
1Scientific Data |         (2025) 12:1858  | https://doi.org/10.1038/s41597-025-06119-w

www.nature.com/scientificdata

Comparative transcriptomic 
profiling of field-grown cassava 
genotypes across season 
transitions
Mariam Webber-Birungi1, Joseph Enye Iboyi1,5, Erik Alexandersson2,6, Andreas Gisel1,3 ✉  
& Livia Stavolone   1,4 ✉

Cassava (Manihot esculenta, Crantz) is a perennial crop cultivated in tropical and subtropical areas. In 
its cultivation cycle, it encounters environmental stresses related to changes in temperature and water 
fluctuations during seasonal transitions. We profiled the transcriptomes of four field-grown genotypes 
to investigate the molecular basis of adaptation to season transitions. 3’mRNA-seq libraries were 
prepared from samples collected from storage roots to capture gene expression changes associated 
with shifts from rainy to dry and dry to rainy seasons. Reproducibility and variability within the dataset 
were evaluated using correlation analysis and principal component analysis, providing confidence in 
data quality and consistency across samples. The usability of these data was proved by differential 
expression analysis during the rainy-to-dry and dry-to-rainy transitions, and by functional enrichment 
analysis. The detailed information of the experimental environmental conditions and of the workflow 
from planting to final DEGs analysis provided, make this dataset a useful resource for future research on 
plant responses to environmental fluctuations and to identify candidate genes for crop improvement 
strategies for climate-resilient varieties.

Background & Summary
Cassava (Manihot esculenta, Crantz), a crucial crop in tropical and subtropical regions, is the third most impor-
tant source of calories in the tropics, providing a reliable carbohydrate source for hundreds of millions of people 
worldwide1. Its global production exceeds 300 million metric tons annually, with the majority cultivated in 
Africa, Asia, and Latin America2,3.

Cassava’s global significance stems from its remarkable adaptability to diverse environmental conditions. 
This resilient crop thrives in diverse climate conditions, from humid tropics to arid and semi-arid regions. Its 
resilience to challenging growing conditions, including poor soils, pests, and diseases, supports its role as a 
dependable crop for smallholder farmers in areas with limited access to modern agricultural inputs4. These 
capabilities become increasingly crucial as agriculture confronts escalating challenges due to climate change, 
where rising temperatures and more frequent extreme weather events threaten crop productivity worldwide5.

As a tropical root crop cultivated in an annual cycle, cassava experiences distinct seasonal transitions, from 
rainy to dry periods and back to rainy conditions, each imposing unique biotic and abiotic stresses that impact 
its growth, physiology, and overall resilience6. During rainy seasons, cassava benefits from ample moisture, pro-
moting nutrient uptake and growth7. However, the dry season brings reduced soil moisture, increased temper-
atures, and solar radiation, inducing drought-like conditions that challenge cassava’s physiological and cellular 
mechanisms8. To withstand these seasonal shifts, cassava activates a variety of adaptive responses, including 
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reducing leaf area, changing stomatal conductance to conserve water, modifying root architecture to enhance 
water uptake, and altering gene expression to regulate stress-responsive proteins9–11.

Investigating the transcriptomic changes associated with these seasonal patterns is critical for understanding 
the mechanisms underlying cassava’s resilience, with general implications for crop improvement under fluctu-
ating climate conditions. While previous studies have considered cassava’s drought responses under controlled 

Fig. 1  Weather parameters and cassava agronomical trait trends across seasonal transitions. (a) Weekly average 
of daily measurements of weather parameter: temperature (°C), relative humidity (%), solar radiation (MJ/m²), 
and evaporation (mm). Alongside box plots summarizing these averages. The rainfall graph (mm) indicates the 
cumulative rain per week. (b) Trends of agronomical traits, including fresh storage root mass (FSRM, kg), plant 
height (PH, cm), leaf area (LA, mm²), shoot mass (kg), and dry matter content (DM, %) across the seasonal 
transitions. Data represent the average of 12 replicate for each time point and each of the four genotypes 
(TMEB419, TMEB693, TMS30572, TMS980581). WAP, week after planting. Arrows indicate key sampling 
points at 16 WAP (R1, Rain1), 25 WAP, (D1, Dry), 41 WAP, (R2, Rain2), and 52 WAP, (R3, Rain3).
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conditions, understanding its adaptation to natural seasonal transitions remains limited. Controlled environ-
ments often fail to capture the complexity of field environments, where multiple stressors interact dynamically.

Based on this foundation, this study adopts a broader approach by profiling transcriptomes of field-grown 
cassava across natural seasonal transitions within a single growing season. We applied 3’mRNA Illumina 
sequencing, reducing sequencing depth and costs and allowing accurate quantification of gene expression. The 
depth and quality of obtained data confirms and encourages the use of such technology for comparative tran-
scriptome analysis.

The discovery of shared gene expression patterns across four cassava genotypes, with diverse growth habits, 
disease resistance, and yield performance (Table S1), indicates common adaptive strategies to seasonal environ-
mental changes, providing broadly applicable insights into its molecular responses useful for breeders and bio-
technologists. Linking transcription factors to their target genes further validates the dataset. Unlike controlled 
studies, this field-based approach moves beyond controlled stress conditions, offering a dynamic perspective on 
cassava’s natural adaptation to environmental changes.

Methods
Plant materials and experimental conditions.  For this study, four cassava genotypes, TMEB419, 
TMEB693, TMS-IBA30572, and TMS-IBA980581 (Table S1), were cultivated in the field, in a randomized com-
plete block design, at IITA Forest Reserve, Westbank (7.4907080 N, 3.8838490 E). Their growth parameters: plant 
height (PH), leaf area (LA), fresh shoot mass (FSM), fresh storage root mass (FSRM), and dry matter (DM), 
were monitored bi-weekly for the first 3 months (until bulking of storage roots) and then monthly during sea-
sonal transitions (Growth parameters). Daily weather monitored at the IITA weather station throughout the 
growing season characterized the environmental conditions experienced by the crop and defined the seasonal 
transitions (Weather data). These sub-tropical seasonal transitions, from the first rainy season to the following 
dry season and to the second rainy season, coincide with pronounced variations in environmental conditions, 
including temperature, rainfall, solar radiation, evaporation, and relative humidity that can shape transcriptional 
reprogramming can shape transcriptional reprogramming, and were, therefore, monitored throughout the field 
experiment (Fig. 1a).

To expand the possibility to use these transcriptomic data in future analysis, we also measured agronomical 
traits indicative of cassava’s physiological and developmental responses to seasonal transitions. (Fig. 1b).

RNA extraction and sequencing.  For transcriptomic analysis, storage root of the four field-grown gen-
otypes were sampled in triplicate at four time points: R1, 16 WAP during Rain1; D1, 25 WAP during Dry, R2, 41 
WAP at start of the Rain2, and R3, at 52 WAP during the second rains (Fig. 1).

Destructive samples comprised a mixture of three different roots for each plant replicate. Total RNA was 
extracted from storage root tissue of the four above-mentioned genotypes (3 independent biological replicates 
per genotype) by combining cetyltrimethylammonium bromide (CTAB)-extraction method and spin-column 
based purification12. The purified RNA was resuspended in RNase-free water, and RNA quality was prelimi-
narily assessed using a NANODROP 8000 spectrophotometer (Thermo Scientific, Waltham, MA USA). RNA 
samples with OD260/280 and OD260/230 values ranging between 1.9 and 2.2 were selected for further analysis. 
The RNA integrity was then assessed by gel electrophoresis using 1.2% agarose gel with 1 × Tris/Borate/EDTA 
buffer (Sigma-Aldrich, St. Louis, MO, USA), at 80 V for 40 minutes. Based on this analysis, samples were selected 
for 3’mRNA-Seq library preparation according to the manufacturer’s protocol (Quant Seq, Lexogene, Vienna, 
Austria). Sequencing was performed on an Illumina NextSeq 500 platform, generating 75-bp single-end reads.

RNAseq processing, quality control, and mapping.  Raw reads were mapped against the reference 
genome of Manihot esculenta v8.0 in Phytozome13 using the splicing site-sensitive mapping tool STAR v.2.4.1c 
and STAR index, including the corresponding GFF annotation file. STAR parameters were set to eliminate 
low-quality mappings and include: i) only reads aligning with matching read fragments longer than 50% of the 
full read length, ii) only matching read fragments with less than 4 mismatches (6% of the total read length and iii) 
only alignments with a score higher than 66% of the full length.

Pre-processing and quantification of transcripts.  An in-house-developed Perl script (https://github.
com/gisels4/3primeTag/) was used to parse the STAR mapping file and create clusters of overlapping read hits. 
The number of reads in each cluster was counted, reflecting the expression level for each gene (cluster). Within 
each cluster, the script searched for reads with a polyA tail that had been soft clipped by the STAR aligner. The 
poly A tail is an indication that the cluster indeed represents the end of a transcript. However, we expect that some 
clusters, although representing a transcript, is missing reads with a poly A tail. Therefore, the script compares the 
biological replicates and selects only clusters with at least two poly A tails containing reads and at least one cluster 
within the three biological replicates should contain these two reads with a poly A tail. The output of this script 
was a count matrix for each annotated gene across all samples and replicates.

Normalization of gene expression data.  Gene-level read counts were analyzed using R v4.4.1 and the 
DESeq 2 package v1.44.014. Raw count matrices were first filtered to exclude low-expression genes (defined as 
having <5 counts in fewer than 3 samples) to reduce noise and improve statistical power. Filtered counts were 
then normalized using DESeq 2’s median-of-ratios method, which corrects for sequencing depth and composi-
tional differences across libraries by estimating size factors per sample15. To stabilize variance across a wide range 
of mean expression values, we applied DESeq 2’s variance-stabilizing transformation (VST). The VST approach 
mitigates the heteroscedasticity inherent in count data, producing a log2-like transformed matrix appropriate 
for unsupervised analyses14. This transformed matrix was used for all downstream clustering, dimensionality 
reduction, and correlation analyses.
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Principle component analysis.  Unsupervised principal component analysis (PCA) was performed using 
base R on the VST-transformed expression matrix, with centering and scaling enabled. The first two princi-
pal components (PC1 and PC2) captured 68.7% and 4.3% of the total variance, respectively. These components 
effectively separated samples according to genotype and physiological condition, reflecting dominant biological 
signals. To interrogate treatment-specific transcriptional shifts, separate PCA analyses were conducted on sample 
subsets (e.g., rain-to-dry and dry-to-rain comparisons), highlighting condition-dependent expression patterns.

Sample correlation and clustering.  Sample-level consistency was assessed through Pearson correlation 
analysis of all pairwise sample comparisons using the VST data. Correlation matrices were visualized using the 
pheatmap package v1.0.1216, with hierarchical clustering applied to both rows and columns. Sample annota-
tions by genotype and treatment were overlaid to validate grouping structure. The observed clustering confirmed 
strong within-group correlations and reproducibility of biological replicates. No technical outliers were detected.

Differential expression analysis.  Gene expression data from three biological replicates per genotype at 
each time point (R1, D1, R2) were analyzed using DESeq 214. Comparisons were made across seasonal transitions 
(R1 vs D1 and D1 vs R2) and among genotypes. Genes with a log2 fold change (LFC) greater than 0.5 or less than 
−0.5 and a false discovery rate (FDR) < 5% were designated as significantly differentially expressed genes (DEG).

Functional annotation of genes.  Gene sets of shared DEG were annotated using the Database for 
Annotation Visualization and Integrated Discovery (DAVID)17,18 with Ensembl gene IDs as input (Gene anno-
tation). Genes labeled as “unknown” were mapped by extracting unspliced transcript sequences from the 
Manihot esculenta version 8.0 genome using the BioMart (Phytozome). The sequences were queried using the 
PlantRegMap ID mapping tool19,20, leveraging reciprocal best hits (RBHs) to link query sequences with annotated 
IDs. For uncharacterized genes, transcription factor (TF) prediction, TF target identification, and cis-regulatory 
element analysis were performed to explore potential functional roles.

Gene ontology and pathway enrichment analysis.  Gene ontology (GO) enrichment analysis was con-
ducted using the PlantRegMap GO enrichment tool, incorporating annotations from TAIR 10, UniProt-GOA, 
InterProScan, and RBHs with. Manihot esculenta genes as background set. Significant GO terms were iden-
tified using Fisher’s exact test in TopGO (p-value ≤ 0.05; GO terms). Pathway enrichment analysis of shared 
DEGs (intersecting all genotypes per transition) was performed using ShinyGO V0.7721. Genes were queried 

Fig. 2  Quality assessment and exploratory analysis of RNA-seq data. (a) Box plots of variance-stabilized 
transformed (VST) expression values across all expressed genes for each RNA-seq sample. Boxes represent 
the interquartile range (IQR), with the central line indicating the median. Samples are grouped by genotype 
and condition, demonstrating consistent normalization, minimal technical variability, and absence of extreme 
outliers, supporting data quality and comparability for downstream analyses. (b) Principal component analysis 
(PCA) plots based on VST-normalized counts. Left panel: PC1 (68.7% variance) versus PC2 (4.3%), capturing 
major variance and separating samples by genotype and condition and demonstrating the low variability 
between biological replicates. (c) Heatmap of pairwise Pearson correlations between samples, computed from 
VST-normalized gene expression. Color scale ranges from low (blue) to high (red) correlation. High intra-group 
correlations and distinct inter-group patterns confirm replicate consistency and transcriptional divergence 
driven by genotype and condition.
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against the PlantGSAD database22 which integrates KEGG pathways including cellular and viral pathways23,24  
(KEGG pathways).

Genes re-regulation analysis.  DEG that were common across all genotypes (shared DEG) in both transi-
tions were analyzed for re-regulation. A gene was considered re-regulated if it met one of the following criteria: 
(i) it was a sigDEG in one transition (log2 fold change ≥ 0.5, FDR < 5%) but not in the other, or (ii) its expression 
pattern was reversed between transitions (i.e., shifting from upregulation to downregulation or vice versa).

Transcription factors identification and enrichment.  TFs were predicted from input nucleic acid 
sequences of shared gene sets using PlantTFDB v5.0, following established family assignment rules19,25. Briefly, 
input sequences were first processed with EST Scan 3.0 to identify coding regions (CDS) and they were then 
translated into proteins sequences. TF families were assigned based on the best hit in Arabidopsis thaliana. 
Enrichment analysis was performed using PlantRegMap20, which integrates data from literature, ChiP-seq exper-
iments, and motifs-binding analyses. Fisher’s exact test was used to assess significant enrichment of TF families 
among target genes at p-value ≤ 0.05.

Technical Validation
Quality control.  We sequenced, on average, 13.6 million 3’mRNA-Seq reads per sample, generated a total of 
49.86 Gb across 48 libraries from four cassava genotypes (TMEB419, TMEB693, TMS30572, TMS980581) sam-
pled at four seasonal transition time points (R1, D1, R2, R3), sequencing yielded between ~7.7 and 24.8 million 
reads per library. Read quality exceeded a score per position of 28 for nearly all libraries (except one sample), with 
average scores between 28–35.

Mapping quality.  66.5–94.4% (average 86.6%) mapped uniquely to the Manihot esculenta version 8.0 ref-
erence genome, with a mean mapped read length of ~70 nt (from 76 bp raw reads), a per base mismatch rate 
of 0.9–1.3%, and 4.8–16.8% mapping to multiple loci. These values indicate good mapping quality and dataset 
reliability. Consistent expression distribution among replicates further supported data quality (Fig. 2a). Summary 
statistics by genotype and time point are shown in Table 1, with full replicate level details in Supplementary 
Fig S2. PCA of full variance-stabilized expression matrix showed a clear structure, with PC1 and PC2 explaining 
68.7% and 4.3% of the total variance, respectively (Fig. 2b). A complementary heatmap supports the PCA results, 
demonstrating reproducible biological signal across replicates and grouping patterns consistent with experimen-
tal design (Fig. 2c).

Stress-responsive gene dataset.  To confirm the relevance and usability of our dataset, differential expres-
sion analysis across seasonal transitions identified extensive transcriptional reprogramming across all genotypes 
during seasonal transitions as visualised in the heatmaps, the percent proportion of the up- and down-regulated 
genes, and the UpSet plot matrices of unique and shared genes between genotypes (Fig. 3). During R1-D1, 1,837 
DEG were identified, of which 52–60% were downregulated (Table 2). In D1-R2, 830 DEG were found, with 
45–51% upregulated. These DEG included well-characterized stress-responsive genes, such as aquaporin PIP2-1 
(reduced water loss), osmotic-like proteins (osmotic balance), chaperone protein dnaJ, (protein stabilization), and 
galacturonosyltransferase 8 (GAUT8), essential for cell wall remodeling. We further identified 26 re-regulated 

Genotype Time point Samples (n) Input reads (million) Uniquely mapped (%) Multi-mapped (%) Avg. mapped length (nt) Mismatch rate (%)

TMEB419

R1 3 9.5–14.9 (mean 11.7) 81.9–92.6 (mean 87.9) 5.8–9.1 (mean 7.6) 69.2–71.7 1.14–1.26

D1 3 13.1–22.5 (mean 18.0) 81.8–87.5 (mean 83.8) 7.9–9.5 (mean 8.8) 68.5–69.8 1.26–1.32

R2 3 10.4–12.8 (mean 11.9) 79.9–86.9 (mean 84.1) 9.4–15.7 (mean 12.3) 66.5–69.5 1.07–1.15

R3 3 7.8–12.7 (mean 9.8) 77.3–88.9 (mean 81.9) 9.1–15.6 (mean 13.4) 65.5–69.8 1.04–1.21

TMEB693

R1 3 11.3–24.8 (mean 16.6) 85.7–87.3 (mean 86.7) 8.3–8.6 (mean 8.4) 70.0–70.6 1.16–1.18

D1 3 8.4–14.2 (mean 11.7) 66.5–91.1 (mean 80.1) 6.1–9.2 (mean 7.8) 67.0–69.6 1.18–1.32

R2 3 10.3–15.2 (mean 13.1) 75.1–94.4 (mean 85.3) 5.1–16.8 (mean 10.7) 66.1–71.6 0.92–1.18

R3 3 9.1–10.0 (mean 9.6) 80.5–89.1 (mean 85.7) 8.9–15.3 (mean 11.4) 66.7–69.6 1.03–1.12

TMS980581

R1 3 11.4–19.6 (mean 15.0) 84.1–91.8 (mean 87.7) 6.4–8.9 (mean 7.9) 69.4–71.4 1.11–1.23

D1 3 13.3–17.6 (mean 16.1) 85.9–89.5 (mean 88.0) 7.0–8.2 (mean 7.6) 69.9–70.9 1.14–1.21

R2 3 10.0–15.7 (mean 12.9) 85.7–94.4 (mean 89.7) 4.8–10.4 (mean 7.7) 69.1–72.3 0.98–1.02

R3 3 10.9–11.7 (mean 11.2) 89.8–91.1 (mean 90.5) 7.2–8.2 (mean 7.6) 69.8–71.0 1.02–1.03

TMS30572

R1 3 18.9–22.2 (mean 20.3) 87.6–89.9 (mean 88.9) 7.3–7.9 (mean 7.6) 70.7–70.9 1.23–1.28

D1 3 11.0–23.9 (mean 17.6) 81.4–90.0 (mean 86.8) 6.9–7.7 (mean 7.4) 69.9–70.5 1.25–1.27

R2 3 9.4–12.1 (mean 10.8) 89.1–92.8 (mean 90.9) 5.4–7.6 (mean 6.7) 69.9–72.0 1.07–1.20

R3 3 10.0–15.2 (mean 12.4) 88.8–90.4 (mean 89.8) 8.0 (consistent) 70.1–70.2 1.09–1.12

Table 1.  Summary of sequencing and mapping statistics. RNA-seq libraries (n = 48) from four cassava 
genotypes (TMEB419, TMEB693, TMS980581, and TMS30572) sampled during four seasonal time points  
(R1, D1, R2, and R3). Values represent the range and mean across three biological replicates per 
genotype × time point. Shown are input reads (in millions), uniquely mapped reads (%), multi-mapped reads 
(%), average mapped read length (nt), and per-base mismatch rate (%).
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genes that returned to baseline expression with the return of the rain season (D1-R2) after stress removal con-
sistent with transcriptional resetting during rehydration (Fig. 3d). Their dynamic expression aligns with known 
stress-recovery mechanisms, confirming the dataset’s utility for studying transcriptional resetting. Enrichment 
analysis confirmed the involvement of GO and the KEGG pathways associated with abiotic stress and recovery 
during seasonal transitions (Fig. 3e, f). TF family enrichment revealed both shared (HSF, TCP, bZIP, MYB, Dof) 
as well as transition specific regulators such as bZIP, BES1, and HD-ZIP in R1D1, and AP2, ARF, and NAC in 
D1-R2, suggesting seasonal-specific regulatory roles (Fig. 3g).

Our dataset analysis reveals a dynamic blueprint of cassava molecular resilience and can be useful for the 
study of stress response to climate changes. This stress response comprises a cascade of fundamental elements, 
including the perception of stress, signal transduction, activation of stress responses or gene regulation/alter-
ation, and subsequent adaptation/acclimation that we have summarized in Supplementary Fig. S1 to facilitate 
further use of the dataset. Finally, we provide a table of genes and pathways to be considered as potential action-
able targets for drought mitigation and recovery strategies (Actionable targets). Experimental validation of these 
key genes and pathways, combined with field-based studies, will be crucial for translating these into strategies 
for breeding climate-resilient cassava varieties.

Fig. 3  Gene dataset functional validation (a) Percentage proportions of the up- (blue) and down- (brown) 
regulated genes, and in-set the proportion range among genotypes. (b) UpSet plot matrices showing unique 
genes (single dot) and shared genes (linked dots) within genotypes. Color bars on a scale next to plots indicate 
gene set size. (c) Hierarchically clustered heatmaps per genotype for all sigDEGs revealing up- (blue) and down- 
(brown) regulated gene expression differences in R1 vs D1, and D1 vs R2 comparisons. (d) Shared genes that 
were differentially expressed in genotypes below or above the threshold (logFC 0.44, FDR = 5%) and changed to 
above or below the threshold in the subsequent transition comparison were considered relatively re-regulated 
(heatmap scale = Log2 Fold Change). (e) Enriched GO terms and KEGG pathways in shared genes R1-D1 
downregulated (left) and R1-D1 upregulated (right). (f) Enriched GO terms and KEGG pathways in shared 
genes D1-R2 downregulated (left) and D1-R2 upregulated (right). (g) Target TF families and percentage (%) 
proportion of predicted targets in shared SigDEGs of R1-D1 (Orange) and D1-R2 (Grey) transitions.
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Data Records
High-throughput sequencing data supporting this study’s findings have been deposited at ENA European 
Nucleotide Archive26.

In addition, plant growth parameters, weather data, gene annotations, GO terms, KEGG pathways, tran-
scription factors (TF) targets, and actionable target genes are uploaded to Zenodo27 (https://doi.org/10.5281/
zenodo.15545011).

Data availability
High-throughput sequencing data supporting this study’s is accessible without restriction in the ENA European 
Nucleotide Archive under the following link: https://identifiers.org/ena.embl:PRJEB79515 (2024). All metadata 
datasheets: plant growth parameters, weather data, gene annotations, GO terms, KEGG pathways, transcription 
factors (TF) targets, and actionable target genes are accessible in the Zenodo repository under the following link: 
(https://doi.org/10.5281/zenodo.15545011).

Code availability
Software and their versions used for RNA-seq analysis were described in Methods. Custom codes are available at 
https://github.com/gisels4/3primeTag.
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