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ABSTRACT
Evaluating artificial light as a bycatch reduction device (bycatch reduction light, “BRL”) requires 
a multidisciplinary approach that applies knowledge of fisheries science, fishing technology, 
engineering, physics, optics, vision biology, oceanography, animal behavior, economics, and 
social science. To support the continued evaluation of BRL, these guidelines were developed 
for conducting standardized and systematic studies. The guidelines highlight how information 
from those fields of study contributes to the efficacy of study design and the evaluation of 
results. The guidance is focused on four core areas: (i) defining the objective of using a BRL; 
(ii) understanding the context in which the BRL is applied and considering the base knowledge 
that is needed; (iii) selecting an appropriate study design (including selection and placement 
of the BRL) and analytical methods for measuring both behavioral responses and catch 
outcomes from using the BRL; and (iv) interpreting the data through the lens of the base 
knowledge, context, and study design, and evaluating the results against an established 
definition of success and variables that affect adoption. The purpose of these guidelines is to 
increase the ability of researchers and managers to determine if BRL is appropriate for a fishery 
and to encourage consistency in data collection among studies to support future meta-analyses 
and inter-study comparison. In addition, suggestions are provided on where more research 
and technology development are needed to support this rapidly emerging field of research.

1.  Introduction

Lights have been used in fisheries for thousands of 
years. While the primary goal of using artificial light 
in fisheries has been to increase the target catch rate 
(Ben-Yami 1976, 1988; ICES 2012; Nguyen and Winger 
2019a), recent research has focused on examining its 
effect on the behavior of marine species and its poten-
tial application in fisheries as a bycatch reduction 

device (BRD). Artificial lights used as a BRD (here-
after, bycatch reduction light, “BRL”) have been used 
in multiple fisheries. In active fishing gears, BRL has 
been tested and used primarily on trawls, but also in 
flyshooting fisheries (Table 1). For these active gear 
fisheries, illumination has induced a positive or neg-
ative phototactic response (i.e., movement toward or 
away from the light source, respectively) or enhanced 
the visual perception of gear components; and BRL 
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has also been used in conjunction with other BRDs 
to increase or decrease movement toward an escape-
ment area (Cuende, Arregi, Herrmann, Sistiaga, 
Basterretxea 2020; Cuende, Arregi, Herrmann, Sistiaga, 
Onandia 2020; Grimaldo et  al. 2018). In passive fish-
ing gears, BRL has been tested and used primarily in 
gillnet fisheries, but also with longlines (Afonso et  al. 
2021) and pots (Table 1). Artificial lights in these 
fisheries have additionally been used to increase catch 
rates of the target species (e.g., Hazin et  al. 2005; 
Humborstad et  al. 2018; Nguyen et  al. 2020; Poisson 
et  al. 2010; Sokimi and Beverly 2010).

Previous studies indicate that BRL yields mixed 
results (Table 1). For example, in gillnet fisheries, BRL 
significantly reduces the capture of sea turtles (Allman 
et  al. 2021; Bielli et  al. 2020; Darquea et  al. 2020; 
Gautama et  al. 2022; Kakai 2019; Ortiz et  al. 2016; 
Virgili et  al. 2018; Wang et  al. 2010, 2013), small 
cetaceans (Bielli et  al. 2020), seabirds (Bielli et  al. 
2020; Mangel et  al. 2018), elasmobranchs (Senko et  al. 
2022), Humboldt squid (Senko et  al. 2022), unwanted 
finfish (Senko et  al. 2022), and total bycatch biomass 
(Senko et  al. 2022). Other gillnet studies, in contrast, 
have shown either inconclusive or negative effects of 
BRL on bycatch (e.g., Field et al. 2019; Martínez-Baños 
and Maynou 2018). Mixed results have also been 
shown by attachment location (e.g., Hannah et  al. 
2015), species (e.g., Geraci et  al. 2021; Grimaldo et  al. 
2018; Lomeli and Wakefield 2012; Senko et  al. 2022), 
size of the animal (e.g., Geraci et  al. 2021; Karlsen 
et  al. 2021; Lomeli et  al. 2018; Melli et  al. 2018), and 
light properties (e.g., color, light level, and strobe rate; 
Yochum et  al. 2022). Furthermore, environmental con-
ditions, such as turbidity and ambient light, can dra-
matically alter the visual perception of BRL by target 
and bycatch animals and therefore influence BRL 
efficacy (Cuende et  al. 2022). This variability high-
lights the need to standardize data collection on vari-
ables that may affect behavioral responses and the 
importance of understanding the influence of 
study design.

To support the continued evaluation of BRL, guide-
lines were developed for conducting standardized, 
systematic BRL studies with information that should 
be considered when evaluating study results. These 
guidelines focus on four core areas: (i) defining the 
objective of using a BRL; (ii) understanding the con-
text in which the BRL is applied and considering the 
base knowledge that is needed; (iii) selecting an 
appropriate study design (including selection of the 
BRL) and analytical method; and (iv) interpreting the 
data through the lens of the base knowledge, context, 
and study design, and evaluating the results against 
an established definition of success and variables that 
affect adoption (either through voluntary uptake or 
regulation; Figure 1). The intention is for these guide-
lines to increase researchers’ and managers’ ability to 
determine if BRL is appropriate for a fishery (or com-
ponent of a fishery). In addition, by encouraging 
consistency in data collection among studies, these 
guidelines can also support future meta-analyses and 
inter-study comparison.

2.  Defining the objective of using a BRL

Studies evaluating BRL start by defining the specific 
fishery concerned and identifying the non-target ani-
mals to be selected against (hereafter, “bycatch ani-
mal”) with minimal effect on the target catch 
(hereafter, “target animal”). Both the bycatch and 
target animals should be defined in terms of their 
key characteristics relevant to selectivity (e.g., species, 
size, sex; Table 2). This includes defining what is 
meant by a “successful” outcome of using the BRL. 
Success could be measured, for example, by reduction 
in bycatch rates (or the ratio of bycatch and target 
catches), an increase in harvest efficiency (e.g., 
decreased catch sorting time), feasibility of using the 
BRL (including costs and operational considerations), 
and/or reliability of a behavioral response. Success 
can also be measured by minimizing unintended con-
sequences of the lights (see Section 8), including 

Figure 1. T he four core areas to consider when testing a bycatch reduction light (BRL) described in this paper, with an emphasis 
on the importance of the feedback loop among these project stages.
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negative impacts on fish vision for those that escape 
capture or changes in catch composition (e.g., increas-
ing catch of other non-target animals).

3.  Understanding the context in which BRL is 
applied

During the fishing process, animals are subject to 
stimuli that may affect their behavior in response to 
environmental and operational variables (e.g., herding, 
olfaction, turbidity). Simplified from Levitis et  al. 
(2009), behavior can be defined as “the responses 
(actions or inactions) of whole living organisms (indi-
viduals or groups) to internal and/or external stimuli.” 
Understanding the context for behavior is important 
for accurate interpretation of BRL study results.

3.1.  Environmental variables

Knowledge of the environmental conditions in which 
an animal is experiencing a BRL is important for 
interpreting results and making inferences on the use 
of light for fisheries selectivity while also facilitating 
comparability among studies. Environmental proper-
ties (e.g., natural ambient light level – the amount of 
light received or measured, turbidity, water current 
patterns, tidal cycle patterns, range of current 
strengths, lunar and seasonal variations) can influence 
the response of the bycatch animal to a BRL by alter-
ing the appearance of the BRL (e.g., change the con-
trast of the light against its background) and by 
affecting their vision (e.g., water temperature, Fritsches 
et  al. 2005), sensory detection range and physiological 
performance (Payne et  al. 2016), and behavior (e.g., 
Kotwicki et  al. 2009; Lomeli et  al. 2019; Olla et  al. 
1997, 2000; Ortiz et  al. 2016; Ryer and Barnett 2006). 
The light environment is affected by weather condi-
tions (e.g., sea state, cloud cover), turbidity (i.e., loss 
of water transparency due to suspended organic or 
inorganic particles; Kalle 1966; Kirk 1976, 1994; Figure 
2), depth (Dutkiewicz et  al. 2019; Jerlov 1976; Johnsen 
and Sosik 2004; Krebs 1972; Sheppard 1982), season, 
time of day, and geographic region. Temporal and 
geographic variation in the biogeochemical composi-
tion (e.g., chlorophyll, dissolved organic matter, inor-
ganic sediment) of the water column causes variation 
in water color and turbidity, and, therefore, influences 
visibility (Bricaud et  al. 2004; Kirk 2011; Loew and 
McFarland 1990). For example, ocean shrimp (Pandalus 
jordani) catch was, in a study, not affected by artificial 
light levels, but increased turbidity did result in the 
illuminated trawl catching fewer individuals (Lomeli 
et  al. 2020). Moreover, temperature can have a strong Ca
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impact on physiological processes, including swim-
ming capacity and metabolism (Brett 1971), which 
could affect how an animal responds to a BRL. Water 
flow can also influence the ability of animals to hold 
their position relative to an active gear as well as 
orientation to the current (i.e., rheotaxis). Current 
can also affect the distance, area, and direction ani-
mals can detect and be attracted to bait plumes 
(Løkkeborg 1998; Thomsen et  al. 2010).

It is important to use technology that will facil-
itate the collection of environmental data that are 
representative of where and when the BRL is expe-
rienced by the animal. For example, when perform-
ing in situ experiments, the turbidity level can vary 
dramatically throughout an active gear, and the light 
level varies with distance from the BRL source. Some 
methods for data collection include the Okta for 
cloud cover (Ahmad et  al. 2017) and Beaufort scale 
for sea state (Southworth et  al. 2020). The ambient 
light level at the experimental depth can be mea-
sured using a spectroradiometer (Loew and 
McFarland 1990; Figure 2) or data loggers (Lomeli 
et  al. 2018; see Section 5.2 for more detail). 
Temperature can be measured using underwater 
multi-probes, which can easily be deployed on fish-
ing gear (e.g., CTD loggers that simultaneously mea-
sure conductivity, temperature, and pressure; Geraci 
et  al. 2021). Water flow can be measured using flow-
meters (Larsen et  al. 2017) or acoustic Doppler cur-
rent profilers.

Measuring turbidity is complicated. A simple 
method for quantifying small-scale surface turbidity 
is to measure the Secchi depth. Secchi disks, how-
ever, are difficult to use in rough seas and cannot 
be used for night experiments. The color of the 
oceanographic and coastal waters can be determined 
according to the classification system of Jerlov 
(1951) that is based on in situ attenuation mea-
surements of oceanographic water (Akkaynak et  al. 
2017). Cameras can also be used to assess condi-
tions qualitatively and supplement turbidity meter 
data (e.g., Cuende et  al. 2022). Alternatively, sat-
ellites equipped with radiometers and underwater 
optical sensors to measure ocean color can give 
information on the overall turbidity of a water mass 
(e.g., Pitarch et  al. 2019). Turbidity can also be 
automatically and continuously measured by optical 
sensors such as nephelometers and transmissome-
ters. Of those only the transmissometer measures 
both light scattering and light absorption, charac-
terizing transmission of light in a way that is rel-
evant to vision (for more information, see 
Davies-Colley and Smith 2001; Utne-Palm 2002;  
Kitchener et  al. 2017).

3.2.  Operational variables

Operational fishing variables likely affect behavior 
and, therefore, the response to a BRL. These include 
fishery characteristics (e.g., target catch), fishing fleet 

Figure 2. N atural and artificial light (illustrated here attached to a gillnet) are attenuated by absorption and scattering when 
traveling through water. The different types of substances in the water absorb different parts of the light spectrum to different 
extents, and light is attenuated more in highly turbid water. This figure was adapted from Fly Fishing Science (https://
flyfishingscience.co.uk/2018/10/19/light-attenuation-in-water/); Garcia et  al. (2017); and Johnsen and Sosik (2004).

https://flyfishingscience.co.uk/2018/10/19/light-attenuation-in-water/
https://flyfishingscience.co.uk/2018/10/19/light-attenuation-in-water/
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information (e.g., range of and common vessel types, 
sizes, horsepower, tow speed), spatio-temporal vari-
ability in fishing operations (e.g., fishing during the 
winter season or at night, variation by depth), and 
fishing gear design and dynamics (e.g., the codend 
size, bait used, soak duration) (Table 2). These vari-
ables can affect catchability and selectivity. For exam-
ple, vessel horsepower and tow speed can influence 
gear motion and mesh openings (Bombace and 
Lucchetti 2011; Wileman et  al. 1996), and bait type 
and amount and changes in bait leaching (e.g., due 
to temperature changes) can affect which species are 
attracted to the gear and their subsequent behavior 
(Hazin et  al. 2005; Løkkeborg et  al. 2010). Moreover, 
if a BRL is intended for use with an additional BRD, 
it is useful to understand how that BRD affects selec-
tivity in isolation. Because these factors can influence 
the effect of the BRL, it is important to collect data 
on them and to use the values to limit the scope of 
inference. Differences in these variables can also affect 
inter-study comparisons.

4.  Considering base knowledge

During the fishing process, animals experience numer-
ous stimuli as they encounter and engage with fishing 
gears (e.g., the sound of the boat engine, smell of the 
bait). Animal behavior results from the combination 
of the stimuli experienced (e.g., Kim and Wardle 
2003) and their biology and physiology, including 
evolutionarily adapted responses to their environment 
(e.g., predator avoidance, conspecific cues). Therefore, 
it is important to consider how the stimulation of 
senses could influence or confound a behavioral 
response to the BRL. This includes understanding the 
sensitivity of the olfactory organs (Hara 1975; 
Løkkeborg et  al. 2010; Nguyen and Winger 2019b), 
lateral line, echolocation organs (Kratzer et  al. 2020), 
auditory organs (Hawkins 1973; Ona and Godø 1990; 
Sand and Karlsen 1986), magnetoreception, and che-
mosensory and electro-sensory systems. For example, 
the bycatch animal may respond to stimulation from 
water current (rheotaxis) and vibrations of the fishing 
gear, as well as to changes in temperature and depth. 
In addition to these, there are potentially other stimuli 
of which we are currently unaware because they fall 
outside of human detection capabilities (Popper and 
Carlson 1998). Several publications have reviewed 
sensory capabilities, in the context of sensory-based 
bycatch reduction strategies, of aquatic animals, 
including: teleost fishes (Atema et  al. 2015); sea turtles 
(Southwood et  al. 2008); elasmobranchs (Jordan et  al. 
2013); marine mammals (Dawson et  al. 2013; Kratzer 

et  al. 2021; Schakner and Blumstein 2013); birds 
(Martin and Crawford 2015); and invertebrates (Senko 
et  al. 2022).

Given these dynamic interactions, a study evaluat-
ing the influence of artificial light on fisheries selec-
tivity requires knowledge based in many scientific 
fields. This includes fisheries science, fishing technol-
ogy, engineering, physics, optics, vision biology, 
oceanography, animal behavior, economics, and social 
science (human behavioral change) (e.g., Nguyen and 
Winger 2019a). It is likely that most researchers con-
ducting BRL studies do not have an in-depth back-
ground in all these subject areas.

Here relevant base knowledge is highlighted with 
the aim of helping researchers appropriately design 
their study and interpret results (Table 2) by providing 
more detailed information about: (i) biology and phys-
iology (Section 4.1), with a focus on vision (Section 
4.1.1); and (ii) behavior (Section 4.2). Information 
about light and its properties (and measuring light) 
can be found in Section 5.

4.1.  Biology and physiology

Biological and physiological characteristics of an ani-
mal can influence and limit their ability to respond 
to a BRL (Marais 1985; Reis and Pawson 1999; 
Table 2). This includes morphological traits such as 
size (e.g., the cross-section of the head and body girth 
relative to mesh or a BRD panel) (Herrmann et  al. 
2009; Marais 1985; Reis and Pawson 1999). 
Physiological characteristics, such as swimming capac-
ity (Parsons and Foster 2007; Regier and Robson 1966; 
Yochum et  al. 2021), can determine their ability to 
access or avoid specific areas of the fishing gear, espe-
cially in relation to towing speed and duration for 
active gears. Swimming speed has been broadly cat-
egorized into “sustained,” “prolonged,” and “burst” 
swimming; at each of these speeds, different muscle 
types are used to power the swimming gait (Webb 
1994). Endurance negatively correlates with swimming 
speed (i.e., decrease in endurance with increasing 
speed; Coughlin 2002; Videler 1993; Webb 1994), and 
swimming capabilities can differ by species, size, sex 
(He and Wardle 1988, Videler and Wardle 1991), and 
ontogenetic phase (Cronin and Jinks 2001; Nguyen 
and Winger 2019a). There can even be significant 
differences in endurance at prolonged speeds between 
conspecifics of comparable length (Breen et  al. 2004; 
He and Wardle 1988; Videler and Wardle 1991). 
Without direct information about swimming capabil-
ity (e.g., swimming speed limits and endurance), 
inferences can be drawn based on biology and 
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mechanisms for food capture, escape from predators, 
and reproduction (Videler and Wardle 1991).

4.1.1.  Vision
Vision plays an important role in how an animal will 
respond to the presence of a BRL. Vision can vary 
greatly within and among species (Arimoto et  al. 2010; 
Land and Nilsson 2012; Figures 3 and 4), by ontoge-
netic stage, and by the light environment to which the 
animal is adapted (Carlisle and Denton 1959; Shand 
et al. 1988; Wagner and Kröger 2005). These differences 
in the visual systems (both in capabilities and limita-
tions) provide a potential mechanism for differentially 
affecting behavior and, therefore, capture of target- and 
not bycatch- animals (e.g., selecting a wavelength that 
is visible to one and not the other). As such, these 
differences should be explored and used to adjust BRL 
properties (e.g., flicker rate, light level; see Section 5) 
as well as their operational use (e.g., attachment loca-
tion; see Section 6). Relevant aspects of the visual sys-
tem to consider include absolute sensitivity, light/dark 
adaptation, color vision, spatial acuity, polarization, and 
motion detection.

If no information is available on the vision of the 
bycatch animal, inferences can be made based on the 
habitat, ecology, and morphology of the species 
(Schroer and Hölker 2016). For example, many species 
living deeper than 200 m have limited or no color 
sensitivity (Douglas et al. 1998; Munk 1964). Moreover, 
the field of view is a result of the placement of eyes 
on the head, the viewing direction, eye size and 
mobility (for more detail, see Arimoto et  al. 2010; 
Wardle 1993), and position of the photoreceptors in 
the retina (e.g., Bozzano and Catalán 2002; Burnside 
and Nagle 1983).

4.1.1.1. The visual system and photoreception.  The 
eye is a photo-sensitive sensory organ that facilitates 
the extraction of information from light (i.e., visible 
electromagnetic radiance/packages of energy called 
“photons”; see Johnsen 2012; Land and Nilsson 2012; 
Palmer 1993 for more details). Eyes of aquatic animals 
vary in their morphology and physiology. Here 
generalized overview information about the form and 
function of the fish eye is provided, which is broadly 
similar in structure to that of most other vertebrates 
(Wartzok and Ketten 1999) with two main functions: 
collection of photons and accommodation of an image 
on the light sensitive retina using a lens (Fernald 
1990; Kröger 2013a) (Figure 5). In the retina, there 
is a matrix of light-sensitive photoreceptor cells (e.g., 
rods and cones) that convert the light into neural 

impulses, which are transmitted via the optic nerve 
to the optic lobes of the brain where an image is 
perceived (for more details see Bowmaker 1995; 
Lythgoe and Partridge 1989; Nakagawa et  al. 1999; 
see Semmelhack et  al. 2014 for processing light 
information in the retina).

4.1.1.2 Sensitivity and light-dark adaptation.  Absolute 
sensitivity is the ability of the eye to detect light and 
process visual information in given light levels. 
Adaptation to different light levels involves several 
physiological, biochemical, and morphological 
processes that should be considered when selecting 
BRL light level (Ali 1959; Barbur and Stockman 2010). 
In brief, most fish have no eyelid, and a fixed pupil 
size. For these animals, adjusting the optics of the 
eye (i.e., retinomotor movements; Burnside and King-
Smith 2017) to accommodate sudden changes in light 
level, for example, by introducing an artificial light 
source, is not possible (Douglas et al. 1998). Disrupting 
a dark-adapted fish with sudden exposure to a bright 
light (Figure 6) in fishing gear or a laboratory setting 
(i.e., transitioning from scotopic to photopic vision), 
even for a brief pulse (Wagner and Douglas 1983; 
Muntz and Richard 1982), can leave them temporarily 
visually impaired and therefore less likely to be able 
to detect a net or any other visual stimuli (Field et  al. 
2019). There is a transition at intermediate light levels 
where both rods and cones are active, and the fish 
will have twilight (“mesopic”) vision. This form of 
visual plasticity enables fish to function visually over 
the range of light levels found in its natural 
environment; however, morphological transition from 
photopic to scotopic vision can take up to 20–30 min 
(or more) (Burnside and King-Smith 2010; Wagner 
and Douglas 1983).

4.1.1.3. Color vision and polarisation.  Many fishes, 
marine mammals, seabirds, marine turtles, and 
invertebrates likely have the capability to recognize 
color (Figure 3). Color vision is the perception of 
differences in wavelength (or frequency) of photons 
striking the retina independent of image brightness. 
Each photoreceptor cell in the retina contains a 
specific visual pigment, which absorbs photons of 
particular wavelengths more efficiently than other 
wavelengths (Land and Nilsson 2012; Nakagawa et  al. 
1999). Spectral sensitivity, or visual pigment 
absorbance, indicates wavelengths most likely to be 
absorbed (see Figure 5; e.g., Anthony and Hawkins 
1983). Rods are sensitive to low light intensities, with 
a single photon (amplified in the neural pathway) 
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Figure 3. V ertebrate (3A) and invertebrate (3B) examples of spectral photoreceptor sensitivity curves (peak wavelengths given). 
While rod-cone interactions can result in color vision, monochromatic (one cone pigment) and achromatic (no cones) species will 
not be able to see color as they only possess one wavelength discrimination channel (photopigment type). Species that possess 
two or more cone cell types are likely to be able to discriminate colors (Collin and Trezise 2002, 2004). Mono-, di-, and tri- chro-
matic vision is common in the marine world (Marshall et  al. 2015), with some species possessing even more (e.g., mantis shrimp; 
Marshall et  al. 1991). Not all species within an order or family have the same visual capabilities, which is demonstrated within the 
elasmobranchs in this figure. For example, some ray species are trichromatic (Marshall et  al. 2015), compared to the achromatic 
ray shown here. Photoreceptor combinations in 3A are examples; combinations can change with species (e.g., some monochro-
matic species may possess a SW cone type rather than a MW). Figure by Jasmine Somerville.
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capable of triggering a response, and therefore used 
for dim (scotopic) low-resolution vision (black and 
white, contrast vision). Rods typically contain the 
visual pigment rhodopsin with peak sensitivity (λmax) 
between 470 nm and 510 nm (Lythgoe and Partridge 
1989). It was previously thought that color vision 
could not be mediated by rods, but recent research 
indicates that it may be possible through shared 
neural pathways between rods and cones (Musilova 
et  al. 2019). Cones are less sensitive, but provide 
(photopic) color vision at higher light levels. Thus, 
shallow-water fish have a higher proportion of cones 
than deep-water species. Cones usually contain one 
of several visual pigments that are only sensitive at 
higher light intensities, but with absorption peaks 
over a wider spectral range (∼300 nm to 650 nm, 
Carleton et  al. 2020). In cones, the protein of the 
visual pigment is called opsin, of which there are 
three types: (i) red, (ii) green, and (iii) blue, also 
known as L (long), M (medium), and S (short), 

respectively (Land and Nilsson 2012). Cones cannot 
detect color by themselves. Rather, color vision 
requires a comparison of the relative strength of the 
signal across different cone types, thus, one needs at 
least two different spectral cone types (dichromat) to 
detect color.

Knowledge of color sensitivity of the bycatch ani-
mal, alone and relative to that of the target animal, 
can inform the choice of the peak wavelength (i.e., 
color) and wavelength range for the BRL (see Section 
5). In making this selection, it is important not to 
assume the bycatch animal will perceive a BRL the 
same way as a human. For example, some animals 
can see outside of the electromagnetic spectrum per-
ceived by the human eye (λ: 380–780 nm; “visible 
light”; CIE 1990). Ultraviolet (UVA; 300–400 nm wave-
length) visual cone pigments are present in many 
fishes (Douglas et  al. 1995), making it possible for 
some species (e.g., Mullidae, Scombridae, Labridae) 
to detect ultraviolet radiation (Arimoto et  al. 2010; 

Figure 4. T he predicted visual scene for six species (A–F) based on their visual acuities, using the R package AcuityView (Caves 
and Johnsen 2017; https://eleanorcaves.weebly.com/acuityview-software.html). The scene is viewed from a distance of 3 m from 
the closest fish, which is approximately 15 cm in length. The visual acuities of the six species (measured in minimum resolvable 
angle) are as follows: (A) yellowfin tuna, Thunnus albacares, 0.06 degrees (Nakamura 1979); (B) walleye pollock, Gadus chalcogram-
mus, 0.166 degrees (Zhang and Arimoto 1993); (C) European plaice, Pleuronectes platessa, 0.2 degrees (Neave 1984); (D) common 
octopus, Octopus vulgaris, 0.588 degrees (Hanke and Kelber 2019); (E) blue crab, Callinectes sapidus, 1.8 degrees (Baldwin and 
Johnsen 2011); and (F) great scallop, Pecten maximus, 3.33 degrees (Land 1981). The scenes do not account for the different spec-
tral sensitivities of each species.

https://eleanorcaves.weebly.com/acuityview-software.html
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Bowmaker and Kunz 1987; Kröger 2013b; Losey et  al. 
1999; Swimmer and Brill 2006). In coastal gillnet fish-
eries, for example, UV light has been used to reduce 
sea turtle bycatch while maintaining target fish catch 
(Virgili et  al. 2018; Wang et  al. 2013). Some fishes 
with the ability to detect UV light are also capable 
of detecting polarized light (Hawryshyn 2000; 
Hawryshyn and McFarland 1987; Losey et  al. 1999; 
Marshall and Cronin 2011), and some species may 
also have near-infrared vision (Matsumoto and 
Kawamura 2005; Meuthen et  al. 2012; Shcherbakov 
et  al. 2013).

4.1.1.4. Spatial and temporal resolution. When selecting 
light level and flicker rate for the BRL (see Section 5), 
which can affect behavioral responses (Yochum et  al. 
2022), it is helpful to be aware of visual-spatial 
resolution (i.e., visual acuity) and temporal resolution 
(i.e., time taken to process the image) of the bycatch 

animal (Arimoto et  al. 2010). Spatial resolution is 
related to the angular distance between cones, similar 
to the pixel resolution of a picture, and influences 
capacity to discriminate detail (for more information, 
see Eggers 1977; Utne-Palm 1999, 2002; Ware 1973; 
Figures 4 and 5). The higher the visual acuity of the 
retina, the less movement is potentially needed for an 
object (image) to be detected. The temporal resolution 
of this moving image, also referred to as persistence 
time, is related to the ability to identify sequential 
images as separate. At relatively low frequencies, a 
series of images are identifiable as separate, while at 
higher frequencies, only one apparently continuous 
“fused” image is identifiable. The threshold frequency 
at which the images fuze is the “critical flicker 
frequency” or “flicker fusion threshold” and it is 
dependent on light level and temperature (Arimoto 
et  al. 2010; Douglas and Hawryshyn 1990). For a more 
comprehensive review of motion detection and how it 

Figure 5.  A simplified cartoon of the structure and function of the teleost eye. Light entering the eye through the cornea (A) and 
pupil ultimately leads to the formation of an image on the light sensitive retina. The retina contains an outer section (B) holding 
a matrix of light-sensitive photoreceptors (rods and cones) interconnected by inner neurons that connect to the optic nerve, which 
sends information to the optic lobes in the brain. Photoreception (C) whereby visual pigment in the outer folded membrane of 
the photoreceptor cells is triggered by photons. Each visual pigment molecule consists of a protein (opsin) that holds a chromo-
phore within a pocket-like space. Photons cause the chromophore to change shape inside the pocket and separate from the opsin, 
which affects transmitter release (for more details, see Bowmaker 1995; Nakagawa et  al. 1999). Photoreceptor cells (D): rods (highly 
light sensitive and therefore largely used for dim light, or scotopic, vision) and cones (less light sensitive and largely provide 
high-resolution color vision). Spectral absorbance (E) of the visual pigments of a shallow water dwelling goby (Gobiusculus fla-
vescens; redrawn from Utne-Palm and Bowmaker 2006) showing the different photoreceptor wavelength sensitivities (efficiency at 
absorbing photons of different frequencies). S, M, and L cones are short, medium, and long wavelength sensitive, also called blue, 
green and red cones, respectively. Drawings by Anne Christine Utne-Palm.
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is measured, see Arimoto et  al. (2010) and Douglas 
and Hawryshyn (1990).

Visual detection of an object (e.g., netting) is 
dependent on visual acuity, along with the ability to 
detect a difference in contrast between the object and 
background. The relative importance of color and 
perceived brightness contrast is determined by visual 
pigments, the reflectance characteristics of the object, 
the radiance level, and the spectral distribution of the 
ambient light, as well as visual sensitivity to these 
properties (Douglas and Hawryshyn 1990; Lythgoe 
1968; Munz and McFarland 1977). Because water 
absorbs long- and short-wavelengths more than 
middle-wavelengths (e.g., 530 nm for coastal temperate 
water, 480 nm for tropical coastal water; Jerlov 1968; 
Figure 2), light tends to be near monochromatic at 
moderate depths (Lythgoe 1975). Brightness contrast 
is, therefore, most often the determining factor, com-
pared to color contrast, for the visibility of objects 
underwater (Hemmings 1965; Lythgoe 1975).

4.2.  Behavior

To determine whether behavior of the bycatch animal 
was affected by the addition of a BRL, it is necessary 
to understand their behavior (i) independent of the 
fishing process; (ii) in response to the fishing gear/
process without a BRL; and (iii) in the presence of 
artificial light independent of fishing.

Behavioral responses to light can vary among and 
within species (e.g., Engås et  al. 1998) and are based 
on ontogeny and biology (e.g., maturity stage or sex) 
(Blaxter and Batty 1987; Nguyen and Winger 2019a). 
For example, behavioral responses to towed gears 
under different natural light conditions can be 
species-specific, as demonstrated by diurnal differ-
ences in catch rates (e.g., Glass and Wardle 1989; 
Walsh 1991; Walsh and Hickey 1993). Responses can 
also vary based on ecological factors and relative to 
the catch phase. In trawl fisheries, for example, 
behavior can vary among processes of herding, 
fall-back, and encountering a BRD. These phases 
reflect the changing combinations of stimuli experi-
enced and changes in swimming performance. For 
example, at later stages of the catch process in active 
gears, a stressed and fatigued animal may be unable 
to maintain pace with the gear (e.g., Larsen et  al. 
2018). Likewise, behavior during haul-back can be 
influenced by changes in water flow (Engaas et al. 
1999), changes in the codend netting (e.g., pulsing 
or changing shape), and natural ambient light (e.g., 
Grimaldo et  al. 2009). Understanding these 

differences in behavior can help inform where to 
attach the BRL (see Section 6) and how to interpret 
behavior (see Section 7). In passive gears, behavior 
may be affected by what is already caught and/or the 
ability of the animal to see or be attracted to bait 
in the near field (e.g., Anders et  al. 2017; Hedgärde 
et  al. 2016; Humborstad et  al. 2018; Swimmer and 
Brill 2006; Utne-Palm et  al. 2018). For those reasons, 
it can be helpful to collect information on the 
response of the animal to light separate from the 
fishing process, being mindful of how the process of 
collecting these data could affect behavior (e.g., cam-
era lights when collecting behavior information). This 
can include responses to light in other gear models 
or types, laboratory studies, or with caution from 
studies in other fields (e.g., changing light level at 
culverts; Jones et  al. 2017; Jones and Hale 2020; or 
fish deterrents at dams; Johnson et  al. 2005).

5.  Selecting a BRL

When selecting an appropriate BRL to influence the 
behavior of a bycatch animal in a defined way, four 
interconnected elements should be considered in 
addition to the visual system of the bycatch animal 
described in Section 4.1.1: (i) the properties of the 
light source; (ii) changes in light properties during 
light propagation from the point of illumination to 
the bycatch animal; (iii) background characteristics 
that influence the contrast between the BRL and the 
ambient environment; and (iv) placement in the gear 
and the anticipated time the bycatch animal will 
experience the light during the fishing process (see 
Section 6).

Modern artificial light sources include light emit-
ting diodes (LEDs), fiber optic cables, lasers, charged 
phosphorescent materials (e.g., luminous netting with 
strontium aluminate, SrAl2O4), and chemiluminescent 
lights (e.g., “glow sticks”). Each BRL type has practical 
advantages and disadvantages for implementation in 
a fishery, which includes environmental impacts (An 
et al. 2017), usability, durability, technical appropri-
ateness, and cost (see also Section 8; Table 2). 
Regardless of the BRL type or design, the housing 
must be easy to handle during fishing operations, 
tolerate saltwater exposure (for marine applications), 
and withstand pressure from the maximum fishing 
depth. The housing must also sufficiently resist the 
abrasion and impact it will experience (e.g., damage 
from the gear, seabed, or vessel), not entangle in the 
fishing gear, resist biofouling, and require minimal 
maintenance (e.g., replacement of o-rings).
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5.1.  BRL properties

When selecting a BRL, properties to consider include 
light level, spectral characteristics (wavelength com-
position), directionality (beam angle), polarization, 
strobing (flicker rate or duty cycle), power consump-
tion, and duration. Compromises might be required 
to achieve the desired properties. For example, phos-
phorescent materials (e.g., luminous netting; Karlsen 
et  al. 2021) are usually produced in green because 
strontium aluminate gives the strongest and 
longest-lasting glow. For this material, the light level 
decreases more rapidly with time, does not allow for 
strobing, and is not programmable like some LED 
lights. There are, however, advantages to this BRL 
type, such as not requiring batteries. Similarly, lighted 
gillnet buoys can be solar powered (Senko et  al. 2020), 
but have reduced operational time. Moreover, strobing 
lights with a reduced duty cycle might be considered 
to reduce battery costs and ease operational logistics 
(e.g., replacing batteries) to influence broad adoption 
in a fishery. For example, a BRL with a 20% duty 
cycle flashes on for 1 s and off for 4 s, allowing the 
power source to last five times longer than when used 
with continuous light.

5.1.1.  Light level
There is a wide range of light levels for a BRL, from 
chemiluminescence (Wang et  al. 2010) to powerful 
LEDs (e.g., Lomeli and Wakefield 2012). Typically, the 
light level increases with the size, complexity, and 
power demand of the light. The light level of a BRL 
often decreases over time (e.g., chemical glow sticks: 
Wang et  al. 2007, 2010; luminous netting: Karlsen 
et  al. 2021; LEDs: Ingólfsson et  al. 2021). These 
decreases can go undetected by a human observer, 
which highlights the need to measure the decay pat-
tern of a light source for the temperature range of 
application.

A high light level is not necessarily required to 
obtain a response in animals (Karlsen et  al. 2021; 
Lomeli et  al. 2018; Wang et  al. 2007, 2010; Yochum 
et  al. 2022) and can have adverse effects. In turbid 
water, for example, high light levels can make it diffi-
cult to see gear components due to backscattering 
(Benfield and Minello 1996; Utne-Palm 2002; see 
Section 3.1). If the objective of using a BRL is to illu-
minate portions of the gear to make it more apparent 
to bycatch animals (e.g., to avoid the gear or perceive 
an opening; e.g., Bielli et  al. 2020; Ortiz et  al. 2016; 
Senko et  al. 2022; Wang et  al. 2010, 2013) then it is 
relevant to investigate the optical properties of the 
water in which the BRL will be applied. Moreover, the 

sensitivity and expected adaptive state of the eyes of 
the bycatch animal (see Section 4.1.1) should be con-
sidered when selecting the BRL light level. If a BRL is 
applied under conditions where the eyes of the bycatch 
animal are dark adapted and thus have a higher sen-
sitivity, there is a potential risk of temporary or per-
manent damage to the eyes of the animals (Field et  al. 
2019; Magel et  al. 2017; Meyer-Rochow 2001). This is 
especially a concern when animals are forced to pass 
closely by a BRL (e.g., as animals move aft in a trawl 
where the space becomes constrained).

5.1.2.  Light spectrum
Spectral characteristics of a BRL (i.e., wavelength peak 
and range) should be selected based on the spectral 
sensitivity of the bycatch animal, especially relative to 
that of the target animal (e.g., if only one can see 
UV light, Southwood et  al. 2008). Because there is 
limited range in the visual spectrum, and species 
inhabiting the same visual environment are likely to 
have some overlap in spectral sensitivity, spectral seg-
regation of species can be limited. Therefore, visual 
capabilities other than spectral sensitivity should also 
be explored (see Section 4.1.1).

Researchers have selected BRL that emits light at 
wavelengths to which the bycatch animal has maxi-
mum spectral sensitivity (Wang et  al. 2010) to max-
imize detection; however, a behavioral response should 
not be assumed only based on the ability of an animal 
to detect the light. Rather, spectral characteristics of 
the animal may be helpful in understanding how the 
animal is experiencing the light. When vision infor-
mation is unavailable, researchers have chosen the 
BRL color based on the peak wavelength of the inhab-
ited environment (e.g., Lomeli et  al. 2020; Melli et  al. 
2018; Utne-Palm 1999). It should be noted that the 
bycatch animal may have visual pigments that do not 
match the spectrum of the background downwelling 
light to maximize contrast for detection of reflecting 
objects (e.g., prey) (Hawryshyn 1998; Loew and 
Lythgoe 1978; McFarland and Munz 1975).

5.1.3.  Directionality
Because artificial lights can have directionality, BRL 
appearance could be greatly affected by small changes 
in attachment angle. As a result, the selected lights 
may affect the bycatch animal differentially depending 
on the direction from which the light source is 
approached or the size of the light field created. 
Therefore, the directionality of the BRL beam needs 
to be considered relative to animal movement when 
selecting the type and number of lights and when 
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determining their placement on the gear (Melli et  al. 
2018). It should also be considered whether it is more 
effective to make gear components more visible or to 
use the light to make the component invisible (Kim 
and Wardle 1998; Wardle et  al. 1991).

5.1.4.  Flicker rate
When selecting a BRL that is strobed, the temporal 
acuity of the bycatch animal, specifically the flicker 
fusion threshold, is relevant (Meyer-Rochow 2001; see 
Section 4.1.1.4), as is the presence of naturally flick-
ering light. At near-surface depths (ca. 10 m, depend-
ing on the cloud cover and water clarity), shallow-water 
fish are adapted to the natural flickering of light 
produced as waves on the water surface focus and 
defocus sunlight (Darecki et  al. 2011; McFarland and 
Loew 1983; Meyer-Rochow 2001). Other animals may 
live in environments with flickering bioluminescence 
that is associated with behaviors for schooling (Gruber 
et  al. 2019), avoiding predators (Goulet et  al. 2020; 
Morin 1983), or acquiring prey (Hellinger et  al. 2017; 
Morin 1983). In contrast, many animals have evolved 
under stable light regimes, so strobing BRL could 
create a more perceptible contrast with the back-
ground and, therefore, behavioral cue (Inger et  al. 
2014; Utne-Palm 1999). For example, artificial strobe 
lights have been investigated in the laboratory for 
their potential use as deterrents to guide migrating 
fish past artificial structures (e.g., Kim and Mandrak 
2017, Patrick et  al. 1985; Sager et  al. 1987, 2000).

5.2.  Measurement of BRL properties

Properties of BRL should be described to: (i) evaluate 
the spectrum relative to the spectral sensitivity of the 
bycatch animal and surrounding environment; (ii) 
investigate how the light level changes over the dura-
tion of use (i.e., as charge decreases); (iii) identify 
the relationship between BRL properties and observed 
behavioral responses; (iv) compare light properties 
with other BRL sources and the associated bycatch 
animal responses within or between studies; and (v) 
evaluate the influence of a BRL on the light environ-
ment during fishing. Specifications of the BRL are 
not always available from the supplier, but can be 
measured in the laboratory.

5.2.1.  Radiometric and photometric measurement
There are two different forms of light measurements: 
radiometry and photometry. Photometric variables 
are based on human perception, whereas radiometric 
variables span the whole optical radiation spectrum: 

UV, visual, and infrared light (wavelength between 
10 nm and 1000 m). Several radiometric metrics are 
available, each with a weighted photometric counter-
part (Figure 7). Photon (quantum) counterparts can 
also be derived from each radiometric variable (see 
Section 5.2.2). Given that the visual pigments in an 
eye are photon counters (Figure 5), photon units 
should be reported in BRL studies.

Photometric variables are weighted according to the 
spectral sensitivity of the human eye and are, therefore, 
restricted to the visible part of the electromagnetic 
spectrum (CIE 1990). The values used to weigh the 
spectral data can be found in the International 
Commission on Illumination table for the photopic 
spectral luminous efficiency function (CIE 1990; Hunt 
2004). It is important to note that when working with 
animal vision where spectral sensitivity differs from 
humans, radiometric rather than photometric variables 
should always be used (Johnsen 2012). If only photo-
metric measurements are available, these can be related 
to radiometric units to enable comparison of light 
source color and light level between studies if the 
spectral distribution of the light source is known 
(Johnsen 2012). If a spectrum of the light is not avail-
able, conversions can be done for single values of 
known wavelength (e.g., peak value). Similarly, when 
relating the light level of a BRL to the photosensitivity 
of a species (which are often given in photometric 
units in older literature), a visual sensitivity curve for 
the animal is required.

Radiometric variables commonly include irradiance 
and radiance. Irradiance is the amount of light incom-
ing to a receptor area (e.g., to a sensor) from all 
directions and describes the general light level. This 
is easy to measure, but depends on the distance 
between the light source and the sensor, which must 
be reported. A weak light source may have to be 
measured at a short distance to be detected by the 
sensor (Karlsen et  al. 2021), while, at the same dis-
tance, a strong light source may saturate the sensor. 
For directional light sources, irradiance measurements 
would change depending on the location of the sensor 
relative to the center beam (see also Johnsen 2012). 
Radiance, on the other hand, is the amount of light 
reaching a point from a small set of directions 
(Johnsen 2012). It is independent of the angular size 
of and distance to the light source (unless it is a 
point source) or the light signal is being absorbed 
and scattered (as it is in water) (Johnsen 2012). 
Brightness is related to changes in radiance. This 
theoretically makes radiance the ideal unit to measure 
light; however, radiance is not as straightforward to 
measure as irradiance as illustrated in Figure 8.
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5.2.2.  Light level and spectrum
Light can be regarded both as an electromagnetic 
wave and as moving particles (photons). The shorter 
the wavelength (toward the purple end of the visible 
spectrum), the higher the energy of the photons. The 
energy, or power, of a light signal is the integral over 
all its spectral components. “Brightness” of a light 
source, which relates to the physiological sensation 
(i.e., the perceived light level), depends on the ampli-
tude of the electromagnetic wave or the photon den-
sity (i.e., how many photons are received by the eye 
per unit area per time unit). The perceived color 
relates to the composition of the spectral components. 
Thus, the perceived BRL color and light level will be 
different for different species.

Most light meters (e.g., radiometers) can display 
the measured light in watts or milliwatts per area 
(i.e., mW m−2), or the corresponding photon units 
(mol s−1, µmol, µmol m−2 s−1). Conversion to a photon 

variable can be done from a spectrum showing how 
much light energy there is at each wavelength (Johnsen 
2012; Taiz et  al. 2014). Therefore, it is recommended 
to always measure the whole spectrum of the light 
source (e.g., by using a spectroradiometer, Johnsen 
2012) and avoid sensors that only give integrated val-
ues (i.e., total energy over the wavelength range). It 
is impossible to determine the spectrum from an 
integrated value; however, the integrated light energy 
can be found by adding the light level values for each 
wavelength, given that the energy or number of pho-
tons at each wavelength is known (Johnsen 2012). 
Due to the limited availability of suitable loggers, PAR 
sensors giving integrated values over the wavelength 
range 400–700 nm may have to be used to evaluate 
the influence on the light environment during fishing 
when adding the BRL (e.g., Lomeli et  al. 2018a; 
Lomeli et  al. 2018). It is important to note that these 
measurements cannot be used for comparison across 

Figure 6.  A simplified cartoon of two of the many examples of plasticity of the fish eye to changing light levels. Both lens and 
retina are plastic and change in structure from light (photopic; top imagine) to dark (scotopic; bottom image) vision (Burnside and 
Nagle 1983). The monofocal lens focuses each incoming wavelength at a different distance to the lens (green, blue, and red). With 
this lens, only a given wavelength (green light in this example) is focused correctly onto the retina. The multifocal lens corrects 
for chromatic blur by focusing each in a specific zone in the lens (concentric dashed lines) so that all wavelengths (red, blue, and 
green) are focused onto the retina. The fish lens possesses the flexibility to change from monofocal to a multifocal structure when 
going from dark to light conditions. In addition, the retina adapts to dark or light conditions by moving either rods (scotopic) or 
cones (photopic) closer to the incoming light. Drawings of the multifocal and monofocal lenses are taken from Gustafsson (2010); 
drawings by Anne Christine Utne-Palm.
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conditions as the spectrum underlying the measure-
ments is unknown.

The light emitted by a BRL is often not monochro-
matic (i.e., having a single wavelength; e.g., Nguyen 
et al. 2017; Utne-Palm et al. 2018; Yochum et al. 2022). 
The light should therefore be characterized by the 
wavelength range in addition to the peak wavelength. 
A standard method is to give the range as 
Full-Width-at-Half-Max (FWHM, Karlsen et  al. 2021).

5.3.  Background characteristics

Introducing a BRL to the environment changes the 
ambient light field and can influence the visibility of 
fishing gear components. Also, the underwater 

environment may not be as dark as expected at night 
or at depth when bioluminescence is present. Many 
marine species create their own light field (Martini 
and Haddock 2017; Widder 2010). Bioluminescence 
is most often blue (peak ∼ 475 nm) in open water 
and green in coastal, more turbid waters. Violet, yel-
low, orange, and red bioluminescence are emitted by 
few organisms (Widder 2010). Bioluminescence can 
be an influential factor in the visibility of fishing gear 
(Jamieson et  al. 2006). This is particularly true for 
fish species with well-developed visual systems that 
can detect low light-level bioluminescence (Arimoto 
et  al. 2010).

Keeping in mind the background characteristics, 
a BRL should be selected considering how they will 

Figure 7.  An overview of radiometric and photometric variables following the International System of Units (SI) (partially adapted 
from Mobley 1994).



Reviews in Fisheries Science & Aquaculture 631

affect the appearance of the fishing gear. The ability 
of aquatic animals to visually detect fishing gear 
depends on the perceived brightness (i.e., radiance), 
as well as the contrast created by differences in color 
and brightness of the fishing gear relative to the back-
ground (Kim and Wardle 1998; Wardle 1983). 
Contrast sensitivity, the threshold between the per-
ceived visible and invisible, can be used to compare 
brightness between the fishing gear and background. 
Brightness contrast can be specified as Weber contrast 
(commonly used in cases where small features are 
present on a large uniform background), Michelson 
contrast (used for patterns that have both bright and 
dark features), or RMS contrast (for natural stimuli) 
(Pelli and Bex 2013). While Weber contrast has been 
used to describe some fishing gears (Arimoto et  al. 

2010), other contrast measures have yet to be 
employed. Regarding color contrast, it could be useful 
to consider how this has evolved for the bycatch 
animal in nature (e.g., for communication; Marshall 
2000) or warning signals such as aposematic color-
ation (Arenas et  al. 2014; Cortesi and Cheney 2010; 
Prudic et  al. 2007).

6.  Determining BRL placement on the fishing 
gear

Placement of the BRL should correspond with the 
objective of using the BRL (e.g., to deter passage: 
Grimaldo et  al. 2018; to attract fish toward an open-
ing: Lomeli and Wakefield 2019; or to guide fish using 
the optomotor response: Karlsen et  al. 2021). 

Figure 8.  Radiance measurements (W m−2 sr−1) depend on the angular size of the light source relative to the opening angle of 
the radiance meter. Ω is the 3D opening angle of the radiance meter (i.e., the solid angle). Radiance meter 1 measures 0.01 W 
m−2 sr−1 regardless of distance to the light source and opening angle of radiance meter if the light source (yellow line) covers the 
whole opening angle. Radiance meter 2 measures 0.01 + 1 W m−2 sr−1 * 0.000001 sr/0.01 sr = 0.0101 W m−2 sr−1 as long as the small 
light source (yellow square) is located in the middle (dotted line) of the beam as the radiance meter is less effective in collecting 
light toward the lateral edges of the light beam. Furthermore, since the small light source does not cover the whole opening angle 
of the radiance meter, it is a point source. Therefore, measurements of light emitted from it depend on the distance as the field 
viewed by the radiance meter increases (corresponding to a decrease of the angular size of the light source) with the square of 
the distance. Radiance meter 3 measures 1 W m−2 sr−1. The small light source (yellow square) covers the whole opening angle and 
so masks the effect of the wide light source (yellow line). This masking effect is independent of the light level of the small light 
source unless the light source is transparent (e.g., bioluminescent transparent organisms). The small opening angle increases the 
risk of displacing the light source outside the solid angle of the sensor by any movements in either radiance meter or light source. 
In an eye, each cone and rod correspond to a radiance meter. Given that the fish is looking at the light source, the chance is 
higher that most can detect the light similar to radiance meter 1 and 3. Drawing by Bo Lundgren, DTU Aqua.
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Placement determines the period in the fishing pro-
cess when the animal will experience the BRL (e.g., 
fishing, gear retrieval), the duration of time the ani-
mal will experience the BRL, and how the light will 
be distributed through the gear (Table 2). The num-
ber and spacing of the lights affect the size of the 
light field and can create areas of reduced light levels 
between lights (Hazin et  al. 2005; Wang et  al. 2010). 
Placement considerations also include how attachment 
of the BRL onto the fishing gear may affect animal 
behavior (e.g., due to effects on water flow that the 
bycatch animal might detect) or fishing operations 
(e.g., time to attach, weight) and how buoyancy may 
affect light direction (Cerbule et  al. in press).

Depending on the type of fishing gear and section 
of the gear (e.g., trawl mouth compared with codend) 
(Table 1), factors such as fatigue, stress, animal den-
sity, sediment clouds, size of the escape area, towing 
speed, and contrast between the gear and the sur-
rounding environment need to be considered. For 
example, in large-body trawls, a BRL can be placed 
aft of the net in the extension sections where the 
circumference of the trawl is smallest to increase the 
likelihood that the animal will perceive the light. The 
angle of approach should also be considered, espe-
cially for more directional lights (see Section 5.1.3).

7.  Selecting an appropriate method to 
evaluate the effect of the BRL

To better understand and evaluate to what extent a 
BRL reduces bycatch while maintaining catch rates 
of target animals, three key research approaches can 
be used (Figure 9): characterizing and cataloguing 
behavioral responses to a BRL (i) during the fishing 
process and (ii) in a laboratory setting; and (iii) quan-
tifying changes in catch and catch rate when using a 
BRL relative to baseline or commercial fishing oper-
ation. While the research approach should be selected 
based on the objectives and circumstances (Figure 9), 
they complement each other when studied collectively. 
Combining methods increases the understanding of 
how a BRL affects behavior and, therefore, fisheries 
selectivity.

7.1.  Characterization of behaviors during fishing

A key step in understanding how a bycatch animal 
responds to a BRL is to observe its behavior during 
the fishing process and around fishing gear. Behavioral 
data collected with standardized methodology can be 
used to improve the predictability of catch changes, 

inform BRL selection, and interpret results from BRL 
deployment.

7.1.1.  Methods of observation
Behavior can be observed and characterized using: (i) 
video cameras (e.g., Grimaldo et  al. 2018; Olla et  al. 
2000; Santos et  al. 2020; Simon et  al. 2020; Yochum 
et  al. 2021); (ii) acoustic imaging systems (e.g., 
split-beam: Handegard and Tjøstheim 2005; imaging 
sonar: Rose et  al. 2005); and (iii) tagging (e.g., acous-
tic transmitters: Engås et  al. 1998; Løkkeborg et  al. 
2000). Selection of an observation method is often 
dictated by visibility at the study site, visual distance 
between the equipment and animals, species identi-
fication abilities, handling, and cost of equipment and 
labor to process the data (Figure 9).

Video cameras can be used to observe behaviors 
and gear interactions at high resolution and allow for 
length measurement and 3D representation when using 
stereo-cameras (e.g., Neuswanger et  al. 2016; Shafait 
et  al. 2017). Video camera observation range, though, 
is often limited by field of view, water clarity, obstruc-
tions, animal density, and ambient light levels. In low 
ambient light environments, additional illumination 
can be used, but the lights could affect the response 
of the bycatch animal (Lomeli and Wakefield 2019; 
Olla et  al. 2000). The influence of camera lighting can 
be reduced by taking snapshots instead of continuous 
video (Glass and Wardle 1989); however, this limits 
observations of behavioral event chains and may itself 
be a cue for the bycatch animal (i.e., the effect of the 
flashing light). Another solution is to use illumination 
with wavelengths outside of the spectral sensitivity of 
the bycatch species, such as red (Favaro et  al. 2012; 
Grimaldo et  al. 2018; Olla et  al. 1997; Yochum et  al. 
2022) or near-infrared (NIR) (Chladek et  al. 2021; 
Olla et  al. 2000; Wang et  al. 2007). In comparison to 
visible light, NIR light rapidly attenuates in water and 
can only be used for observations up to ca. 2 m dis-
tance (Hermann et  al. 2020). In addition, spectral 
sensitivity is species-specific and a fish may respond 
to red light (Yochum et  al. 2022). This might be the 
case if it possesses only blue and green cones and 
there is a spectral overlap between the red light and 
the sensitivity range of the green cones (Widder et  al. 
2005), with the fish perceiving the red light as weak 
green. Likewise, some species may sense NIR light 
(Matsumoto and Kawamura 2005; Meuthen et  al. 2012; 
Shcherbakov et  al. 2013) using long-wavelength sen-
sitive cones. Potential damage to the eyes of the ani-
mals needs to be considered when using NIR lights 
(Icnirp 2013). Beyond direct reactions to light, the 
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Figure 9.  Decision tree to be used as guidance while planning experiments with BRL in relation to fishing gears. Squared steps 
include questions and considerations that the investigator should consider in addition to the resources available for the experi-
ment. Circled steps represent methodology choices, including examples of statistical approaches or type of data to be collected. 
The green background includes guidance for observational experiments related to behavior; blue background includes guidance 
for quantification of BRL effect on gear selectivity. The three different experimental approaches can be combined or used as an 
iterative process (dotted line).
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behavior of a bycatch animal could be influenced by 
other species reacting to the illumination (Hedgärde 
et  al. 2016; Humborstad et  al. 2018; Utne-Palm et  al. 
2018) and, depending on the configuration of the cam-
eras and how they are deployed, the cameras could 
affect drag and water flow and, therefore, animal 
behavior (Bryan et  al. in review).

Acoustic imaging systems (“acoustic cameras”) can 
be used to observe behavior in and around fishing 
gear. Unlike video cameras, these systems can record 
data in both turbid and dark water without illumina-
tion (Moursund et  al. 2003; O’Connell et  al. 2014). 
This multi-beam sonar technology, which uses a 
higher frequency (2–3 MHz) for high-resolution 
images and a lower frequency (around 1 MHz) to 
detect fish at further ranges, has successfully observed 
species interactions with trawl gear (Handegard and 
Williams 2008; Rakowitz et  al. 2012) as well as pots 
and hooks (Rose et  al. 2005). Current development 
of this technology allows recording in 3D and includes 
semi-automated approaches to detect, count, and mea-
sure the size of fish and record their speed (e.g., 
Boswell et  al. 2008; Schmidt et  al. 2018). The reso-
lution of acoustic camera systems, however, is low, 
and the cost high, as compared to optical cameras. 
Moreover, body coloring patterns are not visible in 
the acoustic camera images, and, depending on the 
frequency used, different species of similar morphol-
ogy may not be distinguishable. Like the optical cam-
eras, consequences of drag and water flow by the 
acoustic camera systems on fish behavior should be 
considered.

Acoustic camera imaging quality depends on ani-
mal density and orientation of the animal relative to 
the beam axes, which can make it difficult to observe 
individual species in a multispecies fishery and/or 
fisheries involving high fish densities. In addition, 
acoustic cameras are less effective in habitats with 
high physical relief, which will obstruct the acoustic 
signal through shadowing and backscatter (Rose et  al. 
2005). Similarly, interference from the fishing gear 
(e.g., groundgear, netting, and floats) must be 
addressed (Graham et  al. 2004), and it is necessary 
to have a substantial distance between the acoustic 
camera and the desired area of observation due to 
near-field dead zones (Rose et  al. 2005). To address 
this, acoustic observations close to the seabed (e.g., 
of demersal species) may reduce the near-bottom 
acoustic dead zone (Øvredal and Huse 1999). With 
acoustic cameras, a considerable volume of data is 
produced, which requires additional processing power 
and expertise, as well as efficient techniques for data 
display and analysis (Graham et  al. 2004).

An echosounder system with a single or split-beam, 
narrow or broadband acoustic transducer can also be 
used to observe fish and crustacean behavior, for 
example, in the pre-trawl zone or between the sweeps 
of pelagic and demersal trawls (e.g., Michalsen et  al. 
1996, 1999; Rosen et  al. 2012; Underwood et  al. 2021, 
2020). Collected acoustic data have been used to com-
pare the distribution of fish under the vessel and over 
the net (Michalsen et  al. 1999). Transducers can be 
mounted on vessels pointing downwards (e.g., 
Underwood et  al. 2021), at the trawl mouth pointing 
forwards (Underwood et  al. 2020) or upwards 
(Øvredal and Huse 1999), and in the trawl body 
pointing downwards (Rosen et  al. 2012) or upwards 
(Krafft et  al. 2023). On a submersible frame, these 
can be lowered from a vessel (Underwood et  al. 2020) 
or used on remotely operated vehicles (ROVs; Øvredal 
and Huse 1999), autonomous underwater vehicles 
(AUVs; Fernandes et  al. 2000), remotely operated cat-
amarans (ROC; Dawson et  al. 2022; Kotwicki et  al. 
2020), a rosette (Peña 2019), or (for passive fisheries) 
on moored (Ona and Godø 1990) or drifting buoys 
(Handegard et  al. 2003; Handegard and Tjøstheim  
2005).

Acoustic and radio telemetry are other options for 
recording data independent of turbidity and natural 
ambient light levels. Radio telemetry can be used in 
shallow, freshwater fisheries in distances up to a few 
meters, but the signal range is close to zero (< 1 m) 
in brackish and marine waters (Benelli and Pozzebon 
2013; Thorstad et  al. 2014) as radio signals are 
strongly attenuated in conducting media. Telemetry 
also requires applying tags internally or externally on 
the bycatch animal and having a receiving mechanism. 
The latter includes retrievable acoustic receivers 
(Engås et  al. 1998; Løkkeborg 1998) or radio antennas 
(passive monitoring), or having to follow the indi-
viduals with hydrophones or radio antennas (active 
monitoring). These systems can give presence-absence 
data or positions of the animal over time in a small 
area, and have been utilized in both passive (Løkkeborg 
1998) and active (Engås et  al. 1998) gears. With this 
method, it is important to consider the impact of 
applying the tag on fish behavior and condition, and 
that multiple tags can result in colliding signals that 
block tag reception.

7.1.2.  Behavioral units and ethograms
To enable a comparison of animal behavior in gear 
with and without a BRL, and between studies, behav-
ioral units should be identified and described objec-
tively from an analysis of recorded observations 
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(Lehner 1996). An ethogram is a catalogue of com-
prehensive, precise, and objective descriptions of 
observed and mutually exclusive behavioral units used 
to quantify behavior (Lehner 1996). Gear-specific 
ethograms are needed due to fundamental differences 
in the capture processes (e.g., active compared to 
passive gears). The behavioral units should be related 
to specific locations in or around the gear, the context 
in which they occur, and their consequences (Anders 
et al. 2017; Chladek et  al. 2021; Ljungberg et  al. 2016; 
Meintzer et  al. 2017; Santos et  al. 2020). Examples of 
ethograms for trawls, gillnets, pots, and longlines are 
provided in Table 3(a–d).

To evaluate behavior in response to a BRL, the 
ethogram should be made a priori and should inform 
the selection of BRL characteristics (see Section 5) 
and placement in the gear (see Section 6). Relevant 
behavioral mechanisms that might lead to changes in 
catch metrics include phototaxis (e.g., Larsen et  al. 
2017), photokinesis (e.g., Bielli et  al. 2020; Grimaldo 
et  al. 2018; Wang et  al. 2010), and anti-predator 
response (Melli et  al. 2018) (Table 4). Studies have 
also investigated if the optomotor response (Karlsen 
et  al. 2021) and dorsal light response (Takayama 2019) 
may be used.

Behavioral accumulation curves (BAC), an asymp-
totic accumulation model of observed behavior units 
over the observation period, can be used to identify 
the completeness of the ethogram (Dias et  al. 2009). 
Similar to studies on biodiversity (Soberón and 
Llorente 1993), the probability of observing a new 
behavioral unit can be estimated under the expecta-
tion that it decreases with increasing observational 
effort (i.e., the number of observation bins reviewed; 
Bolgan et  al. 2016; Dias et  al. 2009). When the BAC 
reaches an asymptote, the probability of observing a 
new behavioral unit approaches zero (Soberón and 
Llorente 1993), thus indicating a high degree of com-
pleteness of the ethogram. More details about the 
methodology, including models and software and an 
application for fish, can be found in Bolgan et  al. 
(2016), Dias et  al. (2009), and Soberón and 
Llorente (1993).

One of the more difficult aspects of describing 
behavioral units is distinguishing between the observed 
behavior and interpreting its potential function or 
consequences (i.e. ,  its adaptive function). 
Anthropomorphizing (i.e., attributing human behavior 
to the animal) may predispose researchers to bias as 
human characteristics may not apply to fundamentally 
different animals. For example, “panic” in humans 
can be defined as sudden, uncontrollable fear or anx-
iety that produces irrational behavior, which often 

spreads quickly through a group. In fish, irregular 
changes in swimming behavior (e.g., sudden changes 
in swimming speed and direction) can be more 
appropriately labeled “erratic swimming.” Similarly, 
“calm” has been used to describe behavior of captured 
fish in pots once activity has decreased (Thomsen 
et  al. 2010), or their behavior described as “aimless” 
swimming. These terms can be misleading, however, 
and ignore the underlying physiological state of the 
fish. For these behaviors, “inactive” or “cruising” 
would be more appropriate terms, respectively.

Capture by fishing gear is related to morphology 
(e.g., animal size and body shape), how the animal 
perceives the gear, and, consequently, their behavioral 
response to it (Winger et  al. 2010). Observed behav-
iors are also often related to underlying physiological 
processes (see section 4.1) and may be important 
when interpreting responses to a BRL. For example, 
as fish increase swimming speed (observed as changes 
in tail beat frequency or gait changes; Winger et  al. 
2004), they switch from aerobic to anaerobic meta-
bolic processes (e.g., at the trawl mouth). Higher 
swimming speed can aid escape, but also lead to 
fatigue (Beamish 1978; Hollins et  al. 2019; Winger 
et  al. 2000). Being “exhausted” or “fatigued” can be 
defined in less anthropomorphized terms as being 
depleted of glycogen resources (Beamish 1966; Winger 
et  al. 2010; Xu et  al. 1993).

Movement in trawls is often put in context with 
the swimming capacity of the individual (i.e., physi-
ological responses such as fatigued); however, the 
response can be attributed to behavior (Breen et  al. 
2004; Peake and Farrell 2006). Thus, the falling back 
behavior of fish swimming in front of the trawl 
mouth, which is species-specific, could be described 
as “raising” or “turning,” for example. For passive gear, 
fish can approach the gear as individuals, pairs, or 
schools (High and Beardsley 1970). This can be sus-
tained for a limited time while potentially enabling 
escape responses (Hollins et  al. 2019). Cruising speed 
is synonymous with sustained swimming speeds 
(Beamish 1978) during which aerobic processes allow 
fish to maintain the observed speed for longer times 
without fatigue. Thus, observed changes in behavior 
at cruising speeds (e.g., entering the trawl) could be 
considered behavioral changes and not fatigue (e.g., 
density-dependent response; Godø et  al. 1999). At 
higher swimming speeds, like “emphasised swimming” 
(which is synonymous with prolonged and critical 
swimming, Beamish 1978), a combination of aerobic 
and anaerobic processes is used. In contrast, purely 
anaerobic processes are used in burst swimming 
(Beamish 1978).
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Table 3.  An example of an ethogram for fish behaviors in relation to (a) trawls developed from Bolgan et  al. 2016 unless oth-
erwise noted; (b) gillnets (developed from He and Pol 2010); (c) pots; and (d) longlines (developed from Løkkeborg et  al. 2010).
Behavior Definition

(a) Trawls
Locomotion
Cruising Rhythmic undulations of the body accompanied by rhythmic beats of the tail fin. 
Emphasized swimming Similar to cruising, but the body and tail movements are more conspicuous and faster (i.e., increase in tail 

beat frequency or change in gait). 
Burst swimming (sprint) An instantaneous and brief increase in swimming speed as a result of a further increase in tail beat 

frequency. 
Gliding Motionless movement through the water.
Erratic swimming Sudden irregular changes in swimming speed and direction (Kim and Jang 2005).
Swimming backwards Rhythmically beats of the tail fin while moving backwards, e.g., with the water flow (falling back) (Bublitz 

1996).
Flipping Turn upside-down or to a sideways orientation (Bublitz 1996).
Turning While swimming, the fish changes direction in the plane with a vigorous tail beat.
Ascending Lift head up, swimming upwards (Bublitz 1996; Main and Sangster 1981).
Descending Lower head, swimming downwards (Sistiaga et  al. 2018).
Stationary positions
Swimming in place Rhythmic beats of the tail fin without any horizontal or vertical change of position (holding) (Krag et  al. 

2009).
Inactive with tail movements Similar to swimming in place, but, in this case, the tailbeats are less vigorous and occur with a really low 

repetition rate, usually at the bottom.
Inactive  The fish is in a stationary position, usually on the bottom. Movement is not detectable.
Interactions
Avoiding Movements away from an approaching obstacle (active) or maintaining a distance to an approaching 

obstacle (passive) (Colwill and Creton 2011).
Escaping Rapid movements away from an approaching obstacle to evade an imminent collision (Colwill and Creton 

2011), or successful mesh penetration (Grimaldo et  al. 2018) or swimming out of an exit hole (Krag et  al. 
2009).

(b) Gillnets
Locomotion in the vicinity of the net
Swim speed Speed of animal approaching the net (see different swimming modes in Table 3(a)).
Turning  The animal changes its movement in relation to the position of the net.
Orientation toward The animal approaches the net (this could be measured in degrees relative to the net).
Orientation parallel The animal swims alongside the net (this could be measured in degrees relative to the net).
Orientation away The animal moves away from the net (this could be measured in degrees relative to the net).
Stopping/hold position The animal is not moving in relation to the net.
Capture interactions with the net
Gilling Caught with the mesh behind the operculum.
Wedging Caught by the largest point of girth of the body.
Snagging Caught by small parts of the body (mouth, teeth, fins/flippers, etc.).
Entangling Caught by partial or entire body intertwined with net, results in struggling.
Other behaviors
Feeding behavior The animal is actively feeding in the vicinity of the net, or on animals captured in the net.
(c) Pots
Attraction
Foraging behavior: Long range    Fish can be attracted from long distances, but may swim toward the gear and against the current following 

the bait plume, often in large, winding tracks to remain in contact with the bait plume (Løkkeborg et  al. 
2010).

Foraging behavior: Short range  Similar to long range, however, gear is within visual range (Thomsen et  al. 2010).
Approach
Netting bump Fish bump against netting (Furevik 1994).
Slow approach Fish approach pot with a slow swimming speed (Furevik 1994).
Zigzag swimming Swimming back-and-forth to aid in bait location (Thomsen et  al. 2010).
Guarding Fish guard the entrance of the pot from others (Thomsen et  al. 2010).
Ingress
Ingress and egress Large numbers of fish can be attracted and remain within a close proximity of a pot, with typically few 

contacting the gear, and entering, or exiting (Thomsen et  al. 2010).
Inside pot
Inactive  After pot entrance fish reduce their movements and mill around (Thomsen et  al. 2010).
Active Fish are very active upon first entering pot (Furevik 1994).
Aggressive Larger individuals have been observed to chase, etc. smaller individuals (Cole et  al. 2001).
(d) Longlines
Contact Fish comes into contact with the bait with their mouth or barbel. 
Incomplete bite  Fish only takes part of the bait into the mouth or does not close its mouth (i.e., Atlantic cod); swordfish hits 

bait with sword, but does not take bait into the mouth. 
Complete bite  Fish takes the entire bait into its mouth.
Jerk/Jerk series Rapid, sideways movement with head while bait is in the mouth. Several jerks in a row.
Chewing With the bait inside of the mouth, the fish opens and closes its mouth repeatedly.
Pulling Fish pulls bait and against the attached snood.
Rush Rapid, swimming burst with the bait in the mouth.
Expel Fish spits out or regurgitates bait after having it in its mouth.
Escapement Fish swims away, unhooked, after having the bait in its mouth.
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7.1.3.  Data analysis
Several automated tools have been used for identifying 
and analyzing behavior from video recordings (e.g., 
Albert et  al. 2003; Simon et  al. 2020), acoustic record-
ings (Handegard and Williams 2008), and tagging data 
(Hobson et  al. 2007). For example, target tracking is 
a powerful method for quantifying behavior from 
echosounder data for which Multiple-Target Tracking 
algorithms are the standard tools (Blackman and 
Popoli 1999). Specialized software can conveniently 
log behavioral events from video recordings (e.g., 
Friard and Gamba 2016), even from a group of indi-
viduals (Delcourt et  al. 2009, 2013). Some software 
can also include the possibility of extracting object 
lengths from stereo-synchronised video recordings 
(e.g., Neuswanger et  al. 2016). Advancements in arti-
ficial intelligence (AI), especially the ability of deep 
learning models to handle large amounts of observa-
tions from images, will reduce the time burden and 
tedious work load to process voluminous data, includ-
ing tracking of individuals from in situ video record-
ings (Abangan et  al. 2023).

For statistical analysis, the occurrence of behaviors 
can be analyzed with multivariate techniques similar 
to those adopted to investigate differences in species 
composition (Gordon et  al. 2002; Figure 9). These 
could be related to pertinent independent variables, 
such as operational, environmental, and biological 
factors (see Section 3). A flow chart matrix, where 

the start and end of the behavioral units are linked 
into sequences (e.g., “before pot funnel” can only 
end with “inside pot funnel” or “swimming away”), 
allows researchers to reveal interdependencies between 
the different units (Chladek et  al. 2021; Ljungberg 
et  al. 2016; Santos et  al. 2020). Results can be pre-
sented in behavioral trees, with probability statistics 
and uncertainties estimated for each branch of the 
trees (Araya-Schmidt et  al. 2022; Chladek et  al. 2021; 
Santos et  al. 2020).

7.1.4.  Data interpretation
When studying animal behavior in relation to fishing 
gear there are considerations associated with the fun-
damentally different catching processes of different 
gear types, and it is important to disentangle a behav-
ioral response to the BRL itself as compared with a 
response to the gear being illuminated (e.g., illumi-
nating a pot entrance). Moreover, animals may 
respond in one way to a BRL in isolation, but another 
when the BRL is combined with other stimuli (with 
an additive or multiplicative effect). A systematic and 
quantitative approach to understanding how animals 
respond to multiple stimuli is provided by Hale et  al. 
(2017). This approach involves classifying responses 
to the presence of a single stimulus (e.g., light) and 
multiple stimuli (e.g., light and water current) accord-
ing to their direction and size. For passive gears using 
bait, for example, it is important to understand how 

Table 4.  Behaviors useful to study different aspects of visual capability in bycatch animals.
Behavior Definition Method Visual capability studied

Phototaxis The tendency to move toward 
(positive phototaxis) or away 
(negative phototaxis) from a light 
source (Pascoe 1990).

Observe directional movement of fish in the 
presence of a light source.

Visual thresholds and spectral sensitivity 
(Kawamoto and Konishi 1952; Harden-Jones 
1956; Blaxter 1964, 1968, 1969)

Color discrimination (Bauer 1910)
Optomotor 

response
Stabilize an image of the 

environment on the retina to 
remain stationary (Lyon 1904).

Observe the tendency of the bycatch animal 
to follow a series of stripes rotating 
around a circular aquarium (Arimoto et  al. 
2010; Douglas and Hawryshyn 1990; 
Harden-Jones 1963).

Spectral sensitivity (Grundfest 1932a,b; 
Cronly-Dillon and Müntz 1965; 
Cronly-Dillon and Sharma 1968; Bell 1982)

Acuity (Carvalho et  al. 2002; Douglas and 
Hawryshyn 1990)

Temporal resolution (Carvalho et  al. 2002; 
Douglas and Hawryshyn 1990)

Photosensitivity (Carvalho et  al. 2002)
Light adaptation (Takahashi et  al. 1968; 

Teyssedre and Moller 2010)
Dorsal light 

reflex
Maintain an appropriate orientation 

using input from eyes and 
vestibular system (Pfeiffer 1964). 
Normally, both gravity and the 
direction of highest light level 
indicate the vertical.

Artificially illuminate fish from the side and 
observe their degree of tilting around 
their longitudinal axis in comparison to 
the light source as they will take up a 
position somewhere between those 
specified by vestibular and ocular cues 
(von Holst 1935).

Sensitivity to a particular stimulus (Thibault 
1949; Braemer 1957; Lang 1967; Silver 
1974; Powers 1978)

Schooling Group of fish swimming in the 
same direction in a coordinated 
manner.

Record the position and orientation of each 
fish and calculate the nearest neighbor 
distance and differences in compass 
headings (Hunter 1968; Glass et  al. 1986).

Visual threshold, light level (Hunter 1968; 
Glass et  al. 1986)

Feeding Response to the presence of prey. Record reactive distance (Meager et  al. 2010) Visual threshold (Meager et  al. 2010)
Polarotaxis The tendency to orient toward 

polarized light (Waterman and 
Forward 1972).

Observe orientation of fish to e-vector 
directions relative to the bearing of the 
sun at 0°)

Ability to see polarized light (Waterman and 
Forward 1972)
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the combination of light, bait, and current affects how 
animals are attracted to and captured by the gear. In 
this scenario, the addition of light may change the 
attraction range of the gear, the efficiency of capture, 
or predator-prey dynamics. Therefore, a study looking 
at the effect of a BRL in a baited pot should include 
replicates without bait to aid in understanding how 
light and bait affect animals individually. In doing 
this, it is important to consider the influence of baited 
pots on unbaited pots that are in close proximity.

7.2.  Characterization of behaviors from 
laboratory experiments

Laboratory studies can increase understanding of the 
response of an animal to a given BRL variable (e.g., 
wavelength and strobe; Yochum et  al. 2022) in the 
absence of a priori base knowledge of the bycatch 
animal. It is important, however, to design the study 
under tightly controlled conditions. In doing this, 
particular aspects of the BRL can be isolated from 
potential confounding factors (e.g., conflicting stimuli 
from the capture process) and can allow a better 
understanding of the behavioral mechanisms that 
influence response to the BRL, such as orientation 
(Wang et  al. 2007), phototaxis (Marchesan et  al. 2005; 
Parsons and Foster 2007), photokinesis, optomotor 
response, dorsal light response (Takayama 2019), 
increased behavioral state, or a specific activity such 
as schooling (Glass et  al. 1986; Yochum et  al. 2022) 
(Table 4). Subsequently, variables that could affect 
the behavioral response during the capture process 
(e.g., temperature, water flow, turbidity) could be 
added one-by-one to understand their relationship to 
specific behaviors (Hale et  al. 2017) and aid in inter-
preting observations from field experiments. While 
insights derived from these laboratory studies can 
inform and shape field trials, laboratory studies have 
limitations. Behaviors exhibited in a laboratory setting 
might not translate to the multi-stimulus setting of 
field-based studies or actual fishing operations.

A second use of laboratory experiments is to 
explore the visual capabilities of an animal (e.g., sen-
sitivity to different wavelengths and spatial acuity) 
using behavior (Douglas and Hawryshyn 1990) 
(Table 4) as an alternative to retinal sampling using 
electroretinography and microspectrophotometry (Ali 
and Muntz 1975; Lythgoe 1984). Understanding the 
visual system is often a prerequisite for selecting the 
BRL characteristics and interpreting the responses to 
the BRL. Natural behaviors are relatively easy to use 
for this application, but data analysis often involves 
some degree of subjectivity, and the range of visual 

functions that can be studied could be limited by the 
small number of stimuli that elicit responses (Douglas 
and Hawryshyn 1990). Furthermore, natural behaviors 
are not present to the same degree in all species (e.g., 
the optomotor response; Jones 1963).

7.2.1.  Experimental design considerations
Laboratory tests generally compare behavior in the 
presence and absence of light (Gless et  al. 2008), in 
a light gradient (Krafft and Krag 2021), or to different 
light characteristics (wavelength: Sardo et  al. 2020; 
Wang et  al. 2007; light level: Parsons et  al. 2012; 
multiple characteristics: Marchesan et  al. 2005; 
Utne-Palm et  al. 2018; Yochum et  al. 2022). In a 
simulated fishery context, in contrast, it is often more 
appropriate to understand how an animal reacts to 
light in coordination with a section of fishing gear 
(or a proxy) (Gabr et  al. 2007; Olla et  al. 1997; 
Parsons et  al. 2012; Ryer and Barnett 2006). Animals 
can alternatively be presented with a choice between 
alternatives (e.g., Y-maze: Ford et  al. 2018).

When conducting laboratory studies, decisions 
must be made regarding the experimental design (e.g., 
conditioned or unconditioned responses), the type of 
conditioning (for conditioned studies; e.g., classical 
or operant; Douglas and Hawryshyn 1990), and the 
minimum sample size needed to be able to determine 
significance with the included covariates. It is also 
important to consider how to create conditions that 
are representative of the fishing environment (if 
appropriate), how reactions could vary by biological 
variable (e.g., size, sex), and whether an animal could 
become habituated to a light if exposed multiple times 
or over a long duration. Moreover, if multiple animals 
are used for a trial, it is important to consider how 
a response could be affected by the reaction of the 
other individuals.

Several replicate tanks could be included to account 
for any tank effects or response to the BRL housing 
(Hurlbert 1984) along with data on behavior in the 
tank without the BRL activated (e.g., Yochum et  al. 
2022). Single tanks are often used when adding fishing 
gear to the experiment, including netting (Gabr et  al. 
2007; Nambiar et  al. 1970) or proxies that simulate 
the fishing gear (Parsons et  al. 2012). Furthermore, 
the size and color of the tank should be considered, 
as well as if substrate is added to the tank, which can 
affect light reflection. The size of the tank and volume 
of water will determine the space available to respond 
to the BRL. Other variables related to animal hus-
bandry should be noted and considered for influence 
on behavior (e.g., time of the trial relative to feeding 
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and circadian rhythm, location fed in the tank, noise 
level in the laboratory, ambient or artificial light 
sources present other than the BRL, and how the 
light emitted is distributed). A mesocosm experiment 
may be considered if it is desirable to investigate the 
response to light in the natural environment.

7.2.2.  Experimental animals
The use of captive-reared versus wild animals can 
be a key decision in laboratory-based experiments as 
there may be both subtle and distinct behavioral and 
visual adaptive differences, which should be consid-
ered when interpreting results and extrapolating to 
field conditions. Studies have tried to account for 
this issue by either using recently captured animals 
or animals grown to a similar size/age class to that 
typical in a natural setting. Regardless of origin, some 
consideration of the physiology of the animal should 
be made in terms of sensory organs, performance 
capacity, and circadian rhythms (Fry 1958; Yochum 
et  al. 2022). Particularly, the functional state of their 
visual system should be regarded with respect to 
potential damage and the adaptive stage of their eyes. 
Moreover, the light condition under which the ani-
mals are reared should be considered as it could 
affect their photoreceptors and behavior (Kröger et  al. 
2003). Other factors to consider are endogenous 
rhythms (Bünning 1956), such as circadian or tidal 
(Gibson 2003) or lunar (Naylor 2001), that may influ-
ence the responsiveness of the experimental animal.

7.2.3.  Data analysis
Similar to field observations (Section 7.1), automated 
software tools can be used to process footage and tag 
data in a laboratory setting (e.g., Yochum et  al. 2022). 
Data from “choice” studies (e.g., Y-maze, Ford et  al. 
2018) can be analyzed with variables such as time until 
choice is made. Analysis of covariance (ANCOVA), a 
generalized linear model (GLM) that blends analysis 
of variance (ANOVA) and regression, has been used 
for statistical analysis of continuous variables (Ford 
et  al. 2018; Gabr et  al. 2007) and of binary data (Ford 
et  al. 2018). These data can also be analyzed in the 
same way as for catch data (see Section 7.3).

Preferred techniques for data analysis are quanti-
tative methods that lead to the determination of sig-
nificance and enable the inclusion of covariate effects 
and interactions. The selection of the analytical 
approach depends on the type of data collected and 
what is chosen as the dependent variable. A depen-
dent variable could be the “fate” of the animal (e.g., 
entrapped or escaped) after exposure to the fishing 

gear or a fishing gear section/device (Gabr et  al. 
2007), leaving the light treatment as an independent 
variable (Sardo et  al. 2020). Animal response to light 
can also be evaluated as negative or positive photo-
taxis, demonstration of a behavior of interest, change 
in orientation or position relative to the light source, 
residence time, swimming speed, distance traveled 
from the light source (e.g., Yochum et  al. 2022), or 
distance to conspecifics when near the light (i.e., 
schooling: Ryer et  al. 2009). Data for analyzing 
changes in distance would consist of counts of pre-
determined distances, which can be considered pro-
portions. Counts and proportions can be quantified 
using regression models such as a GLM (Utne-Palm 
et  al. 2018). Distance could also be considered a con-
tinuous variable (Ryer et  al. 2009), enabling linear 
modeling. Analytical techniques that quantify animal 
position or orientation include circular statistics 
(Batschelet 1981), a branch of statistics where data 
are measured on a circle in degrees or radians. This 
has been used, for example, to understand sea turtle 
orientation to light used in fisheries (Gless et  al. 2008; 
Wang et  al. 2007). Time-to-event analysis (e.g., para-
metric Weibull mixture model; Robert et  al. 2020) 
can be used to evaluate residence time or time until 
a behavior (e.g., Hunter 1972; Parsons et  al. 2012; 
Utne-Palm et  al. 2018). Often called survival analysis, 
time-to-event analysis quantifies the time until an end 
point (e.g., Allison 1995).

7.2.4.  Data interpretation
When interpreting laboratory results, it is important 
to evaluate consistency in observations and to keep 
in mind the context in which the animals experienced 
the light (see Section 3). Context should be used to 
limit the scope of inference. It is important to be 
aware that behaviors in situ will likely be different 
from those in the laboratory given different circum-
stances (e.g., motivation, stress) and given the influ-
ence of other variables/stimuli (e.g., turbidity, tow 
speed, crowding in the gear, ambient light levels, 
water current). It is also important to consider the 
biological information (e.g., age, sex, size) of the 
study animals relative to animals captured in the 
fishery. Researchers should focus their interpretation 
on what can be learned from a laboratory study to 
support experiments in the field. Laboratory studies 
can provide the necessary impetus to move the devel-
opment process of BRL into field and fishery-based 
trials where catch comparisons will ultimately deter-
mine their efficacy (Nguyen et  al. 2017; Parsons 
et  al. 2012).
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7.3.  Quantification of BRL effects using catch data

Gear-based in situ experiments often have the primary 
goal of examining the efficacy of a BRL in conditions 
that are representative of the fishery by comparing the 
gear with a BRL (i.e., experimental gear) and without 
(i.e., control or baseline gear). Two different types of 
data can be collected to quantify the effect of the BRL 
(Figure 9): length-based count data (i.e., number of indi-
viduals per length class) and catch per unit effort 
(CPUE) (in either number of individuals or weight) for 
the bycatch and target animals. Additionally, escapes by 
way of a BRD with and without a BRL can be enumer-
ated with a video or acoustic camera (e.g., Lomeli and 
Wakefield 2019; Yochum et  al. 2021; see Section 7.1.1); 
however, results can be biased by the introduction of 
artificial light for camera illumination or by missing 
individuals that were either not recorded or undetected 
when reviewing the data (Krag et  al. 2009). A recapture 
net can also be used for this application. The type of 
data collected should address the study objective (Section 
2) and the context in which the BRL is applied 
(Section 3).

7.3.1.  Length-based count data
Length-based counts are usually collected in 
size-selectivity experiments with both active and 
passive gears when the bycatch animal is abundant 
in the catch and when there is the capacity for 
onboard length measurements (e.g., Grimaldo et  al. 
2018; Karlsen et  al. 2021; Melli et  al. 2018). A 
length-based analysis allows for the detection of 
length-dependent differences in the effect of the 
BRL, which could be expected given differences in 
visual and swimming capacities by size and species 
(Arimoto et  al. 2010; Videler and He 2010; Winger 
et  al. 2004).

As retention probability is estimated for each length 
class, the analysis is population-independent for the 
length range represented in the data. Thus, the results 
are not influenced by proportional changes between 
length classes that may occur for different trials. If 
subsampling of the catch is necessary (e.g., due to 
limited time or excessive catch size), a subsampling 
fraction based on total catch weight can be calculated 
and included in the analysis as an offset in the model 
(e.g., Fryer et  al. 2003; O’Neill and Summerbell 2019), 
or used to inform bootstrapping (e.g., Lomeli et  al. 
2020). Nonetheless, it is important to note that sub-
sampling increases the uncertainty of selectivity esti-
mates, which, in the case of subtle effects of the BRL, 
may result in inconclusive results (Veiga-Malta 
et  al. 2018).

Two main statistical approaches can be used to 
determine if the BRL has a significant effect on the 
selectivity of a baseline gear: absolute- and relative- 
selectivity. The former is used when comparing the 
experimental gear to a nonselective gear, and the latter 
is used when comparing to a commercial gear that 
is also selective (e.g., a baseline gear) (Figure 9). Some 
study designs allow both analyses (e.g., Krag 
et  al. 2016).

7.3.1.1 Absolute selectivity.  Absolute selectivity is an 
approach to measure the selectivity of a gear in terms 
of catch probability at length (see Wileman et  al. 1996 
for more detail). It is used in cases where the 
population encountered by the gear can be sampled 
by a nonselective gear (i.e., by using small meshes or 
some mechanism to allow for full retention of catch 
in the relevant size range, e.g., Yochum and DuPaul 
2008). The effect of a BRL is quantified in two steps: 
(i) estimating the mean absolute selectivity of the gear 
with and without a BRL and the associated uncertainty 
of both in terms of confidence intervals (Section 7.3.2); 
and (ii) inferring the BRL effect by superimposing the 
two selectivity curves. When the confidence intervals 
of the two selectivity curves do not overlap, there is 
a significant difference in selectivity from the BRL 
(e.g., Cuende et  al. 2020). Compared to a direct 
experimental comparison between the gear with and 
without a BRL (i.e., relative selectivity; see Section 
7.3.1), this approach has the advantage of allowing 
future comparisons of catch probability with other gear 
configurations (e.g., BRL applied in different positions, 
different light intensities, etc.).

Depending on the location of the BRL on the gear, 
some considerations are required regarding the appro-
priate experimental design to collect absolute selec-
tivity data. For example, the covered-codend method 
used for active gears requires the presence of a small 
mesh cover capturing all escapees from the codend 
(or other opening) (e.g., Cuende et  al. 2020). When 
using artificial lights inside a test codend, the cover 
on the outside could be illuminated by the BRL and 
thus influence the escape behavior of the bycatch 
animal and target catch. When this is a risk, a paired 
gears approach could be preferable (for a description 
of the two methods, see Herrmann et  al. 2007).

For passive gears, an analysis of absolute selectivity 
is also possible. Gillnets are highly size-selective and 
can be set in pairs with less selective control gears 
like trammel nets (e.g., Kurkilahti and Rask 1996). 
Alternatively, nets with different mesh sizes can be 
deployed concurrently or with short sections of dif-
ferent mesh sizes tied together. One can also use tie 
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downs or “suspenders” that connect the float line to 
the sink line and thus result in loose bags of mono-
filament net that increase entanglement (e.g., Senko 
et  al. 2022). In the case of longlines, knowledge of 
the true population fished can be obtained using other 
gear that is nonselective in the size range of interest 
(e.g., a trawl) (Dickson et  al. 1995; Hovgård and Riget 
1992). In using that approach, it is important to con-
sider spatio-temporal variability in catch 
composition.

7.3.1.2. Relative selectivity.  In estimating relative 
selectivity both the baseline (no BRL) and experimental 
(with BRL) gears are selective. This analysis tests 
whether the experimental gear catches more or less 
than the baseline gear at a given body length. It 
expresses the probability of catching an individual of 
a given length class in the experimental gear, given 
that it was caught in either gear (e.g., Lomeli et  al. 
2020). Similar analysis can be done for trawl gears 
with more than one compartment (e.g., O’Neill and 
Summerbell 2019). Relative selectivity analysis allows 
the effect of the BRL to be directly quantified if it is 
the only difference between the two gears tested (e.g., 
Geraci et  al. 2021; Lomeli et  al. 2020; Wang et  al. 
2010). Estimated confidence intervals are used to 
determine if there is a significant difference in 
selectivity between the gears (Section 7.3.2). When 
bycatch rates are low (e.g., endangered animals), it is 
especially important to conduct a power analysis prior 
to initiating the study to ensure that there can be 
sufficient data to determine significance (e.g., Methven 
and Schneider 1998).

Relative selectivity/catch-comparison analysis can 
be conducted with paired or unpaired data. Paired 
data are typically collected by fishing the experimental 
and baseline gears simultaneously and in similar envi-
ronmental conditions and habitat. Alternate deploy-
ments can also be treated as paired (e.g., Field et  al. 
2019; Lomeli et  al. 2018). When using a paired set-up, 
light contamination to the baseline gear must be 
avoided. For example, with passive gears, the paired 
data can be collected by alternating experimental and 
baseline gear (e.g., alternating pots in a string, 
Humborstad et  al. 2018; using two gillnets, Bielli et  al. 
2020; Ortiz et  al. 2016; or alternating hooks on a 
longline, Hazin et  al. 2005). When testing a BRL, the 
distance between gear (e.g., strings, pots) should be 
a tradeoff between avoiding light contamination to 
the baseline gear and minimizing environmental and 
operational differences between the two gears. A buf-
fer section can be included between the experimental 
and baseline sections (Bielli et  al. 2020). Care should 

also be taken when determining placement of the BRL 
to avoid bias (e.g., due to consistent differences in 
catch rates for the end pots of a string). Also, the 
baseline gear should include deactivated lights to con-
trol for the effect of the added weight and interrup-
tion of water flow by the BRL (e.g., Wang et  al. 2010).

Unpaired data can result from broad-scale testing 
of BRL in commercial fisheries (e.g., Nguyen et  al. 
2019). In these cases, deployments of the baseline and 
experimental gears are often not equal or cannot be 
paired on the basis of geographic and/or temporal 
overlap. With unpaired data, a double bootstrap pro-
cedure is conducted independently for the test and 
baseline gears (e.g., Herrmann et  al. 2017), which 
increases the data required (relative to absolute selec-
tivity analysis) to determine significance.

7.3.2.  CPUE data
CPUE data are frequently used when there are low 
capture rates of the bycatch animal or when 
length-based counts are impractical. The unit of effort 
can be related to gear deployment in terms of haul, 
gillnet set, pot, or number of hooks (e.g., Diaz 2008; 
ICES 2021; Woll et  al. 2001) or to area and time (e.g., 
net length and soak time, Bielli et  al. 2020; Ortiz 
et  al. 2016; Wang et  al. 2010, 2013). An approach is 
to use twin-rig data collection methods with the 
experimental and baseline gears towed in parallel by 
the same vessel (which can also be used for 
length-based analysis).

One important caveat of using CPUE is that it 
does not take into account possible size-dependent 
responses. This could make interpreting results more 
difficult if a bycatch animal has different responses 
to the BRL based on size, and the results cannot be 
compared across fishing situations (e.g., areas, seasons) 
where the size distribution of the fished population 
may be different. If, however, the BRL successfully 
reduces bycatch (based on changes in CPUE), and 
similar population structures or size-independent 
responses can be assumed, a comparison of CPUEs 
provides an average percentage reduction in bycatch, 
which may be informative and intuitive for manage-
ment purposes.

Three statistical approaches have been used to deter-
mine the effect of a BRL based on CPUE data 
(Figure 9). The first approach is similar to catch com-
parison, but uses an average catch ratio based on the 
number of individuals in each gear (Lomeli et al. 2020). 
The second approach is to use a generalized linear 
mixed-effects model (GLMM) on CPUE data of the 
target and bycatch animals (Bayse et  al. 2016; Bielli 
et al. 2020; Nguyen et al. 2019; Underwood et al. 2018). 
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The choice of model distribution is determined by the 
dispersion of the data. If equidispersed, a Poisson dis-
tribution is used (e.g., Nguyen and Winger 2019b; Ortiz 
et  al. 2016); if overdispersed a negative binomial is 
used (e.g., Nguyen et  al. 2019); and a quasi-poisson 
can be used for either over- or under-dispersion (e.g., 
Bayse and Grant 2020). The GLMM approach can 
include several predictor variables as fixed (e.g., treat-
ment and effort) and random effects (e.g., season, ves-
sel, fishing trip). Notably, the GLMM approach allows 
comparison of multiple treatments (e.g., different colors 
of BRL; Martínez-Baños and Maynou 2018). A third 
approach is to use the Wilcoxon signed-ranks test, a 
non-parametric equivalent of the paired t-test, to test 
for a difference between paired observations of CPUE 
from the experimental and baseline gears (Senko et  al. 
2022; Wang et  al. 2010, 2013).

7.3.3.  Independent variables
Any variable likely to influence the strength or type 
of observed response to the BRL can also affect catch 
data. Therefore, collecting such data during the exper-
iment and including them in the analysis as indepen-
dent variables is relevant if the number of gear 
deployments provides sufficient analytical power 
(Ortiz et  al. 2016; Southworth et  al. 2020; see Section 
3). Operational, environmental, and biological vari-
ables may influence the ability of the animal to react 
to the BRL (e.g., temperature influence on swimming 
performance) or may affect the perception of the BRL 
or the background (e.g., the netting). Some variables 
can be kept consistent between the experimental and 
baseline gears (e.g., towing the two gears in parallel) 
so that differences in the response of the bycatch 
animal can be attributed to the presence of the BRL.

7.3.4.  Data interpretation
Selectivity studies can help formulate hypotheses on 
how BRL changes behaviors (e.g., Cuende et al. 2020); 
however, it is ultimately behavioral studies, either in 
the laboratory or in the field, that give direct infor-
mation about how behavior is affected by the intro-
duction of a BRL and how that introduction of light 
might lead to changes in catch rate (Santos et al. 2020). 
Over-extrapolation of selectivity studies might lead to 
incorrect conclusions, highlighting the importance of 
considering the scope of the study (e.g., spatio-temporal 
aspects, vessel characteristics; see Section 3.2) and hav-
ing a sufficient sample size. One should also consider 
the potential for habituation of animals to light, and 
if external factors influence catch rates (e.g., animals 
seeking out the gear as shelter; Nguyen et  al. 2017).

Regardless of the experimental approach used to 
estimate the effect of the BRL (e.g., absolute or relative 
selectivity), uncertainty in the data could arise from 
confounding effects such as changes in operational 
and environmental variables. Uncertainty in terms of 
confidence intervals can be estimated using 
double-bootstrapping that takes between- and 
within-gear deployment (i.e., haul or gear line) vari-
ation into account (methodology: Millar 1993; trawl: 
Cuende et  al. 2020; gillnet: Savina et  al. 2022). If 
uncertainty in the data is too large (e.g., due to few 
individuals in the catch or large inter-specific differ-
ences in the response) it could prevent drawing con-
clusions regarding the effect of the BRL on the bycatch 
and target animals. Moreover, operational and envi-
ronmental variables should be kept as consistent as 
possible throughout the experiment unless the aim of 
the study is to investigate the consistency in the effect 
of the BRL under different conditions. In the latter 
case, modeling of size selectivity can include covariates 
of interest (e.g., depth, catch size, towing speed; 
Brooks et  al. 2022), but this requires a larger number 
of gear deployments. Compared with active gears, 
passive gear studies may be prone to wider confidence 
intervals due to the patchy distribution of animals.

7.4.  Combined methods

When testing hypotheses about behavioral responses 
to BRLs, the methods previously described should be 
considered as complementary rather than alternatives. 
In field experiments testing a BRL, when a difference 
in selectivity is detected the behavioral mechanisms 
leading to the change in catch are usually inferred. If 
selectivity data are combined with direct observations 
of behaviors (e.g., using video and/or acoustic cam-
eras; see Section 7.1.1) in the field or the laboratory, 
the effect of the artificial lights can be quantified in 
terms of selectivity (Parsons et  al. 2012; Santos et  al. 
2020) and qualified based on behavioral mechanisms 
(Nguyen et  al. 2017; Takayama 2019). For example, 
Utne-Palm et  al. (2018) suggested that increased catch 
of Atlantic cod in illuminated pots was due to pred-
atory behavior by cod on prey attracted to the arti-
ficial lights. In the laboratory, they demonstrated that 
krill (Meganyctiphanes norvegica) was positively pho-
totactic to artificial light, while cod was generally 
indifferent. A related study confirmed the increased 
catch rates of cod in illuminated pots and demon-
strated, using cameras and stomach content analysis, 
that the increase in cod presence was due to feeding 
on krill and other light-attracted prey rather than 
exhibiting positive phototaxis (Humborstad et al. 2018).
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8.  Evaluating BRL practicability

At the completion of data collection and analysis for 
a BRL study, evaluation of study results will inform 
whether the BRL was successful based on the metrics 
defined at the start of the study (see Section 2) (e.g., 
change in gear selectivity or consistency in BRL per-
formance) and the scope (e.g., spatio-temporal, vessel 
characteristics) will inform the extent to which the 
findings can be extrapolated (see Section 3).

If the objective of testing the BRL is to lead to 
fishery-wide adoption (either through voluntary uptake 
or regulatory action) it is important to consider the 
feasibility and potential unintended social consequences 
of using the lights (see Jenkins et  al. 2022). Moreover, 
voluntary BRL adoption will likely be determined by 
exposure of the fishermen to the technology (Kakai 
2019), their engagement in BRL selection and testing 
(Jenkins et  al. 2022), reliability of the BRL effect (or 
a clear understanding of the uncertainty), changes in 
catch (e.g., decrease of the bycatch and target propor-
tion of the catch), and relative change in the ex-vessel 
value of the catch (Bielli et  al. 2020; Ortiz et  al. 2016; 
Wang et al. 2010, 2013). These considerations will likely 
be weighed against the benefits of applying the BRL 
(Gilman et  al. 2005, 2006, 2007). Adoption will also 
be influenced by logistic considerations and operational 
efficiency (Kakai 2019; Senko et  al. 2022), such as cost 
of integrating the lights into operations (including 
interruptions to fishing operations), handling time (e.g., 
attaching the BRL or replacing batteries), availability 
of the lights, and their power requirements (e.g., cable 
linked, or rechargeable or disposable batteries) relative 
to the capability and resources of the fleet, and dura-
bility of the lights.

For regulated adoption, BRL use will likely be 
influenced by its efficacy as well as enforcement capa-
bility and industry engagement. The likelihood that 
the BRL will accomplish defined management goals 
will be tied to the ability of the researchers to describe 
how the BRL should be used (e.g., light properties, 
placement, number) as well as efforts to socialize 
fishery managers to BRL technology (Gautama 
et  al. 2022).

In considering fishery-wide BRL use, it is also 
important to evaluate the unintended biological and 
environmental consequences of the lights. This 
includes potential damage to animals’ visual systems 
and interference with communication or natural 
behaviors (e.g., fish foraging and schooling, spatial 
distribution, migration, reproduction; Nguyen et  al. 
2019), especially when animals can be expected to 
respond to subtle changes in light levels (Berge et  al. 

2020). The lights could also alter predator-prey rela-
tionships, affect catch composition (e.g., increase catch 
of other non-target animals), or artificially select for 
individuals in a population that are more reactive to 
the light (i.e., fishery-driven evolution). The design, 
production processes, material selection, and power 
supply of the lights will determine the level of green-
house gas emissions emitted in the fabrication of the 
BRL (e.g., Mills et  al. 2014; Nguyen et  al. 2019; Senko 
et  al. 2020). The lights and their components (e.g., 
power source) that fall into the water (either inten-
tionally or accidentally) also contribute to marine/
plastic pollution (Nguyen et  al. 2019; Oliveira et  al. 
2014). Lights using renewable energy, such as 
solar-powered lights (e.g., Senko et  al. 2020) and pho-
toluminescent twine (Karlsen et  al. 2021; Nguyen 
et  al. 2019), are rechargeable options that may reduce 
the environmental footprint of the BRL.

Measurements of efficacy using predefined met-
ric(s) for success (see Section 2) will inform subse-
quent action. This could include conducting laboratory 
experiments to evaluate the vision of the bycatch ani-
mal or the effect of light properties on behavior (e.g., 
Yochum et  al. 2022; see section 7.2), repeating field 
trials, broadening the scope of the research, or moving 
toward uptake or terminating investigation of BRL for 
that fishery. It would also be appropriate to investigate 
alternative light types from those used in the trials 
based on the needs and constraints of the fishery (e.g., 
availability, integration into the gear). At the end of 
a study, it is important to provide feedback to the 
base knowledge (Figure 1), including using the results 
to make inferences about behavior and vision, as well 
as fishermen perspective on BRL use.

9.  Conclusions and future directions

The goal for writing this paper was to provide guide-
lines to support researchers, fishermen, and managers 
aiming to mitigate bycatch by modifying animal 
behavior using artificial light. Needed base knowledge 
was highlighted; the importance of understanding the 
context in which the BRL is applied was emphasized; 
and considerations for designing a BRL study, ana-
lyzing the data, and interpreting results were described. 
Regarding data interpretation, it is important to look 
not only at the study results, but to be aware of the 
mechanisms driving a change in behavior with the 
introduction of a BRL. There are many stimuli that 
aquatic animals experience when interacting with fish-
ing gear, and these can confound or prevent a response 
to the BRL. Along these lines, it is important to be 
aware of the influence of the study design on behavior 
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(e.g., introduction of camera lights; e.g., Weinberg 
and Munro 1999). Caution is advised against anthro-
pocentric driven interpretations of behavior, recogniz-
ing that the bycatch animal will not perceive light as 
a human would. Both data interpretation and study 
design can be improved by employing a multidisci-
plinary and collaborative approach given the diverse 
expertise required to effectively assess BRL efficacy 
at appropriate ecological, socioeconomic, and techno-
logical scales and the importance of industry engage-
ment (Geraci et  al. 2021).

Additional research is needed on the efficacy of 
BRL, on the visual systems of commercially significant 
and common bycatch species, and on the factors that 
drive uptake of BRL in a fishery. For the former, one 
aim of this paper is to provide a mechanism for stan-
dardizing data collection that will support meta-analyses 
in the future. With studies following the described 
guidelines, opportunities will arise for a broader exam-
ination of the influence of BRL on animal behavior 
and fisheries selectivity, and it will lead to a better 
understanding of potential community and even 
ecosystem-scale effects of BRL (Senko et  al. 2022).

While there is an increasing body of literature on 
the use of BRL to affect fisheries selectivity and an 
increase in producers of artificial lights and luminous 
netting, there remain gaps in research and technology. 
For the latter, BRL research would benefit from in 
situ light sensors that are more affordable, light sen-
sitive, robust, and readily accessible (Ortiz et  al. 2016; 
Senko et  al. 2020, 2022; Wang et  al. 2010). There is 
also a need for the development of lights that both 
incentivize the prevention of disposal at sea (e.g., 
rechargeable, renewable-powered devices) and inte-
grate more easily into existing gear (e.g., lighted gill-
net buoys; Senko et  al. 2020).

With the improvement and increased affordability 
and availability of BRL technology, coupled with 
research increasing our understanding of the effects 
of light on animal behavior in and around fishing 
gear, BRL will likely be a more effective and 
better-understood tool in our fisheries research and 
management toolbox.
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