areas, respectively. The
photos in the bottom right show characteristic damage by the two major coffee fungal diseases: b) the characteristic brown or blue-black discoloured bands that are
seen on the exposed wood of a coffee wilt disease infected stem when the bark is scraped off, as caused by Gibberella xylarioides, and (c) the typical black threadlike
rhizomorphs in the cracked stem caused by Armillaria root rot (Armillaria mellea) (photos credits: Beyene Zewdie).

southwestern Ethiopia along a broad environmental and climatic
gradient. In each site, we recorded aspects of the climate (mean soil
temperature, soil temperature variability and soil moisture), local
habitat (canopy cover, coffee density and shade tree composition),
spatial context (surrounding forest cover) and management (coffee
structure index and proportion of coffee berry resistant coffee cultivars
relative to coffee shrubs of local or wild origin). We then used structural
equation modelling to address the following questions:

i. What are the direct and indirect effects of climatic, habitat, spatial
and management variables, as well as Armillaria root rot incidence,
on coffee wilt disease incidence?

ii. What are the direct and indirect effects of climatic, habitat, spatial
and management variables, as well as coffee wilt disease incidence,
on Armillaria root rot prevalence and incidence?

Materials and methods
Description of the study area

The study was conducted in Goma and Gera districts in Jimma zone,
southwestern Ethiopia (7°37- 7°56' N and 36°13' - 36°39E) from April

2018 to June 2019 (Fig. 1a). The landscape has a varied topography, and
the elevation of our study sites ranges from 1500 to 2200 m.a.sl. The
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climate is warm and humid with a mean daily minimum and maximum
temperature of 12.0 and 26.4 °C, respectively (Zignol et al., 2023).
Rainfall in the area is unimodal, with a mean annual rainfall between
1500 and 2000 mm. The climax vegetation is moist Afromontane forest
with mostly evergreen trees such as Pouteria adolfi-friederici, Olea wel-
witschia, Prunus africana, Syzygium guineense, Schefflera abyssinica, and
Ficus sur (Friis et al., 2010), and the landscape is currently a mosaic of
primary and secondary forests, smallholder coffee farms, a few large
coffee plantations, annual crop and grazing fields, and human settle-
ments (Koelemeijer et al., 2021; Zewdie et al., 2020). The region is part
of the indigenous distribution of Arabica coffee and is of major impor-
tance for coffee production (Ayalew et al., 2022; Burger et al., 2022).
Coffee in southwestern Ethiopia is grown under the shade of trees
along a wide gradient of management intensities (Zewdie et al., 2022).
This gradient includes coffee grown with little or no management under
a dense, species-rich canopy of native forest trees; smallholder farms
where shade tree species typical of the natural forest are less common
and less dense; and, finally, commercial plantations characterized by
lower tree diversity and canopy cover (Hundera et al., 2013; Tadesse
et al.,, 2014). Farmers in our study area do not apply fungicides, and
thereby heavily rely on natural disease control and other agricultural
practices such as pruning (Ayalew et al., 2022; Stiiber et al., 2021). The
larger coffee plantations, and to some degree also the smallholder farms
with high management intensity, employ coffee cultivars resistant to
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coffee berry disease caused by the fungal pathogen Colletotrichum
kahawae. These cultivars are not known to have cross-resistance or
cross-susceptibility to other fungal diseases (Daba et al., 2019).

Assessment of coffee wilt disease and Armillaria root rot

To assess the patterns and drivers of coffee wilt disease and Armil-
laria root rot, we selected 58 coffee farms (hereafter “sites™) across the
study area (Fig. 1a). Each site was separated by at least 1 km to ensure
spatial independence. These sites were previously selected to encompass
a range of environmental and management gradients (Zewdie et al.,
2020). Within each site, we established a 50 x 50 m plot, and within
each plot, we recorded the proportion of coffee shrubs with coffee wilt
disease and Armillaria root rot symptoms on a single date between July
to August 2019. To distinguish between coffee wilt disease and Armil-
laria root rot, we followed established field diagnostic protocols. Coffee
wilt disease was identified by scraping the stem bark with a knife and
looking for characteristic brown or blue-black discoloured bands in the
exposed wood (Girma et al., 2001). Armillaria root rot was diagnosed by
inspecting the root collar and lower stem for black, threadlike rhizo-
morphs, particularly visible during the wet season, and by checking
whether infected shrubs could be easily pushed over or uprooted. For
coffee wilt disease, which was present in nearly all sites, we then
calculated the incidence as the proportion of infected shrubs out of the
total number of coffee shrubs per site. For Armillaria root rot, which was
present in only roughly half of the sites, we created two variables: i) the
prevalence (presence-absence) of Armillaria root rot, and ii) the inci-
dence, which was calculated as the proportion of infected shrubs out of
the total number of coffee shrubs per site for the subset of Armillaria root
rot-infected sites.

Recording climatic variables

We recorded soil temperature and moisture at each site from August
2018 to July 2019. Soil temperature was recorded using iButtons (model
DS1921G-F5, Maxim Integrated, San Jose, CA, USA) and moisture was
measured using a portable soil moisture probe (SM150, Delta-T Devices
Ltd., UK). The iButtons were wrapped in parafilm and plastic to avoid
water damage, and placed 5 cm belowground near the stem of a coffee
shrub, for a total of three coffee shrubs per site. The iButton was set to
record every three hours. For each site, we calculated the annual average
of daily mean temperature as well as the annual temperature variability.
The annual temperature variability was calculated as the annual average
of the daily standard deviation. Soil moisture was recorded during the
dry seasons of 2018 and 2019 (February to March). At each occasion, we
took three recordings 10 cm away from the stem of the coffee shrub, for
a total of three coffee shrubs per site. Recordings were then averaged to
obtain a yearly site-level estimate, which was then averaged across the
two years. Given the large microtopographic variation across the land-
scape, we preferred in situ measurements over interpolation of coarse-
resolution satellite derived gridded data, which are less suited to cap-
ture fine-scale variation in soil water availability. A strong and statisti-
cally significant correlation between the two years (r = 0.81, p < 0.001;
Fig. S1) supports the notion that relative differences in soil moisture
conditions among sites are consistent ensuring that this metric is well
capturing the rank order of the sites.

Recording habitat, spatial and management variables

To characterize the habitat, spatial and management variables
associated with each site, we measured canopy cover, coffee density,
shade tree composition, surrounding forest cover, coffee structure index
and the proportion of coffee cultivars resistant to coffee berry disease.
Canopy cover was estimated from canopy photos taken from above the
coffee shrubs at the centre of the plot and each of the quadrants. Canopy
cover was then estimated as the mean of the percentage of pixels covered
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by canopy after binarizing the five photos using the ImageJ software v.
1.50i (Schneider et al., 2012). Coffee density was counted in the 30 x 30
m inner plot. For tree species composition (a site-by-species matrix of all
woody species), we performed a non-metric multidimensional scaling
(NMDS) ordination with two dimensions (K = 2, stress = 0.224) using
the metaNMDS function in the R package vegan (Oksanen et al., 2020).
We extracted the site scores from the analysis and used the NMDS axis 1
as a predictor variable representing shade tree species composition in
the analysis (see Zewdie et al., 2022 for further details on the method-
ology). Sites with low values of NMDS scores were characterized by
forest species such as Schefflera abyssinica, Teclea nobilis, Syzygium gui-
neense, Polyscias fulva, and Olea welwitschii, whereas sites with high
values of NMDS scores were characterized by high abundances of Cordia
africana, Croton macrostachyus and Acacia abyssinica. We estimated the
percentage of forest in the surrounding landscape for each site using a 1
km radius using ArcMAP version 10.6.16.1 (ESRI, 2018). To charac-
terize pruning of the coffee shrubs at each site, we used the coffee
structure index, which was previously developed for the same set of sites
to characterize the physical characteristics of growth of coffee shrubs
that results from a different intensity of pruning practices (see "coffee
structure index" in Zewdie et al., 2020). The coffee structure index is a
continuous metric ranging from 1 to 3, with 1 representing no pruning
and 3 representing extensive pruning characteristic of plantations
(Zewdie et al., 2020). The proportion of coffee berry disease (CBD)
resistant cultivars in the plot was estimated based on interviews with the
farmers (Ayalew et al., 2024b). The proportion of CBD resistant cultivars
ranged from 0 (only wild genotypes or local landraces) to 1 (only CBD
resistant cultivars). We were unable to include tree age in our analysis
due to the lack of reliable age estimates and the fact that the coffee
shrubs can be several decades old in both the forests and smallholder
farms. See Table S1 for detailed information on the environmental
characteristics of our study sites.

Statistical analysis

We used structural equation modelling (SEM) to investigate the
direct and indirect effects of climatic, habitat, spatial and management
variables, as well the effect of the other pathogen species, on coffee wilt
disease and Armillaria root rot, respectively, using the psem function in
the PiecewiseSEM package (Lefcheck, 2016). Structural equation
modeling is a powerful statistical approach that combines multiple
predictor and response variables into a single framework to analyse
complex relationships among a set of interconnected variables. In
structural equation modeling, paths are used to represent hypothesized
causal relationships between variables, with some variables acting as
predictors in one path and as responses in another. This approach allows
the exploration and quantification of both direct and indirect causal
relationships between response and predictor variables (Lefcheck, 2016;
Shipley, 2009). Total effects are the sum of direct and indirect effects
and were estimated using the semEff package (Murphy, 2022). Statistical
analyses were conducted in R v. 4.1.3 (R Core Team, 2020).

Using a priori knowledge of the study system, we constructed initial
conceptual models of cause—effect relationships based on hypothetical
pathways supported by the literature, separately for coffee wilt disease
and Armillaria root rot (Fig. 2). To achieve normality of residuals, the
incidences of coffee wilt disease and Armillaria root rot were log-
transformed. Because of the intrinsic correlations between mean soil
temperature, temperature variability and soil moisture, we assumed
correlated errors between those variables (Fig. 2, double-headed ar-
rows). Correlated errors describe a relationship between variables that is
not presumed to be causal or unidirectional. Models were evaluated with
a d-separation test to examine whether significant non-hypothesized
independent paths were missing, and the overall model fit was tested
with Fisher’s C statistic. A Fisher’s C test that produces a high p-value
indicates that the proposed model is a good fit for the data and would
likely not benefit from the inclusion of unspecified relationships
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(Lefcheck, 2016; Shipley, 2009).
Results
The effect of canopy cover on local climate

Canopy cover lowered mean soil temperature and temperature
variability, and increased soil moisture (Fig. 3 and Fig. 4a-c).

Coffee wilt disease

Coffee wilt disease was present in 54 out of 58 sites. The incidence of
coffee wilt disease was affected by climate and habitat variables, but not
by spatial and management variables (Fig. 3). Of the climatic variables,
the incidence of coffee wilt disease was positively affected by mean
temperature and soil moisture, but was not affected by temperature
variability (Fig. 3 and Fig. 4d, e). Of the local habitat characteristics,
coffee wilt disease was negatively affected by coffee density (Fig. 4f),
and was less common in sites with a more forest like shade tree species
composition (Fig. 2 and Fig. 4g). While canopy cover had no direct effect
on coffee wilt disease, it indirectly affected coffee wilt disease through
two opposing pathways: canopy cover decreased coffee wilt disease by
lowering the mean temperature, and increased coffee wilt disease by
increasing soil moisture, resulting in a non-significant total effect (p:
0.09; 95 % bootstrap CI [—0.12, 0.31]) (Fig. 3). Surrounding forest
cover, coffee structure index, the proportion of CBD resistant cultivars
and Armillaria root rot incidence did not affect coffee wilt disease
incidence (Fig. 3).

Armillaria root rot

Armillaria root rot was present in 29 out of 58 sites. The climatic,
habitat, spatial and management variables, as well as the incidence of
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coffee wilt disease, could not explain the site-level incidence of Armil-
laria root rot (Fig. S2). However, the incidence of Armillaria root rot in
the subset of sites where it was present was strongly affected by climate
and surrounding forest cover (Fig. 5 and Fig. 6). Of the climatic vari-
ables, the incidence of Armillaria root rot was negatively affected by
mean temperature, and positively affected by soil moisture (Fig. 5 and
Fig. 6a, b). Of the local habitat characteristics, coffee density and shade
tree composition did not affect Armillaria root rot incidence. While
canopy cover had a direct negative effect on Armillaria root rot inci-
dence (Fig. 6¢), it also indirectly and positively affected Armillaria root
rot by lowering the mean temperature and increasing soil moisture,
resulting in a non-significant total effect (p: —0.22; 95 % bootstrap CI
[-0.47, 0.05]) (Fig. 5). Surrounding forest cover positively affected
Armillaria root rot incidence (Fig. 6d), while coffee structure index, the
proportion of CBD resistant cultivars and the incidence of coffee wilt
disease did not affect Armillaria root rot incidence.

Discussion

We investigated the direct and indirect effects of microclimate,
habitat, spatial and management variables on coffee wilt disease and
Armillaria root rot on Arabica coffee in its native distribution in
southwestern Ethiopia. While it is often stated that climate change will
worsen disease levels (Ayalew et al., 2024c; Jaramillo et al., 2011), our
findings show that responses to temperature are strikingly different
between two major fungal diseases attacking coffee in its native distri-
bution: higher mean temperatures were related to higher incidence of
coffee wilt disease, but lower incidence of Armillaria root rot. Our
finding of coffee wilt disease incidence increasing with soil mean tem-
peratures appears to contrast with Zhang et al. (2023), who reported
optimal growth of Fusarium xylarioides arabica strains at lower temper-
atures (18-22 °C) as compared to higher temperatures (25-28 °C), at
which robusta strains grow best. However, when inspecting the range of
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temperatures of our study sites (e.g. x-axis in Fig. 4d, with a minimum
site-level temperature of 16.5 °C and maximum of 20 °C), it is apparent
that most of our study sites are within the optimal range reported by
Zhang et al. (2023), even though methodological differences might
make a direct comparison difficult (e.g. we measured soil, not air tem-
perature). Taken together, while our study indicates that climate change
might lead to increased coffee wilt disease incidence in Ethiopia and
other coffee-producing regions in Africa, and potentially facilitate the
spread of the disease into coffee growing regions previously free from
coffee wilt disease, there might well be a maximum temperature after
which coffee wilt diseases incidence would start to decline. Conversely,
Armillaria root rot incidence decreased with increasing mean tempera-
tures, suggesting that cooler conditions are more conducive to its
development. Although the impact of temperature on Armillaria root rot
has not been investigated previously on coffee, studies in woody plants
suggest that higher soil temperatures can inhibit Armillaria growth
(Munnecke et al., 1976; Rishbeth, 1978). We thus expect that the disease
pressure by Armillaria root rot will decrease with climate change, unless
new heat-adapted strains evolve or colonize the area. While there is
currently no documented evidence of heat-adapted Armillaria strains
affecting coffee or other crops, soilborne pathogens in other systems
have demonstrated the capacity to adapt to changing climatic conditions
(Delgado-Baquerizo et al., 2020; Peng et al., 2023). Thus, while our
findings suggest a likely reduction in Armillaria risk under warming,
continued monitoring is warranted to detect potential shifts in pathogen
behavior or range. In contrast to the different responses to temperature,
both diseases were positively affected by soil moisture, which is a
common response for wilt and root rot fungi. Consistent with our find-
ings, Peck and Boa (2024) reported that coffee wilt disease thrives under
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moist soil conditions that facilitate infection and spread. Similarly,
Armillaria species are known to increase in incidence with higher soil
moisture, which facilitates their colonization of host roots (Kubiak et al.,
2017). Notably, we detected this pattern using soil moisture data based
on only two single-point dry-season soil measurements (2018 and 2019),
which will not fully capture seasonal or interannual variability. How-
ever, the soil moisture measurements correlated strongly between the
two years, suggesting a consistency in rank-order among the sites for soil
moisture. As the same time, disease development is a long-term process
and our reliance on short-term climate data and disease measurements
might represent a limitation, as highlighted by the long-term study by
Musoli et al. (2008), which showed low coffee wilt disease levels four
years after plot establishment, with severe outbreaks appearing only
after nearly a decade. Hence, we encourage future studies to incorporate
multi-year climate data to better capture temporal disease dynamics.
Overall, the contrasting temperature responses of coffee wilt disease and
Armillaria root rot make it more difficult to take management actions.
For example, lowering the mean temperature is expected to reduce
coffee wilt disease, but increase Armillaria root rot. In contrast, lowering
soil moisture might be an effective management strategy for both fungal
diseases.

The effect of canopy cover on disease levels involved a complex set of
opposing direct and indirect effects, where the identity and sign of the
pathways differed between the two diseases. Thus, while canopy man-
agement was related to important climatic drivers of disease dynamics,
its net impact on both coffee wilt disease and Armillaria root rot was
non-significant. Canopy cover affected coffee wilt disease through two
opposing pathways: by lowering the mean temperature, canopy cover
reduced disease incidence, and by increasing soil moisture, it increased
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disease incidence. In contrast to coffee wilt disease, canopy cover had a
negative direct effect on Armillaria root rot. Yet, the indirect effects of
reducing mean temperature and increasing soil moisture, that both are
positive for Armillaria, resulted in a non-significant total effect of can-
opy cover on Armillaria root rot. The negative direct effect of canopy
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cover on Armillaria root rot incidence might be due to the fact that
several sites with lower canopy cover were recently opened up, leaving
many fresh stumps that serve as substrate for Armillaria. Indeed, pre-
vious studies have shown that dead woody material, particularly tree
stumps and large logs, can serve as a persistent inoculum source for
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Armillaria root rot (Wargo & Shaw, 1985 ; Redfern & Filip, 1991). We
therefore speculated that Armillaria is — in addition to climate — also
limited by substrate, and that by removing canopy cover quickly,
farmers unintentionally create ample substrate for Armillaria. However,
we did not detect a significant relationship between the presence of dead
wood and Armillaria incidence across a subset of 30 sites for which dead
wood data were available (Text S1). However, we stress that this lack of
significance may reflect the limited number of study sites. Additionally,
the quality or decay stage of the dead wood, which we did not quantify
in detail, could play an important role in modulating its suitability as a
substrate. In case dead wood is important, a better management action
for reducing shade could be to uproot trees or selectively prune larger
branches instead of cutting down entire trees, maintaining some shade
while limiting the creation of new substrate for Armillaria. We also
suggest that future studies incorporate long-term monitoring after shade
tree removal and more detailed assessments of deadwood characteristics
to better understand these dynamics. Overall, our findings suggest that
modifying canopy cover to reduce coffee wilt disease and Armillaria root
rot is complex, and will require further studies into the drivers of, and
responses of diseases to, temperature and soil moisture (see manage-
ment implications below).

Coffee wilt disease responded to coffee density and shade tree
composition, whereas Armillaria root rot was influenced by surrounding
forest cover, and we detected no effect of management actions, such as
pruning and cultivar use, on either disease. While interesting, we are
hesitant to interpret the relationship between density and disease levels
as causal in our system without further experimental studies. While
counterexamples do exist (Brody et al., 1990; Maas et al., 2006), the
majority of empirical studies indicate that high plant densities promote
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pathogen dispersal by increasing the likelihood that pathogen propa-
gules are deposited on neighbouring susceptible hosts, and promote
successful establishment by increasing relative humidity and soil mois-
ture (Burdon & Chilvers, 1982; Café-Filho et al., 2019). The relationship
between coffee wilt incidence and shade tree species composition
highlights the fact that at least some shade tree species may create mi-
croenvironments that either suppress or favor the growth of pathogens,
and thereby influence disease dynamics. Such shade tree species specific
effects might be due to trait differences among shade tree species that
influence the understory microclimate, pathogen dispersal, nutrient
cycling and the abiotic and biotic soil characteristics (Avelino et al.,
2023; Gagliardi et al., 2021). For example, root exudates or biochemical
compounds have been shown to inhibit the growth of Fusarium oxy-
sporum (Hao et al., 2010; Were et al., 2022). In the current study, we
found that coffee wilt disease was lower in sites characterized by forest
tree species, such as Schefflera abyssinica, Syzygium guineense, Polyscias
fulva, and Olea welwitschii. Overall, these findings emphasize the
importance of understanding the functional roles of individual shade
tree species in agroforestry systems to inform management strategies
aimed at disease suppression.

While Armillaria root rot was not affected by coffee density and
shade tree species composition, we found a positive relationship be-
tween surrounding forest cover and Armillaria root rot. This supports
the idea that forest ecosystems can act as reservoirs for soil-borne
pathogens, and that pathogen spillover is more likely at the interface
between natural and managed landscapes (Plantegenest et al., 2007;
Prospero & Cleary, 2017). As forests harbour the majority of threatened
biodiversity within this landscape, there thus seems to be a trade-off
between Armillaria disease levels and biodiversity (Hylander et al.,
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2024). Regarding management, we found that pruning and the use of
coffee cultivars did not influence coffee wilt disease and Armillaria root
rot. The absence of a relationship between pruning and Armillaria root
rot might be because pruning primarily influences aboveground path-
ogen dynamics, rather than root-associated, soil borne pathogens.
However, the absence of a relationship between pruning and coffee wilt
disease is surprising, as pruning is known to facilitate the transmission of
coffee wilt disease from infected to healthy trees due to the use of
non-sterile tools and the creation of wounds (Adugna et al., 2009; Waller
et al., 2007). The finding that the proportion of CBD resistant cultivars
had no effect on coffee wilt disease and Armillaria root rot goes against
patterns found for Robusta coffee, where wild populations were often
more resistant to coffee wilt disease than cultivated clones (Phiri &
Baker, 2009). However, this discrepancy is not very surprising, as most
cultivars in our study area have been selected based on their resistance
to coffee berry disease, and coffee berry disease is a pathogen with a
different infection route and pathogenicity system as compared to coffee
wilt disease and Armillaria root rot. Nonetheless, our findings provide
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important insights into the absence of cross-resistance and
cross-facilitation between coffee berry disease on the one hand, and
coffee wilt disease and Armillaria root rot on the other hand. Although
coffee wilt disease and Armillaria root rot both have soil-borne phases,
our structural equation models revealed no significant association be-
tween the incidence of the two diseases. As such, we found no evidence
that physiological stress caused by F. xylarioides could predispose coffee
trees to A. mellea infection, or vice versa (Baumgartner et al., 2011).This
suggests that, within the studied agroecosystem, these pathogens occupy
distinct niches and do not interact during the infection process. At the
same time, our study is observational and the analyses were conducted
at the site-level. Hence, future studies combining controlled inoculation
experiments with longitudinal field monitoring are necessary to validate
whether pathogen coexistence changes disease trajectories in coffee
systems, as observed in other perennial crops (Bebber et al., 2016;
Lamichhane & Venturi, 2015).
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Management implications

Our aim was to propose sustainable, climate- resilient solutions to
battle two major understudied diseases on coffee on the African conti-
nent. Yet, the complex direct and indirect effects of canopy cover, and
the opposing responses of the two pathogens to temperature, seem to
rule out simple win-win strategies to battle both fungal diseases
simultaneously.

From a practical perspective, one way to think about it is to evaluate
which disease is most problematic within a certain region, and then take
actions that suppress the disease that is causing serious economic
damage. For example, if coffee wilt disease is causing major economic
damage in one particular region, and Armillaria is absent or at very low
levels, our findings suggest two management actions. First, farmers
might increase canopy cover to lower mean temperature, alongside
drainage practices to avoid an increase in soil moisture. Second, farmers
might change the shade tree species composition. For this, we recom-
mend further studies on plant traits and shade tree-mediated disease
control. If Armillaria root rot is the most problematic disease in another
region, and coffee wilt disease is absent or at very low levels, our find-
ings suggest that it is worthwhile to increase the temperature and reduce
soil moisture, which could be achieved by reducing the canopy cover. As
discussed above, one way to do this might be to prune the shade trees, as
cutting down trees might create resources for Armillaria. Another way to
limit Armillaria root rot is to reduce the surrounding forest cover, for
example by creating buffer zones. However, it is important to consider
the trade-offs between reducing disease levels and removing surround-
ing forest, as the surrounding forest also contributes to ecosystem ser-
vices like carbon sequestration, natural biocontrol and conservation.
While it would be useful to understand how sites, or entire regions, could
avoid infection, we gained very little insights on how to avoid infection
of a site by one of the diseases: coffee wilt disease was present nearly
everywhere (so we could not test drivers of presence-absence), whereas
Armillaria root rot incidence was not related to any of our investigated
predictor variables.

If both pathogens are causing damage, we can opt to only change
variables that affect a single disease. Regarding temperature and soil
moisture, it might be promising to focus on how traits of individual
shade tree species, such as leaf shape, rooting depth and canopy archi-
tecture, affect daily shade patterns, soil moisture and rainfall intercep-
tion, and how this in turn affects the dynamics of these fungal diseases
(Gagliardi et al., 2021, Staver et al., 2001). At the same time, future
studies can delve deeper into the drivers of individual aspects of climatic
variables, and their influences on disease dynamics. For example,
studies might investigate which specific aspects of temperature the
different diseases respond to: while the two diseases responded in
different ways to annual temperature, it could be that, for example, one
disease is affected by temperature during the rainy season, whereas the
other disease is affected by temperature during the dry season.
Non-linear relationships and threshold values of both temperature and
soil moisture effects might also play a crucial role. If such non-linearities
or thresholds exist, perhaps it is possible to find cases in which it is
favorable for disease management to open up the canopy to reduce the
soil moisture in some sites, but to increase the shade in other sites to
reduce temperature. Overall, our findings suggest how we can sustain-
ably manage different aspects of the environment to reduce the impact
of two major diseases on Arabica coffee in a changing climate.
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