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 A B S T R A C T

Despite the promise of inland small-scale aquaculture for improving food security and alleviating poverty, the 
long-term sustainability of such production systems remains poorly understood, particularly in contexts where 
economic and ecological processes reinforce each other. This paper develops a stylized social–ecological model 
that captures feedbacks between producer wealth, fish biomass, and nutrient dynamics in inland pond-based 
small-scale aquaculture systems. The model reveals how these intertwined feedbacks shape the long-term 
dynamics of the system and lead to monostability, bistability, or multistability. These regimes correspond 
to a collapse, a high-yield but high-risk, and a sustainable equilibrium in fish production. Using bifurcation 
and stability analysis, we identify six dynamic scenarios: Balanced efficiency, Overload, Flux, Knife-edge, 
Tipping pond and Decay, that represent qualitatively different long-term outcomes. Rather than predicting 
specific outcomes, the model gives a structural understanding of small-scale aquaculture system dynamics 
and highlights the importance of local context and producers’ heterogeneity in shaping the outcomes. It also 
provides a theoretical foundation for scenario-based management and empirical model development.
1. Introduction

Aquaculture has been one of the fastest-growing food production 
sector in the world, providing more than half of all fish for human 
consumption (FAO, 2020). At the same time, aquaculture development 
has been linked to several sustainability challenges, including social 
issues such as inequality and common-pool resource dilemmas, and 
ecological issues such as eutrophication and disease outbreaks (Nagel 
et al., 2024). There is also an ongoing debate on who and how much 
benefits from participation in aquaculture, with research supporting the 
view that it is beneficial primarily to those who can afford it (Belton, 
2013), but also to the poorest of the poor (Pant et al., 2014).

An increasing fraction of aquacultural output comes from inland 
small-scale aquaculture (SSA) producers (FAO, 2020; Filipski and Bel-
ton, 2018). Many of them live in regions characterized by high poverty 
rates, few off-farm income and employment opportunities, and high 
vulnerability to market disruptions (Boughton et al., 2021; Kang et al., 
2021). They are often exposed to financial, climatic, and environmen-
tal risks and frequently face food insecurity, social, and regulatory 
issues (Mitra et al., 2019; Rahman et al., 2021). Sometimes SSA produc-
ers have limited knowledge of the ecology of aquaculture ponds, which 
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consist of many interdependent physical, chemical, and biological pro-
cesses under anthropogenic and environmental influence (Boyd et al., 
1998). Moreover, SSA producers generally lack access to improved farm 
technologies and production practices. As a result, many SSA produc-
tion systems are not improved, preventing the producers achieving high 
productivity and income and essentially escaping poverty.

The central concern in this context is whether SSA production sys-
tems can avoid low-yield, low-investment traps and transition toward 
sustainable high-yield, high-income states. Unlike agriculture research, 
where these questions received considerable attention (Barrett and 
Carter, 2013; Lade et al., 2017; Radosavljevic et al., 2020, 2021; Sanga 
et al., 2024), aquaculture research rarely adopts a social–ecological 
system approach (Levin et al., 2013) to explore development path-
ways from a long-term dynamics point of view (Béné et al., 2016; 
Partelow et al., 2018). Most of the work is focused on conventional 
commercial monoculture systems, with very few exceptions that focus 
on small-scale aquaculture producers (Little et al., 2018; Naylor et al., 
2023).
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Furthermore, the broader inland aquaculture research has histori-
cally focused heavily on technical aspects of production and quanti-
tative and qualitative impact assessment (Gephart et al., 2021; Hen-
riksson et al., 2021; Naylor et al., 2021). Mathematical and simulation 
models applied in aquaculture research usually study biophysical dy-
namics and explore biotic and abiotic factors that affect fish growth 
and the behavior of ecological populations. These include the dynamic 
energy budget model (Kooijman, 2010), the thermal growth coefficient 
model (Jobling, 2003), the biomass-based models (Svirezhev et al., 
1984), or individual-based models (Lu, 2003). In other cases, aqua-
culture models focus on bioeconomic dynamics (Nobre et al., 2009), 
optimization problems (Kvamsdal et al., 2020), or the effects of climate 
change (Varga et al., 2020). An exception is the work of Filipski and 
Belton (2018), which uses the general equilibrium model to study the 
effects of small-scale commercial aquaculture on poverty.

In general, little is known about how intertwined social and eco-
logical processes shape the long-term dynamics of inland small-scale 
aquaculture systems and create structural low-yield traps. Few mod-
els include endogenous economic and ecological dynamics capable of 
generating multistability, bifurcation-induced tipping, or hysteresis. To 
address this gap, we develop a stylized dynamical model to explore how 
intertwined economic and ecological feedbacks shape the long-term 
dynamics of inland small-scale aquaculture systems.

The model draws on concepts from social–ecological systems re-
search (SES) (Levin et al., 2013) and the dynamical system modeling 
applied to SES (Radosavljevic et al., 2023). Our aim is not to develop a 
predictive model that accurately represents the day-to-day operations 
of an inland SSA production system, nor to calibrate it to a specific 
empirical case study, but rather to explore the qualitative behavior 
and structural conditions under which such systems may experience 
different long-term outcomes. In this sense, the model functions as 
a theoretical tool for identifying possible dynamical regimes, such as 
system collapse, poverty traps, and risky high-yield attractors, and for 
clarifying how endogenous economic and ecological dynamics shape 
those outcomes. The model also explores the leverage points within the 
system where interventions could be useful and identifies critical points 
where shocks could be dangerous. Interventions in the context of the 
paper mean intentional exogenous short-term influence on the system, 
for example, short-term inputs of assets, nutrients, or training provided 
by institutions or Non-Governmental Organizations.

Unlike classic models where effort or capital investment is exoge-
nous, our formulation allows wealth to evolve endogenously based on 
past production outcomes. Allowing wealth to evolve endogenously 
captures the feedback between production outcomes and future in-
vestment capacity, a mechanism central to poverty-trap dynamics in 
small-scale production systems. A poverty trap refers to an unwanted 
state of a system formed by self-reinforcing mechanisms that keep in-
dividuals in low-income and low-yield equilibrium (Barrett and Carter, 
2013; Barrett et al., 2016; Haider et al., 2018).  In multidimensional 
models with economic, cultural and ecological variables, it is possible 
to explore feedback-mediated traps, where productivity may fail to 
escape low-income, low-yield equilibria if reinvestment is limited, the 
environment is degraded, or cross-level interactions between individual 
producers and the community propagate the trap (Alkire et al., 2015; 
Lade et al., 2017; Haider et al., 2018).

To address these challenges, we develop a dynamical model to 
explore how inland small-scale aquaculture systems behave under such 
feedbacks. The purpose of the paper is two-fold. First, we aim to explore 
the long-term dynamics of inland small-scale pond aquaculture systems 
created by intertwined social–ecological processes. Second, we aim to 
identify leverage points within the system where interventions could 
be useful and to pinpoint critical points where shocks could have 
destabilizing effects.

The paper is organized as follows. In Section 2 we present the 
model of an inland pond-based small-scale aquaculture system, includ-
ing its empirical and theoretical assumptions. Section 3 contains the 
2 
main analytical results related to the model equilibrium points and 
the conditions for their feasibility and stability. Further mathematical 
details can be found in the Appendix. Section 4 explores long-term 
outcomes, attractors, and system resilience using stability analysis. We 
develop six dynamic scenarios to illustrate these findings. Section 5 
explores bifurcations in detail, including pathways to transformation 
toward sustainable small-scale aquaculture systems. Section 6 discusses 
implications for research and management.

2. Stylized model of an inland pond-based small-scale aquaculture 
system

This section has two objectives. First, we describe the conceptual 
model that underlies the mathematical model. Second, we develop the 
mathematical model using a system of nonlinear ordinary differential 
equations.

2.1. Conceptual model

We base our causal understanding of the inland pond-based small-
scale aquaculture system on empirical studies such as Belton (2013), 
De Silva and Davy (2010), Filipski and Belton (2018) and Fish for 
Livelihoods (2022), and the first-hand experience of three of the au-
thors conducting small-scale aquaculture research in developing coun-
tries such as Myanmar, Egypt, and Bangladesh (Dam Lam et al., 2022; 
Dompreh et al., 2024; Rossignoli et al., 2023a,b; Wang et al., 2023, 
2024). In short, small-scale aquaculture is an activity that produces fish 
in inland water bodies (e.g. rivers, lakes) for household consumption 
and sales in the market. In this sense, it can contribute to household 
nutrition and income generation, having a positive outcome for food 
security and livelihood.

Small-scale producers are generally poor and face food insecurity. 
Adopting fish culture or increasing the technical efficiency of existing 
fish production can increase levels of income and fish consumption, and 
consequently reduce producers’ poverty and food insecurity. Achiev-
ing high yields and product quality in aquaculture systems requires 
maintaining adequate water quality and nutrient supply. However, 
pond ecosystems are characterized by complex interactions between 
physical, chemical, and biological processes (Boyd et al., 1998). These 
dynamics are further shaped by environmental variability and human 
management, often at multiple spatial and temporal levels.

Although tools from system ecology can be very useful for modeling 
such complexity, representing every biophysical and socioeconomic 
detail is neither feasible nor necessary for our research aim. Instead, 
we develop a stylized conceptual model that focuses on key feedbacks 
driving the long-term dynamics of small-scale aquaculture systems. 
Our objective is to capture the qualitative behavior of the system and 
explore conditions under which multiple stable states, such as high-
yield or low-yield equilibria, can coexist. The model is grounded in the 
following assumptions.

(1) Increased aquaculture production increases the income of small-
scale aquaculture producers;

(2) Higher producer income enables greater investment in produc-
tion inputs (e.g., improved feed, high-quality fingerlings), which 
in turn enhances fish growth;

(3) Increased fish growth has positive effects on fish biomass and 
production;

(4) Nutrient availability positively affects fish growth, but excessive 
nutrient loading can degrade water quality, ultimately reducing 
growth and increasing mortality.

These relationships form the basis for a conceptual model that rep-
resents key feedbacks in the inland pond-based small-scale aquaculture 
system. The conceptual model is illustrated in a causal loop diagram 
in Fig.  1. It captures the long-term dynamics shaped by interlinked 
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Fig. 1. Causal loop diagram for the stylized inland pond-based small-scale 
aquaculture system model. Blue arrows represent long-term processes in the 
system. External interventions and shocks are given in yellow. Dashed arrows 
represent short-term processes.

biochemical, economic, and social–ecological processes, including fish 
growth, nutrient input and cycling, and asset accumulation through 
production.

External interventions and shocks (e.g., climatic events, market 
shocks, financial disruptions) are modeled as perturbations to the sys-
tem’s states rather than changes in the system’s structure. This allows 
us to investigate how the system’s internal structure influence its tra-
jectory under different starting conditions and short-term disruptions.

2.2. Baseline mathematical model

Based on the conceptual model and Fig.  1, we select the state vari-
ables for the mathematical model: household assets, 𝐴, fish biomass, 𝐹 , 
and nutrients, 𝑁 . The choice of assets and fish biomass reflects their 
central roles in both the economic viability and biological productivity 
of small-scale aquaculture systems. The choice of nutrients, rather than 
water quality, requires explanation.

Nutrient availability positively affects fish growth, but excessive 
nutrient loading can degrade water quality, ultimately reducing growth 
and increasing mortality. In the conceptual model (Fig.  1), we rep-
resent these effects as two distinct causal arrows: one capturing the 
positive role of nutrients for fish biomass growth, and another capturing 
the negative effects of excessive nutrients on mortality and ecologi-
cal degradation. This separation is important to keep the conceptual 
assumptions transparent.

In translating the conceptual model into the mathematical model, 
we do not model these two arrows as separate state variables. Instead, 
a single nutrient variable 𝑁 captures both effects. This is accomplished 
through functional forms that are positive at moderate levels and 
negative at high levels. The choice reflects a general principle in 
stylized modeling where conceptually distinct processes are not always 
represented as distinct state variables mathematically, if they can be 
captured by nonlinearities in a single variable.

Water quality is an inherently multidimensional property, encom-
passing diverse dimensions such as temperature, pH, dissolved oxygen, 
and turbidity, among others. Modeling each of these dimensions would 
require additional nonlinear dynamics, many of which are outside the 
direct influence of producers. Stylized models need clear boundaries, 
and here our aim is not to reproduce in detail every dimension of 
water quality, but to capture the minimal structure that generates the 
regimes of interest. Representing nutrients as a single state variable 
is sufficient to reproduce collapse, bistability, and oscillations, while 
keeping the model transparent and analytically tractable. More detailed 
formulations could add realism but would not necessarily add struc-
tural insight into poverty traps or sustainable intensification, which 
is the focus of this paper. Nonlinear formulations of nutrient loss 
(e.g., through sedimentation or chemical processes) could be possible 
3 
extensions of our model, but the linear form used here is a common 
approximation in ecological models, as it enables model transparency 
while still capturing the essential feedbacks.

Nutrient dynamics are also more tractable and strongly influenced 
by human activities such as land use, feed type, and feed application 
rates. Modeling nutrient concentration as a state variable therefore 
enables capturing both the beneficial effects of moderate enrichment 
on fish growth and the detrimental effects of excessive nutrient loading, 
such as eutrophication or hypoxia. In this way, nutrients arguably serve 
as a proxy for water quality, enabling us to incorporate anthropogenic 
feedbacks and ecological processes within a simplified but ecologically 
meaningful model.

Assets dynamics. We extend the classical Solow model (Barro and 
Sala-i Martin, 2004), in which output depends on both assets (capital) 
and labor, by substituting labor with fish biomass. This formulation 
allows us to represent production in small-scale aquaculture systems, 
where fish biomass is the main biophysical driver of productivity. The 
production function is in Cobb–Douglas form:
𝑓 (𝐴, 𝐹 ) = 𝑏𝐴𝛼𝐹 𝛽 ,

where 𝑏 > 0 denotes the productivity factor and reflects the knowledge, 
practices, and technology of SSA producers. According to Asamoah 
et al. (2012), small- and medium-scale aquaculture producers exhibit 
constant or increasing returns to scale, with elasticity coefficients 𝛼 +
𝛽 ≥ 1.

To capture empirically observed threshold effects in smallholder 
savings behavior, we follow Kraay and Raddatz (2007) and use an 
S-shaped savings rate 𝑠(𝐴) = 𝑠 𝐴2

𝑝+𝐴2  that increases with assets. This 
formulation captures key nonlinearities in household decision-making, 
while maintaining consistency with empirical work such as Abdul Latif 
Jameel Poverty Action Lab (J-PAL) (2019) and Asamoah et al. (2012).

The rate of change of household assets is then modeled as: 
𝑑𝐴
𝑑𝑡

= 𝑏𝑠 𝐴2

𝑝 + 𝐴2
𝐴𝛼𝐹 𝛽 − 𝑞𝐴, (1)

where the first term represents income reinvested into the system and 
the second term denotes depreciation or maintenance costs. As in the 
classical Solow model, we assume that asset depreciation is propor-
tional to total assets. This assumption simplifies the analysis while 
maintaining consistency with standard macroeconomic and poverty 
trap models. It also reflects the idea that maintenance or capital loss 
is proportional to the assets total value. More complex asset outflows 
may be relevant but would require additional empirical validation and 
structural assumptions that are beyond the scope of this paper.

Fish dynamics. The classical bioeconomic model (Clark, 2010) as-
sumes that the fish population growth follows the logistic equation
𝑑𝐹
𝑑𝑡

= 𝑟𝐹 − 𝑚𝐹 − 𝑐𝐹 2 − ℎ𝐹 ,

where the positive term 𝑟𝐹  denotes the fish biomass growth, and 
the negative terms −𝑚𝐹  and −ℎ𝐹  denote mortality and harvest pro-
portional to the fish biomass, respectively. The negative term −𝑐𝐹 2

represents intraspecific competition for resources.
In small-scale aquaculture systems, harvesting is often periodic: 

farmers fill the pond, stock it with fingerlings, allow fish to grow, and 
then harvest them all at once before restarting the cycle. This means 
that harvest is not constant, but likely occurs in pulses. There are also 
cases in which the pond is continuously harvested and restocked. How-
ever, for simplicity, we model harvest as a constant rate proportional 
to fish biomass.

This simplification has three purposes. First, it allows us to work 
with an autonomous dynamical system, which is easier to analyze. 
Introducing a periodic harvest function would make the system non-
autonomous and remove the possibility of classical attractors, making 
it necessary to study pullback attractors instead. Second, harvest can 
be interpreted as additional fish mortality that reflects not only actual 
harvest by the producer, but also predation, overcrowding effects, fish 
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Table 1
List of parameters used in model (4).
 Parameters Interpretation Values References  
 𝑏 Factor of productivity [0.1, 1.5] Asamoah et al. (2012)  
 𝑠 Assets savings rate [0.1, 0.5] Abdul Latif Jameel Poverty Action Lab (J-PAL) (2019)  
 𝑝 Half-saturation point of assets savings rate [5, 50] Comparable with the value of assets at equilibrium  
 𝑞 Assets depreciation rate [0.05, 0.5] Nobre et al. (2009)  
 𝛼, 𝛽 Elasticity coefficients 𝛼 + 𝛽 ≥ 1 Asamoah et al. (2012)  
 𝑟 Fish growth factor [0.002, 0.008] Scheffer (1989)  
 𝑢 Nutrient uptake rate [0.1, 1] Assumed within plausible biological range  
 𝑣 Square of the optimal nutrient concentration [1, 10] Comparable with the value of nutrients at equilibrium  
 𝑚 Fish mortality rate [0.002, 0.01] Scheffer (1989)  
 𝑐 Fish competition rate [0.001, 0.002] Reflects pond size and fish density  
 ℎ Harvest rate, broadly defined as additional fish mortality ℎ ≥ 0 Assumed to reflect management practices and external drivers 
 𝑘 Agricultural run-off nutrient input rate [0, 5] Assumed due to large empirical variability  
 𝑔 Fish feed nutrient input rate [0.1, 1] Assumed proportional to production effort  
 𝑧 Half-saturation point of nutrient input rate [1, 10] Comparable with the value of nutrients at equilibrium  
 𝓁 Natural nutrient loss rate [0.1, 1] Assumed, reflects sedimentation and overflow  
loss due to disease, poor water quality, high water temperature, or poor 
management practices. Third, since our goal is to understand long-term 
dynamics and qualitative system behavior, rather than accurately sim-
ulate short-term production cycles, the assumption of constant harvest 
captures the average effects over time and keeps the model easier to 
interpret.

Nutrients play a critical role in shaping fish growth dynamics, but 
the relationship between nutrient concentration and fish growth is 
not straightforward. At low to moderate levels, nutrients enhance fish 
growth as they support food availability. However, if nutrient levels 
become too high, water quality can deteriorate, which can reduce 
growth or even increase fish mortality. To capture both effects, we 
model the fish growth rate as a function of nutrients: 𝑟(𝑁) = 𝑟𝑢 𝑁

𝑣+𝑁2 . 
Thus, the classical logistic fish growth equation is modified as follows: 

𝑑𝐹
𝑑𝑡

= 𝑟𝑢 𝑁𝐹
𝑣 +𝑁2

− 𝑚𝐹 − 𝑐𝐹 2 − ℎ𝐹 . (2)

Nutrient dynamics. Nutrients enter the pond water from two main 
sources: constant agricultural run-off, denoted by 𝑘, or fish feed, ex-
pressed as 𝑔 𝐴𝐹

𝑧+𝐴 . The functional form implies that the nutrient input 
depends on the fish biomass and the producers assets. When asset levels 
are low, nutrient input is limited by the producer’s capacity to purchase 
feed. At a high asset level, the nutrient amount is proportional to the 
fish biomass and limited by the amount of fish feed needed.

Nutrients are removed from the system in two ways. First, they are 
removed through uptake by the fish, which is expressed as −𝑢 𝑁𝐹

𝑣+𝑁2

and represents an increasing function that saturates for high values of 
𝑁 . Second, nutrient loss due to natural processes, modeled by −𝓁𝑁 , 
represents sedimentation, dilution, or effects of microbes. These con-
siderations lead us to the following equation for the nutrient dynamics: 

𝑑𝑁
𝑑𝑡

= 𝑘 + 𝑔 𝐴𝐹
𝑧 + 𝐴

− 𝑢 𝑁𝐹
𝑣 +𝑁2

− 𝓁𝑁. (3)

Combining Eqs. (1)–(3), we come to the model of SSA system: 
𝑑𝐴
𝑑𝑡

= 𝑏𝑠 𝐴2

𝑝 + 𝐴2
𝐴𝛼𝐹 𝛽 − 𝑞𝐴,

𝑑𝐹
𝑑𝑡

= 𝑟𝑢 𝑁𝐹
𝑣 +𝑁2

− 𝑚𝐹 − 𝑐𝐹 2 − ℎ𝐹 ,

𝑑𝑁
𝑑𝑡

= 𝑘 + 𝑔 𝐴𝐹
𝑧 + 𝐴

− 𝑢 𝑁𝐹
𝑣 +𝑁2

− 𝓁𝑁.

(4)

All model parameters, their meanings, or range of values, are specified 
in Table  1.

2.3. Price responsive variant

To connect the model more directly to market signals and producers’ 
financial decisions while keeping it simple, we introduce a variant in 
which a few parameters respond to fish biomass and input prices, 𝑃
𝑓

4 
and 𝑃𝑖𝑛, respectively. We retain the same state variables (𝐴, 𝐹 ,𝑁) and 
the same structure as in Eq.  (4), but the productivity factor, nutrient 
intake rate and harvest rate are now functions of prices.

We define marketed biomass as
𝑄 = ℎ(𝑃𝑓 )𝐹 .

Fish price decreases with marketed biomass,

𝑃𝑓 =
𝑃𝑓0

1 + 𝛽𝑓 𝑄
, 𝛽𝑓 ≥ 0,

and input price 𝑃𝑖𝑛 is taken as given or scenario dependent. Prices are 
assumed to be in partial equilibrium. The three parameters that respond 
to prices have the following forms:

𝑏(𝑃𝑓 , 𝑃𝑖𝑛) = 𝑏0

( 𝑃𝑓

𝑃𝑖𝑛

)𝜂

, 𝜂 > 0,

𝑢(𝑃𝑖𝑛) = 𝑢0

(

𝑃𝑖𝑛0
𝑃𝑖𝑛

)𝜇
, 𝜇 > 0,

ℎ(𝑃𝑓 ) = ℎ0

( 𝑃𝑓

𝑃𝑓0

)𝜙

, 𝜙 > 0.

The form of the productivity parameter 𝑏 captures stronger investment 
incentives when the fish price is high relative to the input price. The 
form of nutrient uptake rate 𝑢 captures reduced effective feed use when 
inputs are expensive. The form of the variable harvest rate corresponds 
to a higher harvest rate when fish prices are high. Baseline prices 𝑃𝑓0
and 𝑃𝑖𝑛0 can be normalized to one so that ℎ0, 𝑢0, and 𝑏0 are baseline 
values.

Substituting these into Eq. (4) yields 
𝑑𝐴
𝑑𝑡

= 𝑏(𝑃𝑓 , 𝑃𝑖𝑛) 𝑠(𝐴)𝐴𝛼𝐹 𝛽 − 𝑞𝐴,

𝑑𝐹
𝑑𝑡

= 𝑟 𝑢(𝑃𝑖𝑛)
𝑁𝐹

𝑣 +𝑁2
− 𝑚𝐹 − 𝑐𝐹 2 − ℎ(𝑃𝑓 )𝐹 ,

𝑑𝑁
𝑑𝑡

= 𝑘 + 𝑔 𝐴𝐹
𝑧 + 𝐴

− 𝑢(𝑃𝑖𝑛)
𝑁𝐹

𝑣 +𝑁2
− 𝓁𝑁.

(5)

All analytical and numerical results in the main text use the baseline 
system in Eq.  (4). The price responsive variant is used to interpret 
how market signals and producers’ decisions shift thresholds and basin 
sizes, without changing the qualitative results identified by the baseline 
model presented in the upcoming sections.

3. Long-term system outcomes and analytical insights

By developing a dynamical system model, we make use of two 
mathematical techniques: analysis of stability and bifurcations. Stabil-
ity analysis studies the existence and properties of equilibrium points 
and explores the long-term dynamics of the system. Bifurcation analysis 
investigates how changes in parameter values lead to qualitatively 
different behavior of the model.
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In practical terms, stable equilibria represent development path-
ways, such as persistent poverty (system collapse), production asso-
ciated with risks, or sustainable aquaculture. This section presents 
the mathematical foundation for these regimes by identifying feasible 
equilibrium states and their stability. These results enable us to locate 
thresholds and tipping points in the system and assess how investment, 
nutrient levels, climatic shocks, or other short-term events might move 
the system from one state to another. Although the analysis is technical, 
it provides essential groundwork for the numerical analysis in Section 4 
and the policy-relevant insights discussed afterwards. Readers who are 
not interested in the mathematical analysis of the model can safely 
skip this section, continuing to Section 4. Those interested in more 
mathematical details can find them in the Appendix.

The model (4) is nonlinear and fairly difficult to explore analyti-
cally. To enable some of the analytical methods for stability investiga-
tion, we simplify the model by assuming the maximal assets savings 
rate and the elasticity coefficients equal to one, i.e., 𝑠 = 𝛼 = 𝛽 = 1. 
With this assumption, the model reads as follows: 
𝑑𝐴
𝑑𝑡

= 𝑏 𝐴2

𝑝 + 𝐴2
𝐴𝐹 − 𝑞𝐴,

𝑑𝐹
𝑑𝑡

= 𝑟𝑢 𝑁𝐹
𝑣 +𝑁2

− 𝑚𝐹 − 𝑐𝐹 2 − ℎ𝐹 ,

𝑑𝑁
𝑑𝑡

= 𝑘 + 𝑔 𝐴𝐹
𝑧 + 𝐴

− 𝑢 𝑁𝐹
𝑣 +𝑁2

− 𝓁𝑁.

(6)

The following two subsections are devoted to the analytical study 
of this simplified model, in particular, its equilibrium points’ feasibil-
ity and local stability. The main results are summarized in Table  2. 
Additional mathematical insights are given in the Appendix.

3.1. Feasibility of equilibrium points

The simplified model (6) allows only the following three equilibria:

𝐸𝐶 =
(

0, 0, 𝑘
𝓁

)

, 𝐸𝑃 =
(

0, 𝐹𝑃 , 𝑁𝑃
)

, 𝐸∗ = (𝐴∗, 𝐹∗, 𝑁∗).

The equilibrium with only nutrients, or the collapse equilibrium, 𝐸𝐶 , 
is explicitly known and unconditionally feasible. Instead, the nonlinear 
system (6) is too complex to explicitly determine the components of 
the equilibrium without assets, i.e., the poverty trap, 𝐸𝑃 , and those of 
the coexistence equilibrium, 𝐸∗. However, we can look for sufficient 
conditions for their feasibility.

In the assets-free case, we can look for conditions that ensure at 
least one graphical intersection point, in the first quadrant of the 𝑁-𝐹
plane, between two curves we find from the equilibrium equations. 
In the coexistence case, similarly, we are interested in intersecting 
three surfaces in the first octant of the 𝐴-𝑁-𝐹  space. The sufficient 
conditions for the feasibility of 𝐸𝑃  and 𝐸∗ given in Table  2 are obtained 
in the Appendix.

3.2. Local stability of equilibrium points

The Jacobian of the model (6) is 

𝐽 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐽11
𝑏𝐴3

𝑝+𝐴2 0

0 𝑟𝑢𝑁
𝑣+𝑁2 − (𝑚 + ℎ) − 2𝑐𝐹 𝑟𝑢𝐹 𝑣−𝑁2

(𝑣+𝑁2)2

𝑔𝐹 𝑧
(𝑧+𝐴)2

𝑔𝐴
𝑧+𝐴 − 𝑢𝑁

𝑣+𝑁2 𝐽33

⎤

⎥

⎥

⎥

⎥

⎦

, (7)

where

𝐽11 = 𝑏𝐹
3𝐴2(𝑝 + 𝐴2) − 2𝐴4

(𝑝 + 𝐴2)2
− 𝑞, 𝐽33 = −𝑢𝐹 𝑣 −𝑁2

(𝑣 +𝑁2)2
− 𝓁.
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3.2.1. Nutrients-only point, 𝐸𝐶
By evaluating (7) at equilibrium 𝐸𝐶 , a lower triangular matrix is 

obtained, from which the eigenvalues are easily found. They are

−𝑞, −𝑓, 𝑟𝑢𝑘𝓁
𝑣𝓁2 + 𝑘2

− (𝑚 + ℎ).

Thus, we have the following local asymptotic stability condition: 
𝑟𝑢𝑘𝓁 < (𝑚 + ℎ)(𝑣𝓁2 + 𝑘2). (8)

3.2.2. Assets-free point, 𝐸𝑃
At 𝐸𝑃  the characteristic equation factorizes and one eigenvalue 

is explicitly found, that is, −𝑞. This eigenvalue is always negative, 
thus it does not affect the local asymptotic stability of the assets-free 
equilibrium point.

We use the notation 𝐽[𝑚,𝑛] for the submatrix of 𝐽 in which the rows 
and columns 𝑚 and 𝑛 are preserved. For the remaining 2 × 2 minor, 
𝐽[2,3](𝐸𝑃 ), we use the Routh–Hurwitz criterion. The determinant of this 
minor is

det(𝐽[2,3](𝐸𝑃 )) = 𝑐𝐹𝑃

[

𝓁 + 𝑢𝐹𝑃
𝑣 −𝑁2

𝑃

(𝑣 +𝑁2
𝑃 )

2

]

+ 𝑟𝑢𝐹𝑃
𝑣 −𝑁2

𝑃

(𝑣 +𝑁2
𝑃 )

2

𝑢𝑁𝑃

𝑣 +𝑁2
𝑃

.

Its trace, instead, using the second equilibrium equation, reduces to

tr(𝐽[2,3](𝐸𝑃 )) = −𝑐𝐹𝑃 − 𝓁 − 𝑢𝐹𝑃
𝑣 −𝑁2

𝑃

(𝑣 +𝑁2
𝑃 )

2
< 0.

Thus, the Routh–Hurwitz condition on the determinant gives the 
following local asymptotic stability condition:

𝑐𝐹𝑃

[

𝓁 +
𝑢𝑣𝐹𝑃

(𝑣 +𝑁2
𝑃 )

2

]

+
𝑟𝑢𝑣𝐹𝑃

(𝑣 +𝑁2
𝑃 )

2

𝑢𝑁𝑃

𝑣 +𝑁2
𝑃

>
𝑟𝑢𝐹𝑃𝑁2

𝑃

(𝑣 +𝑁2
𝑃 )

2

𝑢𝑁𝑃

𝑣 +𝑁2
𝑃

+
𝑐𝑢𝐹 2

𝑃𝑁
2
𝑃

(𝑣 +𝑁2
𝑃 )

2
. (9)

3.2.3. Coexistence, 𝐸∗
In the coexistence case, we can find the local asymptotic stability 

condition using the Routh–Hurwitz criterion for a cubic equation, 
i.e., 𝑅𝐻3(𝐽 (𝐸∗)). However, an explicit determination of 𝑅𝐻3(𝐽 (𝐸∗)) is 
too much involved and will not shed more light on the problem, so we 
do not analytically investigate them further. We explore the coexistence 
point stability using numerical methods in the following section.

4. Scenarios as different futures

Modeling nonlinear systems is rarely a linear process. During this 
process, we alternate between stability analysis that is used to explore 
the behavior of the system for fixed parameter values and bifurcation 
analysis, which reveals how qualitative dynamics changes when param-
eters change. Stability analysis offers a snapshot of possible outcomes 
under a fixed combination of parameters, while bifurcation analysis 
helps us explore how these outcomes evolve across different ecological 
or economic contexts. To organize insights of the stability analysis, we 
develop a set of scenarios that represent distinct long-term regimes. 
These scenarios capture combinations of attractors and they are pre-
sented in this section. Section 5 then examines the bifurcations in more 
detail and traces the pathways that lead systems toward sustainability 
or collapse as underlying conditions change. Since our observations and 
results have to be presented in a linear way in the paper, we ask readers 
for patience as some results may be fully understood once both this and 
Section 5 are read.

The purpose of this section is to use stability analysis to explore 
the long-term dynamics of the model. The analysis in Section 3 shows 
that the model (6) can have one or more stable equilibrium points 
(attractors) depending on the parameter values. We use numerical 
methods to identify the attractors and analyze the implications of their 
location in phase space (Figs.  2 and 3). Table  3 contains standard values 
of the parameters used in the models.
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Table 2
Equilibria of model (6): feasibility and local stability conditions. If there is more than one point 
𝐸∗, we assign them labels 𝐸𝑆 and 𝐸𝑅 to indicate sustainable and risky states. More details can 
be found in Section 4 and Table  4.
 Equilibria Feasibility Local stability  
 𝐸𝐶 =

(

0, 0, 𝑘
𝓁

)

Unconditionally feasible Asymptotically stable iff (8)  

 𝐸𝑃 =
(

0, 𝐹𝑃 , 𝑁𝑃
)

Not feasible if (12), with (13)
or (15), when (16)
Feasible and unique if (12),
with (13) or (15), when (17)
Saddle–node if (12), with (13)
or (15), when (18) and (19)

Asymptotically stable iff (9)  

 𝐸∗ = (𝐴∗ , 𝐹∗ , 𝑁∗) See Tables  6, 7, 8, 9, 10, and 11 Asymptotically stable iff 𝑅𝐻3(𝐽 (𝐸∗)) 
Table 3
Standard values of parameters of model (4). 
 Parameters 𝑏 𝑠 𝑝 𝑞 𝛼 𝛽 𝑟 𝑢 𝑣 𝑚 𝑐 ℎ 𝑘 𝑔 𝑧 𝓁  
 Standard values 1 0.3 10 0.4 0.5 0.5 0.9 0.3 2 0.009 0.001 0.001 0.1 0.1 5 0.1 
Table 4
Equilibria of model (6): interpretation of their properties in real systems.
 Attractor name Mathematical label Interpretation  
 Collapse 𝐸𝐶 =

(

0, 0, 𝑘
𝓁

)

Economically and ecologically 
degraded state; highly resilient to 
shocks

 

 Poverty trap 𝐸𝑃 =
(

0, 𝐹𝑃 , 𝑁𝑃
)

Unbalanced input use; no assets 
due to low returns; highly 
resilient to shocks

 

 Sustainability state 𝐸𝑆 = (𝐴𝑆 , 𝐹𝑆 , 𝑁𝑆 ) Productive and ecologically 
balanced state; fairly resilient to 
shocks

 

 Risky state 𝐸𝑅 = (𝐴𝑅 , 𝐹𝑅 , 𝑁𝑅) Highly productive and 
ecologically balanced state; very 
vulnerable to shocks

 

Attractors located closer to the origin represent less desirable system 
states. The reason is simple: points close to the origin are characterized 
by low values of assets, fish biomass, and nutrients. Low assets and fish 
biomass indicate poverty and low productivity. While low to medium 
nutrients indicate an ecologically balanced state, high nutrients, espe-
cially if fish biomass is low, may indicate an ecologically degraded 
state.

We interpret resilience as the system’s vulnerability to shocks and 
potential for regime shifts. To assess resilience, we estimate the distance 
between the attractor and the edge of its basin of attraction (separatrix). 
Attractors closer to the separatrix are considered more vulnerable to 
shocks. To make these implications more accessible, we assign intuitive 
labels to the attractors: collapse, poverty trap, risky state, and sus-
tainability state. Table  4 provides a detailed characterization of these 
states.

We explore six scenarios that correspond to different combinations 
of parameter values. Each scenario represents qualitatively different 
long-term outcomes depending on the number and type of attractors. 
In some cases, the system has two attractors: the poverty trap and the 
sustainability state. In other cases, a third attractor or a stable limit 
cycle appears. It is also possible for the system to have a single attractor, 
but it is always only the undesirable one, collapse, or poverty trap. A 
sustainability attractor never appears on its own, but always coexists 
with at least one undesirable alternative.

The scenarios were identified through bifurcation analysis. We ex-
amined patterns in the number and stability of attractors, the width of 
parameter intervals, and the relative size of basins of attraction to dis-
tinguish qualitatively different dynamical regimes. These mathematical 
6 
regimes were then linked to real-world interpretations, for example, a 
knife-edge scenario reflecting high sensitivity to shocks.

Rather than offering precise predictions of what will happen, these 
scenarios are stylized representations of how the system could behave 
under plausible variations in key drivers. Their purpose is to guide 
thinking about the long-term dynamics of the system, management 
options, risks, and leverage points. The scenarios are summarized in 
Table  5.

4.1. Balanced efficiency

This scenario reflects situations when good economic conditions 
(e.g. medium productivity and reinvestment efficiency), meet favorable 
ecological conditions (e.g. low nutrient runoff and loading), and good 
management practices that enable fish survival even in heavy-stocked 
ponds. Bistability emerges, and it is represented by the poverty trap 
and the sustainability state (Fig.  2A).

Due to the low external nutrient loading, most nutrients enter the 
system through fish feed. This gives producers the opportunity to 
actively manage the dynamics of the pond. It also makes nutrients a 
more controllable part of the system. As a result, nutrient levels play 
a relatively minor role in shaping the basins of attraction. Their shape 
is captured in Fig.  2A. If both assets and fish biomass are sufficiently 
high, the system moves toward the sustainaility attractor, 𝐸𝑆 . If not, 
the trajectories converge toward the poverty trap 𝐸𝑃 .

In this scenario, both the poverty trap 𝐸𝑃 , and the sustainable 
equilibrium, 𝐸𝑆 , are insensitive to changes in nutrient levels. Even 
large fluctuations in nutrients levels are unlikely to have lasting effects 
on the system’s behavior. In contrast to this, changes in fish biomass 
or assets can lead not only to temporary effects, but also to regime 
shifts. The sustainability state may be lost after shocks that significantly 
reduce fish biomass or assets. Similarly, targeted interventions that 
increase assets and fish biomass can tip the system from poverty toward 
recovery and long-term sustainability.

4.2. Overload

This scenario depicts situations where high productivity and low 
return on investment are combined with high agricultural nutrient 
loading. Bistability and the chance of sustainable production arise but 
are strongly dependent on controlling nutrient inputs.

Fig.  3 highlights the importance of nutrients in shaping the basins 
of attraction and illustrates the complex interactions between the state 
variables. Panel A shows Tipping pond scenario, i.e., a multistable 
system with low agricultural nutrient runoff. The risky state exists 
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Table 5
Possible long-term scenarios depending on ecological and economic conditions.
 Scenario System properties Conditions Implications  
 Balanced efficiency Bistable system with Poverty trap 

and Sustainability state
High productivity, reinvestment efficient even at 
low asset levels, low nutrient run-off (low 𝑘, high 
𝑐, low 𝑝) (Fig.  2A)

Well managed system; insensitive to nutrient 
fluctuations; changes in fish biomass and/or assets 
can tip the system

 

 Overload Bistable system with Poverty trap 
and Sustainability state

High productivity, reinvestment efficient only at 
high asset levels, high nutrient run-off (high 𝑘, 
low 𝑐, high 𝑝) (Fig.  3B)

Bistability enabled by low intraspecific 
competition; sustainability possible only at low 
nutrient levels; sensitivity to changes in all 
variables, especially nutrients

 

 Flux Bistable system with Poverty trap 
and stable limit cycle

Average productivity, reinvestment efficient even 
at low asset levels, low nutrient run-off and 
intraspecific competition (low 𝑘, low 𝑐, low 𝑝) 
(Fig.  5)

The system oscillates due to interactions between 
ecological and economic processes. Collapse can be 
avoided, but managing such system can be 
challenging because periods of high assets and fish 
biomass are followed by periods of low assets and 
fish biomass.

 

 Knife-edge Bistable system with Poverty trap 
and Risky state

Below average productivity, reinvestment efficient 
even at low asset levels, low nutrient run-off and 
intraspecific competition, fish is well-adapted to 
low nutrient conditions (low 𝑘, low 𝑐, low 𝑝) 
(Figs.  4, 5, 6)

Very sensitive to financial shocks, efficient feeding 
practices keep nutrient level low. The scenario 
often exists only for a very narrow parameter 
range.

 

 Multistable system with Poverty 
trap, Risky and Sustainable 
attractors

Sensitivity of this scenario comes from a very 
limited parameter range for which it exists. The 
system is more resilient to changes in its states 
than to changes in the ecological or economic 
conditions. (Fig.  7)

The combination of sensitivity to parameters, 
initial conditions and shocks makes desired 
outcomes difficult to achieve and keep.

 

 Tipping pond Multistable system with Poverty 
trap, Sustainability state and 
Risky state

Above average productivity, reinvestment efficient 
even at low asset levels, low nutrient run-off and 
intraspecific competition (low 𝑘, low 𝑐, low 𝑝) 
(Figs.  3A, 4, 5)

Risky state is desirable due to high asset 
accumulation and high fish biomass, but it is 
difficult to preserve. Collapse is avoided due to 
existence of a resilient sustainability state that 
offers modest, but stable returns.

 

 Decay Monostable system with Collapse 
or Poverty trap

Extreme conditions (e.g. very low or very high 
productivity or input rate) provide temporary 
boost, but long-term collapse (Figs.  4, 5, 6, 7, 8)

Economically and/or ecologically degraded system; 
system recovery would require a system 
transformation to create a sustainability attractor

 

Fig. 2. The model (4) is bistable for various combinations of the parameter values. The standard values are indicated in Table  3. (A) Balanced efficiency scenario 
with 𝑣 = 5, 𝑐 = 0.002. (B) Flux scenario with 𝑝 = 50, 𝑘 = 0.5. Poverty trap attractor, 𝐸𝑃 , is the undesired low-yield equilibrium and sustainability attractor. Yellow 
volume is the basin of attraction of the poverty trap. Rest of the phase space are states that converge toward the limit cycle. Blue lines are two such trajectories.
and is reachable for a specific combination of assets, fish biomass and 
nutrients. Increasing agricultural runoff leads to a qualitative change in 
the dynamics of the system and the emergence of an Overload scenario. 
Here, the Risky state 𝐸𝑅 disappears and the Sustainability state 𝐸𝑆
becomes less resilient. Reaching 𝐸𝑆 requires initial conditions with 
sufficient assets, fish biomass, and low nutrient levels. If any of these 
conditions is not met, the system shifts toward the poverty state, 𝐸𝑃 .

Compared to the Balanced efficiency scenario, the Overload sce-
nario reveals how higher runoff nutrient input and a larger half-
saturation constant for savings amplify the role of nutrients. The re-
silience of the sustainable attractor is reduced, while the poverty trap 
becomes more robust. Overcoming it may require a simultaneous re-
duction in nutrient levels and an increase in both assets and fish 
biomass.
7 
4.3. Flux

Flux refers to a scenario in which the system exhibits bistability 
between a stable limit cycle and a poverty trap (Fig.  5). This dynamic 
arises within a relatively narrow range of savings rates (𝑠 ∈ (0.25, 0.3)), 
where ecological and economic feedbacks interact to produce sustained 
oscillations in assets, fish biomass, and nutrients. These oscillations 
reflect stability in a mathematical sense, but may be challenging in 
real world systems. Outcomes are not fixed but fluctuate, which may 
offer a periodic surplus in fish biomass and income, but also risks 
(e.g., periodic crashes or exposure to shocks at low points in the cycle).

In a narrow subinterval of the savings rate, the system briefly 
exhibits three coexisting attractors: the poverty trap, the sustainable 



S. Radosavljevic et al. Ecological Modelling 512 (2026) 111416 
Fig. 3. (A) Tipping pond scenario (𝑏 = 1.67, 𝑝 = 50). (B) Overload scenario (𝑏 = 1.6, 𝑝 = 50). Poverty trap attractor, 𝐸𝑃 , is the undesired low-yield equilibrium 
and Sustainability attractor, 𝐸𝑆 , is the high-yield equilibrium. 𝐸𝑅 is the risky state that appears for low nutrient runoff. Colored volumes represent basins of 
attraction of the three attractors.
Fig. 4. Bifurcation analysis shows the existence of one, two, or three stable equilibrium points for different values of the parameter 𝑏. Red lines denote stable 
equilibrium points. Black lines denote unstable equilibria. Blue circles are unstable limit cycles. 𝐸𝑃  is the branch of Poverty trap attractors. 𝐸𝑅 and 𝐸𝑆 are 
branches of Risky and Sustainability attractors. Saddle–node, Hopf, and homoclinic bifurcations are denoted by 𝑆𝑁 , 𝐻𝐵, and 𝐻𝐶, respectively. Dashed lines 
indicate parameter thresholds that separate scenarios (see Table  5 for details). The parameter values are in Table  3. Reading 𝑏 as 𝑏 = 𝑏0 (𝑃𝑓∕𝑃𝑖𝑛)𝜂 implies a 
price-ratio threshold (𝑃𝑓∕𝑃𝑖𝑛)crit = ( 𝑏∗∕𝑏0 )1∕𝜂 at point 𝑆𝑁 .
Fig. 5. Bifurcation analysis for different values of the parameter 𝑠. The parameter values are 𝑣 = 0.5 and the others are indicated in Table  3. Red lines denote 
stable equilibrium points. Black lines denote unstable equilibria. Blue circles are unstable limit cycles. Green circles are stable limit cycles. 𝐸𝑃  is the branch of 
Poverty trap attractors. 𝐸𝑅 and 𝐸𝑆 are branches of Risky and Sustainability attractors. Dashed lines indicate parameter thresholds that separate scenarios (see 
Table  5 for details).
state, and the limit cycle. This window is small but structurally mean-
ingful. It shows that efficient returns on investment in combination 
with low nutrient run-off and low intraspecific competition may create 
a balanced trajectory that stabilizes oscillations and prevents fall into 
poverty. The presence of stable limit cycles suggests that timing, shock 
sensitivity, and the adaptive capacity of producers play crucial roles in 
determining outcomes.

4.4. Knife-edge

Knife-edge describes a scenario where desirable outcomes exist but 
are difficult to reach and even harder to maintain. It has two variants. 
The first is a bistable system with a poverty trap and a risky state 
(Figs.  4–6). This state emerges around average productivity, efficient 
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reinvestment (even at low asset levels), and low levels of nutrient run-
off and intraspecific competition. The second variant is a multistable 
system with a poverty trap, a risky state, and a sustainability attractor 
(Fig.  7). This variant appears when additional mortality is nearly 
zero or harvest is extremely controlled. In other words, it requires a 
fine-tuned parameter setting.

This scenario exists for either a very narrow parameter range, or 
the desired attractor is very close to the separatrix, which makes it 
fragile. In either case, the geometry of the system often makes the 
desirable attractor difficult to maintain due to high sensitivity to initial 
conditions and perturbations.

Knife-edge scenario appears often in our analysis, indicating rich but 
fragile dynamics of small-scale aquaculture ponds. If the system could 
remain in the risky state, Knife-edge would be one of the most desirable 
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Fig. 6. Bifurcation analysis for different values of the parameter 𝑟. Other parameter values are indicated in Table  3. Red lines denote stable equilibrium points. 
Black lines denote unstable equilibria. Blue circles are unstable limit cycles. 𝐸𝑃  is the branch of Poverty trap attractors. 𝐸𝑅 and 𝐸𝑆 are branches of Risky and 
Sustainability attractors. Dashed lines indicate parameter thresholds that separate scenarios (see Table  5 for details).
Fig. 7. Bifurcation analysis for different values of the parameter ℎ with 𝑚 = 0.01. Other parameter values are indicated in Table  3. Red lines denote stable 
equilibrium points. Black lines denote unstable equilibria. Blue circles are unstable limit cycles. 𝐸𝑃  is the branch of Poverty trap attractors. 𝐸𝑆 are branches of 
Risky and Sustainability attractors. Dashed lines indicate parameter thresholds that separate scenarios (see Table  5 for details).
Fig. 8. Bifurcation analysis shows the existence of one, two, or three stable equilibrium points for different values of the parameter 𝑔. Other parameter values 
are indicated in Table  3. Saddle–node and Hopf bifurcations are denoted by 𝑆𝑁 and 𝐻𝐵, respectively.
outcomes, offering high asset accumulation and fish biomass with low 
to moderate ecological degradation.

4.5. Tipping pond

Tipping pond represents a scenario with three stable states, one of 
which has a narrow basin of attraction and can easily tip due to a shock. 
It often emerges for a high saving rate or a high fish growth rate (Figs. 
5 and 6).

Fig.  3A suggests that the basin of attraction of the poverty trap (blue 
volume containing 𝐸𝑃 ) comprises initial states with a low level of assets 
or a low level of fish biomass. The basin of attraction of 𝐸𝑆 comprises 
initial states with sufficiently high values of fish biomass and assets. The 
most unusual and potentially counterintuitive basin of attraction is the 
one containing the risky state 𝐸𝑅 (volume containing the red dot). It 
is characterized by initial conditions with intermediate nutrient values, 
a narrow range of intermediate fish biomass, and all, except very low 
levels of assets.

The trajectories converging towards 𝐸𝑅 can be disturbed by in-
creasing nutrient levels, which would force them toward 𝐸𝑆 . Another 
possibility is drastically reducing the level of assets or fish biomass and 
forcing trajectories toward 𝐸𝑃 . Risks in the system can come in differ-
ent forms, but do not have to lead to catastrophic outcomes. Using the 
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same reasoning, we can assess the efficiency of management strategies 
and interventions. To be efficient, a poverty alleviation strategy should 
increase the assets or fish biomass and probably reduce the nutrients 
in the system.

4.6. Decay

There are two variants of the Decay scenario. One in which Decay 
represents an economically dysfunctional, but ecologically viable sys-
tem with Poverty trap as a single attractor. The other alternative is a 
system that is both economically and ecologically degraded and where 
Collapse is the single attractor.

There are many pathways to the Decay scenario. Some of them 
involve decreasing income and/or fish biomass due to low productivity 
or input rates, while others emerge through nutrient input, eutrophi-
cation, or worsening economic conditions leading to a low return on 
investment (high values of the parameter 𝑝).

The global stability of the attractor in this scenario makes it par-
ticularly resilient to any kind of short-term intervention, regardless 
of its intensity or where in the system they are applied. Short-term 
improvements in productivity or ecological conditions are likely to 
occur, but achieving permanent changes in the way the system behaves 
requires a transformation of the system. By transformation we mean 
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changing the strength of feedbacks that created the trap and enabling 
the emergence of the Sustainability attractor.

5. Bifurcations and shifting scenarios

Stability analysis provides information about the system for fixed 
values of its parameters. However, parameters can change over time or 
across geographical locations, and it is important to understand how 
such changes affect the system’s long-term behavior. In structurally 
unstable systems, the dynamics can change qualitatively when param-
eters pass threshold values. These thresholds, known as bifurcation 
points, can mark transitions between desirable and undesirable system 
states. Knowing the properties of system dynamics under different 
parameter settings or uncertainty improves understanding of the system 
and supports better management decisions. Therefore, we use bifurca-
tion analysis to explore qualitative changes in system structure and to 
identify leverage points and potential risks across a plausible range of 
parameter values.

The derivation in Section 3 showed that the analytical results are 
hard to obtain even for the simplified model (6). The parameters 𝛼 and 
𝛽 were eliminated in the simplified model (6) by setting them to 1. 
However, they are very important for understanding the consequences 
of social–ecological interactions related to the use of new technology. 
Changes in the values of these parameters can be understood as the 
adoption of innovation and training. The parameters 𝑏, 𝑝, and 𝑞 are re-
lated to productivity, assets saving, and depreciation rate, respectively. 
Together, they determine whether aquaculture becomes a reinforcing 
loop of growth or stagnates due to low returns or high losses.

Similarly, the parameters 𝑘 and 𝑔 define the amount of nutrients 
that enter the system, unintentionally as runoff (in the case of 𝑘) or 
intentionally through fish feed (in the case of 𝑔). These parameters can 
be related to producers’ decisions, their capacity to manage agricultural 
and aquacultural nutrients and to choose the type and amount of fish 
feed.

The parameters 𝑟, 𝑢, and 𝑣 describe ecological processes of growth 
and nutrient uptake and depend on species, local ecological conditions, 
and the type of fish feed. These parameters influence how responsive 
the system is to nutrient input and how easily growth becomes limited 
or destabilized.

5.1. Productivity

The bifurcation diagram in Fig.  4 shows changes in the number 
and stability of the equilibrium points when the parameter 𝑏 is varied. 
The poverty trap, 𝐸𝑃 , exists for all parameter values, reminding us 
that system collapse is always an option. Increasing the productivity 
parameter, 𝑏, creates the second stable equilibrium point, 𝐸𝑅, through 
a saddle–node bifurcation. Increasing 𝑏 even more leads to a Hopf 
bifurcation and the appearance of the third stable equilibrium point,𝐸𝑆 .

These transitions illustrate how the dynamics of the system changes 
through three scenarios. For low values of 𝑏, the system is in the Decay 
scenario (Table  5) where only the poverty trap exists (Fig.  4). Recovery 
is not possible within the current structure.

As the parameter 𝑏 increases, the system enters the Knife-edge 
scenario, where the poverty trap and the risky state coexist. The re-
silience of 𝐸𝑅 is low, especially with respect to changes in assets. It 
is a desirable state but difficult to maintain, giving the name of the 
attractor. The system is very sensitive to initial conditions and shocks, 
especially those that decrease assets or productivity, but there is a 
chance to avoid collapse.

A further increase in productivity leads to the emergence of the 
sustainability state, marking the Tipping Pond scenario, where three 
attractors coexist. Maintaining high productivity and biomass is tricky 
because the risky attractor, 𝐸𝑅, is highly sensitive to shocks and ini-
tial conditions. The sustainability attractor, 𝐸𝑆 , prevents slipping into 
economic and ecological degradation and offers a reliable pathway.
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Using price responsive model (5) allows us to read movements 
along the 𝑏 axis as movements in an effective productivity factor 𝑏 =
𝑏0 (𝑃𝑓∕𝑃𝑖𝑛)𝜂 . A threshold value 𝑏∗, for which the saddle–node bifurca-
tion in the diagram appears, therefore corresponds to a critical price 
ratio (𝑃𝑓∕𝑃𝑖𝑛)crit = ( 𝑏∗∕𝑏0 )1∕𝜂 . Price ratios above this level increase 
effective productivity and allow the existence of 𝐸𝑅 and 𝐸𝑆 , while 
lower ratios lead to permanent poverty.

5.2. Savings rate

The bifurcation diagram in Fig.  5 shows how the long-term behavior 
of the system changes when the savings rate, 𝑠, is varied. This param-
eter plays a central role in asset dynamics, shaping the capacity of 
small-scale aquaculture producers to accumulate and reinvest.

In our model, we explore the interval of plausible savings rate. For 
𝑠 < 0.18, the system collapses into the Decay scenario, where only the 
poverty trap exists and recovery is impossible without transformation 
of the system. At 𝑠 ≈ 0.18 a new stable state emerges, leading to the 
Knife-edge scenario, where recovery is possible but fragile and highly 
dependent on initial conditions.

However, this opportunity is short-lived. As 𝑠 increases, the system 
returns to the Decay scenario. This is an unexpected result given the 
common assumption that higher savings always improve outcomes. 
This suggests that saving without sufficient productivity or ecological 
resilience can backfire, for example by reducing short-term liquidity or 
delaying investment in fish feed or water infrastructure.

Beyond 𝑠 ≈ 0.25, the system shifts into the Flux scenario, where 
stable oscillations co-exist alongside the poverty trap. Here, the long-
term pattern has inherent variability and risk. Finally, at 𝑠 ≈ 0.31, 
the system enters the Balanced efficiency scenario, with a stable and 
resilient sustainability attractor.

This complex pattern implies that modest savings rates, consistent 
with empirical observations, do not guarantee stability or success. 
Instead, outcomes depend on where in the interval the system lies 
and whether other conditions (e.g., productivity, nutrient loading) 
support reinvestment effectiveness. The policy implication is clear: 
encouraging savings is not enough unless the broader ecological and 
economic structure enables those savings to translate into productive 
improvements.

5.3. Fish growth rate

The fish growth rate plays a central role in shaping the long-
term behavior of the small-scale aquaculture system. The bifurcation 
diagram in Fig.  6 illustrates how changes in parameter 𝑟 affect the 
number and type of attractors in the system.

For low values of 𝑟, the system exhibits a monostability character-
ized by the poverty trap, 𝐸𝑃 . This is a Decay scenario in which fish do 
not grow fast enough to support production or investment, leading the 
system to collapse over time, regardless of initial conditions.

As the fish growth rate increases to intermediate values, a new 
stable equilibrium, 𝐸𝑅, emerges through a saddle–node bifurcation. 
This bistability defines the Knife-edge scenario, where the system can 
either fall back into the poverty trap or climb toward a more productive 
regime, depending on the initial levels of fish biomass, nutrients, and 
assets. However, the risky attractor is located close to the separatrix, 
which makes it vulnerable to fluctuations in all three state variables, 
especially in decrease in fish biomass and assets and an increase in 
nutrients.

At high values of 𝑟, a third attractor emerges through a Hopf 
bifurcation. The system now exhibits Tipping Pond dynamics with three 
coexisting attractors. This multistability increases the complexity of 
management because the risky state, 𝐸𝑅, becomes even more fragile, 
while the sustainability state, 𝐸𝑆 , becomes more resilient. Transitions 
between high-yield, high-income regime and sustainable regime may 
occur due to very small changes in any of the variables.
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This progression of scenarios, from collapse, to conditional re-
covery, to full multistability, highlights how increase in fish growth 
(e.g., through better species selection, higher quality fingerlings, better 
feed, or pond management) can open up new possibilities but also 
increase the chance of mismanagement.

Since fish biomass growth is tightly connected with quality and 
quantity of inputs, and they depend on price and producers’ financial 
decisions, we use price sensitive model (5) to explore these effects. We 
map the growth term 𝑟𝑢 to an effective coefficient 𝑟eff = 𝑟 (𝑢(𝑃𝑖𝑛)∕𝑢0) =
𝑟 (𝑃𝑖𝑛0∕𝑃𝑖𝑛)𝜇 . Hence a saddle–node bifurcation at 𝑟 = 𝑟∗ corresponds to 
a critical input price 𝑃 crit

𝑖𝑛 = 𝑃𝑖𝑛0(𝑟∕𝑟∗)1∕𝜇 . If the inputs are cheaper than 
the critical value, 𝑟eff > 𝑟∗ and bistability is possible. If the inputs are 
more expensive, the system falls in the Decay scenario.

5.4. Harvest and additional fish mortality

The bifurcation diagram with respect to the harvest rate ℎ shows 
a sequence of qualitative transitions in the system dynamics (Fig.  7). 
For very low harvest rates, the system exhibits the Knife-edge scenario, 
where multistability emerges between the poverty trap, a sustainable 
and a risky, high-yield state. The very narrow range of ℎ makes this 
scenario difficult to maintain.

As ℎ increases, the Knife-edge scenario shifts into the Clearwater 
scenario, where sustainable production is possible, but sensitive to 
shocks. Further increases in ℎ lead to a Decay scenario, where all 
attractors disappear through a saddle–node bifurcation, except for the 
poverty trap.

The parameter ℎ represents continuous harvest, but is also a proxy 
for additional fish mortality caused by predation, overcrowding, poor 
water quality, disease, or high water temperature. Throughout the 
whole parameter range, the levels of assets, fish biomass, and nutrients 
steadily decline as the parameter ℎ increases. These results suggest 
that even seemingly insignificant additional mortality can destabilize 
long-term productivity.

To link market conditions and producers’ decisions to shifts between 
scenarios as observed in the baseline model we use price sensitive har-
vest rate. In the price responsive variant we write ℎ(𝑃𝑓 ) = ℎ0

(

𝑃𝑓∕𝑃𝑓0
)𝜙

with 𝜙 > 0, so movements along the ℎ axis can be read as move-
ments in the fish price. A threshold value ℎ∗ in the diagram therefore 
corresponds to a critical price

𝑃 crit
𝑓 = 𝑃𝑓0

(

ℎ∗

ℎ0

)1∕𝜙
.

Prices above 𝑃 crit
𝑓  imply higher harvest intensity and that can push the 

system toward the regions with Balanced efficiency or Decay outcomes, 
while prices below 𝑃 crit

𝑓  are consistent with the low-harvest side where 
Knife-edge multistability occurs.

5.5. Feed input

The parameter 𝑔 represents the contribution of fish feed to nutrient 
input. The bifurcation analysis reveals a non-monotonic relationship 
between nutrient input and the system’s long-term behavior (Fig.  8).

For low values of 𝑔, nutrient levels are insufficient to support fish 
growth, leading the system to collapse or decay. As nutrient levels 
increases to low-intermediate values, the system enters a Clearwater 
scenario characterized by bistability between collapse and desirable 
state.

A further increase in nutrient input leads to a Tipping Pond scenario 
through a Hopf bifurcation. The newly emerging attractor is encircled 
by unstable limit cycles within a Hopf bubble. However, this regime 
only appears in a narrow window of above-average nutrient input, 
suggesting that it is difficult to achieve or maintain in practice.

As 𝑔 continues to increase, the system shifts into a bistable regime 
again, but one where the sustainability state requires high initial values 
of assets and fish biomass, but does not preserve these high levels 
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for long. For most other initial conditions, the system converges to 
collapse. Finally, for very high nutrient input, the system collapses 
again, likely due to ecological degradation and feedbacks that reduce 
fish survival despite having sufficient nutrients.

This complex progression from poverty trap to eventual escape from 
poverty and back to it suggests that nutrient input is a double-edged 
sword. Both too little and too many nutrients can drive the system 
toward undesirable outcomes and Decay scenarios. Only an interme-
diate range of nutrient input supports stable and desirable aquaculture 
dynamics.

The central part of the bifurcation diagram shows behavior that 
resembles hysteresis. Typical hysteresis in ecological models is repre-
sented by two saddle–node bifurcations that have a common branch of 
unstable equilibrium points, Scheffer (1989). Behavior in this model is 
richer and more nuanced because two Hopf bifurcations create a Hopf 
bubble of unstable limit cycles. The stable branch within the bubble 
can only be reached by trajectories that originate within the bubble, 
with others being repelled toward alternative attractors.

6. Discussion

6.1. Structural understanding

The model developed in this paper is based on social–ecological 
systems research (Levin et al., 2013) and has a strong focus on poverty 
traps (Barrett and Carter, 2013; Barrett et al., 2016; Haider et al., 
2018). Previous models of poverty traps have been used as exploratory 
tools to provide insight into the dynamics of a system, test hypotheses, 
develop scenarios and answer the ‘‘what if’’ questions (Banitz et al., 
2022; Eppinga et al., 2024). The models were mainly conceptual, 
rooted in the neoclassical economic tradition (Barro and Sala-i Martin, 
2004), and discussed economic causes and solutions to poverty (Barrett 
et al., 2016; Blume et al., 2020). In recent years, multidimensional 
poverty trap models of agricultural systems have been introduced. The 
authors focused on small-scale subsistence agriculture and investigated 
the role of nature and culture in alleviating poverty (Lade et al., 2017), 
the role of assets, water, and nutrients (Radosavljevic et al., 2020), the 
impact of cross-level interactions between individual and community 
levels (Radosavljevic et al., 2021), the emergence of cross-level poverty 
traps in agricultural innovation systems (Sanga et al., 2024), or the 
impact of disease and poor health on persistent poverty (Ngonghala 
et al., 2014, 2017).

Most of the poverty trap models are formalized as systems of ordi-
nary differential equations and represent intertwined social–ecological 
processes observed in real systems. The model in this paper is based 
on the same principles and is analyzed using the same mathematical 
methods. The causal structure of the model is based on stylized facts 
from the published literature and first-hand the experience of the 
coauthors to specifically represent the small-scale aquaculture system. 
Combined analytical and numerical techniques allow for the study of 
the long-term dynamics of a small-scale aquaculture system in a fairly 
transparent way.

The number and type of equilibrium points, the size and shape 
of basins of attraction, bifurcations, and tipping points can be clearly 
identified, giving a qualitative understanding of the system. However, 
the clarity these models provide rests on simplification and abstraction. 
Regime shifts, resilience of poverty traps, vulnerability to shocks, or 
other dynamic patterns described in the model may therefore bear 
little relation to the real system. Dynamical system modeling is best 
used jointly with empirical research and more complex modeling ap-
proaches, in an iterative process where assumptions and results can be 
tested and validated (Eppinga et al., 2024; Radosavljevic et al., 2024; 
Sanga et al., 2024).

In this sense, the objective of dynamical systems models—including 
our model—is not to predict or prescribe, but to provide structural 
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understanding: revealing how system structure generates behavior (Ra-
dosavljevic et al., 2023). Social–ecological dynamics and possible causal
relationships are revealed through the manipulation of interactions 
between state variables and the observation of their consequences
(Schlüter et al., 2024). Structural understanding is particularly valuable 
for assessing the effectiveness of interventions, the consequences of 
shocks, and managing transformation toward sustainable outcomes.

Our contribution should also be understood in the context of a 
much broader body of work on modeling social–ecological systems. As 
highlighted by Bialozyt et al. (2025), and Nugroho (2025), a central 
challenge is to operationalize SES models in ways that balance empiri-
cal detail, disciplinary perspectives, and system complexity. Many SES 
models emphasize either conceptual richness or detailed case-specific 
calibration, often at the cost of analytical tractability.

In contrast, our model is deliberately positioned as a stylized dy-
namical systems model which has two key advantages. First, it makes 
the underlying causal structure transparent and allows the conditions 
for multistability and collapse to be mathematically identified. Second, 
it enables generalization beyond individual case studies by reveal-
ing structural mechanisms, such as savings-mediated poverty traps 
or nutrient-driven collapse, that appear in aquaculture settings. Our 
work fits within the theory-oriented category of SES models described 
by Jakeman et al. (2024), which prioritize structural understanding 
over case-specific prediction or decision support. By formulating a 
low-dimensional dynamical system, we make feedbacks and thresh-
olds analytically tractable, complementing more empirically detailed 
approaches. This aligns with Section 4 of Jakeman et al. (2024), 
where stylized models are highlighted as essential for identifying gen-
eral mechanisms that can guide data collection and applied modeling 
efforts.

Rather than competing with more data-driven approaches, our 
model provides a theoretical lens that helps identify where empirical 
models should look for thresholds, trade-offs, and leverage points. More 
broadly, the same principles apply to other small-scale production 
systems, such as agriculture, forestry, or common-pool fisheries, where 
economic–ecological feedbacks shape long-term sustainability.

6.2. Implications for sustainable intensification

Transforming aquaculture in developing countries from extensive to 
intensive is done with the clear aim of improving livelihoods and food 
security. However, it entails a set of challenges that are neither fully 
understood nor easy to assess. The challenges are connected to tension 
between sustainability and productivity and solving them requires a 
clearer understanding of how intertwined ecological, technological, 
economic, and social processes shape dynamics in multidimensional 
settings. In agricultural poverty alleviation, for example, there is a 
tendency to use blanket solutions without paying enough attention 
to the local context and the social–ecological complexities of the sys-
tem (Barrett and Carter, 2013; Haider et al., 2018). The consequences 
of such practices can be dire and even reinforce the dynamics they were 
set to break (Lade et al., 2017).

Here, we investigate how two dimensions of social–ecological com-
plexity, the local context and the producer heterogeneity, enable, pre-
vent, or shape achieving sustainable outcomes in small-scale aquacul-
ture.

6.2.1. Local context
The local context in the paper represents a combination of param-

eter values that describe specific social–ecological conditions in the 
model and lead to certain long-term dynamics. We identified six scenar-
ios, i.e., qualitatively different long-term dynamics, which we labeled 
Clearwater, Overload, Knife edge, Flux, Tipping pond, and Decay (Table 
5). These scenarios can be used as depictions of alternative futures in 
real systems.
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The bifurcation analysis in Section 5 shows that the qualitative be-
havior of the model (4) is rich and highly context-dependent. Changing 
the context can cause the system to shift from one scenario to another 
and, in doing so, open or close a pathway to sustainable production and 
ecosystem management. With price-responsive parameters, movements 
in productivity translate market conditions and producers’ decisions 
into shifts of thresholds and basin sizes, which helps explain why 
similar interventions succeed in one context and fail in another.

Among the scenarios we identified, Balanced efficiency and Tip-
ping Pond look like the most promising long-term alternatives for 
sustainable outcomes. They are characterized by desirable attractors 
with relatively high fish biomass and asset levels and a large basin of 
attraction. In the case of Tipping Pond, there is often a less desirable 
alternative attractor that offers higher assets and fish biomass, but a 
very small basin of attraction. In other words, Tipping Pond can be 
structurally fragile and highly sensitive to fluctuations, but it does not 
easily flip to a degraded state.

Knife-edge and Flux scenarios are less favorable. In Knife-edge 
scenario, the desirable attractor is difficult to reach and easy to lose 
due to a very narrow parameter range for which the scenario exists. 
Small shocks or suboptimal starting conditions can quickly lead to 
collapse. Flux scenario describes systems with stable limit cycles, where 
outcomes heavily oscillate due to interactions between ecological and 
economic feedbacks. Sustainability of outcomes is not reliable as it 
depends on timing and strength of perturbations, changes in the lo-
cal context and producers heterogeneity. Finally, the Decay scenario 
represents system failure where collapse occurs regardless of initial 
conditions. This scenario is always associated with low productivity, 
with or without ecological degradation, and the absence of recovery 
pathways.

This progression from collapse to fragile sustainability and back 
to collapse illustrates that interventions must be tailored not only 
with expected outcomes in mind, but also to fit the underlying sce-
nario. Without accounting for this complexity, best wishes may lead 
to suboptimal results or failure.

6.2.2. Producer heterogeneity
Producer heterogeneity is expressed by differences in assets, fish 

biomass, and nutrient levels. In the model, each producer is identified 
with a unique set of initial conditions (i.e., a triplet (𝐴0, 𝐹0, 𝑁0)) located 
in the phase space. These differences reflect the variation in wealth, 
fish availability, and pond properties, and they strongly shape effects 
of local context and outcomes of interventions.

The model shows that small differences in initial conditions can 
result in very different long-term outcomes. Placing initial conditions in 
different basins of attraction means that their trajectories will converge 
toward different outcomes. Stability analysis in Figs.  2 and 3 reveals 
who is more resilient or more at risk, or who in a heterogeneous group 
of producers would benefit from an intervention and who would be left 
behind. Price-responsive parameters help interpret which producers are 
most exposed. For example, households with low initial assets, 𝐴0, or a 
high harvest rate, ℎ0, are more likely to cross price thresholds where the 
price sensitive harvest ℎ(𝑃𝑓 ) increases, or the price sensitive nutrient 
uptake, 𝑢(𝑃𝑖𝑛), decreases, moving them into less favorable basins.

The poverty trap in Decay scenarios can be alleviated only by a 
series of interventions, where the first needs to transform the system 
and create an alternative sustainable or risky attractor. Subsequent 
interventions can then focus on adjusting initial conditions and moving 
them into the newly created basin of attraction.

In bistable and three-stable systems, it is possible to escape ecolog-
ical degradation and poverty without transforming the system. Inter-
ventions must place the system in the desired basins of attraction. Figs. 
2 and 3 show which state variables should be targeted to achieve this. 
In Fig.  2A, an intervention should aim to increase assets and/or fish 
biomass, while in Fig.  3B, it should also decrease nutrients.
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The analysis reveals that the shape and size of basins of attraction 
depends on the local context. Fig.  2A describes the scenario in which 
it is easier to reach a higher savings rate and the input of runoff 
nutrients is lower compared to the scenario in Fig.  3B. The same initial 
conditions that would lead to well-being in the first scenario could lead 
to the poverty trap in the second scenario. This sensitivity highlights the 
importance of understanding both the number and nature of attractors 
and basins of attraction, and using that knowledge to design inter-
ventions that are context-dependent and tailored to specific producer 
conditions.

6.3. Links to case studies and implications for management

Several recent empirical studies have examined the sustainability 
outcomes of interventions in small-scale aquaculture, highlighting their 
potential to improve food availability (Wang et al., 2024) and en-
hance livelihoods (Dam Lam et al., 2022), although it is not always 
clear through which pathways diversification stabilizes food security 
and livelihoods. The literature also suggests that the impact of such 
interventions on poverty remains ambiguous. Belton and Little (2011) 
claim that: ‘‘As total volume and value of output are likely to corre-
spond closely to the area of pond under culture, even where poorer 
producers can be engaged the absolute benefits they derive are likely 
to be smaller than those of better-off project participants with larger 
land-holdings’’. Cramb et al. (2004) supports these findings and states 
that the impact of small-scale aquaculture is likely to be highly class-
differentiated. This result is well supported by our findings. As Figs.  4–8 
show, producers who initially have more assets, higher fish biomass, 
and better ecological conditions are more likely to reach risky and sus-
tainable attractors and escape persistent poverty. The same intervention 
can therefore be more beneficial for producers who are better off from 
the beginning.

The interventions described by Wang et al. (2024) increase produc-
tivity, probably by increasing productivity and feed input, that is, by 
increasing values of parameters 𝑏 and 𝑔. This creates bistable systems, 
as shown in Figs.  4 and 8. Dam Lam et al. (2022) examines an ecopond 
model in Bangladesh that aims to increase diverse food consumption 
and women empowerment. The project focused on women training 
(increasing parameter 𝑏) and utilizing ecosystem services (keeping 𝑘
and 𝑔 low). The results show how intensification can lead to improved 
sustainability, but not across all dimensions or for all producers. This 
resembles the Balanced efficiency and Tipping pond scenarios in Fig.  8, 
where producers’ heterogeneity and vulnerability to shocks play an im-
portant role in determining the outcome of an intervention. Unlike the 
original study, our model does not assess cultural and socioeconomic 
barriers to women empowerment or equity.

The bifurcation diagrams in Figs.  4 and 8 can also be used to explore 
the results of Belton and Little (2011) and Cramb et al. (2004). Ac-
cording to the model, intensification can create a suboptimal attractor 
in a three-stable system. The consequence of intensification is that its 
positive effects could be unevenly distributed among poor and wealthy 
producers. Wealthy producers are in a better position to benefit from 
interventions because they are more likely to be in the sustainable or 
risky basin of attraction, while poor producers have a higher chance of 
being caught in the undesired state near the poverty trap.

Our results suggest that similar outcomes can emerge through dif-
ferent mechanisms, reflecting the diversity of pathways observed in 
empirical studies. A deeper understanding of particular cases could take 
the modeling further, for example, by highlighting the key structural 
elements that should be included in the model, adjusting parameter 
ranges, and offering a more nuanced view of the research questions 
and interpretation of results.

Close collaboration between modelers, practitioners, and stakehold-
ers is essential to ensure that models remain empirically grounded 
and useful in real world contexts. Stability and bifurcation analyses 
could then serve as tools to navigate the complexity of specific cases, 
to support the design of interventions and to help anticipate their 
potential unintended effects.
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6.4. Implications for research

There are many ways in which the model presented in this paper can 
be expanded to explore relevant research questions. We list several of 
them that align with our research interests and open research questions, 
but the list is in no way complete.

The dynamics of small-scale aquaculture ponds is affected by tem-
perature variation and is strongly dependent on the biophysical prop-
erties of the pond (Bieg and Vasseur, 2024; Jobling, 2003; Lu, 2003). 
Including spatio-temporal variability in models would increase their 
mathematical complexity because it requires nonautonomous systems 
of ordinary or partial differential equations. However, it would allow 
us to explore the interplay between spatio-temporal patterns with 
social–ecological processes in the system. Including more details on the 
ecological side could help explore polyculture ponds (Milstein, 1992) 
and the effects of disease spread on poverty (Hoover et al., 2019).

The problems in governing small-scale aquaculture systems can be 
seen as social dilemmas in which shared water or space are examples 
of common pool resources (Partelow et al., 2022). Demographic het-
erogeneity, that is, differences in producers’ wealth, training, opinions, 
and perceived risks, could be reflected in their preferred strategies and 
decisions and play an important role in shaping the small-scale aqua-
culture dynamics (Rahman et al., 2021; Nagel et al., 2024). The effects 
of social norms and management strategies on producers’ decisions, 
and in turn on small-scale aquaculture dynamics, can be explored using 
combinations of dynamical systems, evolutionary game-theoretic, and 
agent-based models.

There is a lack of firm knowledge on financial, climatic, and en-
vironmental shocks and their effects on aquaculture dynamics (Luna 
et al., 2023). Dynamical systems typically focus on asymptotic behavior 
and processes that last forever, but including transient analysis can 
give answers to questions concerning shorter time periods and in-
stantaneous processes. These results could contribute to understanding 
out-of-equilibrium dynamics and inform stakeholders and management 
about efficient ways to adapt and respond to shocks.

Another important area for future work is the explicit treatment of 
uncertainty. Considering the general lack of dynamic models for small-
scale aquaculture systems, our model should be seen as a first effort 
to reveal which dynamic behaviors are possible. However, it does not 
quantify how plausible these behaviors are under current knowledge 
through an explicit quantitative uncertainty analysis. Uncertainty quan-
tification through sensitivity analysis or probabilistic parameter ranges 
would move the analysis closer to answering how near real systems 
might be to tipping points and which data gaps matter most. Although 
such methods go beyond the scope of this paper, we must point out 
that this is a critical direction for future research.

A further promising direction is the integration of price dynamics 
and market feedbacks into SSA models. Economic incentives influ-
ence harvest timing, input use, and investment decisions and can 
amplify shocks or enable recovery. Including price dynamics explic-
itly using additional state variables for market dynamics could re-
veal new pathways of collapse and recovery that are not captured 
by the model presented here. This is particularly relevant for small-
scale producers, whose decisions are often shaped by short-term price 
fluctuations. Simple price-responsive formulations, as in our price-
responsive model, can help translate bifurcation thresholds into critical 
price ratios, but more elaborate endogenous price models could ex-
plore how coupled ecological–economic instabilities emerge through 
feedback loops between production and markets.
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Appendix

In this appendix, we provide mathematical details related to the 
feasibility of the assets-free equilibrium, 𝐸𝑃 , and coexistence, 𝐸∗, sum-
marized in Table  2 of Section 3.

Feasibility of assets-free point, 𝐸𝑃

From the second equilibrium equation of the model (6), i.e., equi-
librium equation for 𝐹 , we obtain 𝐹 = 𝛹 (𝑁), where 
𝛹 (𝑁) = 𝑟𝑢𝑁

𝑐(𝑣 +𝑁2)
− 𝑚 + ℎ

𝑐
. (10)

On the other hand, from the third equilibrium equation, i.e., equi-
librium equation for 𝑁 , we explicitly get 𝐹 = 𝛩(𝑁), where

𝛩(𝑁) = 𝑣 +𝑁2

𝑢𝑁
(𝑘 − 𝓁𝑁).

Thus, for the feasibility of 𝐸𝑃  we can look for sufficient conditions 
to have at least one intersection point between the curves 𝛹 and 𝛩 in 
the first quadrant of the 𝑁-𝐹  plane.

Study of the curve 𝛹
The function 𝛹 (𝑁) for 𝑁 ≥ 0 is a gamma-like function. Its in-

tersection with the vertical axis and its horizontal asymptote are, 
respectively, given by 

(

0,−𝑚+ℎ
𝑐

)

 and 𝐹𝑎 = −𝑚+ℎ
𝑐 . Therefore, it lies 

outside the feasible region unless its peak, located at 𝑁 = 𝑁∗, has a 
positive height, 𝛹 (𝑁∗) > 0.

The maximum can easily be established by differentiation, giving 

𝑁∗ =
√

𝑣 and 𝛹 (𝑁∗) =
𝑟𝑢
√

𝑣
2𝑐𝑣

− 𝑚 + ℎ
𝑐

, (11)

and the feasibility condition 
𝑟𝑢 > 2(𝑚 + ℎ)

√

𝑣. (12)

Then, the function 𝛹 (𝑁) intersects the horizontal axis whenever
(𝑣 +𝑁2)(𝑚 + ℎ) − 𝑟𝑢𝑁 = 0.

The latter is a quadratic equation, whose roots are explicitly found:
𝑁± = 1

2(𝑚 + ℎ)

(

𝑟𝑢 ±
√

𝑟2𝑢2 − 4𝑣(𝑚 + ℎ)
)

.

Clearly 𝑁± ≥ 0 and 𝛹 (𝑁) is nonnegative in [𝑁−, 𝑁+], with 0 < 𝑁− <
𝑁 < 𝑁 .
∗ +

14 
Study of the curve 𝛩
The function 𝛩(𝑁) has a vertical asymptote on the coordinate axis 

𝑁 = 0 and is positive for 0 < 𝑁 < 𝑁0, where 𝑁0 =
𝑘
𝓁
.

We also find
𝑑𝛩
𝑑𝑁

= 𝑢𝑁
2 − 𝑣

𝑢2𝑁2
(𝑘 − 𝓁𝑁) − 𝓁

𝑣 +𝑁2

𝑢𝑁
.

Therefore, it is not immediately clear whether the function is mono-
tonically decreasing. The positive condition of the first derivative is 
equivalent to the cubic inequality
−2𝓁𝑁3 + 𝑘𝑁2 − 𝑣𝑘 > 0,

so that by the Descartes rule there are two positive roots. The question 
is whether they are located in the interval [0, 𝑁0]. In case they are 
not, in the very same interval 𝛩(𝑁) is monotonically decreasing and 
no multiple intersections with the other function arising from the 
equilibrium equation of 𝑁 would be possible. Conversely, 𝛩 exhibits 
a kink in the feasible region and multiple intersections could arise.

The second derivative of the function is
𝑑2𝛩
𝑑𝑁2

= −6𝓁𝑁2 + 𝑘.

It is nonnegative for 0 < 𝑁 < 𝑁̂ , where 𝑁̂ =
√

𝑘
6𝓁 . Therefore, we find 

𝑁0 < 𝑁̂ for 
6𝑘 < 𝓁, (13)

ensuring the monotonicity of 𝛩(𝑁) in [0, 𝑁0].
We can further investigate the condition 𝛩′(𝑁) < 0 in [0, 𝑁0]. It is 

equivalent to 

𝐿(𝑁) = 𝓁
𝑣 +𝑁2

𝑢𝑁
< 𝑁2 − 𝑣

𝑢𝑁2
(𝑘 − 𝓁𝑁) = 𝑅(𝑁) = 1

𝑢𝑁2
𝑅(𝑁). (14)

Now, 𝐿(𝑁) ≥ 0 for every 𝑁 ∈ [0, 𝑁0]. On the other hand, 𝑅(𝑁) ≥ 0 for 
𝑁 ∈ [𝑁∗, 𝑁0]. This means that 𝐿(𝑁) < 𝑅(𝑁) for 0 < 𝑁 <

√

𝑣, 𝑁 > 𝑘
𝓁
. 

In 𝑁 ∈ [𝑁∗, 𝑁0] we need to investigate the conditions for which 𝐿 and 
𝑅 intersect, as they are both positive. Rewriting (14) in the simplified 
form

𝓁𝑁(𝑣 +𝑁2) < (𝑁2 − 𝑣)(𝑘 − 𝓁𝑁),

we can finally establish the condition for the intersections of 𝑁𝐿(𝑁)
and 𝑅(𝑁) for 𝑁 ∈ [𝑁∗, 𝑁0]. Differentiating, we find
𝑑𝑅
𝑑𝑁

= −3𝑁2 + 𝑘𝑁 + 𝓁𝑣,

from which the maximum is attained at the point

𝑁+
∗∗ = 1

6

[

𝑘 +
√

𝑘2 + 12𝓁𝑣
]

and the condition that must be satisfied is 
𝑁+

∗∗𝐿(𝑁
+
∗∗) > 𝑅(𝑁+

∗∗). (15)

Summarizing, (15) ensures that (14) holds, which means that 𝛩(𝑁) is 
monotonically decreasing in [0, 𝑁0].

Intersections of the curves 𝛹 and 𝛩
Assume now the monotonicity of 𝛩(𝑁), that is, (13) or (15). We 

need to find the intersections of the curves 𝛹 and 𝛩, as these provide 
the assets-free equilibrium points, in the first quadrant of the 𝑁-𝐹
plane.

There are four possible situations, the first two of which do not lead 
to any feasible intersection, namely 
𝑁0 < 𝑁− and 𝑁0 > 𝑁+, (16)

conditions that will therefore be disregarded. We focus instead on the 
following two:
𝑁− < 𝑁0 < 𝑁+, (17)

𝑁 < 𝑁 < 𝑁 . (18)
∗ + 0
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The condition (17) ensures the uniqueness of the intersection, there-
fore, giving an equilibrium point 𝐸𝑃 .

On the other hand, (18) does not always ensure the existence of 
the intersection; in the case where 𝛹 and 𝛩 are tangent to each other, 
uniqueness is guaranteed. Indeed, note that 𝛹 is concave and 𝛩 is 
convex. However, if they intersect, there will be a pair of equilibria 
𝐸𝑃  through a saddle–node bifurcation. For this to occur, we need also 
𝛹 (𝑁∗) < 𝛩(𝑁∗), which using (11) can explicitly be written as 

2𝑣
𝑢
(𝑘 − 𝓁

√

𝑣) < 𝑟𝑢
2𝑐

−
√

𝑣𝑚 + ℎ
𝑐

. (19)

Feasibility of coexistence, 𝐸∗

The second equilibrium equation, that is, the equilibrium equation 
for 𝐹 , gives the function 𝐹 = 𝛹 (𝑁), with (10), already investigated for 
the assets-free equilibrium, 𝐸𝑃 . However, the difference is that in the 
previous subsection this was a curve in the 𝑁 − 𝐹  plane, while here, 
in the three-dimensional space, it is a cylinder with the axis parallel to 
the 𝐴 axis.

Then, from the first equilibrium equation, i.e., the equilibrium 
equation for 𝐴, solving for 𝐹 , we find the surface 
𝐹 = 𝜒(𝐴) =

𝑞
𝑏𝐴2

(𝑝 + 𝐴2). (20)

Finally, from the last equilibrium equation for 𝑁 we get another 
surface, namely 

𝐹 = 𝛷(𝑁,𝐴) =
(𝑘 − 𝓁𝑁)(𝑣 +𝑁2)(𝑧 + 𝐴)
𝑢𝑁(𝑧 + 𝐴) − 𝑔𝐴(𝑣 +𝑁2)

. (21)

In this case, for the coexistence feasibility, we can look for sufficient 
conditions to have at least one intersection point of these three surfaces, 
𝛹 , 𝜒 , and 𝛷, in the first octant of the 𝐴-𝑁-𝐹  space.

Study of the surface 𝜒
The function 𝜒(𝐴), being independent of 𝑁 , represents a cylinder 

with the axis parallel to the 𝑁 axis. Its intersection with the 𝑁 = 0
coordinate plane is a hyperbola-like function, with a vertical asymptote 
on the 𝐹  axis and a horizontal one located at 
𝐹∞ =

𝑞
𝑏
. (22)

This function is monotonically decreasing in view of the fact that
𝑑𝜒
𝑑𝐴

= − 2
𝑏𝐴2

< 0.

Study of the surface 𝛷
Let us define the following quantity, the denominator of (21)

𝐷𝛷 = 𝑢𝑧𝑁 + 𝑢𝑁𝐴 − 𝑔𝑣𝐴 − 𝑔𝐴𝑁2 = −𝑁 (𝑁) − 𝐴𝐷 (𝑁),

where

𝑁 (𝑁) = 𝑢𝑧𝑁 and 𝐷 (𝑁) = 𝑔𝑁2 − 𝑢𝑁 + 𝑔𝑣.

To assess the regions for which 𝛷 is feasible, we need to study the sign 
of its denominator, 𝐷𝛷, since its numerator, 𝑁𝛷, is easily seen to be 
positive for 
𝑁 < 𝑁0. (23)

Now, 𝐷𝛷 > 0 is equivalent to 𝐴𝐷 < 𝑁 . This inequality holds 
trivially for 𝐷 < 0. Conversely, for 𝐷 > 0 it reduces to

𝐴 ≤  (𝑁) =
𝑁
𝐷

.

The roots of 𝐷 = 0 are

𝑁𝑢,𝓁 = 1
2𝑔

[

𝑢 ±
√

𝑢2 − 4𝑔2𝑣
]

,

where the subscript 𝓁 (lower) corresponding to the minus sign and 𝑢
(upper) to the plus sign. Thus, in this case 𝐷 > 0 for 𝑁 < 𝑁  and 
 𝓁

15 
𝑁 > 𝑁𝑢. Combining these results, we find 𝐷𝛷 > 0 for the following 
alternative cases: 
𝐷 > 0 ∶ 𝐴 ≤  ; 𝐷 > 0 ∶ always true. (24)

The function 𝐴 =  has two branches in the first quadrant. The left 
one crosses the origin and raises up to a vertical asymptote located at 
𝑁 = 𝑁𝓁 . In (𝑁𝓁 , 𝑁𝑢), the function is negative, while it decreases from 
another vertical asymptote at 𝑁 = 𝑁𝑢 to approach the horizontal axis 
for 𝑁 → +∞.

We now concentrate on the feasibility of the function 𝛷(𝑁,𝐴). On 
𝐴 =  , the surface 𝛷 has a vertical asymptote. On the other hand, on 
𝑁 = 𝑁0 it vanishes. The above two lines, 𝐴 =  and 𝑁 = 𝑁0, intersect 
at the point 

𝐴0 =  (𝑁0) =
𝓁𝑘𝑢𝑧

𝑔𝓁2𝑣 − 𝑘𝓁𝑢 + 𝑔𝑘2
, (25)

feasible if
𝑔𝓁2𝑣 + 𝑔𝑘2 > 𝑘𝓁.

Note that at the point 𝐴0 the surface 𝛷 does not have a limit, because if 
the point is approached along the curve  , the surface grows without 
limit, while if 𝐴0 is approached along the line 𝑁 = 𝑁0 the surface 
vanishes.

We have to distinguish between two different alternative situations 
leading to 𝛷(𝑁,𝐴) > 0: 
𝑁𝛷 > 0, 𝐷𝛷 > 0 (26)

or 
𝑁𝛷 < 0, 𝐷𝛷 < 0. (27)

In the case (26), we need 𝑁 < 𝑁0, with no other conditions, if 
𝐷 < 0. Instead, we need 𝑁 < 𝑁0 and 𝐴 ≤  (𝑁) for 𝐷 > 0, compare 
(23) and (24). Geometrically, the latter means that the feasible region 
in the 𝑁-𝐴 plane lies below the two positive branches of 𝐴 =  (𝑁)
and includes also the half stripe in the first quadrant bounded below 
by the interval (𝑁𝓁 , 𝑁𝑢). We must further distinguish three subcases 
depending on the location of 𝑁0 with respect to (𝑁𝓁 , 𝑁𝑢):

(a1) 𝑁0 < 𝑁𝓁 < 𝑁𝑢: the surface 𝛷 is positive in the ‘‘triangular’’ region 
𝛺𝑎1, with a vertex at the point (𝑁0, 𝐴0), bounded above by the left 
branch of  , on the right by the vertical line 𝑁 = 𝑁0 and below 
by the coordinate axis 𝑁 ;

(a2) 𝑁𝓁 < 𝑁0 < 𝑁𝑢: the surface 𝛷 is positive in the region 𝛺𝑎2
bounded below by the coordinate axis 𝑁 and above by the left 
branch of  for 𝑁 < 𝑁𝓁 , and in the half-stripe for 𝑁𝓁 < 𝑁 < 𝑁0;

(a3) 𝑁𝓁 < 𝑁𝑢 < 𝑁0: the surface 𝛷 is positive in the region 𝛺𝑎3
bounded below by the coordinate axis 𝑁 , bounded above by the 
left branch of  for 𝑁 < 𝑁𝓁 , in the half-stripe for 𝑁𝓁 < 𝑁 < 𝑁𝑢
and bounded above by the right branch of  for 𝑁𝑢 < 𝑁 < 𝑁0.

In the case (27), we need 𝑁 > 𝑁0 and 𝐴 >  (𝑁) for 𝐷 > 0; 
the condition does not hold if 𝐷 < 0. Hence, 𝛷(𝑁,𝐴) is positive only 
above the function  whenever this is positive. Here, too, there are 
three subcases:

(b1) 𝑁0 < 𝑁𝓁 < 𝑁𝑢: the surface 𝛷 is positive in the region 𝛺𝑏1 above 
the left branch of  for 𝑁0 < 𝑁 < 𝑁𝓁 and above the right branch 
of  for 𝑁 > 𝑁𝑢;

(b2) 𝑁𝓁 < 𝑁0 < 𝑁𝑢: the surface 𝛷 is positive in the region 𝛺𝑏2 above 
the right branch of  , i.e., for 𝑁 > 𝑁𝑢;

(b3) 𝑁𝓁 < 𝑁𝑢 < 𝑁0: the surface 𝛷 is positive in the region 𝛺𝑏3 above 
the right branch of  for 𝑁 > 𝑁0.

Note also that the surface 𝛷 in the regions that are unbounded has 
different behaviors, namely
lim 𝛷(𝑁,𝐴) = +∞,
𝑁→+∞
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Table 6
Intersections of 𝛬 with 𝛷 in the case (a1).
 Intersections Conditions  
 No intersection if 𝑁0 < 𝑁∞

−  
 Unique intersection • for 𝑁∞

− < 𝑁0 < 𝑁∗, iff 𝛬(𝑁0) < 𝐴0
• for 𝑁∗ < 𝑁0 < 𝑁𝓁 < 𝑁∞

+ , iff 𝛬(𝑁0) < 𝐴0

 

 Two intersections for 𝑁∗ < 𝑁∞
+ < 𝑁0 < 𝑁𝓁 , if 𝛬(𝑁∗ , 𝐴𝑋 ) > 𝛷(𝑁∗ , 𝐴𝑋 )  
Table 7
Intersections of 𝛬 with 𝛷 in the case (a2).
 Intersections Conditions  
 No intersection • if 𝑁0 < 𝑁∞

−
• for 𝑁∞

+ < 𝑁𝓁 , if 𝛬(𝑁∗ , 𝐴𝑋 ) > 𝛷(𝑁∗ , 𝐴𝑋 )
 

 Unique intersection in 
[𝑁∞

− , 𝑁0]
• for 𝑁𝓁 < 𝑁∞

− < 𝑁0 < 𝑁∞
+ , if not (28)

• for 𝑁∞
− < 𝑁𝓁 < 𝑁0 < 𝑁∞

+

 

 Two intersections in 
[𝑁∞

− , 𝑁∞
+ ]

• for 𝑁𝓁 < 𝑁∞
− < 𝑁∞

+ < 𝑁0
 – if 𝛬(𝑁∗ , 𝐴𝑋 ) > 𝛷(𝑁∗ , 𝐴𝑋 ) and not (28)
 – if 𝛬(𝑁∗ , 𝐴𝑋 ) < 𝛷(𝑁∗ , 𝐴𝑋 ) and (28)
• for 𝑁∞

+ < 𝑁𝓁 , if 𝛬(𝑁∗ , 𝐴𝑋 ) < 𝛷(𝑁∗ , 𝐴𝑋 )
• for 𝑁∞

− < 𝑁𝓁 < 𝑁∞
+ < 𝑁0

 – if 𝛬(𝑁∗ , 𝐴𝑋 ) > 𝛷(𝑁∗ , 𝐴𝑋 ) and not (28)
 – if 𝛬(𝑁∗ , 𝐴𝑋 ) < 𝛷(𝑁∗ , 𝐴𝑋 ) and (28)

 

Table 8
Intersections of 𝛬 with 𝛷 in the case (a3).
 Intersections Conditions  
 No intersection • if 𝑁0 < 𝑁∞

−
• for 𝑁𝑢 < 𝑁∞

− < 𝑁0 < 𝑁∞
+ , if 𝛬(𝑁0) >  (𝑁0)

• for 𝑁𝓁 < 𝑁∞
− < 𝑁𝑢 < 𝑁0 < 𝑁∞

+ , if 𝛬(𝑁0) <  (𝑁0)
• for 𝑁𝑢 < 𝑁∞

− < 𝑁∞
+ < 𝑁0, if 𝛬(𝑁∗) >  (𝑁∗)

• for 𝑁∞
− < 𝑁∞

+ < 𝑁𝓁 < 𝑁𝑢 < 𝑁0, if 𝛬(𝑁𝑋 ) >  (𝑁𝑋 )

 

 Unique intersection in [𝑁∞
− , 𝑁0] • for 𝑁𝑢 < 𝑁∞

− < 𝑁0 < 𝑁∞
+ , if 𝛬(𝑁0) <  (𝑁0)

• for 𝑁𝓁 < 𝑁∞
− < 𝑁𝑢 < 𝑁0 < 𝑁∞

+ , if 𝛬(𝑁0) >  (𝑁0)
 

 Unique intersection in [𝑁∞
− , 𝑁𝑢] for 𝑁∞

− < 𝑁𝓁 < 𝑁𝑢 < 𝑁0 < 𝑁∞
+ , if 𝛬(𝑁0) <  (𝑁0)  

 Two intersections in [𝑁∞
− , 𝑁∞

+ ] • for 𝑁∞
− < 𝑁∞

+ < 𝑁𝓁 < 𝑁𝑢 < 𝑁0, if 𝛬(𝑁𝑋 ) <  (𝑁𝑋 )
• for 𝑁𝓁 < 𝑁∞

− < 𝑁∞
+ < 𝑁𝑢 < 𝑁0

 – if 𝛬(𝑁𝑋 , 𝐴𝑋 ) < 𝛷(𝑁𝑋 , 𝐴𝑋 ) and not (28)
 – if 𝛬(𝑁𝑋 , 𝐴𝑋 ) > 𝛷(𝑁𝑋 , 𝐴𝑋 ) and (28)
• for 𝑁𝓁 < 𝑁∞

− < 𝑁𝑢 < 𝑁∞
+ < 𝑁0

 – if 𝛬(𝑁𝑋 , 𝐴𝑋 ) < 𝛷(𝑁𝑋 , 𝐴𝑋 ) and not (28)
 – if 𝛬(𝑁𝑋 , 𝐴𝑋 ) > 𝛷(𝑁𝑋 , 𝐴𝑋 ) and (28)
• for 𝑁𝑢 < 𝑁∞

− < 𝑁∞
+ < 𝑁0, if 𝛬(𝑁∗) <  (𝑁∗)

• for 𝑁∞
− < 𝑁𝓁 < 𝑁𝑢 < 𝑁∞

+ < 𝑁0
• for 𝑁∞

− < 𝑁𝓁 < 𝑁𝑢 < 𝑁0 < 𝑁∞
+ , if 𝛬(𝑁0) >  (𝑁0)

• for 𝑁∞
− < 𝑁𝓁 < 𝑁∞

+ < 𝑁𝑢 < 𝑁0
 – if 𝛬(𝑁𝑋 , 𝐴𝑋 ) < 𝛷(𝑁𝑋 , 𝐴𝑋 ) and not (28)
 – if 𝛬(𝑁𝑋 , 𝐴𝑋 ) > 𝛷(𝑁𝑋 , 𝐴𝑋 ) and (28)

 

while

lim
𝐴→+∞

𝛷(𝑁,𝐴) =
(𝑘 − 𝓁𝑁)(𝑣 +𝑁2)
𝑢𝑁 − 𝑔(𝑣 +𝑁2)

,

whose value depends on 𝑁 but it is finite.

Study of the curve 𝛬 = 𝜒 ∩ 𝛹
In the following analysis, some cases will hinge on the mutual 

behavior of 𝛷 and 𝛬 = 𝜒 ∩ 𝛹 as 𝑎 → +∞. The latter is above the 
surface if the following inequality holds, and conversely: 
(𝑘 − 𝓁𝑁)(𝑣 +𝑁2)
𝑢𝑁 − 𝑔(𝑣 +𝑁2)

<
𝑞
𝑏
. (28)

We now turn to studying the curve 𝛬 = 𝜒 ∩𝛹 . Because the former is 
above the plane 𝐹 = 𝑞𝑏−1 and the latter has the height of the maximum 
𝐹 = 𝛹 (𝑁∗, 𝐴), 𝐴 being an arbitrary value as 𝛹 is a cylinder, they can 
intersect only if 𝛹 (𝑁∗, 𝐴) > 𝑞𝑏−1, a condition that explicitly becomes 
𝑏𝑟𝑢 > 2𝑐𝑞𝑣 + 2𝑏(𝑚 + ℎ)𝑣. (29)

Because 𝜒 raises up to infinity for 𝐴 = 0, i.e., on the 𝑁-𝐹  coordinate 
plane, for increasing 𝐴 it decreases toward its horizontal asymptote. 
16 
The first intersection with the cylinder 𝛹 must occur at a point 𝑋 =
(𝐴𝑋 , 𝐹𝑋 , 𝑁𝑋 ), with 𝑁𝑋 = 𝑁∗ =

√

𝑣 > 0. We must then have 
𝜒(𝑁∗, 𝐴𝑋 ) = 𝛹 (𝑁∗, 𝐴𝑋 ), from which follows

𝐴𝑋 =

√

2𝑐𝑝𝑞𝑣
𝑏𝑟𝑢 − 2𝑐𝑞𝑣 − 2𝑏𝑣(𝑚 + ℎ)

.

The intersection exists only if 𝐴𝑋 ≥ 0, that is, if (29) holds. Finally, we 
explicitly have

𝑋 = (𝐴𝑋 , 𝛹 (
√

𝑣),
√

𝑣).

The curve 𝛬 = 𝜒∩𝛹 originates from 𝑋 and consists of two branches, 
𝛬− and 𝛬+, respectively, for 𝑁 ≤ 𝑁∗ and 𝑁 ≥ 𝑁∗. In view of the fact 
that they lie on 𝜒 , as 𝐴 → +∞ both approach 𝐹 = 𝑞𝑏−1 and on this 
plane also, respectively, approach the values 𝑁 = 𝑁∞

∓ , with 𝑁− < 𝑁∞
−

and 𝑁∞
+ < 𝑁+. The latter is obtained by imposing that 𝛹 (𝑁) = 𝑞𝑏−1. 

We find

𝑁∞
∓ = 1

2[𝑐𝑞 + 𝑏(𝑚 + ℎ)]

[

𝑏𝑟𝑢 ±
√

𝑏2𝑟2𝑢2 − 4[𝑐𝑞 + 𝑏(𝑚 + ℎ)]2𝑣
]

.
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Table 9
Intersections of 𝛬 with 𝛷 in the case (b1).
 Intersections Conditions  
 No intersection • for 𝑁∞

− < 𝑁∞
+ < 𝑁0 < 𝑁𝓁 < 𝑁𝑢

• for 𝑁∞
− < 𝑁0 < 𝑁𝓁 < 𝑁∞

+ < 𝑁𝑢, if 𝛬(𝑁𝑋 ) <  (𝑁𝑋 )
• for 𝑁∞

− < 𝑁0 < 𝑁𝓁 < 𝑁𝑢 < 𝑁∞
+ , if 𝛬(𝑁𝑋 ) <  (𝑁𝑋 ) and not (28)

• for 𝑁0 < 𝑁∞
− < 𝑁∞

+ < 𝑁𝓁 < 𝑁𝑢, if not (28) and 
𝛬(𝑁𝑋 , 𝐴𝑋 ) < 𝛷(𝑁𝑋 , 𝐴𝑋 )
• for 𝑁0 < 𝑁𝓁 < 𝑁∞

− < 𝑁∞
+ < 𝑁𝑢

• for 𝑁0 < 𝑁𝓁 < 𝑁𝑢 < 𝑁∞
− < 𝑁∞

+ , if not (28)

 

 One intersection • for 𝑁∞
− < 𝑁0 < 𝑁∞

+ < 𝑁𝓁 < 𝑁𝑢, if not (28)
• for 𝑁∞

− < 𝑁0 < 𝑁𝓁 < 𝑁∞
+ < 𝑁𝑢, if 𝛬(𝑁𝑋 ) >  (𝑁𝑋 )

• for 𝑁∞
− < 𝑁0 < 𝑁𝓁 < 𝑁𝑢 < 𝑁∞

+ – if 𝛬(𝑁𝑋 ) >  (𝑁𝑋 ) and not (28)
 – if 𝛬(𝑁𝑋 ) <  (𝑁𝑋 ) and (28)

 

 One intersection in [𝑁∞
− , 𝑁𝓁 ] • for 𝑁0 < 𝑁∞

− < 𝑁𝓁 < 𝑁∞
+ < 𝑁𝑢

• for 𝑁0 < 𝑁∞
− < 𝑁𝓁 < 𝑁𝑢 < 𝑁∞

+

 

 One intersection in [𝑁𝑢 , 𝑁∞
+ ] for 𝑁0 < 𝑁𝓁 < 𝑁∞

− < 𝑁𝑢 < 𝑁∞
+ , if (28)  

 Two intersections • for 𝑁∞
− < 𝑁0 < 𝑁𝓁 < 𝑁𝑢 < 𝑁∞

+ , if 𝛬(𝑁𝑋 ) >  (𝑁𝑋 ) and (28)
• for 𝑁0 < 𝑁∞

− < 𝑁∞
+ < 𝑁𝓁 < 𝑁𝑢, if (28) and 𝛬(𝑁𝑋 , 𝐴𝑋 ) < 𝛷(𝑁𝑋 , 𝐴𝑋 )

• for 𝑁0 < 𝑁∞
− < 𝑁∞

+ < 𝑁𝓁 < 𝑁𝑢
 – if 𝛬(𝑁𝑋 ) <  (𝑁𝑋 ) and (28)
 – if 𝛬(𝑁𝑋 ) >  (𝑁𝑋 ) and not (28)
• for 𝑁0 < 𝑁𝓁 < 𝑁𝑢 < 𝑁∞

− < 𝑁∞
+ , if 𝛬(𝑁𝑋 ) <  (𝑁𝑋 ) and (28)

• for 𝑁0 < 𝑁∞
− < 𝑁𝓁 < 𝑁𝑢 < 𝑁∞

+ , if (28)

 

Table 10
Intersections of 𝛬 with 𝛷 in the case (b2).
 Intersections Conditions  
 No intersection • for 𝑁∞

− < 𝑁∞
+ < 𝑁𝓁 < 𝑁𝑢

 – if 𝛬(𝑁𝑋 ) >  (𝑁𝑋 ) and (28)
 – if 𝛬(𝑁𝑋 ) <  (𝑁𝑋 ) and not (28)
• for 𝑁∞

− < 𝑁𝓁 < 𝑁𝑢 < 𝑁∞
+ , if not (28)

• for 𝑁𝓁 < 𝑁∞
− < 𝑁∞

+ < 𝑁𝑢
• for 𝑁𝓁 < 𝑁∞

− < 𝑁𝑢 < 𝑁∞
+ , if not (28)

• for 𝑁𝓁 < 𝑁𝑢 < 𝑁∞
− < 𝑁∞

+ – if 𝛬(𝑁𝑋 ) >  (𝑁𝑋 ) and (28)
 – if 𝛬(𝑁𝑋 ) <  (𝑁𝑋 ) and not (28)

 

 One intersection • for 𝑁∞
− < 𝑁∞

+ < 𝑁𝓁 < 𝑁𝑢, if (28)
• for 𝑁𝓁 < 𝑁∞

− < 𝑁𝑢 < 𝑁∞
+ , if (28)

 

 Two intersections • for 𝑁∞
− < 𝑁∞

+ < 𝑁𝓁 < 𝑁𝑢, if 𝛬(𝑁𝑋 ) >  (𝑁𝑋 ) and (28)
• for 𝑁∞

− < 𝑁𝓁 < 𝑁∞
+ < 𝑁𝑢, if (28)

• for 𝑁∞
− < 𝑁𝓁 < 𝑁𝑢 < 𝑁∞

+ , if (28)
• for 𝑁𝓁 < 𝑁𝑢 < 𝑁∞

− < 𝑁∞
+ – if 𝛬(𝑁𝑋 ) >  (𝑁𝑋 ) and not (28)

 – if 𝛬(𝑁𝑋 ) <  (𝑁𝑋 ) and (28)

 

Intersections of the curve 𝛬 with the surface 𝛷
Coexistence is obtained from the intersection of the curve 𝛬 with 

the surface 𝛷. Several situations can arise, due to the various cases 
(a1)–(a3) and (b1)–(b3) examined above, in combination with the 
location of the point 𝑋, the branches of 𝛬, and their asymptotes at 
𝑁∞

∓ . The existence of the intersection relies on the fact that in the phase 
space the curve 𝛬 approaches the horizontal plane 𝐹 = 𝐹∞, see (22), 
and that on  (𝑁) the function 𝛷 has a vertical asymptote.

Our discussion focuses mainly on the location of the projection of 
the point 𝑋, (𝑁𝑋 , 𝐴𝑋 ) on the 𝑁-𝐴 coordinate plane, from which the 
projection 𝐴 = 𝛬(𝑁) of the curve 𝛬 originates, and the feasible regions 
where 𝛷 ≥ 0 discovered in (a1)–(a3) and (b1)–(b3) above. Note that 
the curve 𝛬 has vertical asymptotes at 𝑁 = 𝑁∞

∓ .
The cases that can arise are many, too many to list exhaustively. 

In addition, in several of them it is not clear whether the intersection 
17 
is unique or, in some cases, multiple (in general, double). In the latter 
case, there would most likely be saddle–node bifurcations giving rise to 
pairs of equilibria, but to specify the conditions under which they arise 
would be very difficult, also because the coordinates of the coexistence 
equilibrium point are not explicit. We therefore confine ourselves to 
list the cases where the existence and uniqueness of the coexistence 
equilibrium occur and disregard other more complicated situations. See 
Tables  6, 7, 8, 9, 10, and 11.

Data availability

No data was used for the research described in the article.
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Table 11
Intersections of 𝛬 with 𝛷 in the case (b3).
 Intersections Conditions  
 No intersection • for 𝑁∞

− < 𝑁∞
+ < 𝑁𝓁 < 𝑁𝑢 < 𝑁0

• for 𝑁∞
− < 𝑁𝓁 < 𝑁∞

+ < 𝑁𝑢 < 𝑁0
• for 𝑁∞

− < 𝑁𝓁 < 𝑁𝑢 < 𝑁∞
+ < 𝑁0

• for 𝑁𝓁 < 𝑁∞
− < 𝑁∞

+ < 𝑁𝑢 < 𝑁0
• for 𝑁𝓁 < 𝑁∞

− < 𝑁𝑢 < 𝑁∞
+ < 𝑁0

• for 𝑁𝓁 < 𝑁𝑢 < 𝑁∞
− < 𝑁∞

+ < 𝑁0, if 𝛬(𝑁𝑋 ) >  (𝑁𝑋 )
• for 𝑁𝓁 < 𝑁𝑢 < 𝑁∞

− < 𝑁0 < 𝑁∞
+ , if 𝛬(𝑁𝑋 , 𝐴𝑋 ) < 𝛷(𝑁𝑋 , 𝐴𝑋 )

• for 𝑁𝓁 < 𝑁𝑢 < 𝑁0 < 𝑁∞
− < 𝑁∞

+  if 𝛬(𝑁𝑋 ) >  (𝑁𝑋 )
 – if 𝛬(𝑁𝑋 , 𝐴𝑋 ) > 𝛷(𝑁𝑋 , 𝐴𝑋 ) and (28)
 – if 𝛬(𝑁𝑋 , 𝐴𝑋 ) < 𝛷(𝑁𝑋 , 𝐴𝑋 ) and not (28)

 

 One intersection • for 𝑁∞
− < 𝑁𝓁 < 𝑁𝑢 < 𝑁0 < 𝑁∞

+ , if (28)
• for 𝑁𝓁 < 𝑁∞

− < 𝑁𝑢 < 𝑁0 < 𝑁∞
+ , if (28)

• for 𝑁𝓁 < 𝑁𝑢 < 𝑁∞
− < 𝑁0 < 𝑁∞

+ , if 𝛬(𝑁𝑋 , 𝐴𝑋 ) > 𝛷(𝑁𝑋 , 𝐴𝑋 ) and 
𝛬(𝑁0) >  (𝑁0) or 𝛬(𝑁0) <  (𝑁0)

 

 Two intersections • for 𝑁𝓁 < 𝑁𝑢 < 𝑁∞
− < 𝑁∞

+ < 𝑁0, if 𝛬(𝑁𝑋 ) <  (𝑁𝑋 )
• for 𝑁𝓁 < 𝑁𝑢 < 𝑁0 < 𝑁∞

− < 𝑁∞
+ , if 𝛬(𝑁𝑋 ) <  (𝑁𝑋 )

 – if 𝛬(𝑁𝑋 , 𝐴𝑋 ) > 𝛷(𝑁𝑋 , 𝐴𝑋 ) and not (28)
 – if 𝛬(𝑁𝑋 , 𝐴𝑋 ) < 𝛷(𝑁𝑋 , 𝐴𝑋 ) and (28)
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