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elLife Assessment

This study makes a novel and valuable contribution by adapting step selection functions, tradition-
ally used in animal ecology, to explore human movement and environmental risk exposure in urban
slums, offering a promising framework for spatial epidemiology, particularly regarding leptospirosis.
The integration of GPS telemetry with environmental data and the stratification by gender and
serostatus are notable strengths that enhance the study's relevance for public health applications.
The strength of evidence is compelling.

Abstract

Background: Human movement plays a critical role in the transmission of infectious diseases, espe-
cially those with environmental drivers like leptospirosis—a zoonotic bacterial infection linked to
mud and water contact. Using GPS loggers, we collected detailed telemetry data to understand
how fine-scale movements can be analysed in the context of an infectious disease.

Methods: We recruited individuals living in urban slums in Salvador, Brazil, to analyse how they
interact with environmental risk factors such as domestic rubbish piles, open sewers, and a local
stream. We aimed to identify differences in movement patterns inside the study areas by gender,
age, and leptospirosis serological status. Step selection functions, a spatio-temporal model used in
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animal movement ecology, estimated selection coefficients to represent the likelihood of movement
toward specific environmental factors.

Results: With 128 participants wearing GPS devices for 24-48 hr, recording locations every 35 s
during active daytime hours, we segmented movements into morning, midday, afternoon, and
evening. Our results suggested women moved closer to the central stream and farther from open
sewers compared to men, while serologically positive individuals avoided open sewers.
Conclusions: This study introduces a novel method for analysing human telemetry data in infectious
disease research.

Funding: Funding provided by Wellcome Trust, UK Medical Research Council, Brazilian National
Research Council, Reckitt Global Hygiene Institute, and National Institute of Allergy and Infectious
Diseases.

Introduction

GPS loggers are a growing tool for capturing both human and animal movements (Owers et al., 2018;
Fornace et al., 2019). These small devices can be worn by individuals and record locations at regular
preset time intervals. Compared to other methods of collecting human movements, such as cell tower
traffic or Google Location History which are suited for analysing large-scale mobility (Kraemer et al.,
2020, Moncayo-Unda et al., 2023), these devices can capture very fine-scale movements. These data
are crucial in quantifying exposure within complex environments, where terrain can change rapidly.
Furthermore, movements recorded by GPS loggers can be assigned to specific individuals. This allows
linkage between individual socio-demographic factors and the data collected, especially convenient
when performing epidemiological analyses. Other methods for measuring human mobility are inher-
ently anonymous and do not allow this connection to be made. An important challenge when using
GPS loggers is that they rely on individual compliance for carrying the device at all times, an issue
which is overcome by the other methods mentioned above.

The analysis of human telemetry data is an emerging field of research in epidemiology. Whilst
previous methods have advanced this area of research, improvements could be made. For example,
the methods used by Owers et al., 2018, to assess the relationship between urban slum residents’
movements and the risk of leptospirosis infection were able to analyse differences between genders,
but did not consider other important socio-demographic factors. In another study, Fornace et al.,
2019, used GPS loggers to assess human exposure to mosquito vectors of Plasmodium knowlesi
malaria and environmental factors associated with this. Various individual-level factors were included
in the analyses performed in this paper, questioning how these could affect participants’ movements.
However, by not including comparisons of possible choices an individual could have made, this study
could not determine how the environment may have influenced movement.

Leptospirosis is a zoonotic bacterial infectious disease with strong environmental drivers. It has
been estimated to cause over 1 million yearly human cases worldwide, leading to 58,900 deaths
(Costa et al., 2015). Rats are the main reservoir of the disease, shedding bacteria in their urine (Adler
and de la Pefia Moctezuma, 2010). Human infection is associated with exposure to contaminated
waters and soils (Adler and de la Pefia Moctezuma, 2010; Johnson et al., 2024; Reis et al., 2008).
Evidence shows that in urban slum settings, men have a higher infection risk than women (Hagan
et al., 2016). This has been attributed to differences in behaviours, especially in how individuals move
through their communities, rather than biological differences. Indeed, there is evidence that men tend
to visit much larger areas during their daily journeys than women (Owers et al., 2018).

Exactly where people are most exposed to high leptospirosis contamination, and therefore where
infection is most likely to occur, has not been investigated. Previous studies have focused on the
assessment of the peri-domiciliary environment and its associations to infection risk (Johnson et al.,
2024, Reis et al., 2008; Hagan et al., 2016). However, these analyses assume people are mostly
exposed to infection risk in this area and ignore the exposure that individuals may incur when they
move further away from their households. Furthermore, people’s movement patterns may differ
depending on individual socio-demographic factors which could in turn affect their risk of exposure.
If individuals traverse highly contaminated areas where the risk of exposure is heightened, it can
lead to an increased risk of infection. This is particularly important in environmentally heterogeneous
areas, such as urban slums, where the landscape can change drastically in small spaces. Technological
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elLife digest Leptospirosis is a disease caused by Leptospira bacteria and can be transmitted to
humans from other animals. It spreads through the urine of infected animals and can infect individuals
who come into contact with contaminated water or soil.

Previous research indicates that in urban slum settings, men face a higher risk of infection than
women, which is believed to result from differences in behavior and access to certain locations rather
than biological factors. However, data on human movement is typically gathered using mobile data
or Google Location History, which often lack detailed information needed to understand movement
and behavior at a more refined scale.

GPS loggers are a growing tool for tracking animal movement. These small devices can be worn
by individuals and record locations at regular preset time intervals, providing a much more detailed
picture than conventional methods. Ruiz Cuenca et al. sought to determine if it was possible to analyze
people’s movement through their neighborhoods by adapting existing methods used in ecology.

For the movement analysis study, the researchers recruited adults who had been living in one of
the study areas in Salvador, Brazil, for at least 6 months. People were tested for potential Leptospira
infection and were asked to wear GPS loggers for continuous periods of up to 48 hours between
March and November 2022. The GPS loggers recorded their location every 35 seconds.

A target of 30 people per study area was chosen, balanced by gender and blind to their infec-
tion status. The analysis further focused on three environmental settings: community stream, open
sewers and domestic rubbish piles. Ruiz Cuenca et al. used Step Selection Functions (SSFs), a rela-
tively new model for studying the resource selection of animals moving through a landscape. The
model compares the environmental attributes of observed steps with alternative random steps taken
from the same starting point.

The analyses indicate that step selection functions can be adapted to study how people travel
through their neighborhoods. Although the methods used are still novel and results are not conclusive,
no apparent difference in movement could be found between infection statuses or ages concerning
the distances to stream, open sewer points or domestic rubbish piles. However, women tended to
move closer to the central stream and farther from open sewer points than men, suggesting that
women may avoid open sewers due to perceived risks, while men may not share these perceptions.
Moreover, infected individuals were more likely to move outside the buffer zone for open sewers
compared to non-infected individuals.

Leptospirosis is strongly linked to human dwellings, and living near an open sewer may increase
the risk of getting infected. A better understanding of how the movement of individuals could affect
their risk of infection may enable the implementation of appropriate measures to reduce infection risk.
However, further research is needed to fully understand where infections are happening, for example,
by increasing the number of people participating in a study and evaluating perceived infection risks.

advances now allow us to record and analyse fine-scale movements to understand how these may
affect infection risk.

In this paper, we developed a modelling framework to understand how telemetry data can be used
to identify and quantify determinants of human movements, adapting methods from animal movement
ecology. We present a novel method for analysing telemetry data to estimate environmental selection
as individuals move through their urban communities. This method is applied in a low-income urban
setting in Salvador, Brazil, and is used to examine how individuals interact with various key points in
their surrounding environment. Furthermore, we analyse if there are any differences in movements
inside the study areas between genders, ages, and leptospirosis serological status. This method of
analysis overcomes limitations from other studies by, firstly, specifically modelling choice of movement
in relation to environmental factors and, secondly, incorporating multiple socio-demographic factors
which allows regression relationships to be jointly adjusted for these.
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Figure 1. Map showing location of each study area in Salvador. Each area includes symbology for stream (blue line), open sewer points (purple
diamond), and domestic rubbish piles (orange triangle).

Methods

ICMJE guidelines have been followed and a STROBE checklist is included with the manuscript as a
supplementary material.

Study areas

This study was nested in a prospective cohort study taking place across Salvador, Brazil (Cremo-
nese et al., 2023). Salvador is the third largest city in Brazil, located in the north-eastern region of
the country and has a tropical climate. The study areas are considered urban slums (locally called
‘favelas’). They were selected for a number of reasons: firstly, they all have similar demographic and
socio-economic factors within their populations; secondly, they all have a stream running through the
centre of the community, which is considered contaminated; and thirdly, there is a high burden of
leptospirosis in these populations.

All four study areas are small, with an approximate size of 0.03 km?. They are located across the
outskirts of Salvador (Figure 1). The communities have very heterogeneous environments, with rapid
changes in both land cover and slope. Buildings in these communities have been built with limited or
no urban planning. They can be of varying quality, ranging from gated areas with multiple dwellings
protected from rain and flooding to single brick buildings with informal entryways.

Individual characteristics

The eligibility criteria for inclusion in the study were: individuals who (1) had been living at one of the
study areas for at least 6 months, (2) slept there at least 3 nights a week, (3) were at least 18 years old,
and (4) gave written consent (Cremonese et al., 2023). Participants were asked to answer a baseline
survey which collected their demographic, social, and economic characteristics, including age and
gender. A blood sample was taken from each participant to determine serological evidence for Lepto-
spira infection using the microscopic agglutination test (MAT), the standard test used for leptospirosis
diagnosis (Adler and de la Pefia Moctezuma, 2010). In this analysis, a MAT showing antibodies with
a titre >1:50 against any Leptospira serovar was considered a positive result. Further details about the
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laboratory work carried out are available in Appendix 1. The location of their household was recorded
and georeferenced by the research team.

Participants who were already enrolled in the cohort study were recruited to take part in the move-
ment analysis study. At the time of recruitment, we found no published scientific studies detailing
how to perform sample size calculations for research using GPS data in humans. Therefore, we opted
to use convenience sampling instead. A target of 30 people per study area, balanced by gender and
blind to their serological status, was chosen for this study.

GPS data

Individuals who consented to take part in this study were asked to wear GPS loggers for continuous
periods of up to 48 hr, which could be repeated. The GPS loggers used were i-got U GT-600, set to
record their location every 35 s. We used the manufacturer’s software to programme the devices. Data
were collected between March and November 2022.

Once the GPS telemetry data was collected, participants’ recorded locations were cleaned so as
to retain only relocations within the study area boundaries that were recorded between 5 am and 9
pm. This period generally corresponds to an individual’s active hours. Interactions with environmental
factors outside of the study area boundaries could not be considered in the analysis because high-
resolution environmental data outside of the study areas was not available. Individuals with less than
50 relocations within the study area were excluded from the analysis to ensure good model conver-
gence. Details of these excluded individuals can be found in Appendix 1.

Environmental data

This analysis focused on three environmental factors: community stream, open sewers, and domestic
rubbish piles. The latter factor represented areas where rats were more likely to be found, whilst the
other factors represented risks of having close contact with Leptospira contaminated muds or waters.
The location of these different points of interest in the study area was mapped by trained research
teams.

These environmental factors were included in analyses in two ways: using distance rasters and
buffer rasters. A 1 m resolution raster was created for each environmental factor by calculating the
nearest distance for each pixel to the reference points. The buffer rasters, one for each factor, were
created using a 20 m buffer around each reference point. The size of this buffer was decided after
visiting the study areas and represented an area within which it could be considered a strong inter-
action with the point of interest. All pixels within this buffer were assigned a value of 1, whilst those
outside were given a value of 0. Buffers were used to understand the effect of the immediate vicinity

Environmental
factors
(distance rasters)

Individual
movements
(GPS data)

Individual
characteristics

Selection Population-level models
coefficients (linear regression)

Figure 2. Schematic diagram showing what data sources are used in which model, and how models are linked with each other. The blue sections
represent phase 1, the individual-level models, whilst the orange section represents phase 2, the population-level model.
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of each reference point on movement behaviours. Buffer rasters were also created for each individu-
al's household location, with a 10 m buffer around each location. This represented space within and
immediately outside each house. This buffer size accounted for the size of dwellings in these study
areas.

Movement analysis

The analysis was performed in two phases (Figure 2). Firstly, each individual's data was analysed
alongside the environmental factors. This phase created a set of parameters—called selection coef-
ficients—for each individual. These selection coefficients were specific to each of the environmental
factors. In the second phase, the selection coefficient for a particular environmental factor was anal-
ysed across the study population. This phase incorporated the individual characteristics for each
participant: gender, age, and Leptospira serological status. These phases are detailed below. All anal-
yses were carried out in R, version 4.2.1 (R Development Core Team, 2024) using tools from tidyverse
(Wickham, 2023). Specific movement analyses were carried out using package amt (Signer et al.,
2024).

Phase 1: Individual-level model

Drawing from the current methodological developments in animal movement ecology, we used step
selection functions to characterise individuals’ movement behaviours in relation to the environmental
factors described above. Step selection functions are a type of movement analysis method that falls
under the Resource Selection umbrella. They can also be classified as spatio-temporal point process
models (Fieberg et al., 2021). In these models, an individual’s location at time point i (y;) is condi-
tioned on the previous location it was in (u;_), the selection coefficients of the environment (3), and
the available space the individual could have travelled to (6).

[pilpi—1.B.0] = 8 (x (i) . 0)f (pilpi—1. . 0)
8

I
S8 (e (i) . B) f (i1, A, 0) dpe

tO

Figure 3. Descriptive diagram of step selection functions. (A) Step lengths (sl) and turning angles () are used to characterise an individual’s
movements. (B) These parameters are used to create a set of available steps (grey dots) for every used step (black dots).
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Step selection functions have two important components: the availability function (f(...)) and
the selection function (g ( . .)). The availability function defines the available space that an individual
could move inside of within a set of space and time constraints. The selection function specifies how
the individual responds to the environmental factors that are close to them when choosing their path,
creating a set of selection coefficients for each factor—or resource—included in the model. These
selection coefficients are specific to a given individual. This latter component is the focus of our anal-
ysis, whilst the former availability function was pre-defined using the empirical data.

The availability function was fitted separately to each recorded location. The step lengths and
turning angles between consecutive steps were used to parametrise movement characteristics for an
individual (Figure 3A). Using these characteristics, a group of available steps (Figure 3B, grey dots)
was created for each used step (Figure 3B, black dots). These represented locations that were consis-
tent with human movements that an individual could have travelled to but chose not to. A total of 100
available steps were created for each used step (Figure 3B).

Each individual’s telemetry data was analysed by time periods within daytime active hours. These
were periods of 4 hr, representing morning (05:00-09:00), midday (09:00-13:00), afternoon (13:00-
17:00), and evening (17:00-21:00) activities. Movements across the whole daytime period were also
analysed (05:00-21:00). This analysis was performed to examine the effects of circular journeys, when
people travel to and back from a same place using a very similar route. By looking at specific time
periods, we hoped to capture one-way journeys. As with the full-day analysis, any individuals with less
than 50 relocations within the period of analysis were removed from the models.

A conditional logistic regression was used to estimate the selection coefficients for each of the
environmental variables for a given individual. A separate model was used for each time period.

logit (p) = Bo + Bix1 + Baxa + B3x3 + Baxs + BsxsBexe + B1x7 + Bexs + Qstranum;

The model estimated the odds of a step being used compared to it being available and unused
(p), with a logit transformation (logit (p)). The first three variables included in the model (x; — x3)
represented the different environmental factors (central stream, open sewers, and domestic rubbish
piles) and their corresponding selection coefficients (3; — /33). Distance rasters and buffer rasters were
included in separate models. The household buffer rasters were included in the next variable (x4).
The following three variables (x5 — x7) represent the movement characteristics of the individual: the
step length (s), the natural logarithm of the step lengths (log (s)), and the cosine of the turning angle
(cos (0)). These are the same movement characteristics used to create the set of available steps. The
final variable included (xg) was the hour within which each step was recorded. The model was stratified
by each used step (asramm;), Where j represents each used step and its associated available steps. This
model estimates a selection coefficient for each of the environmental factors of interest, conditioned
on all other environmental factors, the individual’'s household location, the individual's movement
characteristics, and the hour of the day. These selection coefficients can be interpreted as the likeli-
hood of moving into a specific environmental condition whilst keeping other environmental factors,
movement characteristics, and hour of the day constant. For distance rasters, the selection coefficient
represents odds of moving further away from the reference point. For buffer rasters, it represents the
odds of moving inside of the 20 m buffer of each reference point.

Phase 2: Population-level model

To assess movement differences between individual characteristics, a population-level linear regres-
sion model was used. Separate models were created for each of the three environmental factors,
using their corresponding selection coefficients as the outcome, and for each time period (whole
daytime period, morning, midday, afternoon, and evening). We used two main groups of models: (1)
those assessing differences between genders and ages, which were conditioned on both of these
variables and the study area; (2) those assessing differences between Leptospira antibody statuses,
which were conditioned on gender, age, and study area. The shared equation for each of the models
is defined as follows:

Bk =70 + Y1X1 + 72X2 + 3X3 + Y44 + Zk
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Table 1. Summary table comparing parent study participants and movement study participants.

Parent study participants Movement study participants
n=1086 %/mean n=128 %/mean
Study area
1—Nova Sussuarana 297 27.3% 32 25.0%
2—Arenoso 246 22.7% 28 21.9%
3—Jardim Santo Inacio 278 25.6% 35 27.3%
4—Calabetao 265 24.4% 33 25.7%
Gender
Female 454 41.8% 59 46.1%
Male 632 58.2% 69 53.9%
Age (mean=SD) 322 +19.7 394 +15.4
Leptospira antibody status
Positive 94 8.7% 13 10.2%
Negative 992 91.3% 115 89.8%

In these models, the outcome was the estimated selection coefficient (8) for each environmental
factor (k). The first two variables, x; and x;, represented gender (taking values O for male and 1 for
female) and age, used as a continuous variable. The third variable, x3, represented Leptospira anti-
body status, as a binary variable taking values 1 for a positive test and 0 otherwise. As mentioned
previously, a positive result was defined as a positive MAT result for any Leptospira serovar. The final
variable in the model, x4, represented the study area, included to adjust for any unmeasured differ-
ences between study areas. The error term, Z;, captured the residuals from the model, which also
accounted for any variation between individuals which was not measured, as well as the sampling
error inherent to the estimates of the selection coefficients. To account for variation in the standard
errors of the selection coefficients, the variance of Z, was defined as w;/7%, where wy is the estimated
variance of S which was used to account for the heterogeneity in the estimate of ;.

Results

Descriptive statistics

There were a total of 130 individuals who consented to take part in this movement study. Of these,
2 individuals were removed from further analysis due to not having sufficient relocations within the
study area boundaries during the 5 am to 9 pm period. They were both male, older than 50 and tested
negative for leptospirosis serology. The remaining 128 individuals represented 11.7% of the sample
population from the parent study (n=1086). Of the participants in the movement study, 59 (46.0%)
were female and their ages ranged from 18 to 83, with a median age of 38 and mean age of 39.5 (SD
= 15.5). There were 13 individuals (10.2%) who tested positive for Leptospira antibodies. Although
these proportions were very similar to those present in the larger sample population from the parent
study, the individuals in the movement analysis skewed female and older (Table 1).

The majority of individuals spent most of their recorded time during their active daytime hours
within their study area boundaries. The percentage of recorded time spent within the study area
boundaries ranged from 4% to 100%. The mean percentage was 80%, with a median of 91% and a
standard deviation of 25%. Females spent less time within the boundaries than men (females: mean
=76%, SD = 28%, males: mean = 83%, SD = 22%). Individuals who had antibodies against Leptospira
spent the same time within the study area boundaries as individuals with no antibodies (positive: mean
= 83%, SD = 26%; negative: mean = 80%, SD = 25%).

The maximum values for the different environmental distance rasters varied across the four study
areas. The maximum distance to open sewers was lowest in study area 3 and highest in study area
2 (1: 199 m; 2: 235 m; 3: 80 m; 4: 208 m). Similarly, the maximum distance to domestic rubbish piles
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Table 2. Proportion of tracked time (full-day period, 9 am to 5 pm) spent within each buffer.

Mean (standard deviation).

River buffer Open sewer buffer Domestic rubbish buffer
Total 0.54(0.33) 0.33(0.31) 0.07 (0.15)
Area 1—Nova Sussuarana 0.54 (0.29) 0.43(0.29) 0.15(0.18)
2—Arenoso 0.65 (0.25) 0.28 (0.29) 0.03(0.13)
3—Jardim Santo Inacio 0.36 (0.35) 0.41(0.37) 0.08 (0.18)
4—Calabetao 0.67 (0.31) 0.21 (0.28) 0.01(0.02)
Gender Female 0.56 (0.32) 0.37 (0.32) 0.07 (0.15)
Male 0.53(0.34) 0.30 (0.29) 0.06 (0.16)
Negative 0.55(0.33) 0.35(0.31) 0.07 (0.16)
Leptospirosis serological status Positive 0.48 (0.29) 0.25(0.30) 0.02 (0.05)

was lowest in study area 3 and highest in study area 2 (1: 214 m; 2: 363 m; 3: 153 m; 4: 247 m). These
differences are attributed to the number of open sewer points and domestic rubbish piles within each
study area. The maximum distance to the central stream was highest in study area 1 and lowest in
study area 3 (1: 217 m; 2: 209 m; 3: 94 m; 4: 172 m).

Similarly, the proportion of tracked time spent within the various environmental buffers varied
across characteristics. These can be found in Table 2. There were significant differences between
characteristics and within characteristics, represented by the high standard deviations. More detailed
descriptive statistics are available in Appendix 1.

Movement analysis
The results from the movement analysis are presented in the odds scale. A positive value represents
higher odds of moving towards an increasing value for each raster. As described previously, for
distance rasters, this is interpreted as moving further away from the point of reference (Table 3), whilst
for buffer rasters this is interpreted as moving into the 20 m buffer area for each point of reference
(Table 4).

We found no differences in how individuals moved with regard to the distance to the central stream
by age (OR: 1.00; 95% ClI: 1.00, 1.00; p=0.697) or Leptospira antibody status (OR: 0.99; 95% Cl: 0.96,

Table 3. Estimated differences (y) in selection coefficients (8) for each environmental factor using distance-based rasters.
Values >1 represent increasing distance from points of reference.

Community stream Open sewers Domestic rubbish piles
Estimate 95% Cl Estimate 95% Cl Estimate 95% Cl
Gender*
Male (Ref) - (Ref) - (Ref) -
Female 0.98 0.97,0.99 1.04 1.02, 1.06 0.99 0.98, 1.01
Age’
Per year increase 1.00 1.00, 1.00 1.00 1.00, 1.00 1.00 1.00, 1.00
Leptospira serological status *
Negative (Ref) - (Ref) - (Ref) -
Positive 0.99 0.96, 1.01 1.03 1.00, 1.07 1.00 0.98, 1.02

(Ref) is the referrence group for the Odds Ratio.

*Adjusted for age and study area.

TAdjusted for gender and study area. Values represent increases by 1 year of age.

fAdjusted for gender, age, and study area.
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Table 4. Estimated differences (y) in selection coefficients () for each environmental factor using 20 m buffers around each point of

reference.

Values>1 represent movement within the buffer zone for each point of reference.

Community stream Open sewers Domestic rubbish piles
Estimate 95% Cl Estimate 95% Cl Estimate 95% Cl
Gender*
Male (Ref) - (Ref) - (Ref) -
Female 1.22 1.02, 1.46 0.95 0.80, 1.14 0.92 0.66, 1.27
Age'
Per year increase 1.00 1.00, 1.00 0.99 0.98, 1.00 1.00 0.99, 1.01
Leptospira serological status *
Negative (Ref) - (Ref) - (Ref) -
Positive 0.89 0.67,1.19 0.64 0.47,0.87 0.85 0.48, 1.49

(Ref) is the referrence group for the Odds Ratio.

*Adjusted for age and study area.

TAdjusted for gender and study area. Values represent increases by 1 year of age.
fAdjusted for gender, age, and study area.

1.01; p=0.273). Similarly, movements relative to the 20 m buffer for the central stream were the same
across ages (OR: 1.00; 95% Cl: 1.00, 1.01; p=0.280) and across Leptospira serological status (OR:
0.89; 95% Cl: 0.67, 1.19; p=0.433). There was evidence that women moved closer to the stream than
men, even after accounting for the effects of age, study area, and the location of their households
(OR: 0.98; 95% CI: 0.97, 0.99; p=0.003). This effect was more pronounced in the analysis of the 20 m
buffered area (OR: 1.22, 95% Cl: 1.02, 1.46; p=0.026).

As with the above, there was no evidence of different movement behaviours relative to distance to
open sewers by age (OR: 1.00; 95% ClI: 1.00, 1.00; p=0.572) or Leptospira antibody status (OR: 1.03;
95% ClI: 1.00, 1.07; p=0.054). Women were found to move further away from open sewers compared
to men (OR: 1.04; 95% Cl: 1.02, 1.06; p<0.001). When analysing movements relative to the 20 m
buffer around open sewers, we found no evidence of differences between genders (OR: 0.95; 0.80,
1.14; p=0.580). We found evidence of a small tendency to move outside of the 20 m buffer around
open sewers as people aged, although the effect could be considered negligible (OR: 0.99; 95% ClI:
0.98, 1.00; p=0.003). We also found evidence of a strong inclination for people with Leptospira anti-
bodies to move outside of the buffers around open sewers, compared to people with no antibodies
(OR: 0.64; 95% CI: 0.47, 0.87; p=0.005).

Our analysis showed no evidence of different movement behaviours relative to the distance to
rubbish piles across genders (OR: 0.99; 95% ClI: 0.98, 1.01; p=0.280), ages (OR: 1.00; 95% CI: 1.00,
1.00; p=0.466), or Leptospira antibody statuses (OR: 1.00; 95% ClI: 0.98, 1.02; p=0.760). We also
found no evidence when analysing movements relative to the 20 m buffer around rubbish piles across
genders (OR: 0.92; 95% ClI: 0.66, 1.27; p=0.600), ages (OR: 1.00; 95% Cl: 0.99, 1.01; p=0.989), or
Leptospira antibody statuses (OR: 0.80; 95% ClI: 0.44, 1.49; p=0.482).

It is important to highlight that the effect sizes of the selection coefficients for the distance-based
rasters (Table 3) are very small and could be considered negligible. This may be linked to the spatial
scale used, as these values represent increases of 1 m. A coarser scale may have produced larger
effect sizes that may have been easier to conceptualise. However, given the focus on fine-scale move-
ment, we decided to keep this spatial scale for the analysis.

Analysis by time periods

Movements were subdivided into four time periods: morning (5 am to 9 am), midday (9 am to 1 pm),
afternoon (1 pm to 5 pm), and evening (5 pm to 9 pm). The demographic characteristics of all indi-
viduals removed from analyses for having less than 50 relocations within a specific time period can be
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found in Appendix 1. The interactions with the environmental factors were similar to those reported
for whole-day activities, although there were some key differences (Figure 4).

We found no differences in movements relative to the central stream as people aged or between
Leptospira antibody status across the four periods. Women still moved closer to the central stream
than men across all periods. We also saw that women had a higher tendency to move within the 20 m
buffer for the stream compared to men across all periods.

Movement in relation to distance to open sewer points and their respective 20 m buffers showed
no difference across all four periods. The strength of the selection effect seen in serologically positive
individuals for moving outside of the 20 m buffer varied, with stronger effects seen in the morning
and evening periods.

Domestic rubbish piles did not appear to have an effect on movement differences between ages
or Leptospira antibody status across all periods. We found women moved outside of the 20 m buffer
zone more than men during the morning period only. Otherwise, no notable differences were seen.

Discussion

Our study aimed to apply a novel methodology to the area of human mobility analysis in infectious
disease epidemiology, focusing on leptospirosis in four urban slums in Salvador, Brazil. We assessed
movements in relation to central streams, open sewer points, and domestic rubbish piles and observed
changes throughout the day using step selection functions. These are a modelling approach which
we have taken and adapted from animal movement ecology. Our findings showed that step selection
functions could be an effective method to identify movement behaviours. To understand how the
results could be described in the context of infectious disease epidemiology, we have explained our
interpretation of the findings, including strengths and limitations. However, it is important to highlight
that, given this is a novel methodology, the evidence we present is not conclusive and further research
is required.

The results suggested no movement differences between Leptospira antibody statuses or ages
concerning the distances to stream, open sewer points, or domestic rubbish piles. Our findings consis-
tently showed that women tended to move closer to the central stream and farther from open sewer
points than men, adjusted for age and study area. We also found that women had a tendency to move
within the 20 m buffer of the central streams compared to men, and that seropositive individuals were
more inclined to move outside of the buffer zone for open sewers compared to seronegative indi-
viduals. Movement patterns did not vary significantly throughout the day. Previous research indicates
that men in similar communities perceive themselves as less vulnerable to leptospirosis compared to
women (Khalil et al., 2021). Additionally, a knowledge, attitudes, and practices analysis showed that
men have lower scores for both knowledge and attitudes towards leptospirosis and its associated
risks (Palma et al., 2022). Our findings align with these studies, suggesting that women may avoid
open sewers due to perceived risks, while men may not share these perceptions. Social areas, which
may have gender differences, also contribute to different movement behaviours. One might conclude
that the stream is used for gendered chores such as washing clothes. However, this is not the case in
our study areas. Following discussion with residents, we know that they perceive the stream as highly
contaminated and avoid using its waters for cleaning or other household chores.

Our results contrast those reported by Owers et al., 2018, who found no differences in space
use between genders after using GPS loggers to analyse individuals’ movements. This discrepancy
could be explained by the differences in length of time being analysed. Owers et al. were only able
to analyse data collected over 24 hr periods, whereas our analysis was longer and included data
collected over periods of up to 48 hr, which could be repeated. The contrasting results could also
be attributed to the different populations studied. Although overall these populations resided in
very similar communities in Salvador, they could have different characteristics that affect movement
behaviours.

Our findings regarding the interactions with rubbish piles may be explained by various reasons.
There is evidence that proximity to rubbish piles does not drive Leptospira seropositivity in similar
areas to those used in our analysis (Khalil et al., 2021). Whilst this proximity does increase rat sight-
ings, this reduced effect on infection risk could lead individuals to disregard the locations of rubbish
piles when choosing their travel paths. Another possible explanation is that there may be an unmea-
sured environmental variable that is interacting with the distance to rubbish piles, which needs further
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Figure 4 continued on next page

Figure 4. Graph showing results of final analyses. (A) Results for distance-based rasters; values above 1 interpreted
as increasing distance to points of reference. (B) Results for 20 m buffer-based rasters; values above 1 show
movement within buffer zones. Each horizontal band represents a specific time period (right hand side y-axis label):
all day (5 am to 9 pm, Tables 2 and 3), morning (5 am to 9 am), midday (9 am to 1 pm), afternoon (1 pm to 5 pm),
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Figure 4 continued

and evening (5 pm to 9 pm). All data points include their corresponding 95% confidence intervals, some of which
are too narrow to show up clearly.

investigation. For example, violence could be interacting with where rubbish accumulates. We discuss
violence further in a paragraph below.

The evidence showing Leptospira-positive individuals avoiding open sewers was surprising.
Although we were expecting to see an effect in the opposite direction, showing individuals with
Leptospira antibodies interacting closely with open sewers, there are a few possible explanations for
our findings. If individuals with antibodies are also actively infected, they could be symptomatic and
therefore alter their behaviour to avoid high-risk areas. Alternatively, individuals with antibodies could
be more aware of risks due to previous infections and display more protective behaviours than people
who have not had any previous infections.

During informal conversations with community residents, it became clear that violence plays a key
role in individuals’ decisions on where they go. Violence in these communities is perceived as hyper-
local, restricted to one corner or small square within the communities. It is unclear what drives this
perception, but nevertheless, it is an important factor that could be accounted for. Further research
is required to develop methods that can capture these perceptions in spatial formats that could be
incorporated into similar movement studies. Age did not affect movement choices, suggesting consis-
tent perceptions of environmental risks or stable use of urban spaces across ages.

We expected different movement patterns at various times of day, anticipating circular journeys
(an individual going somewhere and back again on the same route). However, our results showed
consistent movement patterns, possibly due to the analysis period’s length or other unmeasured
factors modulating movements. Our results could also be indicative of evidence that strictly circular
journeys through these communities, where individuals are travelling through the exact same path for
both journeys, are not common, and that movement interactions with urban surroundings do not vary
throughout the day.

To our knowledge, this is the first study that uses step selection functions to model movement
behaviours in the context of human infectious disease epidemiology. This method has provided
quantitative evidence that there may be differences in how men and women move through their
communities, strengthening the argument that the variation in leptospirosis exposure and infection
risk between genders is due to behavioural differences rather than physiological differences. Addi-
tionally, we show that individuals consider environmental features differently when moving through
their communities. Highlighting the effects of these variables on movement would not have been
possible with the approaches previously used to model human movement. Our approach provides a
better understanding of how individuals relate to their surrounding urban environment and how they
interact with features that could increase the risk of leptospirosis.

Several important limitations must be highlighted. This study involves a relatively small sample
of a larger population, slightly skewed towards older women compared to the parent study. There
are few individuals testing positive for Leptospira antibodies. As a result, the findings are biased
towards the more represented individuals, limiting their generalisability. Additionally, all participants
are from specific areas in Salvador, which may further limit the generalisability to similar contexts.
Further research is needed to develop appropriate study designs using these methods, including how
many individuals should be recruited. The small number of Leptospira-positive individuals also makes
the estimation for the effect of this characteristic more difficult. We would also like to restate that a
positive antibody response to any Leptospira serovar does not indicate active infection. A positive
result merely indicates that the individual has been infected at some stage, either symptomatically or
asymptomatically, and has produced an immune response. Information on the timing of the infection
could instead be a variable showing a stronger association with movement. Another important limita-
tion is that we did not collect data on behaviours. If risky or protective behaviours, such as the use
of closed footwear, had been available at the appropriate temporal resolution (e.g. hourly intervals),
these could have been included in the step selection functions and could have shown significant asso-
ciations. Although these are important limitations which require cautious interpretation of results, they
do not detract from the value of exploring this novel methodology in this context. This methodology
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also provides a crucial starting point for exploring how movement characteristics can differ between
individuals in these environments.

Step selection functions also have limitations that must be considered. While these methods can
model the choice of moving in a specific direction, they do not account for the initial distance from
the individual. For instance, an individual moving towards the central stream from far away will have a
high selection coefficient for this environmental factor, which does not indicate their starting distance.
This is important because environmental risk factors cease to provide risk beyond a certain distance.
This limitation was overcome by using buffer zones around specific points of interest, but it is crucial
to highlight the importance of correctly interpreting all results. Similarly, step selection functions do
not quantify how long an individual spent within this high-risk distance. Additionally, these models
have some underlying assumptions that may be violated in this study. Step selection functions assume
each step is independent, conditioned on the previous step. This can be violated by circular jour-
neys. Although we attempted to account for these by analysing specific periods of the day, a higher
temporal resolution of analysis may be needed if circular journeys are still present within each period.
Another assumption is that movement is smooth through the environment. In urban environments,
this may not hold true, as street layouts may force sharp corners in movements. The effect of violating
this assumption is not immediately clear and requires further methodological research to understand
its significance. Finally, we assumed that by including movement characteristics (step lengths and
turning angles) into our models, we were accounting for goal-oriented behaviour. These assumptions
need to be considered in future studies that attempt to use step selection functions to analyse human
mobility.

Despite these limitations, this study has several valuable strengths. By including steps an individual
could have taken but did not (i.e. available steps, grey dots in Figure 3B), the models allow us to esti-
mate choice. Additionally, the models use each individual’s movement characteristics to create these
available steps, resulting in a realistic representation of movement behaviours. This creates more real-
istic estimates of environmental interactions than those created using existing methods.

Another significant strength is the specificity of the individual-level and population-level models.
First, the population-level linear regression models allow multiple individual characteristics to be
included, producing results that can be adjusted as needed. Although not considered in this study,
these models also provide flexibility in the type of variable interactions that can be specified, allowing
for non-linear effects if necessary. Second, the individual-level conditional logistic regression models
are conditioned for all included variables. This enables the estimation of the selection coefficients for
each environmental factor after adjusting for potential confounders. This is particularly useful in our
case, as open sewer points are often close to the central stream in all study areas (Figure 1).

Overall, we believe this method is a useful tool in analysing human mobility in the context of infec-
tious disease epidemiology. This modelling approach could also be used in other areas of research
which analyse human movements and choice relating to surrounding environmental features, such as
urban planning. A major benefit of step selection functions is the use of rasters, which provide flex-
ibility when investigating environmental features. Creative uses of rasters could provide interesting
questions and results. Although the focus of these models is looking at choice in space, the methods
could also be adapted to analyse choice in time (e.g. are there temporal variables that affect when a
rat enters a household).

To conclude, we provide a worked example of how to use step selection functions to analyse
human movements in the field of infectious disease epidemiology. This highlights the usefulness of
adapting methods from other fields to answer questions that would otherwise be difficult to answer
with the existing methodology. By doing so, we develop a better understanding of environmental
interactions and how to leverage the large datasets provided by GPS loggers. Although our focus was
leptospirosis, these methods can be adapted to model the exposure to any disease where movement
and the environment play an important role.
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Appendix 1

Descriptive statistics

Telemetry data
The mean number of hours of telemetry data provided by an individual was 13.3 hr, with a standard
deviation of 13.5 hr. The mean number of locations recorded by the GPS loggers was 2767 points
(SD = 1947.2). There were no differences in the number of hours or number of locations recorded by
gender, age, or leptospirosis antibody status. There were notable differences in the number of hours
recorded and the number of locations by study area. Study area 1 (NVS) had the lowest number of
hours recorded (mean = 5.6 hr, SD = 5.6), whilst all other areas had similar hours recorded (area 2:
mean = 15.0, SD = 11.4; area 3: mean = 10.9, SD = 14.0; area 4: mean = 20.7, SD = 15.3). The mean
number of locations recorded was all similar across all study areas (area 1: mean = 2048, SD = 1206;
area 2: mean = 2831, SD = 1302; area 3: mean = 2992, SD = 2737, area 4: mean = 3107, SD = 1761).

Excluded individuals

Epidemiology and Global Health

Appendix 1—table 1. Demographic details of excluded individuals due to having less than 50

relocations.

Leptospirosis serological

ID (anonymised) Relocation below 50 Period Gender Age group status
60 TRUE 05-21 Male 50-54 Neg
91 TRUE 05-21 Male >55 Neg
15 TRUE 05-09 Female 45-49 Neg
60 TRUE 05-09 Male 50-54 Neg
81 TRUE 05-09 Female 50-54 Neg
91 TRUE 05-09 Male >55 Neg
108 TRUE 05-09 Female 50-54 Neg
109 TRUE 05-09 Male 20-24 Neg
128 TRUE 05-09 Male 25-29 Neg
129 TRUE 05-09 Male 40-44 Pos
15 TRUE 09-13 Female 45-49 Neg
24 TRUE 09-13 Female 50-54 Neg
60 TRUE 09-13 Male 50-54 Neg
70 TRUE 09-13 Male 35-39 Neg
71 TRUE 09-13 Female 35-39 Neg
76 TRUE 09-13 Male 35-39 Neg
91 TRUE 09-13 Male >55 Neg
108 TRUE 09-13 Female 50-54 Neg
109 TRUE 09-13 Male 20-24 Neg
128 TRUE 09-13 Male 25-29 Neg
129 TRUE 09-13 Male 40-44 Pos
24 TRUE 13-17 Female 50-54 Neg
60 TRUE 13-17 Male 50-54 Neg
71 TRUE 13-17 Female 35-39 Neg
76 TRUE 13-17 Male 35-39 Neg
91 TRUE 13-17 Male >55 Neg
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Leptospirosis serological

ID (anonymised) Relocation below 50 Period Gender  Age group status
5 TRUE 17-21 Male 35-39 Neg
7 TRUE 17-21 Male 50-54 Neg
18 TRUE 17-21 Male 30-34 Neg
22 TRUE 17-21 Male 45-49 Neg
24 TRUE 17-21 Female 50-54 Neg
27 TRUE 17-21 Male 30-34 Neg
30 TRUE 17-21 Female >55 Neg
60 TRUE 17-21 Male 50-54 Neg
71 TRUE 17-21 Female 35-39 Neg
91 TRUE 17-21 Male >55 Neg
114 TRUE 17-21 Female 40-44 Neg

Serological data
Serologically positive individuals were equally distributed across ages and genders, although the

oldest male included in the analysis was also serologically positive (Appendix 1—figure 2).

There were also no significant skews in the household characteristics relative to the environmental

factors being analysed (Appendix 1—figure 3).

Laboratory work

All samples were tested using the MAT test, the reference test for serological diagnosis of
leptospirosis, as designated by the WHO. The diagnostic panel used included the following serovars:

» Leptospira kirschneri serovar Cynopteri strain 3522C
e L. kirschneri serovar Grippothyphosa strain Duyster

» Leptospira interrogans serovar Canicola strain H. Ultrech

e L. interrogans serovar Autumnlais strain Akiyami A

» Leptospira borgspetersenii serovar Ballum strain MUS 127

» L. interrogans serovar Copenhageni strain Fiocruz L1-130 (locally isolated in 1996)

e L. interrogans serovar Copenhageni strain Fiocruz LV3954
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Appendix 1—figure 1. Distribution of telemetry data provided by each individual across 24 hr periods (x-axis),
separated into each of the four study areas (1: NVS, 2: ARE, 3: JSI, 4: CAL). Overlapping areas represent multiple
days. Vertical bars represent 5 am (left-hand bar) and 9 pm (right-hand bar), the period of analysis.
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Appendix 1—figure 2. Distribution of Leptospirosis antibody status (serological status) by gender and age.
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Appendix 1—figure 3. Distribution of nearest distance to each of the environmental factors being analysed
(central stream, open sewer points, and domestic rubbish piles) by serological status (x-axis) and study area
(1: NVS, 2: ARE, 3: JSI, 4: CAL). NA represents the rest of households in the study area that did not take part in
movement analysis.
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