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We investigate the potential of phenomic prediction (PP) in remote-sensing-based phenotyping for genetic
studies. Rather than relying on a single vegetation index, we utilize all available data collectively to predict the
human-assigned visual score (VS). The conceptual motivation is that when a trained model is available, these
predictions may provide a more accurate assessment of disease symptoms than the use of a specific vegetation
index (VI). To evaluate the PP approach, we employ the predicted VS in a genome-wide association study
(GWAS) and consider strength and position of the detected genetic signal. We use two different sets of predictor
variables: i) the five basic wavelengths captured by a multispectral and a thermal camera (basic traits model, BT)
or ii) all traits (AT), consisting of the five basic wavelengths plus ten vegetation indices. As statistical methods,
we compare a) (linear) ordinary least squares regression (OLS), b) (linear) ridge regression (RR), ¢) (linear) least
absolute shrinkage and selection operator (LASSO) d) an artificial neural network (ANN) and e) a gradient
boosted regression tree method (GBRT). Our results indicate that the simple linear OLS regression on the five
basic wavelengths (BT-OLS) performs on a level comparable to the best individual vegetation index G. The use of
all traits in the OLS regression (AT-OLS) leads to overfitting, which was prevented by the regularization in AT-RR
and AT-LASSO. The non-linear ANN approach seems to improve the results further, but the differences between
the methods were not statistically significant. The strongest improvement for the purification of the genetic
signal was observed when genomic estimated breeding values (GEBVs) for the different traits (VS, basic wave-
lengths, vegetation indices) instead of their adjusted phenotypes were used. Across all approaches, the combi-
nation of GEBVs with Ridge Regression or the non-linear ANN provided the best results.

1. Introduction prediction, PP) utilizes patterns in the predictor variables to deduce

similarities between individuals, which can be captured in 'phenomic

High-throughput phenotyping has significantly advanced agricul-
tural research, particularly in the field of 'phenomics' [1-3]. In crop
breeding, phenomic approaches use phenotypic data from non-target
traits, like multispectral reflectance patterns or metabolite profiles, to
help select for target traits, such as yield per hectare.

Analogously to genomic selection (GS) [4-6], where genome-wide
markers are used, the term 'phenomic selection' underscores the simul-
taneous consideration of multiple (non-target) traits. This concept is
different from marker-assisted selection (MAS) for molecular markers,
or from 'phenotypic indirect selection' for which a few specific traits are
considered which are known to be correlated to the target trait. The
prediction of the target trait based on phenomic data (phenomic
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relationship' matrices in mixed models [7] or other statistical methods
[8-11]. Like genomic prediction (GP), phenomic prediction does not
require detailed biological understanding of why certain non-target traits
predict a target trait effectively. In particular, the focus may lie on the
overall predictions, not on the specific effects of features which is re-
flected in the common use of relationship matrices [8] condensing in-
dividual effects.

Examples of (genomic and) phenomic prediction include the work of
Montesinos-Lopez et al. [12-14], employing Bayesian approaches to
predict wheat grain yield, and Westhues et al. [15,16] utilizing endo-
phenotypes in linear mixed models to predict maize yield traits. More-
over, Roth et al. [17] suggested that non-target traits with reduced
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genotype x environment interaction could be useful in early generation
selection decisions in wheat breeding. To manage large datasets, Runcie
et al. [18] introduced 'MegaLMM/, a software package for simultaneous
mixed model analyses of many traits, and indicated high prediction
accuracies by modeling genetic correlations among them.

Image data acquired from unmanned aerial vehicles (UAVs) have
been instrumental in phenotyping disease symptoms in maize, particu-
larly in cases such as the tar spot complex [19] and southern rust [20]. A
prime example for a use-case for disease detection by remote sensing
(RS) is to streamline disease monitoring in production fields to be able to
apply field control measures at early stages of the disease progression.
Recently, Loldaze et al. [21,22] examined the use of multispectral and
thermal image data obtained from UAV-based RS for genetic evaluations
in resistance breeding in maize, specifically for common rust, one of the
most prevalent maize diseases [23,24]. The difference between appli-
cations for monitoring of production fields and for genetic evaluations is
that the latter requires a more precise resolution of the severity of
symptoms to base selection decisions on or to achieve better results in
follow-up genetic analyses such as association studies.

In Loldaze et al. [21], one of the objectives was to test an argument in
favor of phenotyping by remote sensing, namely that it may be more
objective than visual scoring by trained staff. Loldaze et al. [21]
compared the genetic signal of genome-wide association studies (GWAS)
when using RS-derived vegetation indices as trait (Fig. 1B) to when
using a visual score (VS; Fig. 1A). The underlying idea was that a trait
that is scored more objectively and that is more aligned with disease
symptoms should lead to clearer and stronger signals in a genetic as-
sociation study. This approach of using the strength of a detected genetic
signal avoids to assume from the beginning that a specific phenotyping
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method is the better one. For the particular example of common rust, the
genetic material that was used and the specific phenotyping methods,
the authors identified the VS as having the highest quality for the pur-
pose. However, RS data pointed to the same genetic region on chro-
mosome 10 as being associated to resistance, indicating the potential of
RS for high-throughput phenotyping. Among the vegetation indices, the
simple reflectance ratio G (%; [25,26]) out-performed the other vege-
tation indices on average, but not for every considered case. Loldaze
et al. [21] speculated that the superiority of the VS over all tested
vegetation indices may be attributed to the staff's ability to discern
common rust symptoms better from other influences which may also
induce similar changes in multispectral reflectance.

The approach followed by Loldaze et al. [21] of comparing the
performance of different individual vegetation indices with the aim to
choose one of them for future RS-based phenotyping means following
the concept of 'phenotypic (indirect) selection”: A search for a specific
trait that correlates well with the target trait 'susceptibility'. This raises
the question whether a 'phenomic approach' -a statistical prediction
based on all wavelengths and vegetation indices-could capture disease
symptoms better. A statistical model can be trained to capture the
relationship between predictor variables and disease symptoms and thus
function as 'a tailored vegetation index'. Although prediction approaches
come with other challenges, for instance around parameter fine-tuning
to achieve a decent generalizability, such an approach may be benefi-
cial for resistance breeding since vegetation indices were not specifically
defined to capture disease symptoms, but mostly to capture more gen-
eral plant characteristics (e.g. Ref. [27,28]). Moreover, the flexibility of
statistical models would allow for relatively straightforward transfer
and specification of the approach between different crops and diseases.
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Fig. 1. Representation of different approaches for genetic evaluations. Blue boxes represent the final genome-wide association study and are identical between
the four approaches. The differences lie in the input of the response variable: A) the input is the visual score (VS) assigned by trained staff and adjusted for
experimental design; B) replaces the VS by an individual specific vegetation index (VI) adjusted for experimental design; C) uses a phenomic prediction approach to
predict the VS from phenomic data with a trained prediction model; D) instead of phenotypes adjusted to the experimental design only, genomic estimated breeding

values (GEBVs) are used in the phenomic prediction of VS.
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In this study, we investigate whether a phenomic prediction incor-
porating all available data (Fig. 1C), can outperform the best individual
vegetation index (the simple reflectance ratio G, Fig. 1B). If successful,
this approach could enhance future RS evaluations by using a trained
phenomic model rather than a single index. This method is particularly
valuable when the considered vegetation indices are ranked inconsis-
tently across different datasets.

We use two sets of predictor variables, i) the five basic wavelengths
(basic traits, BT) and ii) all traits (AT), that is the five basic wavelengths
plus the ten basic-trait-derived non-linear vegetation indices provided
by the data set, and apply five different statistical approaches: a) (linear)
ordinary least squares (OLS), b) (linear) ridge regression (RR), ¢) (linear)
least absolute shrinkage and selection operator (LASSO), d) an artificial
neural network (ANN) and e) a gradient boosted regression tree (GBRT).
OLS is the simplest regression method and prone to overfitting with
increasing number of predictor variables. RR is a regularized linear
regression approach and the standard statistical method in GP, where it
is often referred to as ridge regression best linear unbiased prediction
(RRBLUP) or genomic best linear unbiased prediction (GBLUP) when
marker effects are rewritten as genomic relationship (For a history of
BLUP in breeding see for instance [6,7,29-40]). The LASSO approach
[41] is an alternative regularization to RR which penalizes the absolute
values of estimated effects instead of their squared values to cope with
an increasing number of variables and collinearity between predictors.
Compared to RR, LASSO will tend to estimate effects of small size rather
as being equal to zero, which means excluding the respective variable
from the model. The fourth method, the artificial neural network is
state-of-the-art technology in machine learning and is in general antic-
ipated to transform agricultural research and breeding [42,43,44]. The
last method, gradient boosted regression trees, is also a non-linear pre-
diction method based on ensembles of decision trees where each new
tree is trained to correct previous errors. The direct interpretability of
parameters of both non-linear methods is difficult, but between the two
methods, ANN and GBRT, the latter has some advantages concerning
user-friendliness and a deterministic training of the model.

We train these models and use them on 'out-of-training-set' data to
predict the VS. We then use these predictions as a response variable in
GWAS to evaluate the method based on the enhancement of the genetic
signal (Fig. 1C). As a final extension, we adjust phenotypic data with
genomic data to obtain genomic estimated breeding values (GEBVs) of
the traits which we use as input in the procedure described before
(Fig. 1D).

2. Materials and Methods
2.1. Data

We use the data previously published by Loldaze et al. [21,22],
which is available on the CIMMYT Research Data repository at https://h
dl.handle.net/11529,/10548898.

The dataset comprises both genotypic and phenotypic data from
three F2-derived biparental doubled haploid maize populations. The
three populations share the same susceptible parent DTMA-85.

The phenotypic data, that is ground truth disease data, as well as the
remote sensing data is explained in the following in more detail. Addi-
tional information can be found in Loldaze et al. [21,22].

2.1.1. Ground truth disease data

Common rust is a major foliar disease of maize caused by the rust
fungus Puccinia sorghi [45-50]. The pathogen has a complex life cycle of
different spore stages and causes lesions on leaves (UNL Cropwatch).
The impact on agricultural production can be severe, common rust has
for instance been listed as the 7th most destructive disease in the
southern United States in 2017 [23].

The plant material was evaluated for CR resistance at the CIMMYT El
Batan experimental station, close to Mexico City (Carretera México-
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Veracruz, Km. 45, El Batan 56237 Texcoco), at around 2200 m above sea
level, in two years, 2019 and 2020. Trials included two replications of
each genotype in a lattice design. Field plots were of dimension 2.5 m x
0.75 m two-row plots.

A water-Tween 20 suspension of P. sorghi urediniospores was sprayed
over two consecutive days on the plant material for inoculation. The
time-point was approximately one month before expected flowering.

The visual scores were assigned by trained personnel approximately
four weeks after the appearance of first symptoms. The symptoms were
categorized on a 1 (very resistant) to 9 (very susceptible) scale. Since
susceptibility was evaluated over two years, we can use six data sets
given by the population-by-year combinations. Our analysis uses the
phenotypes adjusted for the experimental design (Phenos_po-
pl_adjusted.txt, Phenos_pop2 adjusted.txt, Phenos_pop3_adjusted.txt),
as well as genomic marker data (Loladze_et_al_genotypes_GID.txt.gz).

2.1.2. Remote sensing data

Remote sensing was based on a fixed-wing eBee Plus platform
(SenseFly Ltd., Cheseaux-Lausanne, Switzerland). A multispectral Parrot
Sequoia camera (Parrot Drone SAS, Paris, France) measured reflection at
550 nm (40 nm full width at half maximum, FWHM), 660 nm (40 nm
FWHM), 735 nm (10 nm FWHM), and 790 nm (40 nm FWHM). A
thermal infrared camera, ThermoMAP (7.5-13.5 pm, Airinov, Paris,
France) was used in separate flights. Flight altitudes were at 55 m above
ground, around midday at sunny conditions. The ground resolution of
the images was 6 cm for the multispectral camera and 12 cm for the
thermal camera. A radiometrical calibration was conducted before each
flight which was complemented by an adjustment for light conditions
based on the incident light sensor. Flights were performed between one
day before and one day after the VS evaluation. Orthomosaic processing
was based on Pix4D Mapper® (v3.3.24; Pix4D, Lausanne, Switzerland)
and then converted into reflectance/temperature data.

When accessing the data set, the wavelengths are referred to as gre
(green), red, nir (near infrared), thr (thermal), and reg (red-edge).
Moreover, there are ten vegetation indices, which are non-linear func-
tions of the wavelengths (see Table 1 in Ref. [21]). The vegetation
indices used were NDVI [28], RDVI [51], MSR [52], OSAVI [53],
MCARI1 and MCARI 2 [54], TVI [55], GM1 [56], PSSRa [57] and G [26].
The closest wavelength response of the multispectral signal (consisting
of 550, 660, 735, 790 nm) was considered to calculate the indices.

For its use in phenomic prediction, the data was centered to mean
0 and standardized to a variance of 1 [11].

2.2. Statistical models used to infer a 'phenomic vegetation index'

We investigate whether a phenomic prediction is preferable to the
use of a single specific vegetation index when used for genetic evalua-
tions of susceptibility.

2.2.1. Ordinary least squares regression (OLS)
We use linear models of type

VS=p+Pp+e Eq. (1)
where VS is the visual score of the respective population-by-year com-
bination, p is a constant vector giving the general mean, f the linear
coefficients and P the phenotypes for different traits. Moreover, € is a
Gaussian distributed error vector with mean zero and variance Is2.

For P we used either only the five basic traits gre, red, nir, thr, and
reg or all 15 traits, that is, the five basic traits and all the ten vegetation
indices. P is therefore a matrix of dimension n x 5 or n x 15, depending
on the set of predictor variables, and with n denoting the number of
genotypes. We refer to the first setup as the basic traits (BT) model and to
the latter as the all traits (AT) model.

Based on Eq. (1), the OLS estimator is
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Table 1
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Summary of the models, analyses and results and where the corresponding results can be found in more detail. The results presented are based on the 30 out-of
training-set predictions, that is only on prediction when training and predicted set were different. Models were compared with two-sided binomial tests. Models that
share a letter as superscript have not been distinguished at a 0.05 level. ST denotes a supplementary table.

Predictors  Stat. Adjustment  Predictive ability Performance in GWAS
Model . . . . . .
times meeting or (average) Pearson (average) Lin's concordance Detailed times Detailed
exceeding the correlation between correlation coefficient between results in exceeding the results in
benchmark prediction and target prediction and target variable for benchmark
variable for out-of-training- out-of-training-set predictions
set predictions
BT OLS Pheno 13 0.76" 0.74%" Table 2 14° Table 3
AT OLS Pheno 2 0.41° 0.35° ST2 - -
BT RR Pheno 15 0.77% 0.74>° ST3 - -
AT RR Pheno 18 0.77° 0.75" Table 4 16*° ST4
AT LASSO Pheno 19 0.77% 0.75%° ST5 15.82%P ST6
AT ANN- Pheno 15 0.77% 0.76% ST7 16.88" Fig. 2
Relu
AT ANN- Pheno 11 0.76 0.74° ST8 - -
sigmoid
AT GBRT Pheno 8 0.75¢ 0.71¢ ST9 13>t ST10
AT RR GEBVs 19 0.79 0.78 ST11 26° Table 5
AT ANN- GEBVs 19 0.79 0.78 ST12 20.564 Fig. 3
Relu
AT GBRT GEBVs 19 0.79 0.75 ST13 142P Table 6

(1.P)(1,P) (1P VS
where the constant column vector 1 is added to capture the effect p.

2.2.2. Ridge regression (RR)
For ridge regression, § of Eq. (1) is considered random with inde-

pendent and identical distributed entries f; ~ N(O7 cg )

The ridge regression estimator is
((LPY(1,P)+21)"(1,P) VS

Where I is a diagonal matrix with 1 s on the diagonal except for the first
entry which is 0. This is the case to capture that p is modelled as a fixed
effect.

We estimated the penalty weight A as

~2

A=2c

~2
%p

using the R [58] package regress [59,60] and a phenomic covariance
matrix PP’ in which each column, that is each of the traits, was centered

and standardized to mean 0 and variance 1. Once B is estimated, RS data

can be used together with B to predict the VS when evaluating a new
experiment, rather than using an individual vegetation index.

2.2.3. Least absolute shrinkage and selection operator (LASSO)

LASSO penalizes the absolute values of the coefficients (instead of
the squared coefficients as RR). This 'small' difference to RR does not
allow to represent it by a simple solver as for OLS and RR. We used the R-
package glmnet [61] with the functions cv.glmnet(X,Y, alpha = 1) to
define the optimal value for the penalty weight A and glmnet(X, Y1,
alpha = 1, lambda = }) to estimate the coefficients of Eq. (1). The al-
gorithm used by the package to determine A is not deterministic and
therefore the value slightly changes even when using the same training
data. We therefore used 50 reps and report results based on averages.

2.2.4. Artificial neural network (ANN)

For neural networks, many different architectures are possible. The
focus of this paper was to explore the potential of methods with user-
friendly software with almost default parameters. We used the R-pack-
age torch [62] and its function nn module with 2 layers: 16 input

variables (p, 5 basic traits, 10 vegetation indices) which are activating
20 hidden variables which again define the output (self$fcl <- nn_linear
(16, 20) and self$fc2 <- nn_linear(20, 1)). We did not use a feedback but
only a feedforward network. For the results presented here, we used the
ReLU activation function (nnf relu(x)). We also tested a sigmoid acti-
vation with the described parameters, but results did not improve. Some
results using the sigmoid activation function can be found in Supple-
mentary Table 8. As loss function the mean squared error (nn_mse_loss
()) with Adam optimizer (optim_adam(model$parameters, Ir = 0.01))
was used. For the training procedure, 50 epochs were given. Model
evaluation was done by model$eval() and model(). A complication of
this method compared to OLS and RR is that the training (or its
initialization, that is the definition of the starting weights) is not
deterministic. Reproducibility can be achieved by fixing seeds (torch_-
manual_seed()).To account for the circumstance that with each training,
one can obtain a slightly different model and consequently different
predictions, we used 50 replications. Results shown will either show
averages of the repetitions or a histogram, that is a distribution.

2.2.5. Gradient boosted regression trees (GBRT)

For GBRT predictions, the R-package xgboost was used [63] which
provides an implementation of the gradient boosting framework by
Chen & Guestrin [64].

The model was trained using the training data in the function
xgboost() with training data as xgb.DMatrix() and parameters max.
depth = 3, eta = 0.1, nrounds = 50, objective = "reg:squarederror",
verbose = 0, lambda = 2, alpha = 2, min_child_weight = 3, gamma = 1
and nthread = 1.

The parameters (lambda, alpha, min_child_weight, gamma) were
chosen as (2,2,3,1) based on a rough grid search on the integers from
0 to 10 and aiming at maximizing out-of-set predictive abilities when
predicting phenotypic VS. Predictions were performed based on the test
data and the function predict().

2.3. Using genomic estimated breeding values of the traits

The adjusted phenotypes provided by Loldaze et al. [21,22] have
been adjusted for the experimental design, but not for genomic rela-
tionship. Since the plant material is closely related, one can consider the
different genotypes as partial replications of each other. A further
transition from phenotypic data to genomic estimated breeding values
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(GEBVs) could therefore improve data quality by separating genetic
signal from noise.

We used the following model to adjust each phenotypic response per
single trait and per population-by-year combination

P=p+g+e

with P being the phenotypic data adjusted to the experimental design as
provided by Loldaze et al. [21,22] and standardized to mean 0 and
variance 1, and which was used earlier as predictor variable and here as
response variable. Moreover, p is a constant vector providing an overall
mean and € an error. The central quantity g is the vector of GEBVs of the
respective trait. The GEBV can be interpreted as ‘the phenotype adjusted
to genomic relationship’ or as ‘the response variable phenotype

regressed on the genomic markers’. We modelled g ~ N (07 GéK) and e ~

N(0,621) with K = MM’ /9051, the genomic relationship matrix, M the
matrix of marker sores and 9051 the number of markers. We used the
letter K here for the genomic relationship matrix to avoid confusion with
the vegetation index G.

‘Marker scores’ refers to the values —1, 0, 1 reflecting the counts of a
reference allele at the respective single-nucleotide polymorphism (SNP)
from which the number 2 was subtracted. Thus, the value ‘-1’ refers to
the homozygous state of the alternative allele, ‘0’ to the heterozygous
state, and ‘1’ to homozygosity in the reference allele. Moreover, missing
values were imputed (see Refs. [21,22]).

Furthermore, I is the identity matrix. The variance components cé

and cf were estimated based on regress() and GEBVs g were obtained
from the mixed model equations [7,29,30]. GEBVs of traits VS and G
were used individually in a GWAS to test which effect the use of GEBVs
has on the results. Furthermore, the GEBVs of all traits were used
together in AT-RR and ANN and GBRT predictions. In this situation, the
models were trained to predict the GEBV of VS, not the phenotype of VS.

2.4. Cross validation

The data set consists of six population-by-year combinations. In an
application for plant breeding, the phenomic model needs to be trained
before it can be used for new evaluations. If phenomic prediction would
out-perform individual vegetation indices, the trained model would be
used to phenotype susceptibility of germplasm in new experimental
trials.

To mimic this situation, we trained the model on one of the six
population-by-year combinations and used the trained model to predict
the VS for the other combinations. In more detail, we used Eq. (1) for the
OLS, the RR and the LASSO approach to estimate p and f, and then used
Eq. (1) together with the respective P of the other population-by-year
combinations for predictions. For example, we used VS; 219 (the VS of

population 1 in 2019) together with Py 2019 to estimate i, 519 and 51‘2019
(by OLS or RR or LASSO). We then used the phenotypes P; 2029 as inputs

together with fi; 5959 and 61,2019 to predict VS, 0. Finally, we investi-
gated whether this prediction -which can be considered as a phenomic
index derived from P 3029- is more strongly correlated to VS; 292 than
any individual vegetation index.

The Pearson correlation of prediction and the target variable is
usually referred to as ‘predictive ability’. As an additional measure for
prediction accuracy, we also used Lin's Concordance Correlation Coef-
ficient based on the implementation in the R-package epiR [65] as
function epi.ccc(). As the final and central measure for how well a
prediction is capturing the disease symptoms, we investigated its per-
formance in follow-up GWAS, in terms of the size of the — log (p) value
of the strongest signal on chromosome 10.

Note, that for ANN and GBRT, the model is not based on Eq. (1).
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2.5. Genome-wide association analysis (GWAS)

The genome-wide association study is used in this work to assess the
quality of the phenotyping methods. If the quality of the phenotypic data
increases by being more precise or more specific to the symptoms of CR,
the genetic signal should be more clearly visible, and associated p-values
should be smaller. The phenotyping methods compared are the VS, the
vegetation index G, or phenomic predictions of VS by a previously
trained model.

GWAS was based on the R package rrBLUP [37]. The function GWAS
() was applied to the marker data together with trait data (for instance
the VS, the vegetation index G, their GEBVs or phenomic predictions).

2.6. Overview of models used and their comparison via a binomial test

Table 1 provides an overview of the models and analyses described in
the manuscript including the supplementary material. Overall, there are
2 different sets of predictor variables (BT/AT), 5 different statistical
methods (OLS, RR, LASSO, ANN, and GBRT) which are based on phe-
notypes adjusted to the experimental design or GEBVs. Out of these 20
combinations, 10 are investigated here and a variant of ANN with sig-
moid activation function was added (see Table 1).

For model comparison based on the cross-validation described
above, we applied two-sided pairwise binomial tests using the R function
binom.test(). When comparing two methods A and B, we considered the
performance of the two models on a certain combination of training and
prediction set, and defined it to be a success when B has reached a higher
value, be it for Pearson correlation, for Lin's CCC or the —log(p) values
from GWAS. We tested the Nullhypothesis that the probability of success
is equal to 0.5. The alternative was that this success probability is not
equal to 0.5 (two-sided test). Each of the 30 combinations in which
training and prediction set were not identical were considered to be an
independent draw of a Bernoulli distribution with the respective success
probability. The methods were viewed as different when the p-value of
the binomial test was lower than 0.05 (Table 1). The latter is reached in a
two-sided test, when one method outperforms the other in less than 10
instances or in more than 20 instances out of the 30 cases in which
training and prediction set are different. The models based on GEBVs
were not compared to those based on adjusted phenotype with respect to
predictive ability, since the predictions are targeting a different quan-
tity, namely the GEBV of VS, not the VS itself. However, phenotype-
based and GEBV-based predictions were compared together with
respect to their performance in follow-up GWAS analyses. Whenever a
one-sided binomial test was used for comparison this is mentioned
specifically in the results. For a one-sided test with alternative ‘greater’,
a significance level of 0.05 is already reached with more than 19 suc-
cesses out of 30 drawings. For the non-deterministic models, averages
across 50 repetitions were used.

3. Results
3.1. Absolute correlation of traits and VS

To define a benchmark, we first considered the correlation of the 15
traits with the VS in the respective data set. In five of the six population-
by-year combinations, the trait G (green to red ratio) had the highest
absolute correlation with the VS of the same population-by-year com-
bination. Only for population 2 in 2019, the absolute correlation of
NDVI was slightly higher. The correlations of highest absolute value are
summarized in Table 2 in row ‘Benchmark’. Absolute values are given,
but note that most indices, in particular G and NDVI have a negative
correlation with the VS. The sign of the correlation is not relevant and
could be changed by simply inverting the meaning of the 1-9 scale used
for the VS. The vegetation index G has also been found previously to
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Table 2

Predictive ability of BT-OLS for the VS. Correlation of the BT-OLS predictions with the VS of the respective data set and when trained with the data of different
population-by-year combinations. ‘Benchmark’ denotes the highest absolute correlation a vegetation index reached with the VS of the respective data set. Note that
most vegetation indices exhibit a negative correlation with the VS, which reflects the orientation of the scale of the visual scores from 1 (very resistant) to 9 (very
susceptible). Correlations equal to or higher than the respective benchmark are highlighted in bold. The benchmark correlation has been reached in 13 out of the 30
cases in which the training and prediction set were not identical. Lin's Concordance Correlation Coefficient between prediction and the VS is given in brackets.

Predicting to

Predicting from Pop 1, 2019 Pop 1, 2020 Pop 2, 2019 Pop 2, 2020 Pop 3, 2019 Pop 3, 2020
Pop 1, 2019 0.80 (0.78) 0.72 (0.69) 0.78 (0.76) 0.77 (0.76) 0.78 (0.77) 0.76 (0.75)
Pop 1, 2020 0.78 (0.73) 0.77 (0.74) 0.68 (0.65) 0.81 (0.80) 0.72 (0.68) 0.80 (0.79)
Pop 2, 2019 0.77 (0.75) 0.71 (0.66) 0.81 (0.80) 0.79 (0.76) 0.79 (0.78) 0.77 (0.75)
Pop 2, 2020 0.70 (0.69) 0.72 (0.71) 0.76 (0.74) 0.86 (0.85) 0.76 (0.74) 0.85 (0.85)
Pop 3, 2019 0.78 (0.76) 0.75 (0.71) 0.80 (0.78) 0.82 (0.80) 0.80 (0.78) 0.82 (0.80)
Pop 3, 2020 0.68 (0.65) 0.72 (0.71) 0.74 (0.71) 0.85 (0.84) 0.74 (0.71) 0.86 (0.85)
Benchmark 0.69 (G) 0.73 (G) 0.74 (NDVI) 0.86 (G) 0.73 (G) 0.87 (G)

have the highest —log (p) values in GWAS for five of the six population-
by-year combinations [21]. The correlations can be used as a benchmark
to see whether a phenomic approach can outperform the individual
indices in terms of its correlation with the VS.

3.2. Phenomic predictions based on design-adjusted phenotypes

3.2.1. Basic traits with ordinary least squares regression (BT-OLS)

The objective of this work was to investigate whether a phenomic
approach, that is a trained model predicting a visual score (VS) from
available data would provide more precise information on disease
symptoms than any individual vegetation index does.

The first approach was to use the five basic wavelengths for each

genotype in a linear model and to estimate p and B of Eq. (1) with an
ordinary least squares regression. These parameters can then be used for
a prediction based on the respective phenotypes P. The regression co-
efficients estimated from the different data sets are summarized in
Supplementary Table 1.

The predictive ability of BT-OLS is summarized in Table 2. Out of the
30 possible predictions (excluding the case of the prediction set being
identical to the training set), 13 cases led to a correlation with the VS
that was equal to or higher than the benchmark correlation. This means
that for these cases, the phenomic predictions obtained from a previ-
ously trained model are equally or higher correlated to the VS than the
best single vegetation index is.

We then compared the results of GWAS when using this phenomic
model trained on each of the population-by-year combinations to when

Table 3

the GWAS is based on the reference vegetation index G or the VS. The
underlying idea of using GWAS for model evaluation is to investigate
whether the genetic signal is enhanced.

The results are summarized in Table 3. The ‘phenomic’ OLS predic-
tion on the basic traits outperformed vegetation index G in 14 out of the
30 cases, which also means that it did not outperform G in 16 out of 30
cases. Moreover, for all except for two cases, BT-OLS and vegetation
index G identified the same marker as having the strongest association
(Table 3, positions 2,954,643 bp, 2,639,580 bp and 20,858,205 bp,
respectively).

3.2.2. All traits with OLS (AT-OLS)

When extending the approach from the basic traits to all the 15 traits
in an OLS regression, we observed the typical symptoms of overfitting
(for details see Supplementary Table 2): When training and prediction
set are identical, the prediction of AT-OLS is improved compared to that
of BT-OLS, which means that the training set data has been captured
better when more variables are present in the model. However, all
values on the off-diagonal that is any ‘out-of-training-set’ prediction is
less accurate (compare Table 2 to Supplementary Table 2). The corre-
lation of prediction and VS of the respective data set only exceeded the
benchmark for two out of 30 cases, namely predicting populations 1 and
3, 2019 from population 2, 2019. Also, in follow-up GWAS analyses, the
approach failed and exceeded the —log(p) of G only in two of the 30
cases (data not shown). The fact that AT-OLS shows signs of overfitting
indicates that regularized regressions based on shrinkage such as RR and

Genetic signal in GWAS when using BT-OLS predictions as ‘phenomic’ vegetation index. Genetic signals described by the highest -log(p) value on chromosome
10 and the position of the corresponding marker. Rows provide different traits, that is the VS, the vegetation index G and BT-OLS with varying training sets. Training of
the model can be interpreted as defining a phenomic index. Cases in which training and prediction set are identical are highlighted as italic. Cases in which training and
prediction set were different and the performance of the vegetation index G was outperformed by the BT-OLS model are highlighted as bold. The genetic signal
obtained from vegetation index G has been outperformed in 14 out of the 30 cases in which the training and prediction set were not identical.

Population 1 Population 2 Population 3

2019 2020 2019 2020 2019 2020
Vs Pos. 2,954,643 2,954,643 20,858,205 20,858,205 2,954,643 2,954,643
— log(p) 24.77 23.69 15.98 20.10 33.32 29.33
G Pos. 2,954,643 2,639,580 2,954,643 20,858,205 2,954,643 2,954,643
— log(p) 12.16 6.88 14.75 11.40 14.19 19.04
BT-OLS Pos. 2,954,643 2,639,580 2,954,643 20,858,205 2,954,643 3,909,507
Popl 2019 — log(p) 17.29 8.57 16.39 8.18 16.41 12.66
BT-OLS Pos. 2,954,643 2,639,580 2,954,643 20,858,205 2,954,643 2,954,643
Popl 2020 — log(p) 16.83 8.30 15.83 9.57 14.69 14.01
BT-OLS Pos. 2,954,643 2,639,580 2,954,643 20,858,205 2,954,643 3,909,507
Pop2 2019 — log(p) 14.76 7.85 16.52 7.95 16.75 13.13
BT-OLS Pos. 2,954,643 2,639,580 2,954,643 20,858,205 2,954,643 2,954,643
Pop2 2020 — log(p) 11.69 5.44 13.49 9.23 16.10 17.07
BT-OLS Pos. 2,954,643 2,639,580 2,954,643 20,858,205 2,954,643 2,954,643
Pop3 2019 — log(p) 15.81 8.38 16.92 9.06 17.49 14.19
BT-OLS Pos. 2,954,643 2,639,580 2,954,643 20,858,205 2,954,643 2,954,643
Pop3 2020 — log(p) 11.03 5.07 12.89 9.12 14.83 17.14
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LASSO may be valuable. These techniques are standard procedures
when predictor variables exceed robust estimation capacity [66].

3.2.3. Basic traits with ridge regression (BT-RR)

Ridge regression is a regularization method that can help to prevent
overfitting, and it is the reference approach in literature related to
genomic selection (GS). We applied ridge regression to the case of using
the 5 basic wavelengths. The predictions reached or exceeded the
benchmark in 15 out of the 30 cases (Supplementary Table 3). For the
GWAS analysis, the —log(p) value of the vegetation index G was
exceeded in 14 out of the 30 cases (data not shown). All in all, a clear
improvement from BT-OLS to BT-RR was not observed.

3.2.4. All 15 traits in a ridge regression approach (AT-RR)

We applied the ridge regression approach to the situation in which
all 15 traits are used and for which the OLS regression showed strong
signs of overfitting. For the prediction of the VS, this method reached or
exceeded the correlation benchmark in 18 out of 30 cases (Table 4).
Moreover, the —log(p) values in the GWAS analyses outperformed the
vegetation index G in 16 out of the 30 cases (Supplementary Table 4).
Concerning the location of the identified signal, in all except for five
cases, AT-RR and vegetation index G identified the same marker as
having the strongest association (Supplementary Table 4).

3.2.5. AT-LASSO: A variable selection approach

As an alternative to the ridge regression, we used a LASSO approach
which penalizes the absolute values of the coefficients and which can be
considered as a variable selection method. The implementation used for
LASSO follows a non-deterministic approach to determine the penalty A.
We reported average results of 50. Similar to AT-RR, AT-LASSO average
predictive abilities reached or exceeded the correlation benchmark in 19
out of 30 cases (Supplementary Table 5). Moreover, its — log(p) values
exceeded those of VI G in the GWAS analysis in 15.82 out of the 30 cases
on average across 50 repetitions (One specific instance of the results of
GWAS based on VS predicted by AT-LASSO is given in Supplementary
Table 6).

3.2.6. Non-linear models: AT-artificial neural networks

Artificial neural networks are the state-of-the-art machine learning
models and can outperform classical methods, in particular when the
training data sets are ‘big’ or when hidden structures cannot be
modelled explicitly as a component of a linear model [67]. With the
implementation and parameters used in this work, the mean predictive
ability for the VS exceeded the benchmark correlation in 15 out of the 30
cases (Supplementary Table 7). Recall here that the training algorithm
has non-deterministic components which means that without setting a
seed, obtained predictions will slightly differ. The mean predictive
ability referred to here is therefore -as for LASSO- the mean correlation
of 50 different training and prediction rounds. For the comparison based
on GWAS, we considered as before the number of times the — log(p)
derived from G is exceeded by the —log(p) value of the prediction across

Table 4
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Performance of ANN predictions in GWAS
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Fig. 2. Histogram of the number of times that the predictions with ANN lead to
higher -log(p) values than the vegetation index G in a GWAS analysis (and on
chromosome 10).

the 30 out-of-set predictions. Since the prediction is not deterministic,
we investigated how this quantity behaves across 50 separate training
and prediction rounds. The resulting histogram is shown in Fig. 2. The
number reached from 14 to 19, with a mean of 16.88, which is slightly
higher than what the other methods reached, but the improvement is
neither clear nor on a relevant range.

3.2.7. Non-linear models: gradient boosted regression trees (GBRT)

Compared to ANN, a simple advantage of the GBRT implementation
based on xgboost is the deterministic training which gives more cer-
tainty for model evaluation. However, with the parameters used in this
work and based on the phenotypic data, predictive ability for the VS
exceeded the benchmark correlation in only 8 out of the 30 cases
(Supplementary Table 9). Also, when the predictions were used in a
GWAS analysis, the method outperformed the vegetation index G in only
13 out of the 30 cases (Supplementary Table 10).

3.3. Phenomic predictions based on genomic estimated breeding values
(GEBVs)

3.3.1. AT-RR based on GEBVs

The phenomic data used so far has been adjusted to the experimental
design, but not to genomic relationship. A genomic relationship matrix
allows to estimate the genomic estimated breeding value (GEBV) from
the phenotypes and thus helps to dissect the additive genetic signal from
the phenotypic data.

Predictive ability of AT-RR for the VS. Correlation of the AT-RR predictions with the VS of the respective data set and when trained with the data of different
population-by-year combinations. ‘Benchmark’ denotes the highest (absolute) correlation a vegetation index reached with the VS of the respective data set. Corre-
lations equal to or higher than the respective benchmark are highlighted in bold. The benchmark correlation has been reached in 18 out of the 30 cases in which the
training and prediction set were not identical. Lin's Concordance Correlation Coefficient between prediction and the VS is given in brackets.

Predicting to

Predicting from Pop 1, 2019 Pop 1, 2020
Pop 1, 2019 0.81 (0.80) 0.71 (0.68)
Pop 1, 2020 0.78 (0.76) 0.78 (0.75)
Pop 2, 2019 0.76 (0.74) 0.71 (0.69)
Pop 2, 2020 0.71 (0.70) 0.74 (0.73)
Pop 3, 2019 0.78 (0.75) 0.73 (0.70)
Pop 3, 2020 0.69 (0.69) 0.74 (0.73)
Benchmark 0.69 (G) 0.73 (G)

Pop 2, 2019 Pop 2, 2020 Pop 3, 2019 Pop 3, 2020
0.78 (0.76) 0.73 (0.70) 0.78 (0.78) 0.74 (0.71)
0.76 (0.74) 0.84 (0.82) 0.77 (0.76) 0.85 (0.84)
0.82 (0.80) 0.80 (0.78) 0.79 (0.78) 0.76 (0.75)
0.76 (0.75) 0.87 (0.86) 0.75 (0.75) 0.88 (0.87)
0.81 (0.78) 0.82 (0.79) 0.81 (0.79) 0.80 (0.77)
0.72 (0.71) 0.87 (0.86) 0.72 (0.72) 0.89 (0.88)
0.74 (NDVI) 0.86 (G) 0.73 (G) 0.87 (G)
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As a final step, we therefore utilized the genomic relationship matrix
K to further adjust the phenotypic data (per individual trait and per
population-by-year combination, see Materials and Methods), aiming to
estimate a GEBV from the phenotypes.

We used the GEBVs of all traits, in an AT-RR approach. When pre-
dicting genomically adjusted VSk by AT-RR based on genomically
adjusted phenotypes Pk, the predictive ability slightly increased
compared to AT-RR without the genomic adjustment for predictors and
the dependent variable (Table 1 and Supplementary Table 11). Recall in
this context, that the predicted quantity differs (adjusted phenotype of
VS or GEBV of VS). Additionally, the signals in GWAS were much
stronger, and the approach outperformed the performance of the non-
genetically adjusted vegetation index G in 26 out of the 30 cases (see
Table 5). A binomial test counting successes when the phenomic AT-RR
prediction based on Px outperformed G, with Null-hypothesis of both
being equally good (P(success) = 0.5) and a two-sided alternative gives a
p-value below 10~*. Concerning the location of the identified signal, the
loci with strongest signal were identical to the position identified by
vegetation index G in 28 out of 30 cases (Table 5).

The observation of obtaining stronger genetic signals when using the
GEBVs in AT-RR must be interpreted in the context of the general
improvement when using GEBVs instead of the phenotypes, especially
for the vegetation index G and the VS themselves (Table 5). The quantity
that the models are trained to predict, that is the GEBV of the VS, pro-
vides a stronger signal than the VS itself. Moreover, when comparing the
GWAS results based on AT-RR with GEBVs, to when based on the GEBV
of the vegetation index Gy, the first outperformed the latter still in 21
out of 30 cases. Therefore, the AT-RR model based on GEBVs out-
performs here both, the adjusted phenotypes of G as well as its GEBV
Gk. The resulting model predicts more or less identical positions at a
higher power than the (GEBV of) vegetation index G.

3.3.2. AT-ANN based on GEBVs
Analogously to what we described for the AT-RR model above, we

also applied the ANN to GEBVs. When predicting GEBVs VSk by ANN

Table 5
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Performance of ANN + GEBV predictions in GWAS
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Fig. 3. Histogram of the number of times that the predictions with ANN based
on GEBVs lead to higher -log(p) values than the vegetation index G in a
GWAS analysis.

based on GEBVs P, the predictive ability was -as for AT-RR based on
GEBVs-slightly increased (Table 1 and Supplementary Table 12). Also,
the signals in GWAS were stronger, and the approach outperformed the
performance of the vegetation index G in 20.56 out of the 30 cases on
average (see Table 1 and Fig. 3). The small improvement from AT-RR to
AT-ANN that was observed for the phenotypic data (from 16/30 to
16.88/30) is not visible when using GEBVs (26/30 compared to 20.56/
30). When comparing to the GEBV of vegetation index G, G, the ANN
approach outperforms on average only in 10.26 out of the 30 cases
(Supplementary Fig. 1). When applying binomial tests for model com-
parisons on the GWAS signals, AT-RR and AT-ANN with GEBVs were the
only methods that clearly separate from all other methods (Table 1).
Concerning the location of the signal, the AT-ANN model coincided on

Genetic signal in GWAS analyses when using AT-RR predictions based on the GEBVs of the traits instead of the provided phenotypes (AT-RR Py). Genetic
signals described by the highest -log(p) value on chromosome 10 and the position of the corresponding marker. Rows provide different traits, that is the VS, the
vegetation index G and AT-RR predictions when training a model on different training sets. Cases in which training and prediction set are identical are highlighted as

italic. Cases in which the performance of the vegetation index G was exceeded by the AT-RR P method are highlighted as bold. The genetic signal obtained from

vegetation index G has been outperformed in 26 out of the 30 cases in which the training and prediction set were not identical. Note that the GEBVs Gy and VS also
lead to stronger genetic signals in the GWAS than their phenotypic counterpart of the same trait.

Population 1

Population 2 Population 3

2019 2020 2019 2020 2019 2020
Vs Pos. 2,954,643 2,954,643 20,858,205 20,858,205 2,954,643 2,954,643
— log(p) 24.77 23.69 15.98 20.10 33.32 29.33
G Pos. 2,954,643 2,639,580 2,954,643 20,858,205 2,954,643 2,954,643
— log(p) 12.16 6.88 14.75 11.40 14.19 19.04
AT-RR P Pos. 2,954,643 2,639,580 2,954,643 20,858,205 2,954,643 2,954,643
Popl 2019 — log(p) 25.44 10.29 17.72 10.10 21.42 17.29
AT-RR Py Pos. 2,954,643 2,639,580 2,954,643 20,858,205 2,954,643 2,954,643
Popl 2020 — log(p) 20.69 11.88 17.70 14.48 19.90 22.10
AT-RR Py Pos. 2,368,199 2,639,580 2,954,643 20,858,205 2,954,643 2,954,643
Pop2 2019 — log(p) 19.14 9.74 23.52 9.06 21.16 16.66
AT-RR Py Pos. 2,954,643 2,639,580 2,954,643 20,858,205 2,954,643 2,954,643
Pop2 2020 — log(p) 16.09 7.61 16.55 12.14 16.08 22.93
AT-RR Py Pos. 2,368,199 2,639,580 2,954,643 20,858,205 2,954,643 2,954,643
Pop3 2019 — log(p) 17.76 9.79 17.30 12.17 19.86 21.09
AT-RR Py Pos. 2,954,643 2,639,580 2,954,643 20,858,205 2,954,643 2,954,643
Pop3 2020 — log(p) 16.54 9.59 15.54 16.81 17.88 22.56
Vsk Pos. 2,954,643 2,954,643 20,858,205 20,858,205 2,954,643 2,954,643
— log(p) 29.32 28.83 16.93 22.80 38.67 35.07
Gk Pos. 2,954,643 2,639,580 2,954,643 20,858,205 2,954,643 2,954,643
— log(p) 15.67 9.07 14.97 14.10 16.80 22,53
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Concordance of ANN + GEBYV predictions with vegetation index G
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Fig. 4. Histogram of the number of times that the predictions with ANN based
on GEBVs identified the same molecular marker as having the strongest signal
as vegetation index G.

average in 25.5 of the 30 cases with the location identified by G (Fig. 4).
Although, AT-ANN did not out-perform AT-RR when based on GEBVs,
this approach of using ANN in combination with GEBVs may be a
promising candidate for phenotyping by remote sensing in the context of
resistance breeding. In particular also, because there may be potential
for parameter fine-tuning of the model.

3.3.3. GBRT based on GEBVs

The GBRT method did not perform well when phenotypic data was
used, but responded to the transition from phenotypes to GEBVs: The
predictive ability for the GEBV of the VS increased and the signals in the
GWAS analysis gained strength. However, GBRT was still only able to
outperform the VI G in 14 out of the 30 cases. Even though GBRT has the
advantage of deterministic training compared to ANN, the observed
performance would not support the claim to use it for the use-case tested
here. Nevertheless, one should be aware that the method provides po-
tential for parameter fine-tuning. The results observed here may also be
a consequence of overfitting (see Supplementary Table 13).

3.4. Binomial tests for model comparisons

The two-sided binomial tests that were applied for predictive ability
based on Pearson correlation could not show a significant difference
between most phenotype-based methods (Table 1). The only methods
that clearly separate from the others are the overfitting AT-OLS and AT-
GBRT. The picture is similar when basing the tests on Lin's concordance
correlation coefficient. Here, the models BT-OLS, BT-RR, AT-RR, AT-
LASSO, AT-ANN separate into groups ‘a’, ‘b’ and ‘a,b’ (Table 1, Lin's
CCQ), but this is only due to the inclusion of the AT-ANN-sigmoid model.
The most evident positive separation can be observed when considering
the GWAS results and including the GEBV-based methods in the com-
parison. Here -as described above- the AT-RR-GEBV and the AT-ANN-
GEBV model stand out on this data set (Table 1).

4. Discussion
4.1. From a single vegetation index to a phenomic prediction

Remote sensing is becoming increasingly important in high-
throughput phenotyping, particularly in resistance breeding applica-
tions, where accurate and efficient prediction of plant traits is crucial.
When exploring applications, a first step is usually to compare the per-
formance of individual predefined vegetation indices [19,21,68-70].
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These indices have been designed to capture certain physiological fea-
tures of plants but do not necessarily describe the trait being studied
precisely, in particular when dealing with specific disease symptoms.
For instance, Thenkabail et al. [71] explored 490 channels in different
narrow band normalized difference vegetation indices (NDVI) and their
ability to fit the distribution of quantitative traits such as wet biomass,
leaf area index, plant height and yield on a data set. The best wave-
lengths for NDVIs varied for the same trait between crops (for instance
wet biomass between cotton and potato, Table 4 in Thenkabail et al.
[71]), which may be interpreted as an argument to tailor the predictive
model for a specific trait-crop combination. Thenkabail et al. [71] also
used a linear regression approach together with variable selection
restricting (mostly) to four variables, which they referred to as optimum
multiple narrow band reflectance (OMNBR) and mention also the ten-
dency to overfit when many variables are included simultaneously.
These observations highlight the potential benefit of tailoring an index
to the specific use-case, and set the stage for more complex models, that
may involve statistical regularization, to be tested in out-of-set
predictions.

In our study, we extended previous work on the use of remote
sensing in resistance breeding [21] and shifted the focus from relying
solely on pre-defined vegetation indices, that were motivated by other
applications, to exploring the performance of 'indices' defined by sta-
tistical models in the context of resistance breeding. These models are
aimed at predicting visual scores (VS) from phenomic data, and include
a broader range of predictor variables, not only a single vegetation
index. This approach may allow for a more flexible description of phe-
notypes, particularly in cases where the effectiveness of a specific
vegetation index is unclear or inconsistent across different datasets.

Our analysis revealed that a simple ordinary least squares regression
using five basic wavelengths (BT-OLS) was competitive with the best-
performing vegetation index, G. This suggests that even basic models
can be effective when predicting plant traits from phenomic data. In
GWAS analyses, BT-OLS outperformed G in terms of the —log(p) value in
14 out of 30 cases, indicating that BT-OLS can be a simple alternative
when it is unclear which vegetation index should be used.

When we incorporated all 15 traits simultaneously (five basic traits
plus ten vegetation indices) using the AT-OLS model, we encountered
signs of overfitting. Overfitting means that a model predicts well on
training data but poorly on new data [72].This is evident in our findings
where AT-OLS showed improved fitting for training data but reduced
predictive accuracy for out-of-set predictions compared to BT-OLS.

To address the issue of overfitting, we employed regularization
techniques. The ridge regression AT-RR improved both out-of-set pre-
dictions and GWAS signals slightly compared to BT-OLS. Comparing AT-
RR to vegetation index G, the 16 out of 30 cases for which AT-RR out-
performed G are not sufficient to declare AT-RR as superior, but it is
worth mentioning that G was previously identified as the best vegetation
index out of ten used by Loladze et al. [21].

The LASSO regression which was used as an alternative to RR, per-
formed on a similar level (Table 1). Interestingly, the artificial neural
network led to slightly better results in the GWAS although still on a
level of little significance and relevance. The non-linear GBRT method
did not stand out, neither in terms of predictive ability nor in terms of
signal strength in GWAS, when phenotypic data was used.

4.2. Adjusting by the genomic relationship: The use of GEBVs for each
trait instead of the phenotypes

Genomic Estimated Breeding Values (GEBVs) are a measure of ge-
netic potential derived from genomic data. In contrast to phenotypic
data, which is influenced by environmental factors or epistatic in-
teractions, GEBVs are aimed at measuring the additive genetic contri-
bution. Our study used the additive GEBVs for both the visual score and
the RS data.
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Typically, genomic and phenomic data are combined in predictive
models using an approach such as

Y=p+g+p+e Eq. (2)
with both, the genomic term g and the phenomic term p being modelled
as random (Y the phenotype, p the overall mean and e the error as
described earlier). This model is challenging to interpret because it
combines two variables, genomic and phenomic data, that will ‘overlap’
to a certain extend and will be difficult to separate. Moreover, when
predicting new germplasm with such a model, a certain genetic rela-
tionship between training and prediction set is required to handle the
term g.

We used the genomic data instead to pronounce the additive
component of the phenotypes, which may potentially allow a better
transferability to new germplasm in case the relation between additive
component of phenomics and the target variable is general. From a
conceptual point of view, the genetic relatedness between genotypes of
training and prediction set could be lower than what is required for Eq.
(2), since the genomic data can be used separately on training and
prediction set to derive the GEBVs of phenomic data instead of including
a joint genomic relationship matrix in the model. Only the genetic
relationship within each set needs to be modelled, not the genetic
relationship between training and prediction set.

In our analysis, using GEBVs instead of (adjusted) phenotypic data
led to an improvement of the genetic signals in GWAS. Specifically, AT-
RR outperformed the original vegetation index G in 26 out of 30 cases
and AT-ANN outperformed G in 20.56 out of the 30 cases on average.
This demonstrates that genomic adjustments improved GWAS signals in
this study. The significance of this improvement is in particular visible
for the VS and the vegetation index G themselves for which the use of the
GEBV instead of the phenotype enhanced the signal in 6 out of 6 cases

(compare G to GK and VS to \7§K in Table 6). A binomial test with the
Null hypothesis that phenotypic data and GEBV are performing equally
and alternative that the GEBV has a higher probability to out-perform

Table 6
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the phenotypic data, results in a p-value of 0.016, indicating that it is
unlikely to observe such a 6 out of 6 result when there is no systematic
effect. This improvement can be explained by a purification of the ad-
ditive component of both the predictor as well as the dependent variable
in the regression (which again could also be considered as a first ‘line-
arization’ of the data, and potentially as a preparation step for the linear
GWAS).

Among the methods considered, RR and ANN were able to benefit
from this enhanced precision. It is unclear why the GBRT approach was
not able to capitalize on the GEBV data as the other methods did, but it
may be related to overfitting (Supplementary Table 13), which points to
parameter fine-tuning. The use of either RR or ANN, together with
GEBVs resulted in models that identified the same marker as vegetation
index G, but with a higher power. A downside of ANN is that the training
is not deterministic and thus predictions change when the model is
trained a second time with the same data. Overall, the use of GEBVs
instead of adjusted phenotypes has been of value for the considered data
set. The non-linear methods ANN and GBRT provide potential for fine-
tuning of the parameters, but the RR provides the simpler, straight-
forward approach which also performed best in this study when com-
bined with GEBVs.

4.3. Relation to other recent work

Relatively close to our work on hand, DeSalvio et al. [20] applied
different machine learning techniques to a use-case of Southern rust
prediction based on 36 vegetation indices. The authors focused on the
comparison of different machine learning approaches and temporal
development using an RGB sensor with three basic channels. In contrast,
our work neglects the temporal aspect, but extends to the use GEBVs of
phenomic data, and assesses the different approaches in the light of the
use-case of genetic evaluations by association studies. A result of
DeSalvio et al. [20] intersecting with ours was the low performance of
the ‘linear model’ on all considered traits, which can be interpreted as
being analogue to our AT-OLS prediction.

Genetic signal in GWAS analyses when using GBRT predictions based on the GEBVs of the traits instead of the provided phenotypes (AT-GBRT Py). Genetic
signals described by the highest -log(p) value on chromosome 10 and the position of the corresponding marker. Rows provide different traits, that is the VS, the
vegetation index G and AT-GBRT predictions when training a model on different training sets. Cases in which training and prediction set are identical are highlighted as

italic. Cases in which the performance of the vegetation index G was exceeded by the AT-GBRT Py method are highlighted as bold. The genetic signal obtained from

vegetation index G has been outperformed in 14 out of the 30 cases in which the training and prediction set were not identical. Note that the GEBVs G and VS also
lead to stronger genetic signals in the GWAS than their phenotypic counterpart of the same trait.

Population 1

Population 2 Population 3

2019 2020 2019 2020 2019 2020
Vs Pos. 2,954,643 2,954,643 20,858,205 20,858,205 2,954,643 2,954,643
— log(p) 24.77 23.69 15.98 20.10 33.32 29.33
G Pos. 2,954,643 2,639,580 2,954,643 20,858,205 2,954,643 2,954,643
— log(p) 12.16 6.88 14.75 11.40 14.19 19.04
AT-GBRT Pk Pos. 2,954,643 2,639,580 2,954,643 20,858,205 2,954,643 2,954,643
Popl 2019 — log(p) 21.87 8.40 17.10 9.43 18.35 17.54
AT-GBRT Pk Pos. 2,639,580 2,639,580 2,954,643 2,017,344 2,954,643 2,954,643
Popl 2020 — log(p) 12.57 13.69 15.39 9.83 14.21 17.10
AT-GBRT Pk Pos. 2,639,580 2,639,580 2,954,643 2,017,344 2,954,643 20,858,205
Pop2 2019 — log(p) 11.03 6.52 17.79 7.42 16.25 14.14
AT-GBRT Px Pos. 2,639,580 3,909,507 2,954,643 20,858,205 2,954,643 2,954,643
Pop2 2020 — log(p) 11.26 4.42 15.23 15.20 13.94 20.29
AT-GBRT Pk Pos. 2,639,580 2,639,580 20,858,205 2,017,344 2,954,643 2,954,643
Pop3 2019 — log(p) 12.68 3.97 14.87 9.00 25.21 16.99
AT-GBRT Pk Pos. 2,954,643 2,639,580 2,954,643 20,858,205 2,954,643 2,954,643
Pop3 2020 — log(p) 11.73 4.46 15.37 12.77 15.12 24.24
VSk Pos. 2,954,643 2,954,643 20,858,205 20,858,205 2,954,643 2,954,643
— log(p) 29.32 28.83 16.93 22.80 38.67 35.07
Gk Pos. 2,954,643 2,639,580 2,954,643 20,858,205 2,954,643 2,954,643
— log(p) 15.67 9.07 14.97 14.10 16.80 22.53
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4.4. Limitations

Our study was focused on a specific application of phenomic pre-
diction in evaluating susceptibility to common rust. The analysis was
conducted on three biparental DH populations with a shared susceptible
parent. How a direct transfer of a trained model between unrelated
populations would perform is unknown, but the modeling framework is
flexible and can be directly trained on genetically more diverse pop-
ulations. The combination of ANN with GEBVs showed good perfor-
mance in our example and ANN methods have several parameters that
can be fine-tuned. This property provides opportunities for fine-tuning
but also poses the thread to overfit training data. Identifying the right
set of parameters may not be obvious.

5. Conclusion

Our study i) emphasizes the ‘phenomic approach’ for experimental
trial evaluation by remote sensing, ii) underscores the role that genomic
data and Genomic Estimated Breeding Values (GEBVs) can play in
phenomic prediction, for instance by enhancing data precision, and
-although the linear ridge regression performed best- iii) suggests that
neural networks may be able to capitalize on increased accuracy to
improve results further when parameters are fine-tuned.

We employed a trained linear model as a ‘phenomic vegetation
index’ for out-of-training-set data, rather than relying on a specific
vegetation index. We demonstrated that a linear ordinary least squares
regression using five basic wavelengths as predictor variables (BT-OLS)
yielded results comparable to those of the top-performing vegetation
index, G. Furthermore, our results suggest that incorporating all avail-
able traits into a linear ridge regression model (AT-RR), an artificial
neural network (AT-ANN) or other non-linear methods may provide an
advantage over using a single vegetation index. A phenomic approach
may in particular be relevant when the effectiveness of different vege-
tation indices varies between experiments, and the integration of all
available data may therefore offer a more robust solution than relying on
a specific vegetation index.

The enhancement of GWAS results was particularly evident when
using GEBVs of the traits instead of phenotypic data. This improvement
was systematic and especially visible for both single-trait approaches
based on the visual score (VS) or the vegetation index G for which the
GWAS signals were enhanced for each of the six population-by-year
combinations when their GEBV was used. Moreover, phenomic pre-
dictions based on GEBVs also led to clearer signals in GWAS analyses,
especially in the context of the ridge regression and the artificial neural
network. The combination of these methods with GEBVs led to models
that identified (almost) the same loci as vegetation index G, but with an
increased power. The downside of the ANN is the number of parameters
which can be fine-tuned, which again provides flexibility but also po-
tential for overfitting training data. The latter may also have been the
main problem for the GBRT approach.

Using GEBVs of traits in a phenomic prediction context may be a
valuable path to harness the potential of available data. Moreover,
future studies could benefit from incorporating the temporal develop-
ment of phenomic data (as done by DeSalvio et al. [20]) to capture
disease progression dynamics, potentially increasing the biological
signal and prediction stability. Finally, for ANN, the setup for model
training including the loss function should be considered to explore
possibilities to focus on an increase in predictive ability or genetic
signal. All data used in this study are publicly available, and we
encourage other researchers to retrain or test alternative models on the
same datasets.
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