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ABSTRACT

Phytophthora infestans, the oomycete pathogen responsible for late blight, remains a formidable
threat to global potato and tomato production, causing significant economic losses and jeopar-
dizing food security. This review synthesizes current knowledge of P. infestans and highlights its
unique biology, sophisticated pathogenicity mechanisms, dynamic virulence factors, and manage-
ment strategies. The pathogen employs a diverse arsenal of virulence factors such as effectors to
suppress host immunity and manipulate cellular processes, while its genetic plasticity enables
rapid adaptation to control measures. Environmental cues and host-pathogen co-evolution
further complicate disease management, with climate change exacerbating these challenges.
Despite advances in fungicides, resistant cultivars, and cultural practices, its ability to overcome
control measures and evolve new virulence and functional traits underscores the need for
innovative solutions. Emerging technologies including CRISPR-Cas9, RNA interference, and pre-
dictive modeling offer promising avenues for sustainable management of the pathogen. This
review also calls for multidisciplinary approaches integrating genomics, ecology, and agronomy to
develop durable strategies against P. infestans and ensure resilient agricultural systems in the face
of evolving threats. Ultimately, this review provides a forward-looking perspective on how
integrating these novel technologies ca with evolutionary-ecological principles can build sustain-
able and resilient management systems.

ARTICLE HISTORY
Received 12 August 2025
Revised 18 October 2025
Accepted 2 November 2025

KEYWORDS
Evolutionary ecology;
effector proteins; host-
pathogen interaction;
sustainable agriculture;
climate change; disease
management

Introduction ) ) L )
P. infestans strains that exhibit increased virulence,

Phytophthora infestans is the causative agent of late  fungicide resistance, and adaptability to changing cli-

blight, a devastating disease responsible for catastrophic
losses in potato and tomato crops worldwide [1,2].
Unlike true fungi, P. infestans is characterized by its
filamentous growth, water-dependent spores, and host-
specific pathogenicity [3,4]. The pathogen thrives in
cool, humid environments, and rapidly invades plant
tissues, leading to necrotic lesions, wilting, and crop
collapse within days under favorable conditions [5,6].
The historical significance of P. infestans is inextric-
ably linked to the Irish Potato Famine (1845-1852),
which triggered widespread starvation, mass migration,
and socio-economic upheaval [3,7]. Today, late blight
remains a persistent threat to global food security,
causing annual economic losses exceeding 6 billion
USD due to reduced yields, expensive fungicide appli-
cations, and post-harvest spoilage [8]. Modern agricul-
tural systems face renewed challenges from emerging

mates [9].

Studying the pathogenicity and virulence mechan-
isms of P. infestans is critical for developing sustainable
disease management strategies. The abilities of the
pathogen to secrete effector proteins, evade host
immune responses, and rapidly evolve new virulence
traits highlight the complexity of host-pathogen inter-
actions [10,11]. Advances in genomics, molecular biol-
ogy, plant breeding, and computational biology have
shed light on the dynamic evolution of P. infestans [12],
yet gaps persist in understanding how environmental
factors and genetic diversity drive its destructive poten-
tial [13]. Here we synthesize current knowledge on the
biology, virulence determinants, and interactions of the
pathogen with host plants and environments, while
highlighting innovative approaches to mitigate its
impact on agriculture. By bridging these fundamental
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research and practical applications, this review aims to
guide future efforts against this formidable pathogen.
We first establish a foundation of its biology and mole-
cular weaponry, then explore the evolutionary
dynamics of its threat, and finally synthesize integrated
management strategies. A key contribution is our cri-
tical evaluation of how emerging technologies, applied
within an evolutionary framework, can achieve sustain-
able control.

Taxonomy and classification

P. infestans is a member of the kingdom Chromista and
the phylum Oomycota, a group of filamentous, eukar-
yotic microorganisms that have historically been mis-
classified as fungi due to their superficial similarities in
growth and ecology [14]. However, oomycetes are phy-
logenetically distinct, belonging to the Stramenopiles
lineage [15], which includes diatoms, brown algae,
and water molds. Stramenopiles are characterized by
heterokont flagellation, defined by motile zoospores
possessing two morphologically distinct flagella:
a forward- pointing, hairy flagellum used for propul-
sion and a trailing, straight and hairless flagellum used
for steering [16]. Unlike true fungi, oomycetes lack
chitin in their cell walls, which are instead composed
of cellulose and f-glucans, and their life cycles are
primarily diploid, in contrast to the dominant haploid
cycles of fungi [17].

Within the taxonomic hierarchy of the kingdom,
P. infestans is further classified under the class
Oomycetes, order  Peronosporales, and family
Peronosporaceae [18]. This group is often referred to
as the “downy mildews” due to their shared features
with other members such as Plasmopara viticola. The
genus Phytophthora comprises over 220 species [19]
and many of them are notorious plant pathogens.
P. infestans resides in clade lc of the Phytophthora
phylogenetic tree [20], a subgroup that primarily

includes pathogens targeting Solanaceous crops such
as potatoes and tomatoes. The species is heterothallic,
requiring two complementary mating types for sexual
reproduction. This feature promotes genetic diversity
and adaptability by generating recombinant offspring
with novel virulence traits. However, self-fertile strains
have been detected in several countries including China
[21,22], the leading potato production region in the
world [23].

The placement of P. infestans in Phytophthora Clade
Ic offers a practical framework for disease manage-
ment. While shared biology within the clade such as
conserved RXLR and CRN effector repertoires
(Table 1) means pathogenicity insights can be extrapo-
lated between species, critical ecological differences dic-
tate separate strategies. The aerial, foliar blight caused
by P. infestans requires foliar fungicide applications, in
stark contrast to the soil-focused management needed
for the root rots caused by clade-mates like P. sojae.
Consequently, this phylogenetic knowledge is essential
for predicting control measure efficacy, guiding chemi-
cal screening, and deploying clade-specific resistance
genes from wild relatives.

Life cycle and infection process

Both asexual and sexual reproductive strategies in the
life cycle (Figure 1) of P. infestans enable its epide-
miological and evolutionary success [24]. The asexual
cycle dominates during active epidemics, character-
ized by the production of sporangia on branched
sporangiophores that emerge from infected tissues.
These sporangia can either germinate directly under
warm conditions or release biflagellate zoospores at
lower temperature, which serve as the primary dis-
persal units [24]. In contrast, sexual reproduction
occurs when compatible mating types interact or in
self-fertile strains, leading to the formation of oos-
pores [25]. These thick-walled oospores represent

Table 1. Comparative biology and disease management implications of Phytophthora infestans and selected Phytophthora species
from different phylogenetic clades. The comparison with P. sojae (clade 1b) highlights shared evolutionary strategies within a major
lineage, while with P. cinnamomi (clade 8) illustrates divergent adaptations in a broad-host-range pathogen.

P. infestans

Feature (Clade 1¢)

P. cinnamomi
(Clade 8)

P. sojae
(Clade 1b)

Primary Hosts

Infection Site

Key Dispersal Unit

Dominant Reproductive
Strategy in Epidemics

Representative Effector
Arsenal

Practical Management
Consequences

Source of Key Resistance (R)
Genes

Potato, Tomato (Solanaceae)
Aerial (leaves, stems)
Airborne sporangia

Asexual (clonal lineages)

Large, diverse RXLR & CRN families

Foliar fungicides, canopy management,
aerial resistance genes

Wild Solanum spp. (e.g. S. demissum,
S. bulbocastanum)

Soybean

Roots & stems
Soil/water-borne zoospores
Asexual (clonal lineages)

> 5000 species (e.g. avocado, oak)

Roots & lower stem (collar rot)

Soil/water-borne zoospores

Asexual (clonal lineages)

Large, diverse RXLR & CRN families Distinct effector repertoire; fewer
canonical RXLRs

Soil fumigation, host avoidance,
water management

Limited; resistance is often
polygenic and quantitative

Seed treatments, soil amendments,
root resistance genes
Wild Glycine spp.
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Figure 1. In the asexual cycle, sporangia produced on sporangiophores either germinate directly under warm conditions or release
motile zoospores in cooler, wet environments. Zoospores encyst and form penetration hyphae that invade host tissues through
stomata or wounds. The sexual cycle involves outcrossing between compatible mating types or selfing, producing thick-walled
oospores that persist in soil for years and serve as reservoirs for new infections. These oospores can germinate directly or indirectly
to initiate disease. The infection cycle begins when sporangia or cysts germinate into germ tubes, which typically form appressoria
to penetrate epidermal cell walls (though stomatal entry may also occur). Intercellular hyphae subsequently colonize the leaf tissue,
and sporangiophores emerge through stomata 3-5 days post-infection to produce new sporangia, completing a single infection

cycle. Repeated cycles drive late blight epidemics.

a survival strategy, persisting in soil for at least 2-3
years and providing genetic recombination that gen-
erates novel pathogenic strains [26]. The relative
importance of these reproductive modes varies geo-
graphically, with sexual reproduction becoming
increasingly significant in regions where both mating

types coexist such as in South America [27] and
Scandinavia [28,29].

The infection process initiates when sporangia land
on susceptible plant surfaces. Under optimal condi-
tions, germination of a sporangia or cyst formed by
zoospores on the leaf surface produces a germ tube
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Table 2. The specific environmental requirements for each critical phase in the life cycle of Phytophthora infestans. The development
of the pathogen is strictly dependent on precise combinations of temperature and moisture, creating predictable windows of
infection risk. The parameters listed here form the scientific foundation for modern disease forecasting systems.

Optimal Critical Moisture/Humidity

Phase/Process Temperature (°C) Requirement Practical Significance & Management Insight

Sporangial 15-20 Leaf wetness (8 — 12 hours This defines the primary infection window. Disease forecasting models use these
Germination minimum) parameters to issue “infection warnings,” signaling the need for protective
(Direct) fungicide application.

Zoospore Release 10-15 Free water for sporangial Important in cooler, water-saturated conditions. Drives epidemics in areas with
(Indirect) cleavage prolonged rain or dew.

Penetration & 15-20 Sustained leaf wetness The success of this phase justifies the use of protectant fungicides that form
Infection during germination a barrier on the leaf surface before the infection period begins.

Sporulation 15-20 Relative Humidity >90%  High humidity enables massive production of inoculum for secondary spread.
(Sporangiophore Canopy management to reduce humidity is a key cultural control.

production)

Sporangial Survival Cool (10-15°C)  Low humidity ( < 60%) Sporangia can be wind-dispersed over long distances under dry air conditions,

& Dispersal prolongs leads to rapid leading to new disease foci. Explains the rapid spread across regions.
survival desiccation
Oospore 10 - 15 Saturated soil moisture The germination of this sexual overwintering structure depends on specific
Germination conditions to initiate primary infections, making crop rotation a critical strategy

for reducing soil inoculum.

[30]. Assisted by secreted cell wall-degrading enzymes
including pectate lyases and cellulases, the germtube
then forms specialized infection structures called
appressoria that generate mechanical pressure to phy-
sically breaking the cuticle [31,32]. Penetration can also
occur through stomata in leaves [33] while tuber infec-
tions typically initiate through lenticels or wounds [34].

Following successful penetration, P. infestans estab-
lishes an initial biotrophic phase in which haustoria
forms intimate contact with living host cells [35].
These finger-like hyphal extensions invaginate the
host cell membrane without breaking it, creating
a specialized interface for nutrient uptake and effector
delivery. About 72-96 hours after infection, the patho-
gen switches to necrotrophy, marked by extensive
branching of hyphae through intercellular spaces and
subsequent cell death [36]. During the infection phase,
the pathogen secretes a cocktail of apoplastic and cyto-
plasmic effectors that suppress plant immunity and
reprograms host metabolism.

The reproductive phase begins 3-5days after the
initial infection when sporangiophores emerge through
stomata [33]. P. infestans can forcibly open stomata by
releasing specific pathogenicity factors such as effector
proteins [37]. This phase is often visible as white fuzzy
growth on lesion margins [38]. Each sporangiophore
can produce 5-10 sporangia in a single day, with each
sporangium capable of initiating new infections [39].
Sporangial detachment and dispersal occur primarily
through rain splash or wind, with dispersal distances
ranging from a few centimeters to several kilometers
under storm conditions. This secondary spread creates
characteristic “foci” of infection in fields [40,41].

Disease development exhibits strict environmental
dependence, with temperature and moisture being the
primary determinants [41]. Optimal temperatures for

mycelial growth and sporangial production are geogra-
phically dependent [42], ranging between 15°C and
20°C while zoospore release requires 10-15°C. Critical
to infection is the duration of leaf wetness, with
a minimum of 8-12 hours required at optimal tempera-
tures [43]. Relative humidity > 90% sustains sporulation
while values <80% inhibit sporangial formation [6].
Under favorable climatic conditions, the levels of the
disease can grow exponentially as the pathogen can
complete a generation in 3-4days. Therefore, these
climatic parameters form the basis of disease forecast-
ing systems [44,45]. Regarding future epidemics, cli-
mate change models predict altered disease patterns,
with warmer temperatures potentially reducing epi-
demic risk in some regions while increasing it in others
through changes in dew formation patterns and rainfall
distribution [46,47].

The development of late blight is critically depen-
dent on environmental conditions, primarily deter-
mined by temperature and leaf wetness. As detailed in
Table 2, each critical phase of the pathogen’s life cycle
relies on a distinct set of optimal conditions. These
precise requirements form the scientific basis for mod-
ern forecasting systems like Blitecast and Plant-Plus,
which integrate real-time weather data to predict infec-
tion risk and optimize fungicide timing. Understanding
these parameters is therefore essential both for under-
standing the biology of P. infestans and for implement-
ing effective, timely control strategies in the field.

Molecular mechanisms of pathogenicity

P. infestans has evolved a sophisticated and highly
adaptable virulence strategy that integrates molecular,
biochemical, and ecological mechanisms to ensure suc-
cessful host colonization and rapid adaptation [42].



Central to its success is an extensive effector repertoire,
including RXLR (Arg-X-Leu-Arg) and CRN (Crinkling
and Necrosis) proteins, which enable the pathogen to
manipulate host defenses with remarkable precision
[43]. Beyond effector-mediated virulence, P. infestans
employs a coordinated enzymatic assault to disrupt and
macerate host tissues, simultaneously suppressing host
defense systems and facilitating nutrient acquisi-
tion [44].

Effector proteins

The effector repertoire of P. infestans represents one of the
most sophisticated virulence systems among plant patho-
gens, enabling it to overcome host defenses and infect
potato and tomato crops [35,48]. These effectors fall into
two functional classes: (1) apoplastic effectors such as pro-
tease inhibitors and lectins that neutralize antimicrobial
compounds and inhibit pathogenesis-related proteins in
the extracellular matrix to create favorable infection con-
ditions; and (2) cytoplasmic effectors including RXLR and
CRN types that disrupt intracellular immune signaling. In
addition to immunosuppression, effectors actively remodel
host physiology by degrading cell walls [49,50], altering
membrane transport [51,52] and hijacking metabolism to
redirect nutrients toward pathogen growth [53-55]. This
adaptable effector arsenal highlights the evolutionary suc-
cess of P. infestans as a destructive plant pathogen.

The RXLR effector family, named for its conserved
N-terminal Arg-X-Leu-Arg motif that facilitates host
cell translocation, is a cornerstone of P. infestans patho-
genicity, exhibiting extraordinary structural and func-
tional versatility. While this motif is essential, recent
studies indicate that additional C-terminal motifs also
contribute to host cell entry [48,56]. Structural biology
approaches have revealed that RXLR effectors often
mimic eukaryotic protein folds, enabling them to inter-
face with host immune components with remarkable
specificity [56,57]. Experimental evidence from model
effectors provides this foundation; for instance, the
solved structure of Avr3a revealed a modular architec-
ture essential for host target specificity [57,58].

RXLR effectors employ a multi-pronged approach to
disrupt plant immunity at various levels. Early in infec-
tion, effectors prevent pathogen recognition by physi-
cally blocking the binding sites of immune receptors or
promoting their degradation [58]. Some effectors such
as Avrl and Avr3 target the plant vesicle trafficking
system, interfering with the delivery of defense-related
compounds to infection sites [59]. The effector
PexRD54 exploits host autophagy by competitively
binding ATGS proteins, thereby repurposing this cellu-
lar clearance system for pathogen benefit [53-55].
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Recent work has also identified RXLR effectors that
modify host chromatin structure or small RNA path-
ways, representing an additional layer of immune inter-
ference [60,61].

The expression of RXLR effectors is tightly regulated in
a temporal cascade during infection, with distinct waves of
effectors targeting successive layers of plant immunity [62].
This phased deployment mirrors the guard hypothesis
[36,63] in which early expressed effectors initially suppress
PAMP-triggered immunity (PTI), followed by later effec-
tors that counteract effector-triggered immunity (ETI).
This  sophisticated temporal strategy resembles
a molecular version of Wolfe’s “trench warfare” model of
host-pathogen interaction [64], in which each wave of
effectors probes and subverts the defense responses of
plants. The coordinated action suggests an exquisite evolu-
tionary adaptation that allows P. infestans to dynamically
adjust its virulence strategy throughout the infection
process.

CRN effectors represent another major class of viru-
lence proteins that enable P. infestans to systematically
dismantle plant defenses and reprogram host cells. This
pathogen encodes 196 CRN effectors alongside 255 pseu-
dogenes, forming its second-largest effector family after
RXLRs [35]. This represents significantly expanded CRN
repertoires relative to related oomycetes, for example,100
genes/102 pseudogenes in P. sojae and 19 genes/42 pseu-
dogenes in P. ramorum [65]. This expansion parallels
RXLR effector genes and is attributed to their location
in repeat-rich, gene-sparse genomic regions enriched with
transposable elements. Structurally, CRNs resemble
RXLR effectors as modular secreted proteins with con-
served N-terminal motifs (LXLFLAK, DWL, and
HVLVXXP) essential for host translocation, and highly
diverse C-terminal domains responsible for effector func-
tions [65,66]. However, CRNs exhibit greater sequence
conservation than RXLRs [65]. These effectors exploit
structural mimicry to deregulate phosphorylation-based
signaling, hijack transcriptional machinery in the nucleus,
and disrupt critical processes like gene expression and
organelle function, making them central to pathogenicity
[35,65].

CRN effectors are predominantly highly expressed
during infection. Approximately 50% of CRN-encoding
genes rank among the top 1% of most highly expressed
genes in P. infestans [67]. This expression exhibits both
organ specificity and temporal regulation, varying
across infection stages and host tissues [65,68]. The
high expression levels underscore their critical role in
establishing and maintaining infection, aligning with
their functions in manipulating host immunity and
physiology at specific developmental phases of the
pathogen [69]. In stark contrast to the well-
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characterized RXLR effectors, the functions of CRN
effectors in P. infestans remain largely unknown. Of
the 196 CRNs it encodes, only three (CRN1, CRN2,
and CRN8) have been partially characterized. The pre-
sumed roles of the vast majority are hypothetical,
inferred from their high expression during infection,
their modular structure, and studies of their homologs
in related Phytophthora species.

Despite their abundance and high expression, functional
characterization of CRN effectors in P. infestans lags sig-
nificantly behind RXLR effectors. Only three members
(CRN1, CRN2, and CRNB8) have been extensively studied.
CRN1 and CRN2 were initially identified via functional
expression screening in plants using a Potato virus
X vector. Their expression in Nicotiana spp. and tomato
induces leaf crinkling, cell death, and defense gene induc-
tion [67]. Deletion analysis of CRN2 identified a minimal
234-amino acid C-terminal region (DXZ domain, aa
173-407) sufficient for cell death induction, with other
C-terminal domains (DC, DBF, D2, DXW-DXX-DXS)
also triggering cell death [35,66]. CRN8 requires nuclear
accumulation to induce host cell death and possesses
a predicted RD kinase domain that targets host factors to
perturb defenses [35,65]. It plays a critical stage-specific role
by activating programmed cell death during the necro-
trophic phase [65,70]. While CRNs are proposed to be
cytoplasmic effectors based on modularity akin to RXLRs
and translocation has been observed when a putative CRN
translocation motif is fused to Avr3a C-terminal domain,
direct experimental evidence demonstrating CRN
N-terminus-mediated translocation into plant cells remains
unreported [65]. The vast majority of the 196 CRNs remain
functionally uncharacterized, representing a significant
knowledge gap in P. infestans pathogenesis. Research
from other species shows nuclear-targeted CRNs epigen-
etically reprogram host defenses through diverse mechan-
isms: some induce DNA hypermethylation at defense gene
promoters while promoting demethylation at sugar trans-
porter genes, simultaneously silencing immunity, and
enhancing nutrient flux [35,65]. Others mimic plant tran-
scription factors, competitively binding cis-regulatory ele-
ments (e.g. G-boxes on JA-responsive gene promoters) to
block defense gene activation. Certain nuclear CRNs even
exhibit topoisomerase I-like activity or induce DNA
damage [71]. Chloroplast-targeted CRNs cripple photosyn-
thetic efficiency and redirect carbon resources. CRNs also
display dual, stage-specific functions [69,72].

Enzymatic attack

The enzymatic attack by P. infestans represents
a precisely coordinated campaign against plant struc-
tural defenses. The pathogen secretes a carefully

balanced cocktail of cell wall-degrading enzymes
(CWDEs) including pectinases, cellulases, and hemicel-
lulases [73,74]. The production of these enzymes is
tightly regulated both temporally and spatially during
infection, allowing the pathogen to penetrate plant sur-
faces while minimizing the release of immunogenic
oligosaccharides.

Pectinases including polygalacturonates and pectin
lyases are among the first enzymes deployed to soften
the middle lamella between plant cells. These are fol-
lowed by cellulases and hemicelluloses that target the
structural framework of the cell wall [73,75]. The
pathogen avoids triggering excessive damage responses
by producing these enzymes in controlled amounts and
often in truncated or modified forms that evade plant
immune recognition [76,77]. Recent proteomic studies
have identified several novel CWDEs with unusual
substrate specificities, including enzymes that target
callose and other defense-related cell wall reinforce-
ments [78,79]. Some of these enzymes work synergisti-
cally with effectors. For example, certain pectinases
create oligogalacturonide fragments that are then
bound by pathogen proteins to prevent their recogni-
tion as damage-associated molecular patterns [76].
CWDE families exhibit host-specific expansions, with
potato-adapted strains encoding more pectinase gene
copies than those infecting tomatoes, highlighting the
role of enzymatic profiling in host adaptation [73,80].

Defense suppression

Manipulation of plant defense systems by P. infestans
extends far beyond simple suppression. Instead, it
represents a comprehensive reprogramming of host
physiology. Hormonal manipulation is particularly
sophisticated, with the pathogen able to both synthe-
size hormone mimics and interfere with endogenous
hormone signaling pathways [81,82]. SA signaling is
suppressed through multiple mechanisms. Some
effectors directly target the SA biosynthesis pathway
while others promote SA degradation or interfere
with NPRI, the central regulator of SA responses
[83,84]. Simultaneously, the pathogen activates JA
and ethylene signaling in a carefully balanced man-
ner that prevents effective defense activation while
avoiding excessive cell death that may be detrimental
to its biotrophic growth [85,86]. P. infestans also
manipulates abscisic acid signaling to regulate stoma-
tal closure and interferes with strigolactone pathways
to alter plant architecture [82,83]. This hormonal
manipulation is precisely timed, with different effec-
tors targeting distinct pathways at specific infection
stages, creating a “defense confusion” strategy that



renders the host unable to mount an effective

response.

Nutrient acquisition

Nutrient acquisition is another critical component of
virulence. The haustoria of P. infestans represent highly
specialized and dynamic interfaces for nutrient acquisi-
tion and molecular communication. These structures
undergo continuous remodeling during infection, with
their morphology and function changing as the infec-
tion progresses [87,88]. Early in infection, haustoria are
small and fragile, optimized for stealthy nutrient
uptake. Whereas in late phase of the infection, they
become more robust to support massive nutrient
flows. Advanced imaging techniques have revealed
that haustoria establish an extensive membrane net-
work that increases the surface area for transport
while minimizing direct cytoplasmic contact.

The pathogen expresses a specific set of nutrient
transporters in haustoria, including hexose transporters
optimized for plant sugars and amino acid transporters
with particular affinity for glutamine and asparagine.
During the necrotrophic phase, the pathogen shifts to
more aggressive nutrient acquisition by secreting
a broader range of degradative enzymes and activating
additional transporter systems to capture the break-
down products of dying host cells [87,88]. This two-
phase strategy allows the pathogen to maximize
resource extraction while minimizing early detection
by host surveillance systems.

Evolutionary adaptation of P. INFESTANS

The evolutionary adaptability of P. infestans is unpar-
alleled among plant pathogens, enabling it to over-
come host defenses, evade chemical controls, and
thrive in diverse environments. This adaptability
stems from the interconnected set of biological and
genomic features that together drive the formation of
genetic diversity, effector repertoire plasticity, envir-
onmental responsiveness and host specialization, and
allow the pathogen to swiftly overcome new host
resistance genes through effector evolution, adapt to
changing environmental conditions through selective
sweeps, and develop fungicide resistance through tar-
geted mutations.

Genetic diversity

The remarkable evolutionary plasticity of P. infestans
arises from multiple synergistic mechanisms that drive
the generation of genetic variation in a population-
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level. Sexual recombination, occurring both through
outcrossing when compatible A1 and A2 mating types
coexist and via self-mating in homothallic strains
[89,90], plays a pivotal role. This process generates
novel genotypic combinations through meiotic chro-
mosome reshuffling, with particularly significant
impacts in two key regions: Mexico, the putative center
of origin [91] where both mating types naturally coexist
[92] and Scandinavia, where harsh winters select for the
durable oospores produced through sexual reproduc-
tion [93]. In contrast to regions with active sexual
recombination, most major potato-growing areas are
dominated by clonal lineages, such as the historic US-
1 and the more recent US-8 and US-23. This clonal
population structure dictates local evolutionary
dynamics and outbreak patterns. Consequently, moni-
toring the spread and prevalence of these dominant
lineages is a critical management activity. Tracking
key traits including fungicide sensitivity, virulence
spectra, and aggressiveness provides essential data to
guide control strategies, such as selecting effective fun-
gicides and deploying cultivars with corresponding
R genes.

The pathogen contains numerous active transposa-
ble elements [35,75]. This genome architecture further
enhances its variability by inducing mutations and
large-scale chromosomal rearrangements. First identi-
fied through comparative genomics of P. infestans,
P. sojae, and P. ramorum, this “two-speed” genome
structure — with effector genes localized in repeat-rich,
gene-sparse regions is now a recognized hallmark of the
Phytophthora genus. Comparative genomic analyses
have revealed extensive structural variations within
and among geographic populations, including gene
duplications that create functional redundancy [94,95],
targeted deletions of genes associated with critical bio-
chemical pathways [85,96], and chromosomal inver-
sions that alter gene expression profiles [97,98].
Heterokaryosis has also been observed [99,100],
enabling additional avenues of the pathogen to generate
genetic variation through somatic recombination.

Effector repertoire variability

The effector repertoire of P. infestans exhibits remark-
able evolutionary dynamics that enable the pathogen to
continuously adapt to host defenses. At the molecular
level, effector genes undergo rapid evolution through
multiple mechanisms. Effector families show strong
signatures of positive selection [75,101], with elevated
nonsynonymous mutation rates in functional domains
that allow escape from host recognition while main-
taining virulence functions [102]. Additional genetic
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modifications, including point mutations, altered start/
stop codons, and changes to protein disorder regions
[103,104], further contribute to effector diversification.
The pathogen also employs epigenetic silencing or
alternative splicing to generate phenotypic variation
from conserved genetic templates [105,106], providing
another layer of adaptability.

The genomic architecture of P. infestans strongly
facilitates effector evolution. Effector genes are strate-
gically located in gene-sparse, repeat-rich regions of the
genome that are highly prone to recombination and
structural variation [35,75]. This genomic architecture
is conserved across the genus. For example, while the
RXLR effector superfamily is massively expanded in
both P. infestans and P. sojae and shows strong signa-
tures of positive selection, reflecting a shared arms race
with their hosts, the CRN effector family shows lineage-
specific variation (196 genes in P. infestans, ~100 in
P. sojae, and 19 in P. ramorum). This demonstrates that
while the repeat-rich genomic hotspots driving effector
evolution are a genus-wide feature, the specific expan-
sion of individual effector families represents a lineage-
specific adaptation to host ecology. These genomic
“hotspots” experience frequent gene duplication events,
creating paralogous effector sets that provide functional
redundancy while allowing for specialization. The pre-
sence of numerous transposable elements in these
regions promotes additional genetic rearrangements
and horizontal gene transfer events of effectors, further
expanding the toolkit. At the population level, this
effector plasticity is further enhanced by the pathogen’s
mating system. Inter- and intra-gene recombination
facilitates the generation of novel effector alleles and/
or combinations [101,107], while a heterokaryotic strat-
egy enables somatic recombination of effector loci
[100,101].

Environmental adaptability

P. infestans demonstrates extraordinary phenotypic
plasticity in response to environmental
Temperature adaptation range of the pathogen is main-
tained through differential expression of heat-shock
functional genomes [103] but it has been hypothesized
that it can be quickly adjusted according to real time
thermal conditions [108,109]. Transcriptomic studies in
other species of Phytophthora also reveal distinct gene
expression profiles under varying moisture conditions,
with upregulation of osmoregulation genes during
drought stress and activation of motility genes in
water films [110,111]. The pathogen can also modulate
its life cycle strategy based on environmental condi-
tions, favoring rapid asexual reproduction during

cues.

optimal conditions but switching to sexual reproduc-
tion for genetic diversity and survival under stresses
[29]. This adaptability explains its successful establish-
ment across diverse agro-ecological systems from cool
highland regions to warmer lowland areas.

Host specificity

Host specialization has been documented at multiple
biological levels, from broad host range differences to
cultivar-specific interactions. Genome comparisons
reveal lineage-specific gene expansions, particularly in
effector families, that correlate with host preference.
Comparative analysis reveals that host-specific
CAZyme adaptation is a general pattern across
Phytophthora species. For instance, potato-adapted
P. infestans strains exhibit expansions in pectinases
tailored to Solanaceous cell walls, whereas the soybean
pathogen P. sojae possesses a distinct CAZyme profile
optimized for its host. This highlights how lineage-
specific enzymatic profiling is a key driver of host
adaptation within the genus. At the molecular level,
host specificity is mediated by allelic variation in effec-
tor proteins that determine compatibility with host
immune receptors and even ecological conditions
[112]. Population genomic studies have identified dis-
tinct subpopulations specializing on wild Solanum spe-
cies versus domesticated potatoes [113] with different
virulence patterns. The ability to rapidly overcome host
resistance is not unique to P. infestans. The soybean
pathogen P. sojae routinely adapts to major Rps genes
through mutations in corresponding Avr effector genes,
demonstrating that effector-driven adaptation is
a fundamental, genus-wide evolutionary strategy. The
pathogen can rapidly adapt to new hosts through epi-
genetic modifications that alter effector expression pro-
files [114], providing a mechanism for host range
expansion without genetic changes. This specialization
creates complex pathosystems in which virulence must
be considered relative to specific host genotypes and
environments.

Disease management strategies

Effective management of late blight requires an inte-
grated approach combining multiple strategies tailored
to local conditions. Rapid evolution and adaptability of
the pathogen necessitate comprehensive solutions
addressing both immediate control and long-term sus-
tainability. Successful programs integrate host resis-
tance, chemical control, biodiversity conservation, and
innovative technologies (Figure 2) while accounting for
the ongoing co-evolutionary arms race between
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Figure 2. Integrated management strategy for Phytophthora infestans-induced late blight in potato and tomato crops. Key
components include: 1) resistant cultivars developed via traditional breeding or genetic engineering (e.g. stacking R genes or
quantitative resistance traits), incorporating genetic resources from wild Solanum species for enhanced durability; 2) emerging
technologies, such as CRISPR-Cas9 for editing host susceptibility genes, rna interference (RNAI) for targeting essential pathogen
genes, and predictive modeling with loT-based monitoring for early detection and intervention; 3) biodiversity approaches, including
crop rotation with non-host species (e.g. cereals, brassicas) to disrupt pathogen life cycles, trap cropping to divert pathogen
pressure, and application of antagonistic microorganisms as biological controls;4) ecological and evolutionary considerations, such as
removal of alternative hosts to reduce pathogen reservoirs and implementation of climate-adaptive strategies; 5) strategic fungicide
use, including site-specific and multi-site fungicides to curb resistance evolution, supported by precision technologies like electro-
static sprayers and UAV-based systems to minimize environmental impact; 6) other management measures, including enhanced

disease quarantine and climate change surveillance.

pathogen and host. Modern management systems must
balance efficacy with environmental impact, economic
feasibility, and social acceptability across diverse agri-
cultural contexts from smallholder farms to large-scale
commercial operations.

Host resistance

Modern late blight management relies heavily on devel-
oping resistant potato cultivars through two comple-
mentary genetic approaches. Qualitative resistance
mediated by single dominant R genes provides com-
plete but often short-lived protection by recognizing
specific pathogen effectors and triggering hypersensi-
tive cell death responses. Over 20 R genes have been
identified from wild Solanum species [115 ,116].
However, rapid effector evolution overcomes these

R genes through mutations in targeted Avr proteins
within 3-7 growing seasons.

Quantitative resistance offers more durable protec-
tion through the synergetic function of multiple genes
to influence various defense mechanisms. These
include enhanced cell wall lignification, increased pro-
duction of antimicrobial compounds, and improved
stomatal regulation to limit infection [71,117,118].
Varieties like Sarpo Mira demonstrate how combining
multiple partial resistance traits can maintain field
resistance for a decade or more [119]. However, quan-
titative resistance does not completely prevent disease
and therefore must be used in conjunction with other
control measures to ensure successful production. In
addition, quantitative resistance may select for greater
pathogenicity and tolerance to ecological stresses
[,116], potentially jeopardizing long-term sustainable
production.
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Current breeding programs increasingly focus on
pyramiding approaches that combine the best features
of both resistance types. By stacking multiple R genes
with quantitative traits, breeders aim to create cultivars
with both strong initial protection and long-term dur-
ability. Modern techniques like marker-assisted selec-
tion and genomic prediction accelerate this process by
enabling precise introgression of resistance in wild spe-
cies while minimizing linkage drag. Emerging cisgenic
approaches, which use only native potato DNA, may
improve public acceptance of resistant varieties while
maintaining genetic diversity [120,121].

Supported by improved understanding of resistance
gene networks, the most advanced resistant cultivars
now incorporate 3-5 R genes along with multiple quan-
titative trait loci [122,123]. However, continued patho-
gen evolution requires constant identification of new
resistance sources including novel NLR genes from
S. americanum and S. verrucosum [124]. Furthermore,
due to the rapid evolution of P. infestans, stacking
multiple resistance genes into a single variety may
lead to the simultaneous loss of resistance genes. To
justify the breeding philosophy for the preservation of
resistant resources, it is necessary to evaluate the aver-
age persistence of resistance in both pyramiding and
conventional strategies.

Fungicide applications

Chemical management of late blight remains essential
for commercial production of potato and has under-
gone significant evolution in recent years, driven by
technological advances and the need to combat patho-
gen resistance. Modern fungicide programs combine
different chemical classes with precision application
technologies to maximize efficacy while minimizing
environmental impact. Site-specific fungicides such as
quinone outside inhibitors and carboxylic acid amides
provide targeted action against key pathogen processes
[125,126]. However, their specificity makes them highly
vulnerable to resistance, as demonstrated by the emer-
gence of mandipropamid (a CAA fungicide) resistant
genotypes of P. infestans in Europe [127]. They are
typically alternated with multi-site fungicides such as
copper compounds and chlorothalonil or mancozeb
which are less prone to resistance development and
play a crucial role in resistance management strategies
[128,129]. Application frequencies have become more
risk-based, ranging from < 7-day intervals during high
disease pressure periods to 14-day schedules when con-
ditions are less favorable for disease development.
Recent studies emphasize the importance of mixing

different modes of action within single applications to
delay resistance evolution.

The new generation chemistry has brought innova-
tive solutions to late blight control. Oxysterol binding
protein inhibitors like oxathiapiprolin demonstrate
remarkable efficacy by disrupting lipid metabolism in
the pathogen [130-132]. Other novel compounds
including succinate dehydrogenase inhibitors target
essential energy production pathways. These next-
generation fungicides often have unique modes of
action that make them effective against strains resistant
to conventional chemistries [133]. However, their high
specificity also makes resistance management protocols
particularly critical and manufacturers now routinely
recommend strict rotation schedules and combination
treatments from outset of product launch.

Application technology advancements show promise
for improving fungicide delivery systems. For instance,
electrostatic sprayers can potentially achieve improved
leaf surface coverage through charged droplet technol-
ogy [134,135], though their efficacy in penetrating
dense potato canopies requires further validation.
Similarly, Unmanned Aerial Vehicle (UAV)-based sys-
tems are being explored for precise, low-volume appli-
cations in agriculture [136,137]. However, it is
important to note that methods such as electrostatic
sprayers demonstrate concepts like spot-treatment for
weeds or applications in less dense crops; their opera-
tional feasibility and consistent efficacy for managing
late blight in dense potato foliage are still under devel-
opment and face challenges such as ensuring adequate
canopy penetration and deposition uniformity. Modern
decision support systems such as Plant-Plus integrate
real-time weather data, disease risk models and crop
growth stages to optimize application timing. These
technological improvements not only enhance control
efficacy but also support sustainability goals by mini-
mizing chemical inputs, reducing operator exposure,
and mitigating environmental contamination.

Ecological approaches

Ecological strategies offer sustainable alternatives for
late blight management by harnessing natural systems
and processes. These approaches work in harmony with
conventional methods to create more resilient agricul-
tural ecosystems. Cultural practices form the founda-
tion of ecological disease management. Implementing
3-year rotations with non-host crops like cereals and
brassicas reduced soil inoculum substantially [138,139].
These rotations disrupt the life cycle of the
pathogens while improving soil health. Furthermore,
managing primary inoculum sources such as volunteer



potato plants, wild Solanum weeds, and potato cull
piles through systematic sanitation can significantly
reduce initial infection pressure in fields. The general
principle that crop diversification suppresses disease
suggests that intra-potato diversification may substan-
tially reduce late blight severity [140,141]. By analogy to
other pathosystems, this approach could also slow the
evolution of P. infestans pathogenicity and fungicide
resistance, and enhance beneficial microbial commu-
nities [141,142]. Biofumigation techniques employing
Brassica juncea release glucosinolates that suppress soil-
borne inoculum through natural fungicidal activity.
When incorporated at flowering stage, these green
manures can substantially reduce oospore viability
[143,144]. Complementary practices like delayed plant-
ing to avoid peak disease periods and optimized irriga-
tion timing further enhance these effects.

Biological control is gaining traction as viable com-
ponents of integrated management. Bacillus subtilis
QST713 has demonstrated consistent disease reduction
in field trials through multiple mechanisms including
antibiotic production and induced systemic resistance
[145]. Pseudomonas fluorescens strains producing phe-
nazine-1-carboxylic acid show particular promise for
tuber protection, reducing late blight incidence in sto-
rage [146]. Mycoparasitic fungi like Trichoderma atro-
viride actively attacks P. infestans hyphae and spores
while stimulating plant defense responses [147].
Emerging research is exploring consortia of beneficial
microorganisms that work synergistically, with some
combinations achieving control levels comparable to
chemical fungicides in low-pressure situations.

These ecologically based approaches are most effec-
tive when combined with customized protocols for
specific sites. While generally requiring more manage-
ment knowledge than conventional methods, they offer
long-term sustainability benefits including reduced risk
of fungicide resistance, improved soil health, and
decreased negative impacts on environments.

Emerging technologies

Innovations in cutting-edge technology are transform-
ing control efforts of plant diseases and will revolutio-
nize the way late blight is managed. These advanced
solutions offer more targeted, sustainable, and precise
approaches to disease control while addressing the
remarkable adaptability of the pathogen.

Genetic technologies are pushing the boundaries of
crop protection. CRISPR-based editing of SWEET
sugar transporters in potato plants has shown signifi-
cant reduction in late blight severity by starving the
pathogen of essential carbohydrates [148,149]. Host-
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induced gene silencing systems now target multiple
essential pathogen genes simultaneously, including cel-
lulose synthase and effector genes, achieving remark-
able protection in field trials [150,151]. Synthetic
biology approaches are engineering beneficial micro-
biome communities that not only suppress
P. infestans through competition but also prime plant
immune responses [152,153]. These technologies are
being designed with built-in evolutionary safeguards,
such as targeting conserved pathogen genes that are
less likely to mutate without fitness costs.

Precision agriculture tools are enabling unprece-
dented levels of disease monitoring and intervention.
Advanced spectral imaging systems in research settings
can detect pre-symptomatic infections with 85% accu-
racy as early as 5days post-inoculation [154,155],
showing the potential for timely interventions. IoT-
based microclimate monitoring networks provide real-
time data on temperature, humidity, and leaf wetness at
the canopy level [156,157], improving disease predic-
tion models. Next-generation predictive systems inte-
grate pathogen genomic data with meteorological
information and machine learning algorithms to fore-
cast disease outbreaks at field-scale resolution. These
systems are being coupled with automated application
technologies that treat only high-risk zones to reduce
chemical use.

Novel formulations are overcoming traditional lim-
itations of disease control products. Nanocarrier sys-
tems using chitosan nanoparticles improve fungicide
adhesion and rain fastness while enabling controlled
release over 10-14 days [158,159]. RNAi-based biopes-
ticides targeting P. infestans cellulose synthase genes
have shown high efficacy in recent trials [32,151],
with formulations designed to protect the fragile RNA
molecules from environmental degradation. Smart
delivery systems that activate only under specific pH
conditions or in response to pathogen enzymes are
being developed to maximize target specificity and
minimize environmental impact. These include
“stealth” formulations that remain inert until encoun-
tering infection sites. The key characteristics of these
strategies are summarized for comparison in Table 3.

Practical implementation barriers

While an extensive array of management strategies
exists, their translation from concept to widespread
field application faces significant practical barriers.
Economic constraints are paramount, especially for
smallholder farmers who produce most of the pota-
toes in developing countries. Improved resistant
varieties can cost 3-5 times more than conventional
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Table 3. A systematic comparison of the primary strategies available for managing potato late blight, ranging from conventional
approaches to emerging technologies. Each strategy is evaluated based on its core mechanism of action, key advantages for disease
control and sustainability, and major practical or biological limitations. The comparison highlights critical trade-offs, such as the
durability of host resistance versus the rapid efficacy of fungicides, and the sustainability of ecological methods versus their variable

performance.

Strategy Core Mechanism

Key Advantages

Major Limitations & Practical Barriers

Host Resistance Deployment of R genes and QTLs to
(6.1) recognize pathogen or limit infection.

Fungicide Direct chemical inhibition of pathogen
Applications growth and reproduction.
(6.2)

Ecological Harnessing agronomic practices (rotation,
Approaches diversification) and biocontrol agents to

(6.3) suppress disease.
Emerging Genetic editing (CRISPR), RNAI,
Technologies nanocarriers, and precision agriculture

(6.4) for targeted intervention. inputs.

Reduces/eliminates fungicide need;
cost-effective long-term.

Rapid, highly effective control during Risk of resistance development; environmental and
epidemics; broad availability.

Enhanced sustainability; improves
soil health; reduces selection
pressure for resistance.

High specificity; potential for
durability; reduces chemical

Rapid breakdown of R genes; higher seed cost;
potential yield/quality trade-offs.

residue concerns; recurring cost and need for
precise application.

Requires more knowledge; efficacy can be variable
and context-dependent; not standalone solutions
under high pressure.

High R&D costs; stringent regulatory hurdles;
limited access for resource-poor farmers; public
acceptance issues.

seeds, and the recurring expense of effective fungi-
cide programs is often prohibitive.

Infrastructural and regulatory limitations further
hinder adoption. Regulatory systems often struggle to
keep pace with innovation, delaying the deployment of
emerging technologies like CRISPR-edited crops or
RNAi-based biopesticides, with approval processes
averaging 5-7 years. Similarly, implementing precision
agriculture tools and advanced application technologies
(e.g. UAVs, electrostatic sprayers) requires a level of
technical infrastructure and capital investment not uni-
versally available.

Finally, critical hurdles exist in knowledge transfer
and labor dynamics. Current extension systems fre-
quently fail to disseminate modern management
knowledge to most growers, while widespread agricul-
tural labor shortages complicate the implementation of
labor-intensive practices essential for effective scouting
and timely intervention. Addressing these multifaceted
barriers is as vital as developing new technologies for
achieving sustainable and equitable late blight
management.

Wild relatives as genetic resources and the role
of alternative hosts

Wild Solanaceae species play a dual role in the interac-
tion of P. infestans with hosts, serving as both valuable
sources of genetic resistance and potential reservoirs for
pathogen evolution. The wild relatives of cultivated
potato, particularly those originating from the potato’s
center of origin in Andes [160,161] and pathogen’s
center of diversity in the Toluca Valley of Mexico,
have co-evolved with P. infestans and developed robust
defense mechanisms [162,163]. These wild relatives
employ sophisticated immune strategies, including
pathogen recognition via unconventional receptors
and defense priming upon detection of conserved

microbial patterns. For example, species such as
S. demissum and S. bulbocastanum possess major
R genes (specifically (R1-R11 and RB/Rpi-blbl, respec-
tively) immuning to P. infestans, while others like
S. microdontum exhibit broad-spectrum resistance
through enhanced physical barriers and chemical
defenses [164,165]. Pan-genome analyses have also
identified dozens of novel resistance gene candidates
across > 20 wild species [166,167], offering new oppor-
tunities for durable resistance breeding.

However, the very biodiversity that provides these
genetic resources also supports pathogen persistence
and adaptation. Alternative hosts, particularly weedy
nightshades and bittersweet, create “green bridges”
that maintain P. infestans inoculum between potato
cropping seasons. Field studies across Europe indicate
that nightshades species are present in up to one-third
of agricultural field margins [168], serving as year-
round reservoirs for the pathogen. Perhaps more criti-
cally, these alternative hosts function as evolutionary
testing grounds where P. infestans experiments with
new virulence combinations. For example, S. nigrum
populations have been shown to select for Avr2 effector
variants that later emerge in potato fields while
S. arrachoides facilitates recombination between mito-
chondrial haplotypes [169,170]. The ability of
P. infestans to infect these related but ecologically dis-
tinct hosts contributes to its remarkable adaptability,
with some nightshade-adapted strains exhibiting
expanded thermal tolerance or host ranges. Systematic
removal of alternative hosts like S. dulcamara within
500 m of production fields eliminates important green
bridges for pathogen survival between seasons [171].

This complex interplay presents both opportunities
and challenges for disease management. On one hand,
wild species offer unparalleled genetic diversity for
resistance breeding, as demonstrated by the successful
deployment of S. americanum-derived Rpi-amrl [172],



which recognizes a conserved CRN effector motif.
Modern tools like CRISPR-Cas9 now enable precise
introgression of these wild resistance genes while mini-
mizing linkage drag. On the other hand, the epidemio-
logical role of alternative hosts necessitates integrated
management strategies that address pathogen evolution
across entire landscapes. This may include sanitation
programs to remove nightshades from production
areas, regional monitoring of pathogen populations in
wild hosts, and crop rotation schemes designed to dis-
rupt host connectivity.

Moving forward, researchers must adopt a more
holistic understanding of the P. infestans pathosystem
that considers both the genetic potential of wild rela-
tives and the ecological dynamics of alternative hosts.
High-throughput phenotyping platforms can accelerate
the identification of novel resistance traits in wild
germplasm, while landscape genomic approaches may
predict virulence trajectories as the pathogen moves
between cultivated and wild hosts. Ultimately, sustain-
able late blight management will require balancing the
utilization of wild genetic resources with strategies to
minimize pathogen adaptation in alternative hosts,
a challenge that demands collaboration between bree-
ders, pathologists, and agroecologists.

Challenges

Managing P. infestans is fraught with multifaceted chal-
lenges that complicate sustainable control. Climate
change is altering disease dynamics, expanding the
range of the pathogen and disrupting traditional fore-
casting models. Economic barriers such as the high cost
of resistant cultivars and limited access to advanced
technologies disproportionately affect smallholder
farmers. Additionally, ecological trade-offs arise from
intensive fungicide use and the dual role of wild
Solanum species as genetic resources and pathogen
reservoirs. Addressing these challenges requires holistic
strategies that balance efficacy, equity, and environ-
mental sustainability.

Climate change complications

Global climate change is fundamentally transforming
the dynamics of late blight epidemics. Temperature
increases of 2-4°C are projected to expand the patho-
gen’s suitable habitat [168], particularly into higher
latitude regions previously unaffected by severe out-
breaks. Altered precipitation patterns are creating
unexpected infection windows that disrupt traditional
disease forecasting models. Elevated atmospheric CO,
levels may have dual effects, potentially enhancing
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pathogen aggressiveness while simultaneously reducing
host plant defenses [171]. More frequent extreme
weather events, including unseasonal rains followed
by drought periods, are generating conditions that
favor explosive disease development while complicating
management timing. These climate-driven changes
require complete reevaluation of existing control para-
digms and the development of more adaptive manage-
ment systems.

Economic and implementation barriers

The translation of scientific advances into practical
solutions faces substantial real-world obstacles.
Smallholder farmers, who produce the majority of
potatoes in developing countries, frequently lack access
to improved resistant varieties, which typically cost 3-5
times more than conventional seeds [173]. Regulatory
systems struggle to keep pace with innovation, with
approval processes for biotechnological solutions taking
an average 5-7 years, which are often longer than the
timeframe for pathogen adaptation [174]. Current
knowledge transfer systems fail to reach majority
potato growers in developing regions [175], leaving
them without access to modern management strategies.
Additionally, widespread agricultural labor shortages in
many countries complicate the implementation of
intensive management practices required for effective
late blight control, creating a pressing need for more
labor-efficient solutions.

Ecological trade-offs

Current management approaches often generate unin-
tended ecological consequences that must be carefully
considered. The widespread adoption of resistant culti-
vars, while effective in the short term, may reduce
genetic diversity in farmer fields, potentially increasing
vulnerability to other pests and diseases. Intensive fun-
gicide use, particularly broad-spectrum chemistries,
disrupts beneficial soil microbiomes and may lead to
secondary pest outbreaks. Conservation efforts for wild
Solanum species, although important genetic resources
for future breeding, sometimes conflict with the need to
eliminate alternative hosts that serve as pathogen reser-
voirs. Even biological control methods can create eco-
logical imbalances, as introduced antagonistic
organisms may affect non-target species in complex
agroecosystems [176]. These trade-offs highlight the
need for more holistic, systems-based approaches to
late blight management that consider entire agricultural
ecosystems rather than focusing solely on pathogen
control.
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Key outstanding questions

Despite advances in understanding P. infestans, critical
knowledge gaps persist. Key questions revolve around
effector evolution, environmental plasticity, and the
durability of emerging technologies. The pathogen’s
ability to adapt to climate change and overcome resis-
tance mechanisms demands deeper exploration.
Socioeconomic barriers to implementing solutions
also warrant attention, particularly for resource-
limited farmers. Answering these questions will require
interdisciplinary collaboration to develop resilient stra-
tegies against this ever-evolving threat.

Effector evolution & host adaptation

Several critical questions remain about how P. infestans
manages its effector evolving repertoire evolution.
Researchers are particularly interested in understanding
how the pathogen balances the need for effector diver-
sification to evade host recognition while maintaining
essential virulence functions. Are certain effector
families like RXLRs more evolutionarily labile than
CRNs or apoplastic effectors? Another key question
focuses on whether wild Solanum species with uncon-
ventional immune receptors could uncover previously
unknown effector targets that might be exploited for
more durable engineered resistance. These wild rela-
tives may hold the key to identify conserved pathogen
vulnerabilities that could be targeted across multiple
Phytophthora species.

Environmental plasticity & climate change

The pathogen’s response to changing climate patterns
presents pressing research questions. Will rising tempera-
tures primarily select for strains with expanded thermal
tolerance thresholds, or will shifts in humidity and pre-
cipitation patterns prove more influential in determining
future disease distribution? Another crucial question is
how increasingly common extreme weather events, parti-
cularly alternating cycles of drought and flooding, may
disrupt the pathogen’s life cycle and alter epidemic
dynamics. Understanding these climate-pathogen inter-
actions is essential for developing predictive models and
adaptive management strategies.

Durability of control strategies

Emerging technologies raise important questions about
long-term efficacy. Can CRISPR-edited crops targeting
conserved effector domains provide more durable resis-
tance than traditional R genes, and if so, what are the

optimal targets? For RNAi-based control methods, sig-
nificant questions remain about potential off-target
effects in field environments, including impacts on
non-target organisms and the risk of inducing unin-
tended gene silencing in host plants.

Ecological & evolutionary trade-offs

Key questions focus on potential weaknesses in the
pathogen biology that could be exploited. Does sexual
reproduction, which generates such rich genetic diver-
sity, come with fitness costs that could be targeted?
Another important research direction is to examine
how the pathogen compensates for impaired effector
functions and whether there are predictable patterns.
Understanding these evolutionary trade-offs could
reveal novel approaches to slow pathogen adaptation
and inform smarter resistance gene stacking strategies.

Socioeconomic barriers

Implementation challenges also raise critical research
questions. Given current economic constraints, how
can resource-limited farmers gain access to advanced
diagnostics and resistant varieties? What types of policy
interventions - from subsidy programs to regional
cooperation frameworks — are most effective in accel-
erating  adoption of integrated management
approaches? These questions require research into
both technological solutions and social systems that
enable equitable access to disease control innovations.

Addressing these multifaceted questions demands
unprecedented  collaboration  across  disciplines.
Genomicists must work with field ecologists to connect
molecular evolution to real-world pathogen behavior,
while social scientists need to engage with biotechnol-
ogists to ensure solutions are both effective and imple-
mentable. Only through such integrated approaches
can we hope to develop sustainable strategies that
keep pace with this notoriously adaptable pathogen.
The answers to these questions will shape the next
generation of late blight management systems, with
implications for global food security in an era of cli-
mate change and agricultural transformation.

Conclusion

P. infestans continues to pose one of the most complex
challenges in plant pathology due to its extraordinary
capacity to adapt and evolve against control measures. In
this review, we systematically examine the intricate biology
of this pathogen from its unique reproductive strategies to
its sophisticated molecular mechanisms of infection. The



success of the oomycete stems from its dynamic effector
repertoire, including RXLR and CRN proteins that actively
reprogram host physiology, combined with its ability to
rapidly modify these virulence factors genetically and epi-
genetically. These properties, coupled with efficient aerial
dispersal mechanisms, contribute its historical and ongoing
impact on global potato and tomato production.

The challenges in managing late blight diseases have
never been more complex. The genomic plasticity of this
pathogen enables it to overcome both chemical controls
and host resistance at an alarming rate, while climate
change is altering traditional disease patterns [177,178]
and expanding its geographical range [179]. Current stra-
tegies face limitations due to the rapid breakdown of
resistance genes, development of fungicide resistance,
and the environmental consequences of intensive chemical
use. Moreover, the globalization of agricultural trade con-
tinues to facilitate the spread of aggressive strains across
continents, often outpacing our ability to develop effective
countermeasures. These issues are compounded by the
need to balance disease control with sustainable farming
practices and economic viability for producers [180].

Moving forward, a paradigm shift in late blight man-
agement is urgently needed. This requires integrating cut-
ting-edge genomic tools with advanced agronomic
practices and eco-evolutionary understanding [142,181].
We must invest in next-generation surveillance systems
that combine molecular diagnostics with predictive mod-
eling to anticipate pathogen evolution. Breeding programs
should prioritize durable resistance strategies that go
beyond single-gene approaches by incorporating gene pyr-
amiding and quantitative resistance traits. Simultaneously,
we need to accelerate the development of biological con-
trols and precision application technologies [182,183] that
reduce reliance on conventional fungicides. Crucially,
these scientific advances must be coupled with knowledge-
sharing networks that connect researchers, extension ser-
vices, and growers worldwide. Only through such colla-
borative, multidisciplinary efforts formulated by
evolutionary principles can we hope to establish sustain-
able management systems capable of withstanding the
evolving threat of this relentless pathogen while ensuring
global food security in a changing climate.
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