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ARTICLE INFO ABSTRACT

Keywords: Despite the promise of inland small-scale aquaculture for improving food security and alleviating poverty, the
Bifurcation long-term sustainability of such production systems remains poorly understood, particularly in contexts where
Bistability economic and ecological processes reinforce each other. This paper develops a stylized social-ecological model

Dynamical system
Social-ecological system
Pond aquaculture
Sustainable intensification

that captures feedbacks between producer wealth, fish biomass, and nutrient dynamics in inland pond-based
small-scale aquaculture systems. The model reveals how these intertwined feedbacks shape the long-term
dynamics of the system and lead to monostability, bistability, or multistability. These regimes correspond
to a collapse, a high-yield but high-risk, and a sustainable equilibrium in fish production. Using bifurcation
and stability analysis, we identify six dynamic scenarios: Balanced efficiency, Overload, Flux, Knife-edge,
Tipping pond and Decay, that represent qualitatively different long-term outcomes. Rather than predicting
specific outcomes, the model gives a structural understanding of small-scale aquaculture system dynamics
and highlights the importance of local context and producers’ heterogeneity in shaping the outcomes. It also
provides a theoretical foundation for scenario-based management and empirical model development.

1. Introduction consist of many interdependent physical, chemical, and biological pro-
cesses under anthropogenic and environmental influence (Boyd et al.,

Aquaculture has been one of the fastest-growing food production
sector in the world, providing more than half of all fish for human
consumption (FAO, 2020). At the same time, aquaculture development
has been linked to several sustainability challenges, including social
issues such as inequality and common-pool resource dilemmas, and

1998). Moreover, SSA producers generally lack access to improved farm
technologies and production practices. As a result, many SSA produc-
tion systems are not improved, preventing the producers achieving high
productivity and income and essentially escaping poverty.

ecological issues such as eutrophication and disease outbreaks (Nagel The central concern in this context is whether SSA production sys-
et al., 2024). There is also an ongoing debate on who and how much tems can avoid low-yield, low-investment traps and transition toward
benefits from participation in aquaculture, with research supporting the sustainable high-yield, high-income states. Unlike agriculture research,
view that it is beneficial primarily to those who can afford it (Belton, where these questions received considerable attention (Barrett and

2013), but also to the poorest of the poor (Pant et al., 2014).

An increasing fraction of aquacultural output comes from inland
small-scale aquaculture (SSA) producers (FAO, 2020; Filipski and Bel-
ton, 2018). Many of them live in regions characterized by high poverty

Carter, 2013; Lade et al., 2017; Radosavljevic et al., 2020, 2021; Sanga
et al., 2024), aquaculture research rarely adopts a social-ecological
system approach (Levin et al., 2013) to explore development path-

rates, few off-farm income and employment opportunities, and high ways from a long-term dynamics point of view (Béné et al., 2016;
vulnerability to market disruptions (Boughton et al., 2021; Kang et al., Partelow et al., 2018). Most of the work is focused on conventional
2021). They are often exposed to financial, climatic, and environmen- commercial monoculture systems, with very few exceptions that focus
tal risks and frequently face food insecurity, social, and regulatory on small-scale aquaculture producers (Little et al., 2018; Naylor et al.,

issues (Mitra et al., 2019; Rahman et al., 2021). Sometimes SSA produc-

2023).
ers have limited knowledge of the ecology of aquaculture ponds, which )
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Furthermore, the broader inland aquaculture research has histori-
cally focused heavily on technical aspects of production and quanti-
tative and qualitative impact assessment (Gephart et al., 2021; Hen-
riksson et al., 2021; Naylor et al., 2021). Mathematical and simulation
models applied in aquaculture research usually study biophysical dy-
namics and explore biotic and abiotic factors that affect fish growth
and the behavior of ecological populations. These include the dynamic
energy budget model (Kooijman, 2010), the thermal growth coefficient
model (Jobling, 2003), the biomass-based models (Svirezhev et al.,
1984), or individual-based models (Lu, 2003). In other cases, aqua-
culture models focus on bioeconomic dynamics (Nobre et al., 2009),
optimization problems (Kvamsdal et al., 2020), or the effects of climate
change (Varga et al., 2020). An exception is the work of Filipski and
Belton (2018), which uses the general equilibrium model to study the
effects of small-scale commercial aquaculture on poverty.

In general, little is known about how intertwined social and eco-
logical processes shape the long-term dynamics of inland small-scale
aquaculture systems and create structural low-yield traps. Few mod-
els include endogenous economic and ecological dynamics capable of
generating multistability, bifurcation-induced tipping, or hysteresis. To
address this gap, we develop a stylized dynamical model to explore how
intertwined economic and ecological feedbacks shape the long-term
dynamics of inland small-scale aquaculture systems.

The model draws on concepts from social-ecological systems re-
search (SES) (Levin et al., 2013) and the dynamical system modeling
applied to SES (Radosavljevic et al., 2023). Our aim is not to develop a
predictive model that accurately represents the day-to-day operations
of an inland SSA production system, nor to calibrate it to a specific
empirical case study, but rather to explore the qualitative behavior
and structural conditions under which such systems may experience
different long-term outcomes. In this sense, the model functions as
a theoretical tool for identifying possible dynamical regimes, such as
system collapse, poverty traps, and risky high-yield attractors, and for
clarifying how endogenous economic and ecological dynamics shape
those outcomes. The model also explores the leverage points within the
system where interventions could be useful and identifies critical points
where shocks could be dangerous. Interventions in the context of the
paper mean intentional exogenous short-term influence on the system,
for example, short-term inputs of assets, nutrients, or training provided
by institutions or Non-Governmental Organizations.

Unlike classic models where effort or capital investment is exoge-
nous, our formulation allows wealth to evolve endogenously based on
past production outcomes. Allowing wealth to evolve endogenously
captures the feedback between production outcomes and future in-
vestment capacity, a mechanism central to poverty-trap dynamics in
small-scale production systems. A poverty trap refers to an unwanted
state of a system formed by self-reinforcing mechanisms that keep in-
dividuals in low-income and low-yield equilibrium (Barrett and Carter,
2013; Barrett et al., 2016; Haider et al., 2018). In multidimensional
models with economic, cultural and ecological variables, it is possible
to explore feedback-mediated traps, where productivity may fail to
escape low-income, low-yield equilibria if reinvestment is limited, the
environment is degraded, or cross-level interactions between individual
producers and the community propagate the trap (Alkire et al., 2015;
Lade et al., 2017; Haider et al., 2018).

To address these challenges, we develop a dynamical model to
explore how inland small-scale aquaculture systems behave under such
feedbacks. The purpose of the paper is two-fold. First, we aim to explore
the long-term dynamics of inland small-scale pond aquaculture systems
created by intertwined social-ecological processes. Second, we aim to
identify leverage points within the system where interventions could
be useful and to pinpoint critical points where shocks could have
destabilizing effects.

The paper is organized as follows. In Section 2 we present the
model of an inland pond-based small-scale aquaculture system, includ-
ing its empirical and theoretical assumptions. Section 3 contains the
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main analytical results related to the model equilibrium points and
the conditions for their feasibility and stability. Further mathematical
details can be found in the Appendix. Section 4 explores long-term
outcomes, attractors, and system resilience using stability analysis. We
develop six dynamic scenarios to illustrate these findings. Section 5
explores bifurcations in detail, including pathways to transformation
toward sustainable small-scale aquaculture systems. Section 6 discusses
implications for research and management.

2. Stylized model of an inland pond-based small-scale aquaculture
system

This section has two objectives. First, we describe the conceptual
model that underlies the mathematical model. Second, we develop the
mathematical model using a system of nonlinear ordinary differential
equations.

2.1. Conceptual model

We base our causal understanding of the inland pond-based small-
scale aquaculture system on empirical studies such as Belton (2013),
De Silva and Davy (2010), Filipski and Belton (2018) and Fish for
Livelihoods (2022), and the first-hand experience of three of the au-
thors conducting small-scale aquaculture research in developing coun-
tries such as Myanmar, Egypt, and Bangladesh (Dam Lam et al., 2022;
Dompreh et al., 2024; Rossignoli et al., 2023a,b; Wang et al., 2023,
2024). In short, small-scale aquaculture is an activity that produces fish
in inland water bodies (e.g. rivers, lakes) for household consumption
and sales in the market. In this sense, it can contribute to household
nutrition and income generation, having a positive outcome for food
security and livelihood.

Small-scale producers are generally poor and face food insecurity.
Adopting fish culture or increasing the technical efficiency of existing
fish production can increase levels of income and fish consumption, and
consequently reduce producers’ poverty and food insecurity. Achiev-
ing high yields and product quality in aquaculture systems requires
maintaining adequate water quality and nutrient supply. However,
pond ecosystems are characterized by complex interactions between
physical, chemical, and biological processes (Boyd et al., 1998). These
dynamics are further shaped by environmental variability and human
management, often at multiple spatial and temporal levels.

Although tools from system ecology can be very useful for modeling
such complexity, representing every biophysical and socioeconomic
detail is neither feasible nor necessary for our research aim. Instead,
we develop a stylized conceptual model that focuses on key feedbacks
driving the long-term dynamics of small-scale aquaculture systems.
Our objective is to capture the qualitative behavior of the system and
explore conditions under which multiple stable states, such as high-
yield or low-yield equilibria, can coexist. The model is grounded in the
following assumptions.

(1) Increased aquaculture production increases the income of small-
scale aquaculture producers;

(2) Higher producer income enables greater investment in produc-
tion inputs (e.g., improved feed, high-quality fingerlings), which
in turn enhances fish growth;

(3) Increased fish growth has positive effects on fish biomass and
production;

(4) Nutrient availability positively affects fish growth, but excessive
nutrient loading can degrade water quality, ultimately reducing
growth and increasing mortality.

These relationships form the basis for a conceptual model that rep-
resents key feedbacks in the inland pond-based small-scale aquaculture
system. The conceptual model is illustrated in a causal loop diagram
in Fig. 1. It captures the long-term dynamics shaped by interlinked
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Fig. 1. Causal loop diagram for the stylized inland pond-based small-scale
aquaculture system model. Blue arrows represent long-term processes in the
system. External interventions and shocks are given in yellow. Dashed arrows
represent short-term processes.

biochemical, economic, and social-ecological processes, including fish
growth, nutrient input and cycling, and asset accumulation through
production.

External interventions and shocks (e.g., climatic events, market
shocks, financial disruptions) are modeled as perturbations to the sys-
tem’s states rather than changes in the system’s structure. This allows
us to investigate how the system’s internal structure influence its tra-
jectory under different starting conditions and short-term disruptions.

2.2. Baseline mathematical model

Based on the conceptual model and Fig. 1, we select the state vari-
ables for the mathematical model: household assets, A, fish biomass, F,
and nutrients, N. The choice of assets and fish biomass reflects their
central roles in both the economic viability and biological productivity
of small-scale aquaculture systems. The choice of nutrients, rather than
water quality, requires explanation.

Nutrient availability positively affects fish growth, but excessive
nutrient loading can degrade water quality, ultimately reducing growth
and increasing mortality. In the conceptual model (Fig. 1), we rep-
resent these effects as two distinct causal arrows: one capturing the
positive role of nutrients for fish biomass growth, and another capturing
the negative effects of excessive nutrients on mortality and ecologi-
cal degradation. This separation is important to keep the conceptual
assumptions transparent.

In translating the conceptual model into the mathematical model,
we do not model these two arrows as separate state variables. Instead,
a single nutrient variable N captures both effects. This is accomplished
through functional forms that are positive at moderate levels and
negative at high levels. The choice reflects a general principle in
stylized modeling where conceptually distinct processes are not always
represented as distinct state variables mathematically, if they can be
captured by nonlinearities in a single variable.

Water quality is an inherently multidimensional property, encom-
passing diverse dimensions such as temperature, pH, dissolved oxygen,
and turbidity, among others. Modeling each of these dimensions would
require additional nonlinear dynamics, many of which are outside the
direct influence of producers. Stylized models need clear boundaries,
and here our aim is not to reproduce in detail every dimension of
water quality, but to capture the minimal structure that generates the
regimes of interest. Representing nutrients as a single state variable
is sufficient to reproduce collapse, bistability, and oscillations, while
keeping the model transparent and analytically tractable. More detailed
formulations could add realism but would not necessarily add struc-
tural insight into poverty traps or sustainable intensification, which
is the focus of this paper. Nonlinear formulations of nutrient loss
(e.g., through sedimentation or chemical processes) could be possible
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extensions of our model, but the linear form used here is a common
approximation in ecological models, as it enables model transparency
while still capturing the essential feedbacks.

Nutrient dynamics are also more tractable and strongly influenced
by human activities such as land use, feed type, and feed application
rates. Modeling nutrient concentration as a state variable therefore
enables capturing both the beneficial effects of moderate enrichment
on fish growth and the detrimental effects of excessive nutrient loading,
such as eutrophication or hypoxia. In this way, nutrients arguably serve
as a proxy for water quality, enabling us to incorporate anthropogenic
feedbacks and ecological processes within a simplified but ecologically
meaningful model.

Assets dynamics. We extend the classical Solow model (Barro and
Sala-i Martin, 2004), in which output depends on both assets (capital)
and labor, by substituting labor with fish biomass. This formulation
allows us to represent production in small-scale aquaculture systems,
where fish biomass is the main biophysical driver of productivity. The
production function is in Cobb-Douglas form:

f(A, F)=bA"F",

where b > 0 denotes the productivity factor and reflects the knowledge,
practices, and technology of SSA producers. According to Asamoah
et al. (2012), small- and medium-scale aquaculture producers exhibit
constant or increasing returns to scale, with elasticity coefficients a +
B=1.

To capture empirically observed threshold effects in smallholder
savings behavior, we follow Kraay and Raddatz (2007) and use an
S-shaped savings rate s(4) = spfiz that increases with assets. This
formulation captures key nonlinearities in household decision-making,
while maintaining consistency with empirical work such as Abdul Latif
Jameel Poverty Action Lab (J-PAL) (2019) and Asamoah et al. (2012).

The rate of change of household assets is then modeled as:
dA A?
a7 p+ A?

AFP — qA, (¢

where the first term represents income reinvested into the system and
the second term denotes depreciation or maintenance costs. As in the
classical Solow model, we assume that asset depreciation is propor-
tional to total assets. This assumption simplifies the analysis while
maintaining consistency with standard macroeconomic and poverty
trap models. It also reflects the idea that maintenance or capital loss
is proportional to the assets total value. More complex asset outflows
may be relevant but would require additional empirical validation and
structural assumptions that are beyond the scope of this paper.

Fish dynamics. The classical bioeconomic model (Clark, 2010) as-
sumes that the fish population growth follows the logistic equation

4E o F—mF - cF?— hF,

dt

where the positive term rF denotes the fish biomass growth, and
the negative terms —mF and —hF denote mortality and harvest pro-
portional to the fish biomass, respectively. The negative term —cF?
represents intraspecific competition for resources.

In small-scale aquaculture systems, harvesting is often periodic:
farmers fill the pond, stock it with fingerlings, allow fish to grow, and
then harvest them all at once before restarting the cycle. This means
that harvest is not constant, but likely occurs in pulses. There are also
cases in which the pond is continuously harvested and restocked. How-
ever, for simplicity, we model harvest as a constant rate proportional
to fish biomass.

This simplification has three purposes. First, it allows us to work
with an autonomous dynamical system, which is easier to analyze.
Introducing a periodic harvest function would make the system non-
autonomous and remove the possibility of classical attractors, making
it necessary to study pullback attractors instead. Second, harvest can
be interpreted as additional fish mortality that reflects not only actual
harvest by the producer, but also predation, overcrowding effects, fish
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Table 1
List of parameters used in model (4).
Parameters Interpretation Values References
b Factor of productivity [0.1,1.5] Asamoah et al. (2012)
s Assets savings rate [0.1,0.5] Abdul Latif Jameel Poverty Action Lab (J-PAL) (2019)
P Half-saturation point of assets savings rate [5.50] Comparable with the value of assets at equilibrium
q Assets depreciation rate [0.05,0.5] Nobre et al. (2009)
a, p Elasticity coefficients a+p>1 Asamoah et al. (2012)
r Fish growth factor [0.002, 0.008] Scheffer (1989)
u Nutrient uptake rate [0.1,1] Assumed within plausible biological range
v Square of the optimal nutrient concentration [1,10] Comparable with the value of nutrients at equilibrium
m Fish mortality rate [0.002,0.01] Scheffer (1989)
c Fish competition rate [0.001,0.002] Reflects pond size and fish density
h Harvest rate, broadly defined as additional fish mortality h>0 Assumed to reflect management practices and external drivers
k Agricultural run-off nutrient input rate [0,5] Assumed due to large empirical variability
g Fish feed nutrient input rate [0.1,1] Assumed proportional to production effort
z Half-saturation point of nutrient input rate [1,10] Comparable with the value of nutrients at equilibrium
4 Natural nutrient loss rate [0.1,1] Assumed, reflects sedimentation and overflow

loss due to disease, poor water quality, high water temperature, or poor
management practices. Third, since our goal is to understand long-term
dynamics and qualitative system behavior, rather than accurately sim-
ulate short-term production cycles, the assumption of constant harvest
captures the average effects over time and keeps the model easier to
interpret.

Nutrients play a critical role in shaping fish growth dynamics, but
the relationship between nutrient concentration and fish growth is
not straightforward. At low to moderate levels, nutrients enhance fish
growth as they support food availability. However, if nutrient levels
become too high, water quality can deteriorate, which can reduce
growth or even increase fish mortality. To capture both effects, we
model the fish growth rate as a function of nutrients: (N) = ru—

+N2°
Thus, the classical logistic fish growth equation is modified as follows:

dF NF
dar " v+ N2

Nutrient dynamics. Nutrients enter the pond water from two main
sources: constant agricultural run-off, denoted by k, or fish feed, ex-
pressed as g;—i. The functional form implies that the nutrient input
depends on the fish biomass and the producers assets. When asset levels
are low, nutrient input is limited by the producer’s capacity to purchase
feed. At a high asset level, the nutrient amount is proportional to the
fish biomass and limited by the amount of fish feed needed.

Nutrients are removed from the system in two ways. First, they are
removed through uptake by the fish, which is expressed as —u Uf 152
and represents an increasing function that saturates for high values of
N. Second, nutrient loss due to natural processes, modeled by —¢N,
represents sedimentation, dilution, or effects of microbes. These con-
siderations lead us to the following equation for the nutrient dynamics:

—mF — ¢F? - hF. 2

AN _ ., AF _ NF
dr &7 +A v+ N2
Combining Egs. (1)-(3), we come to the model of SSA system:

dA _ A?

—¢N. 3

~Z =» A®FP — qA,

dt Sp+A2 q

£=ru NF —mF — cF* - hF, @
dt v+ N2

dN _, ., AF NF o

dr 8 2+4a " + N2
All model parameters, their meanings, or range of values, are specified
in Table 1.

2.3. Price responsive variant
To connect the model more directly to market signals and producers’

financial decisions while keeping it simple, we introduce a variant in
which a few parameters respond to fish biomass and input prices, P,

and P, respectively. We retain the same state variables (A4, F, N) and
the same structure as in Eq. (4), but the productivity factor, nutrient
intake rate and harvest rate are now functions of prices.

We define marketed biomass as

Q = h(P))F.
Fish price decreases with marketed biomass,
P,
P= 2§20,
1+6,0

and input price P,, is taken as given or scenario dependent. Prices are
assumed to be in partial equilibrium. The three parameters that respond
to prices have the following forms:

Pr\"
b(Ps, Py = bo<P—> s n>0,
in
P\ ¥
P,) = —m) >0,
4P uO( Py, g
P, = h <—Pf >¢ >0
= hy , > 0.
r Pro

The form of the productivity parameter b captures stronger investment
incentives when the fish price is high relative to the input price. The
form of nutrient uptake rate u captures reduced effective feed use when
inputs are expensive. The form of the variable harvest rate corresponds
to a higher harvest rate when fish prices are high. Baseline prices Py,
and P,,, can be normalized to one so that A, u,, and b, are baseline
values.
Substituting these into Eq. (4) yields

dA

== b(P;, P,) s(A) A°FP — qaA,

dF NF 2

E =ru(P,) m - mF — cF° — h(Pf)F, )
dN _ AF NF

L ) S PEAL S N
§2+4 u M)U+

dr N2

All analytical and numerical results in the main text use the baseline
system in Eq. (4). The price responsive variant is used to interpret
how market signals and producers’ decisions shift thresholds and basin
sizes, without changing the qualitative results identified by the baseline

model presented in the upcoming sections.
3. Long-term system outcomes and analytical insights

By developing a dynamical system model, we make use of two
mathematical techniques: analysis of stability and bifurcations. Stabil-
ity analysis studies the existence and properties of equilibrium points
and explores the long-term dynamics of the system. Bifurcation analysis
investigates how changes in parameter values lead to qualitatively
different behavior of the model.
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In practical terms, stable equilibria represent development path-
ways, such as persistent poverty (system collapse), production asso-
ciated with risks, or sustainable aquaculture. This section presents
the mathematical foundation for these regimes by identifying feasible
equilibrium states and their stability. These results enable us to locate
thresholds and tipping points in the system and assess how investment,
nutrient levels, climatic shocks, or other short-term events might move
the system from one state to another. Although the analysis is technical,
it provides essential groundwork for the numerical analysis in Section 4
and the policy-relevant insights discussed afterwards. Readers who are
not interested in the mathematical analysis of the model can safely
skip this section, continuing to Section 4. Those interested in more
mathematical details can find them in the Appendix.

The model (4) is nonlinear and fairly difficult to explore analyti-
cally. To enable some of the analytical methods for stability investiga-
tion, we simplify the model by assuming the maximal assets savings
rate and the elasticity coefficients equal to one, i.e., s = a = g = 1.
With this assumption, the model reads as follows:

2
M:bA—AF—qA,
dt p+ A2
d—F:ru NF —mF—ch—hF, (6)
dt v+ N2
dN AF NF
aN _ oy - —¢N.
dr S va “or N

The following two subsections are devoted to the analytical study
of this simplified model, in particular, its equilibrium points’ feasibil-
ity and local stability. The main results are summarized in Table 2.
Additional mathematical insights are given in the Appendix.

3.1. Feasibility of equilibrium points

The simplified model (6) allows only the following three equilibria:

k
Ec = (0.0, ;), Ep=(0,Fp,Np), E,=(A,F,N,.

The equilibrium with only nutrients, or the collapse equilibrium, E,
is explicitly known and unconditionally feasible. Instead, the nonlinear
system (6) is too complex to explicitly determine the components of
the equilibrium without assets, i.e., the poverty trap, Ep, and those of
the coexistence equilibrium, E,. However, we can look for sufficient
conditions for their feasibility.

In the assets-free case, we can look for conditions that ensure at
least one graphical intersection point, in the first quadrant of the N-F
plane, between two curves we find from the equilibrium equations.
In the coexistence case, similarly, we are interested in intersecting
three surfaces in the first octant of the A-N-F space. The sufficient
conditions for the feasibility of Ep and E, given in Table 2 are obtained
in the Appendix.

3.2. Local stability of equilibrium points

The Jacobian of the model (6) is

bA3
— rulN v—N
J = 0 TiN2 —(m+h)—2€F ruFm s (7)
F—= gA _ _uN 7
S Ar z+A  v+N2 33
where
3A2(p + A%) — 244 _ N2
gy, = pp A A) 2247 Jy=-—uF2=N"_
(p+ A2)? : (v+ N2)?
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3.2.1. Nutrients-only point, E.
By evaluating (7) at equilibrium E., a lower triangular matrix is
obtained, from which the eigenvalues are easily found. They are

ruk?
-q, —f, ———— —(m+h).
1 f vf? + k2 ¢ )

Thus, we have the following local asymptotic stability condition:

ruk? < (m + h)e? + k). (8)

3.2.2. Assets-free point, Ep

At Ep the characteristic equation factorizes and one eigenvalue
is explicitly found, that is, —¢. This eigenvalue is always negative,
thus it does not affect the local asymptotic stability of the assets-free
equilibrium point.

We use the notation J},, , for the submatrix of J in which the rows
and columns m and n are preserved. For the remaining 2 x 2 minor,
J231(Ep), we use the Routh-Hurwitz criterion. The determinant of this
minor is

v— le, uNp
ruFp ———— .
(w+N2? v+ N2

_ N2
_ P
det(Jpp3(Ep)) = cFp [f +uFp —(v n Nﬁ)z] +
Its trace, instead, using the second equilibrium equation, reduces to
v— N3
IR <0
(v+ N2)?
Thus, the Routh-Hurwitz condition on the determinant gives the
following local asymptotic stability condition:

uvFp
cFp |+ +
(v+ N2
2 A72
cuFp Ny

+ —22.
(v+N2)

tr(Jp3(Ep)) = —cFp—¢ —uFp

ruvFp  uNp ruFp N2 uN,

>
232 2 2\2 2
(0+N2)2v+ N3~ @W+Ni2v+N2

9

3.2.3. Coexistence, E,

In the coexistence case, we can find the local asymptotic stability
condition using the Routh-Hurwitz criterion for a cubic equation,
i.e., RH3(J(E,)). However, an explicit determination of RH3(J(E,)) is
too much involved and will not shed more light on the problem, so we
do not analytically investigate them further. We explore the coexistence
point stability using numerical methods in the following section.

4. Scenarios as different futures

Modeling nonlinear systems is rarely a linear process. During this
process, we alternate between stability analysis that is used to explore
the behavior of the system for fixed parameter values and bifurcation
analysis, which reveals how qualitative dynamics changes when param-
eters change. Stability analysis offers a snapshot of possible outcomes
under a fixed combination of parameters, while bifurcation analysis
helps us explore how these outcomes evolve across different ecological
or economic contexts. To organize insights of the stability analysis, we
develop a set of scenarios that represent distinct long-term regimes.
These scenarios capture combinations of attractors and they are pre-
sented in this section. Section 5 then examines the bifurcations in more
detail and traces the pathways that lead systems toward sustainability
or collapse as underlying conditions change. Since our observations and
results have to be presented in a linear way in the paper, we ask readers
for patience as some results may be fully understood once both this and
Section 5 are read.

The purpose of this section is to use stability analysis to explore
the long-term dynamics of the model. The analysis in Section 3 shows
that the model (6) can have one or more stable equilibrium points
(attractors) depending on the parameter values. We use numerical
methods to identify the attractors and analyze the implications of their
location in phase space (Figs. 2 and 3). Table 3 contains standard values
of the parameters used in the models.
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Equilibria of model (6): feasibility and local stability conditions. If there is more than one point
E,, we assign them labels E; and E, to indicate sustainable and risky states. More details can

be found in Section 4 and Table 4.

Equilibria Feasibility

Local stability

E.= (0, 0, f) Unconditionally feasible

Asymptotically stable iff (8)

Not feasible if (12), with (13)

or (15), when (16)

Ep = (0» Fp, NP)

Feasible and unique if (12),
with (13) or (15), when (17)

Asymptotically stable iff (9)

Saddle-node if (12), with (13)

or (15), when (18) and (19)

E, = (A, F.,N,)

See Tables 6, 7, 8, 9, 10, and 11

Asymptotically stable iff RH3(J(E,))

Table 3
Standard values of parameters of model (4).

Parameters b s P q a p r

v m ¢ h k g z 14

Standard values 1 0.3 10 0.4 0.5 0.5 0.9

0.3 2 0.009 0.001 0.001 0.1 0.1 5 0.1

Table 4
Equilibria of model (6): interpretation of their properties in real systems.

Mathematical label

EC=(0,0,§)

Attractor name Interpretation

Collapse Economically and ecologically
degraded state; highly resilient to

shocks

Poverty trap Unbalanced input use; no assets
due to low returns; highly

resilient to shocks

Ep= (0, Fp, NP)

Sustainability state Eg =(Ag, Fg,Ng) Productive and ecologically
balanced state; fairly resilient to

shocks

Risky state Egr = (Ag, Fg, Ng) Highly productive and
ecologically balanced state; very

vulnerable to shocks

Attractors located closer to the origin represent less desirable system
states. The reason is simple: points close to the origin are characterized
by low values of assets, fish biomass, and nutrients. Low assets and fish
biomass indicate poverty and low productivity. While low to medium
nutrients indicate an ecologically balanced state, high nutrients, espe-
cially if fish biomass is low, may indicate an ecologically degraded
state.

We interpret resilience as the system’s vulnerability to shocks and
potential for regime shifts. To assess resilience, we estimate the distance
between the attractor and the edge of its basin of attraction (separatrix).
Attractors closer to the separatrix are considered more vulnerable to
shocks. To make these implications more accessible, we assign intuitive
labels to the attractors: collapse, poverty trap, risky state, and sus-
tainability state. Table 4 provides a detailed characterization of these
states.

We explore six scenarios that correspond to different combinations
of parameter values. Each scenario represents qualitatively different
long-term outcomes depending on the number and type of attractors.
In some cases, the system has two attractors: the poverty trap and the
sustainability state. In other cases, a third attractor or a stable limit
cycle appears. It is also possible for the system to have a single attractor,
but it is always only the undesirable one, collapse, or poverty trap. A
sustainability attractor never appears on its own, but always coexists
with at least one undesirable alternative.

The scenarios were identified through bifurcation analysis. We ex-
amined patterns in the number and stability of attractors, the width of
parameter intervals, and the relative size of basins of attraction to dis-
tinguish qualitatively different dynamical regimes. These mathematical

regimes were then linked to real-world interpretations, for example, a
knife-edge scenario reflecting high sensitivity to shocks.

Rather than offering precise predictions of what will happen, these
scenarios are stylized representations of how the system could behave
under plausible variations in key drivers. Their purpose is to guide
thinking about the long-term dynamics of the system, management
options, risks, and leverage points. The scenarios are summarized in
Table 5.

4.1. Balanced efficiency

This scenario reflects situations when good economic conditions
(e.g. medium productivity and reinvestment efficiency), meet favorable
ecological conditions (e.g. low nutrient runoff and loading), and good
management practices that enable fish survival even in heavy-stocked
ponds. Bistability emerges, and it is represented by the poverty trap
and the sustainability state (Fig. 2A).

Due to the low external nutrient loading, most nutrients enter the
system through fish feed. This gives producers the opportunity to
actively manage the dynamics of the pond. It also makes nutrients a
more controllable part of the system. As a result, nutrient levels play
a relatively minor role in shaping the basins of attraction. Their shape
is captured in Fig. 2A. If both assets and fish biomass are sufficiently
high, the system moves toward the sustainaility attractor, Eg. If not,
the trajectories converge toward the poverty trap Ep.

In this scenario, both the poverty trap Ep, and the sustainable
equilibrium, Eg, are insensitive to changes in nutrient levels. Even
large fluctuations in nutrients levels are unlikely to have lasting effects
on the system’s behavior. In contrast to this, changes in fish biomass
or assets can lead not only to temporary effects, but also to regime
shifts. The sustainability state may be lost after shocks that significantly
reduce fish biomass or assets. Similarly, targeted interventions that
increase assets and fish biomass can tip the system from poverty toward
recovery and long-term sustainability.

4.2. Overload

This scenario depicts situations where high productivity and low
return on investment are combined with high agricultural nutrient
loading. Bistability and the chance of sustainable production arise but
are strongly dependent on controlling nutrient inputs.

Fig. 3 highlights the importance of nutrients in shaping the basins
of attraction and illustrates the complex interactions between the state
variables. Panel A shows Tipping pond scenario, i.e., a multistable
system with low agricultural nutrient runoff. The risky state exists
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Table 5

Possible long-term scenarios depending on ecological and economic conditions.
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Scenario

System properties

Conditions

Implications

Balanced efficiency

Bistable system with Poverty trap
and Sustainability state

High productivity, reinvestment efficient even at
low asset levels, low nutrient run-off (low k, high
¢, low p) (Fig. 2A)

Well managed system; insensitive to nutrient
fluctuations; changes in fish biomass and/or assets
can tip the system

Overload Bistable system with Poverty trap High productivity, reinvestment efficient only at Bistability enabled by low intraspecific
and Sustainability state high asset levels, high nutrient run-off (high k, competition; sustainability possible only at low
low ¢, high p) (Fig. 3B) nutrient levels; sensitivity to changes in all
variables, especially nutrients
Flux Bistable system with Poverty trap Average productivity, reinvestment efficient even The system oscillates due to interactions between
and stable limit cycle at low asset levels, low nutrient run-off and ecological and economic processes. Collapse can be
intraspecific competition (low k, low ¢, low p) avoided, but managing such system can be
(Fig. 5) challenging because periods of high assets and fish
biomass are followed by periods of low assets and
fish biomass.
Knife-edge Bistable system with Poverty trap Below average productivity, reinvestment efficient Very sensitive to financial shocks, efficient feeding

and Risky state

even at low asset levels, low nutrient run-off and
intraspecific competition, fish is well-adapted to
low nutrient conditions (low k, low ¢, low p)
(Figs. 4, 5, 6)

practices keep nutrient level low. The scenario
often exists only for a very narrow parameter
range.

Multistable system with Poverty
trap, Risky and Sustainable
attractors

Sensitivity of this scenario comes from a very
limited parameter range for which it exists. The
system is more resilient to changes in its states
than to changes in the ecological or economic
conditions. (Fig. 7)

The combination of sensitivity to parameters,
initial conditions and shocks makes desired
outcomes difficult to achieve and keep.

Tipping pond

Multistable system with Poverty
trap, Sustainability state and
Risky state

Above average productivity, reinvestment efficient
even at low asset levels, low nutrient run-off and
intraspecific competition (low k, low ¢, low p)
(Figs. 3A, 4, 5)

Risky state is desirable due to high asset
accumulation and high fish biomass, but it is
difficult to preserve. Collapse is avoided due to
existence of a resilient sustainability state that
offers modest, but stable returns.

Decay

Monostable system with Collapse
or Poverty trap

Extreme conditions (e.g. very low or very high
productivity or input rate) provide temporary
boost, but long-term collapse (Figs. 4, 5, 6, 7, 8)

Economically and/or ecologically degraded system;
system recovery would require a system
transformation to create a sustainability attractor

Balanced efficiency scenario

20 30

A o

5“‘

nutrients |

15 R ~
20

0
assets

Flux scenario

10!

nutrients |

assets 4\6\\\%"”

Fig. 2. The model (4) is bistable for various combinations of the parameter values. The standard values are indicated in Table 3. (A) Balanced efficiency scenario
with v =5, ¢ = 0.002. (B) Flux scenario with p = 50, k = 0.5. Poverty trap attractor, E,, is the undesired low-yield equilibrium and sustainability attractor. Yellow
volume is the basin of attraction of the poverty trap. Rest of the phase space are states that converge toward the limit cycle. Blue lines are two such trajectories.

and is reachable for a specific combination of assets, fish biomass and
nutrients. Increasing agricultural runoff leads to a qualitative change in
the dynamics of the system and the emergence of an Overload scenario.
Here, the Risky state Ey disappears and the Sustainability state Eg
becomes less resilient. Reaching Eg requires initial conditions with
sufficient assets, fish biomass, and low nutrient levels. If any of these
conditions is not met, the system shifts toward the poverty state, Ep.

Compared to the Balanced efficiency scenario, the Overload sce-
nario reveals how higher runoff nutrient input and a larger half-
saturation constant for savings amplify the role of nutrients. The re-
silience of the sustainable attractor is reduced, while the poverty trap
becomes more robust. Overcoming it may require a simultaneous re-
duction in nutrient levels and an increase in both assets and fish
biomass.

4.3. Flux

Flux refers to a scenario in which the system exhibits bistability
between a stable limit cycle and a poverty trap (Fig. 5). This dynamic
arises within a relatively narrow range of savings rates (s € (0.25,0.3)),
where ecological and economic feedbacks interact to produce sustained
oscillations in assets, fish biomass, and nutrients. These oscillations
reflect stability in a mathematical sense, but may be challenging in
real world systems. Outcomes are not fixed but fluctuate, which may
offer a periodic surplus in fish biomass and income, but also risks
(e.g., periodic crashes or exposure to shocks at low points in the cycle).

In a narrow subinterval of the savings rate, the system briefly
exhibits three coexisting attractors: the poverty trap, the sustainable
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Overload scenario

assets

nutrients

Fig. 3. (A) Tipping pond scenario (b = 1.67, p = 50). (B) Overload scenario (b = 1.6, p = 50). Poverty trap attractor, Ep, is the undesired low-yield equilibrium
and Sustainability attractor, Eg, is the high-yield equilibrium. E is the risky state that appears for low nutrient runoff. Colored volumes represent basins of

attraction of the three attractors.
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Fig. 4. Bifurcation analysis shows the existence of one, two, or

three stable equilibrium points for different values of the parameter ». Red lines denote stable

equilibrium points. Black lines denote unstable equilibria. Blue circles are unstable limit cycles. E, is the branch of Poverty trap attractors. E, and Eg are
branches of Risky and Sustainability attractors. Saddle-node, Hopf, and homoclinic bifurcations are denoted by SN, HB, and HC, respectively. Dashed lines
indicate parameter thresholds that separate scenarios (see Table 5 for details). The parameter values are in Table 3. Reading b as b = b, (P,/P,,)" implies a

price-ratio threshold (P, /P,,) = (b*/by)"/" at point SN.
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Fig. 5. Bifurcation analysis for different values of the parameter s. The parameter values are v = 0.5 and the others are indicated in Table 3. Red lines denote
stable equilibrium points. Black lines denote unstable equilibria. Blue circles are unstable limit cycles. Green circles are stable limit cycles. E, is the branch of
Poverty trap attractors. Ep and Eg are branches of Risky and Sustainability attractors. Dashed lines indicate parameter thresholds that separate scenarios (see

Table 5 for details).

state, and the limit cycle. This window is small but structurally mean-
ingful. It shows that efficient returns on investment in combination
with low nutrient run-off and low intraspecific competition may create
a balanced trajectory that stabilizes oscillations and prevents fall into
poverty. The presence of stable limit cycles suggests that timing, shock
sensitivity, and the adaptive capacity of producers play crucial roles in
determining outcomes.

4.4. Knife-edge

Knife-edge describes a scenario where desirable outcomes exist but
are difficult to reach and even harder to maintain. It has two variants.
The first is a bistable system with a poverty trap and a risky state
(Figs. 4-6). This state emerges around average productivity, efficient

reinvestment (even at low asset levels), and low levels of nutrient run-
off and intraspecific competition. The second variant is a multistable
system with a poverty trap, a risky state, and a sustainability attractor
(Fig. 7). This variant appears when additional mortality is nearly
zero or harvest is extremely controlled. In other words, it requires a
fine-tuned parameter setting.

This scenario exists for either a very narrow parameter range, or
the desired attractor is very close to the separatrix, which makes it
fragile. In either case, the geometry of the system often makes the
desirable attractor difficult to maintain due to high sensitivity to initial
conditions and perturbations.

Knife-edge scenario appears often in our analysis, indicating rich but
fragile dynamics of small-scale aquaculture ponds. If the system could
remain in the risky state, Knife-edge would be one of the most desirable
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Fig. 6. Bifurcation analysis for different values of the parameter r. Other parameter values are indicated in Table 3. Red lines denote stable equilibrium points.
Black lines denote unstable equilibria. Blue circles are unstable limit cycles. E, is the branch of Poverty trap attractors. E; and Eg are branches of Risky and
Sustainability attractors. Dashed lines indicate parameter thresholds that separate scenarios (see Table 5 for details).
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Fig. 7. Bifurcation analysis for different values of the parameter » with m = 0.01. Other parameter values are indicated in Table 3. Red lines denote stable
equilibrium points. Black lines denote unstable equilibria. Blue circles are unstable limit cycles. E, is the branch of Poverty trap attractors. Eg are branches of
Risky and Sustainability attractors. Dashed lines indicate parameter thresholds that separate scenarios (see Table 5 for details).
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Fig. 8. Bifurcation analysis shows the existence of one, two, or three stable equilibrium points for different values of the parameter g. Other parameter values
are indicated in Table 3. Saddle-node and Hopf bifurcations are denoted by SN and H B, respectively.

outcomes, offering high asset accumulation and fish biomass with low
to moderate ecological degradation.

4.5. Tipping pond

Tipping pond represents a scenario with three stable states, one of
which has a narrow basin of attraction and can easily tip due to a shock.
It often emerges for a high saving rate or a high fish growth rate (Figs.
5 and 6).

Fig. 3A suggests that the basin of attraction of the poverty trap (blue
volume containing Ep) comprises initial states with a low level of assets
or a low level of fish biomass. The basin of attraction of Ey comprises
initial states with sufficiently high values of fish biomass and assets. The
most unusual and potentially counterintuitive basin of attraction is the
one containing the risky state Ez (volume containing the red dot). It
is characterized by initial conditions with intermediate nutrient values,
a narrow range of intermediate fish biomass, and all, except very low
levels of assets.

The trajectories converging towards E can be disturbed by in-
creasing nutrient levels, which would force them toward Eg. Another
possibility is drastically reducing the level of assets or fish biomass and
forcing trajectories toward Ep. Risks in the system can come in differ-
ent forms, but do not have to lead to catastrophic outcomes. Using the

same reasoning, we can assess the efficiency of management strategies
and interventions. To be efficient, a poverty alleviation strategy should
increase the assets or fish biomass and probably reduce the nutrients
in the system.

4.6. Decay

There are two variants of the Decay scenario. One in which Decay
represents an economically dysfunctional, but ecologically viable sys-
tem with Poverty trap as a single attractor. The other alternative is a
system that is both economically and ecologically degraded and where
Collapse is the single attractor.

There are many pathways to the Decay scenario. Some of them
involve decreasing income and/or fish biomass due to low productivity
or input rates, while others emerge through nutrient input, eutrophi-
cation, or worsening economic conditions leading to a low return on
investment (high values of the parameter p).

The global stability of the attractor in this scenario makes it par-
ticularly resilient to any kind of short-term intervention, regardless
of its intensity or where in the system they are applied. Short-term
improvements in productivity or ecological conditions are likely to
occur, but achieving permanent changes in the way the system behaves
requires a transformation of the system. By transformation we mean
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changing the strength of feedbacks that created the trap and enabling
the emergence of the Sustainability attractor.

5. Bifurcations and shifting scenarios

Stability analysis provides information about the system for fixed
values of its parameters. However, parameters can change over time or
across geographical locations, and it is important to understand how
such changes affect the system’s long-term behavior. In structurally
unstable systems, the dynamics can change qualitatively when param-
eters pass threshold values. These thresholds, known as bifurcation
points, can mark transitions between desirable and undesirable system
states. Knowing the properties of system dynamics under different
parameter settings or uncertainty improves understanding of the system
and supports better management decisions. Therefore, we use bifurca-
tion analysis to explore qualitative changes in system structure and to
identify leverage points and potential risks across a plausible range of
parameter values.

The derivation in Section 3 showed that the analytical results are
hard to obtain even for the simplified model (6). The parameters a« and
p were eliminated in the simplified model (6) by setting them to 1.
However, they are very important for understanding the consequences
of social-ecological interactions related to the use of new technology.
Changes in the values of these parameters can be understood as the
adoption of innovation and training. The parameters b, p, and g are re-
lated to productivity, assets saving, and depreciation rate, respectively.
Together, they determine whether aquaculture becomes a reinforcing
loop of growth or stagnates due to low returns or high losses.

Similarly, the parameters k& and g define the amount of nutrients
that enter the system, unintentionally as runoff (in the case of k) or
intentionally through fish feed (in the case of g). These parameters can
be related to producers’ decisions, their capacity to manage agricultural
and aquacultural nutrients and to choose the type and amount of fish
feed.

The parameters r, u, and v describe ecological processes of growth
and nutrient uptake and depend on species, local ecological conditions,
and the type of fish feed. These parameters influence how responsive
the system is to nutrient input and how easily growth becomes limited
or destabilized.

5.1. Productivity

The bifurcation diagram in Fig. 4 shows changes in the number
and stability of the equilibrium points when the parameter b is varied.
The poverty trap, Ep, exists for all parameter values, reminding us
that system collapse is always an option. Increasing the productivity
parameter, b, creates the second stable equilibrium point, Eg, through
a saddle-node bifurcation. Increasing » even more leads to a Hopf
bifurcation and the appearance of the third stable equilibrium point, Eg.

These transitions illustrate how the dynamics of the system changes
through three scenarios. For low values of b, the system is in the Decay
scenario (Table 5) where only the poverty trap exists (Fig. 4). Recovery
is not possible within the current structure.

As the parameter b increases, the system enters the Knife-edge
scenario, where the poverty trap and the risky state coexist. The re-
silience of Ej is low, especially with respect to changes in assets. It
is a desirable state but difficult to maintain, giving the name of the
attractor. The system is very sensitive to initial conditions and shocks,
especially those that decrease assets or productivity, but there is a
chance to avoid collapse.

A further increase in productivity leads to the emergence of the
sustainability state, marking the Tipping Pond scenario, where three
attractors coexist. Maintaining high productivity and biomass is tricky
because the risky attractor, Eg, is highly sensitive to shocks and ini-
tial conditions. The sustainability attractor, Eg, prevents slipping into
economic and ecological degradation and offers a reliable pathway.
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Using price responsive model (5) allows us to read movements
along the b axis as movements in an effective productivity factor b =
by (P/P,,)". A threshold value b*, for which the saddle-node bifurca-
tion in the diagram appears, therefore corresponds to a critical price
ratio (Pr/Py)eiy = (b* /by)'/". Price ratios above this level increase
effective productivity and allow the existence of Ex and Eg, while
lower ratios lead to permanent poverty.

5.2. Savings rate

The bifurcation diagram in Fig. 5 shows how the long-term behavior
of the system changes when the savings rate, s, is varied. This param-
eter plays a central role in asset dynamics, shaping the capacity of
small-scale aquaculture producers to accumulate and reinvest.

In our model, we explore the interval of plausible savings rate. For
s < 0.18, the system collapses into the Decay scenario, where only the
poverty trap exists and recovery is impossible without transformation
of the system. At s ~ 0.18 a new stable state emerges, leading to the
Knife-edge scenario, where recovery is possible but fragile and highly
dependent on initial conditions.

However, this opportunity is short-lived. As s increases, the system
returns to the Decay scenario. This is an unexpected result given the
common assumption that higher savings always improve outcomes.
This suggests that saving without sufficient productivity or ecological
resilience can backfire, for example by reducing short-term liquidity or
delaying investment in fish feed or water infrastructure.

Beyond s ~ 0.25, the system shifts into the Flux scenario, where
stable oscillations co-exist alongside the poverty trap. Here, the long-
term pattern has inherent variability and risk. Finally, at s ~ 0.31,
the system enters the Balanced efficiency scenario, with a stable and
resilient sustainability attractor.

This complex pattern implies that modest savings rates, consistent
with empirical observations, do not guarantee stability or success.
Instead, outcomes depend on where in the interval the system lies
and whether other conditions (e.g., productivity, nutrient loading)
support reinvestment effectiveness. The policy implication is clear:
encouraging savings is not enough unless the broader ecological and
economic structure enables those savings to translate into productive
improvements.

5.3. Fish growth rate

The fish growth rate plays a central role in shaping the long-
term behavior of the small-scale aquaculture system. The bifurcation
diagram in Fig. 6 illustrates how changes in parameter r affect the
number and type of attractors in the system.

For low values of r, the system exhibits a monostability character-
ized by the poverty trap, Ep. This is a Decay scenario in which fish do
not grow fast enough to support production or investment, leading the
system to collapse over time, regardless of initial conditions.

As the fish growth rate increases to intermediate values, a new
stable equilibrium, E, emerges through a saddle-node bifurcation.
This bistability defines the Knife-edge scenario, where the system can
either fall back into the poverty trap or climb toward a more productive
regime, depending on the initial levels of fish biomass, nutrients, and
assets. However, the risky attractor is located close to the separatrix,
which makes it vulnerable to fluctuations in all three state variables,
especially in decrease in fish biomass and assets and an increase in
nutrients.

At high values of r, a third attractor emerges through a Hopf
bifurcation. The system now exhibits Tipping Pond dynamics with three
coexisting attractors. This multistability increases the complexity of
management because the risky state, Ey, becomes even more fragile,
while the sustainability state, Eg, becomes more resilient. Transitions
between high-yield, high-income regime and sustainable regime may
occur due to very small changes in any of the variables.
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This progression of scenarios, from collapse, to conditional re-
covery, to full multistability, highlights how increase in fish growth
(e.g., through better species selection, higher quality fingerlings, better
feed, or pond management) can open up new possibilities but also
increase the chance of mismanagement.

Since fish biomass growth is tightly connected with quality and
quantity of inputs, and they depend on price and producers’ financial
decisions, we use price sensitive model (5) to explore these effects. We
map the growth term ru to an effective coefficient r ¢y = r (u(P,,)/uy) =
r(P,,0/P,)". Hence a saddle-node bifurcation at r = r* corresponds to
a critical input price Pic;“ = P,,o(r/r*)!/1. If the inputs are cheaper than
the critical value, r; > r* and bistability is possible. If the inputs are
more expensive, the system falls in the Decay scenario.

5.4. Harvest and additional fish mortality

The bifurcation diagram with respect to the harvest rate 4 shows
a sequence of qualitative transitions in the system dynamics (Fig. 7).
For very low harvest rates, the system exhibits the Knife-edge scenario,
where multistability emerges between the poverty trap, a sustainable
and a risky, high-yield state. The very narrow range of » makes this
scenario difficult to maintain.

As h increases, the Knife-edge scenario shifts into the Clearwater
scenario, where sustainable production is possible, but sensitive to
shocks. Further increases in h lead to a Decay scenario, where all
attractors disappear through a saddle-node bifurcation, except for the
poverty trap.

The parameter s represents continuous harvest, but is also a proxy
for additional fish mortality caused by predation, overcrowding, poor
water quality, disease, or high water temperature. Throughout the
whole parameter range, the levels of assets, fish biomass, and nutrients
steadily decline as the parameter 4 increases. These results suggest
that even seemingly insignificant additional mortality can destabilize
long-term productivity.

To link market conditions and producers’ decisions to shifts between
scenarios as observed in the baseline model we use price sensitive har-
vest rate. In the price responsive variant we write A(P;) = hy (Pf / Pf0)¢
with ¢ > 0, so movements along the 4 axis can be read as move-
ments in the fish price. A threshold value 42* in the diagram therefore
corresponds to a critical price

Pcrlt =P " .
= (i)

Prices above P;'“ imply higher harvest intensity and that can push the
system toward the regions with Balanced efficiency or Decay outcomes,
while prices below Pt are consistent with the low-harvest side where
Knife-edge multistability occurs.

5.5. Feed input

The parameter g represents the contribution of fish feed to nutrient
input. The bifurcation analysis reveals a non-monotonic relationship
between nutrient input and the system’s long-term behavior (Fig. 8).

For low values of g, nutrient levels are insufficient to support fish
growth, leading the system to collapse or decay. As nutrient levels
increases to low-intermediate values, the system enters a Clearwater
scenario characterized by bistability between collapse and desirable
state.

A further increase in nutrient input leads to a Tipping Pond scenario
through a Hopf bifurcation. The newly emerging attractor is encircled
by unstable limit cycles within a Hopf bubble. However, this regime
only appears in a narrow window of above-average nutrient input,
suggesting that it is difficult to achieve or maintain in practice.

As g continues to increase, the system shifts into a bistable regime
again, but one where the sustainability state requires high initial values
of assets and fish biomass, but does not preserve these high levels
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for long. For most other initial conditions, the system converges to
collapse. Finally, for very high nutrient input, the system collapses
again, likely due to ecological degradation and feedbacks that reduce
fish survival despite having sufficient nutrients.

This complex progression from poverty trap to eventual escape from
poverty and back to it suggests that nutrient input is a double-edged
sword. Both too little and too many nutrients can drive the system
toward undesirable outcomes and Decay scenarios. Only an interme-
diate range of nutrient input supports stable and desirable aquaculture
dynamics.

The central part of the bifurcation diagram shows behavior that
resembles hysteresis. Typical hysteresis in ecological models is repre-
sented by two saddle-node bifurcations that have a common branch of
unstable equilibrium points, Scheffer (1989). Behavior in this model is
richer and more nuanced because two Hopf bifurcations create a Hopf
bubble of unstable limit cycles. The stable branch within the bubble
can only be reached by trajectories that originate within the bubble,
with others being repelled toward alternative attractors.

6. Discussion
6.1. Structural understanding

The model developed in this paper is based on social-ecological
systems research (Levin et al., 2013) and has a strong focus on poverty
traps (Barrett and Carter, 2013; Barrett et al., 2016; Haider et al.,
2018). Previous models of poverty traps have been used as exploratory
tools to provide insight into the dynamics of a system, test hypotheses,
develop scenarios and answer the “what if” questions (Banitz et al.,
2022; Eppinga et al.,, 2024). The models were mainly conceptual,
rooted in the neoclassical economic tradition (Barro and Sala-i Martin,
2004), and discussed economic causes and solutions to poverty (Barrett
et al.,, 2016; Blume et al., 2020). In recent years, multidimensional
poverty trap models of agricultural systems have been introduced. The
authors focused on small-scale subsistence agriculture and investigated
the role of nature and culture in alleviating poverty (Lade et al., 2017),
the role of assets, water, and nutrients (Radosavljevic et al., 2020), the
impact of cross-level interactions between individual and community
levels (Radosavljevic et al., 2021), the emergence of cross-level poverty
traps in agricultural innovation systems (Sanga et al., 2024), or the
impact of disease and poor health on persistent poverty (Ngonghala
et al., 2014, 2017).

Most of the poverty trap models are formalized as systems of ordi-
nary differential equations and represent intertwined social-ecological
processes observed in real systems. The model in this paper is based
on the same principles and is analyzed using the same mathematical
methods. The causal structure of the model is based on stylized facts
from the published literature and first-hand the experience of the
coauthors to specifically represent the small-scale aquaculture system.
Combined analytical and numerical techniques allow for the study of
the long-term dynamics of a small-scale aquaculture system in a fairly
transparent way.

The number and type of equilibrium points, the size and shape
of basins of attraction, bifurcations, and tipping points can be clearly
identified, giving a qualitative understanding of the system. However,
the clarity these models provide rests on simplification and abstraction.
Regime shifts, resilience of poverty traps, vulnerability to shocks, or
other dynamic patterns described in the model may therefore bear
little relation to the real system. Dynamical system modeling is best
used jointly with empirical research and more complex modeling ap-
proaches, in an iterative process where assumptions and results can be
tested and validated (Eppinga et al., 2024; Radosavljevic et al., 2024;
Sanga et al., 2024).

In this sense, the objective of dynamical systems models—including
our model—is not to predict or prescribe, but to provide structural
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understanding: revealing how system structure generates behavior (Ra-
dosavljevic et al., 2023). Social-ecological dynamics and possible causal
relationships are revealed through the manipulation of interactions
between state variables and the observation of their consequences
(Schliiter et al., 2024). Structural understanding is particularly valuable
for assessing the effectiveness of interventions, the consequences of
shocks, and managing transformation toward sustainable outcomes.

Our contribution should also be understood in the context of a
much broader body of work on modeling social-ecological systems. As
highlighted by Bialozyt et al. (2025), and Nugroho (2025), a central
challenge is to operationalize SES models in ways that balance empiri-
cal detail, disciplinary perspectives, and system complexity. Many SES
models emphasize either conceptual richness or detailed case-specific
calibration, often at the cost of analytical tractability.

In contrast, our model is deliberately positioned as a stylized dy-
namical systems model which has two key advantages. First, it makes
the underlying causal structure transparent and allows the conditions
for multistability and collapse to be mathematically identified. Second,
it enables generalization beyond individual case studies by reveal-
ing structural mechanisms, such as savings-mediated poverty traps
or nutrient-driven collapse, that appear in aquaculture settings. Our
work fits within the theory-oriented category of SES models described
by Jakeman et al. (2024), which prioritize structural understanding
over case-specific prediction or decision support. By formulating a
low-dimensional dynamical system, we make feedbacks and thresh-
olds analytically tractable, complementing more empirically detailed
approaches. This aligns with Section 4 of Jakeman et al. (2024),
where stylized models are highlighted as essential for identifying gen-
eral mechanisms that can guide data collection and applied modeling
efforts.

Rather than competing with more data-driven approaches, our
model provides a theoretical lens that helps identify where empirical
models should look for thresholds, trade-offs, and leverage points. More
broadly, the same principles apply to other small-scale production
systems, such as agriculture, forestry, or common-pool fisheries, where
economic-ecological feedbacks shape long-term sustainability.

6.2. Implications for sustainable intensification

Transforming aquaculture in developing countries from extensive to
intensive is done with the clear aim of improving livelihoods and food
security. However, it entails a set of challenges that are neither fully
understood nor easy to assess. The challenges are connected to tension
between sustainability and productivity and solving them requires a
clearer understanding of how intertwined ecological, technological,
economic, and social processes shape dynamics in multidimensional
settings. In agricultural poverty alleviation, for example, there is a
tendency to use blanket solutions without paying enough attention
to the local context and the social-ecological complexities of the sys-
tem (Barrett and Carter, 2013; Haider et al., 2018). The consequences
of such practices can be dire and even reinforce the dynamics they were
set to break (Lade et al., 2017).

Here, we investigate how two dimensions of social-ecological com-
plexity, the local context and the producer heterogeneity, enable, pre-
vent, or shape achieving sustainable outcomes in small-scale aquacul-
ture.

6.2.1. Local context

The local context in the paper represents a combination of param-
eter values that describe specific social-ecological conditions in the
model and lead to certain long-term dynamics. We identified six scenar-
ios, i.e., qualitatively different long-term dynamics, which we labeled
Clearwater, Overload, Knife edge, Flux, Tipping pond, and Decay (Table
5). These scenarios can be used as depictions of alternative futures in
real systems.
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The bifurcation analysis in Section 5 shows that the qualitative be-
havior of the model (4) is rich and highly context-dependent. Changing
the context can cause the system to shift from one scenario to another
and, in doing so, open or close a pathway to sustainable production and
ecosystem management. With price-responsive parameters, movements
in productivity translate market conditions and producers’ decisions
into shifts of thresholds and basin sizes, which helps explain why
similar interventions succeed in one context and fail in another.

Among the scenarios we identified, Balanced efficiency and Tip-
ping Pond look like the most promising long-term alternatives for
sustainable outcomes. They are characterized by desirable attractors
with relatively high fish biomass and asset levels and a large basin of
attraction. In the case of Tipping Pond, there is often a less desirable
alternative attractor that offers higher assets and fish biomass, but a
very small basin of attraction. In other words, Tipping Pond can be
structurally fragile and highly sensitive to fluctuations, but it does not
easily flip to a degraded state.

Knife-edge and Flux scenarios are less favorable. In Knife-edge
scenario, the desirable attractor is difficult to reach and easy to lose
due to a very narrow parameter range for which the scenario exists.
Small shocks or suboptimal starting conditions can quickly lead to
collapse. Flux scenario describes systems with stable limit cycles, where
outcomes heavily oscillate due to interactions between ecological and
economic feedbacks. Sustainability of outcomes is not reliable as it
depends on timing and strength of perturbations, changes in the lo-
cal context and producers heterogeneity. Finally, the Decay scenario
represents system failure where collapse occurs regardless of initial
conditions. This scenario is always associated with low productivity,
with or without ecological degradation, and the absence of recovery
pathways.

This progression from collapse to fragile sustainability and back
to collapse illustrates that interventions must be tailored not only
with expected outcomes in mind, but also to fit the underlying sce-
nario. Without accounting for this complexity, best wishes may lead
to suboptimal results or failure.

6.2.2. Producer heterogeneity

Producer heterogeneity is expressed by differences in assets, fish
biomass, and nutrient levels. In the model, each producer is identified
with a unique set of initial conditions (i.e., a triplet (A, F,, Ny)) located
in the phase space. These differences reflect the variation in wealth,
fish availability, and pond properties, and they strongly shape effects
of local context and outcomes of interventions.

The model shows that small differences in initial conditions can
result in very different long-term outcomes. Placing initial conditions in
different basins of attraction means that their trajectories will converge
toward different outcomes. Stability analysis in Figs. 2 and 3 reveals
who is more resilient or more at risk, or who in a heterogeneous group
of producers would benefit from an intervention and who would be left
behind. Price-responsive parameters help interpret which producers are
most exposed. For example, households with low initial assets, A, or a
high harvest rate, i, are more likely to cross price thresholds where the
price sensitive harvest h(P;) increases, or the price sensitive nutrient
uptake, u(P,,), decreases, moving them into less favorable basins.

The poverty trap in Decay scenarios can be alleviated only by a
series of interventions, where the first needs to transform the system
and create an alternative sustainable or risky attractor. Subsequent
interventions can then focus on adjusting initial conditions and moving
them into the newly created basin of attraction.

In bistable and three-stable systems, it is possible to escape ecolog-
ical degradation and poverty without transforming the system. Inter-
ventions must place the system in the desired basins of attraction. Figs.
2 and 3 show which state variables should be targeted to achieve this.
In Fig. 2A, an intervention should aim to increase assets and/or fish
biomass, while in Fig. 3B, it should also decrease nutrients.
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The analysis reveals that the shape and size of basins of attraction
depends on the local context. Fig. 2A describes the scenario in which
it is easier to reach a higher savings rate and the input of runoff
nutrients is lower compared to the scenario in Fig. 3B. The same initial
conditions that would lead to well-being in the first scenario could lead
to the poverty trap in the second scenario. This sensitivity highlights the
importance of understanding both the number and nature of attractors
and basins of attraction, and using that knowledge to design inter-
ventions that are context-dependent and tailored to specific producer
conditions.

6.3. Links to case studies and implications for management

Several recent empirical studies have examined the sustainability
outcomes of interventions in small-scale aquaculture, highlighting their
potential to improve food availability (Wang et al., 2024) and en-
hance livelihoods (Dam Lam et al., 2022), although it is not always
clear through which pathways diversification stabilizes food security
and livelihoods. The literature also suggests that the impact of such
interventions on poverty remains ambiguous. Belton and Little (2011)
claim that: “As total volume and value of output are likely to corre-
spond closely to the area of pond under culture, even where poorer
producers can be engaged the absolute benefits they derive are likely
to be smaller than those of better-off project participants with larger
land-holdings”. Cramb et al. (2004) supports these findings and states
that the impact of small-scale aquaculture is likely to be highly class-
differentiated. This result is well supported by our findings. As Figs. 4-8
show, producers who initially have more assets, higher fish biomass,
and better ecological conditions are more likely to reach risky and sus-
tainable attractors and escape persistent poverty. The same intervention
can therefore be more beneficial for producers who are better off from
the beginning.

The interventions described by Wang et al. (2024) increase produc-
tivity, probably by increasing productivity and feed input, that is, by
increasing values of parameters b and g. This creates bistable systems,
as shown in Figs. 4 and 8. Dam Lam et al. (2022) examines an ecopond
model in Bangladesh that aims to increase diverse food consumption
and women empowerment. The project focused on women training
(increasing parameter b) and utilizing ecosystem services (keeping k
and g low). The results show how intensification can lead to improved
sustainability, but not across all dimensions or for all producers. This
resembles the Balanced efficiency and Tipping pond scenarios in Fig. 8,
where producers’ heterogeneity and vulnerability to shocks play an im-
portant role in determining the outcome of an intervention. Unlike the
original study, our model does not assess cultural and socioeconomic
barriers to women empowerment or equity.

The bifurcation diagrams in Figs. 4 and 8 can also be used to explore
the results of Belton and Little (2011) and Cramb et al. (2004). Ac-
cording to the model, intensification can create a suboptimal attractor
in a three-stable system. The consequence of intensification is that its
positive effects could be unevenly distributed among poor and wealthy
producers. Wealthy producers are in a better position to benefit from
interventions because they are more likely to be in the sustainable or
risky basin of attraction, while poor producers have a higher chance of
being caught in the undesired state near the poverty trap.

Our results suggest that similar outcomes can emerge through dif-
ferent mechanisms, reflecting the diversity of pathways observed in
empirical studies. A deeper understanding of particular cases could take
the modeling further, for example, by highlighting the key structural
elements that should be included in the model, adjusting parameter
ranges, and offering a more nuanced view of the research questions
and interpretation of results.

Close collaboration between modelers, practitioners, and stakehold-
ers is essential to ensure that models remain empirically grounded
and useful in real world contexts. Stability and bifurcation analyses
could then serve as tools to navigate the complexity of specific cases,
to support the design of interventions and to help anticipate their
potential unintended effects.
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6.4. Implications for research

There are many ways in which the model presented in this paper can
be expanded to explore relevant research questions. We list several of
them that align with our research interests and open research questions,
but the list is in no way complete.

The dynamics of small-scale aquaculture ponds is affected by tem-
perature variation and is strongly dependent on the biophysical prop-
erties of the pond (Bieg and Vasseur, 2024; Jobling, 2003; Lu, 2003).
Including spatio-temporal variability in models would increase their
mathematical complexity because it requires nonautonomous systems
of ordinary or partial differential equations. However, it would allow
us to explore the interplay between spatio-temporal patterns with
social-ecological processes in the system. Including more details on the
ecological side could help explore polyculture ponds (Milstein, 1992)
and the effects of disease spread on poverty (Hoover et al., 2019).

The problems in governing small-scale aquaculture systems can be
seen as social dilemmas in which shared water or space are examples
of common pool resources (Partelow et al., 2022). Demographic het-
erogeneity, that is, differences in producers’ wealth, training, opinions,
and perceived risks, could be reflected in their preferred strategies and
decisions and play an important role in shaping the small-scale aqua-
culture dynamics (Rahman et al., 2021; Nagel et al., 2024). The effects
of social norms and management strategies on producers’ decisions,
and in turn on small-scale aquaculture dynamics, can be explored using
combinations of dynamical systems, evolutionary game-theoretic, and
agent-based models.

There is a lack of firm knowledge on financial, climatic, and en-
vironmental shocks and their effects on aquaculture dynamics (Luna
et al., 2023). Dynamical systems typically focus on asymptotic behavior
and processes that last forever, but including transient analysis can
give answers to questions concerning shorter time periods and in-
stantaneous processes. These results could contribute to understanding
out-of-equilibrium dynamics and inform stakeholders and management
about efficient ways to adapt and respond to shocks.

Another important area for future work is the explicit treatment of
uncertainty. Considering the general lack of dynamic models for small-
scale aquaculture systems, our model should be seen as a first effort
to reveal which dynamic behaviors are possible. However, it does not
quantify how plausible these behaviors are under current knowledge
through an explicit quantitative uncertainty analysis. Uncertainty quan-
tification through sensitivity analysis or probabilistic parameter ranges
would move the analysis closer to answering how near real systems
might be to tipping points and which data gaps matter most. Although
such methods go beyond the scope of this paper, we must point out
that this is a critical direction for future research.

A further promising direction is the integration of price dynamics
and market feedbacks into SSA models. Economic incentives influ-
ence harvest timing, input use, and investment decisions and can
amplify shocks or enable recovery. Including price dynamics explic-
itly using additional state variables for market dynamics could re-
veal new pathways of collapse and recovery that are not captured
by the model presented here. This is particularly relevant for small-
scale producers, whose decisions are often shaped by short-term price
fluctuations. Simple price-responsive formulations, as in our price-
responsive model, can help translate bifurcation thresholds into critical
price ratios, but more elaborate endogenous price models could ex-
plore how coupled ecological-economic instabilities emerge through
feedback loops between production and markets.
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Appendix

In this appendix, we provide mathematical details related to the
feasibility of the assets-free equilibrium, Ep, and coexistence, E,, sum-
marized in Table 2 of Section 3.

Feasibility of assets-free point, Ep

From the second equilibrium equation of the model (6), i.e., equi-
librium equation for F, we obtain F = ¥(N), where

ruN _— m+h
c(v+ N2) c

On the other hand, from the third equilibrium equation, i.e., equi-
librium equation for N, we explicitly get F = O(N), where

v+ N2
uN
Thus, for the feasibility of E, we can look for sufficient conditions
to have at least one intersection point between the curves ¥ and O in
the first quadrant of the N-F plane.

Y(N) = . (10)

O(N) =

(k—=?¢N).

Study of the curve ¥

The function Y(N) for N > 0 is a gamma-like function. Its in-
tersection with the vertical axis and its horizontal asymptote are,
respectively, given by 0,—"’7”1 and F, = —’”TJ'h. Therefore, it lies
outside the feasible region unless its peak, located at N = N,, has a
positive height, ¥(N,) > 0.

The maximum can easily be established by differentiation, giving

P man

N,=+/v and PN, = , an
2cv c

and the feasibility condition

ru > 2(m + h)\/v. (12)

Then, the function ¥ (N) intersects the horizontal axis whenever
@+ N»(m+ h)—ruN = 0.

The latter is a quadratic equation, whose roots are explicitly found:
1
N, = 5o (ru + V22 — do(m + h)) .
Clearly N, > 0 and ¥(N) is nonnegative in [N_, N, ], with 0 < N_ <
N, <N,.
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Study of the curve ©
The function O(N) has a vertical asymptote on the coordinate axis
N =0 and is positive for 0 < N < N, where N, = %.
We also find
d® _ N?-v
AN~ u2N?
Therefore, it is not immediately clear whether the function is mono-
tonically decreasing. The positive condition of the first derivative is
equivalent to the cubic inequality

+ N?

u (k—¢N)y— 222"
uN

—2¢N3 + kN? — vk > 0,

so that by the Descartes rule there are two positive roots. The question
is whether they are located in the interval [0, Ny]. In case they are
not, in the very same interval @(N) is monotonically decreasing and
no multiple intersections with the other function arising from the
equilibrium equation of N would be possible. Conversely, © exhibits
a kink in the feasible region and multiple intersections could arise.
The second derivative of the function is
o

= —6/N? +k.
dN?

It is nonnegative for 0 < N < N , where N = \/ﬁ. Therefore, we find
N, < N for

6k < 2, 13)

ensuring the monotonicity of O(N) in [0, Ny].
We can further investigate the condition ©'(N) < 0 in [0, Ny]. It is
equivalent to

N2

2 _ ~
vk N ms k= ¢N) = RV) =

uN
Now, L(N) > 0 for every N € [0, Ny]. On the other hand, R(N) > 0 for
N € [N,, Nyl. This means that L(N) < R(N) for 0 < N < \/u, N > .
In N € [N,, Ny] we need to investigate the conditions for which L and
R intersect, as they are both positive. Rewriting (14) in the simplified
form

1
LN)=¢ —5 RON). a4

ZN@+ N?) < (N2 —v)(k—¢N),
we can finally establish the condition for the intersections of N L(N)
and R(N) for N € [N,, N,]. Differentiating, we find

dR
dN
from which the maximum is attained at the point

N = é [k+ Vi +1220]

and the condition that must be satisfied is

=-3N2+kN +¢v,

N:'*L(N:'*) > R(N:'*). (15)

Summarizing, (15) ensures that (14) holds, which means that O(N) is
monotonically decreasing in [0, N;].

Intersections of the curves ¥ and ©

Assume now the monotonicity of O(N), that is, (13) or (15). We
need to find the intersections of the curves ¥ and O, as these provide
the assets-free equilibrium points, in the first quadrant of the N-F
plane.

There are four possible situations, the first two of which do not lead
to any feasible intersection, namely

Ny<N_ and Ny>N,, (16)

conditions that will therefore be disregarded. We focus instead on the
following two:

N_<Ny<N,,
N, < N, <N,.

a7
(18)
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The condition (17) ensures the uniqueness of the intersection, there-
fore, giving an equilibrium point Ep.

On the other hand, (18) does not always ensure the existence of
the intersection; in the case where ¥ and O are tangent to each other,
uniqueness is guaranteed. Indeed, note that ¥ is concave and O is
convex. However, if they intersect, there will be a pair of equilibria
Ep through a saddle-node bifurcation. For this to occur, we need also
¥(N,) < O(N,), which using (11) can explicitly be written as

v ru m+h
2=(k—=¢ — = _ 19
u( ﬁ)<2c \/; c a9

Feasibility of coexistence, E,

The second equilibrium equation, that is, the equilibrium equation
for F, gives the function F = ¥(N), with (10), already investigated for
the assets-free equilibrium, Ep. However, the difference is that in the
previous subsection this was a curve in the N — F plane, while here,
in the three-dimensional space, it is a cylinder with the axis parallel to
the A axis.

Then, from the first equilibrium equation, i.e., the equilibrium
equation for A, solving for F, we find the surface
F=y()= S50+ A (20)

Finally, from the last equilibrium equation for N we get another
surface, namely

(k=¢N)@v+ N?)(z + A)
uN(z+ A) — gA(v+ N2)’

In this case, for the coexistence feasibility, we can look for sufficient
conditions to have at least one intersection point of these three surfaces,
¥, x, and @, in the first octant of the A-N-F space.

F=®(N,A) = 1)

Study of the surface y

The function y(A), being independent of N, represents a cylinder
with the axis parallel to the N axis. Its intersection with the N = 0
coordinate plane is a hyperbola-like function, with a vertical asymptote
on the F axis and a horizontal one located at

q
Fo=7. (22)
This function is monotonically decreasing in view of the fact that
dy 2

=-——<0
dA bA?
Study of the surface @
Let us define the following quantity, the denominator of (21)
Dy =uzN +uNA — gvA — gAN? = —Np(N) — ADz(N),
where
Np(N)=uzN and Dp(N)=gN?—uN + gv.

To assess the regions for which @ is feasible, we need to study the sign
of its denominator, Dy, since its numerator, N, is easily seen to be
positive for

N < N,. 23)

Now, D4 > 0 is equivalent to ADr < Np. This inequality holds
trivially for Dy < 0. Conversely, for Dy > 0 it reduces to

Ny
A<F(N)= =L,
Dy

The roots of Dy =0 are
N,, = ZL [ui Vu? —4g2v] ,
’ 8

where the subscript ¢ (lower) corresponding to the minus sign and u
(upper) to the plus sign. Thus, in this case D > 0 for N < N, and

Ecological Modelling 512 (2026) 111416

N > N,. Combining these results, we find D, > 0 for the following
alternative cases:

Dr>0:A<LF,; Dy > 0 : always true. 24)

The function A = F has two branches in the first quadrant. The left
one crosses the origin and raises up to a vertical asymptote located at
N = N,. In (Ng, N,), the function is negative, while it decreases from
another vertical asymptote at N = N, to approach the horizontal axis
for N - +c0.

We now concentrate on the feasibility of the function @(N, A). On
A = F, the surface @ has a vertical asymptote. On the other hand, on
N = N, it vanishes. The above two lines, A = F and N = N, intersect
at the point

Ckuz

Ag=F(Ny) = —— K1z
0 (No) gf%v — kfu + gk?

(25)
feasible if
g0+ gk > kt.

Note that at the point A, the surface @ does not have a limit, because if
the point is approached along the curve F, the surface grows without
limit, while if A, is approached along the line N = N, the surface
vanishes.

We have to distinguish between two different alternative situations
leading to @(N, A) > 0:

Ng >0, Dg>0 (26)
or
Ng <0, Dg <0. 27)

In the case (26), we need N < N,, with no other conditions, if
Dy < 0. Instead, we need N < N, and A < F(N) for Dy > 0, compare
(23) and (24). Geometrically, the latter means that the feasible region
in the N-A plane lies below the two positive branches of A = F(N)
and includes also the half stripe in the first quadrant bounded below
by the interval (N,, N,). We must further distinguish three subcases
depending on the location of N, with respect to (N,, N,):

(al) Ny < N, < N,: the surface @ is positive in the “triangular” region
Q,,, with a vertex at the point (N, A,), bounded above by the left
branch of 7, on the right by the vertical line N = N, and below
by the coordinate axis N;

(@2) N, < Ny < N, the surface @ is positive in the region Q,,
bounded below by the coordinate axis N and above by the left
branch of ¥ for N < N,, and in the half-stripe for N, < N < Ny;

(@3) N, < N, < N the surface @ is positive in the region 2,
bounded below by the coordinate axis N, bounded above by the
left branch of 7 for N < N, in the half-stripe for N, < N < N,
and bounded above by the right branch of 7 for N, < N < N,,.

In the case (27), we need N > N, and A > F(N) for D > 0;
the condition does not hold if Dy < 0. Hence, @(N, A) is positive only
above the function 7 whenever this is positive. Here, too, there are
three subcases:

(b1) Ny < N, < N,: the surface @ is positive in the region £,, above
the left branch of 7 for Ny < N < N, and above the right branch
of F for N > N;

(b2) N, < Ny < N,: the surface @ is positive in the region £, above
the right branch of 7, i.e., for N > N,;

(b3) N, < N, < Ny the surface @ is positive in the region £,; above
the right branch of 7 for N > N,

Note also that the surface @ in the regions that are unbounded has
different behaviors, namely

lim @®(N,A) = +o0,
N—+o0
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Table 6

Intersections of A with @ in the case (al).
Intersections Conditions
No intersection if Ny < N>

Unique intersection
« for

« for N® < N, < N,, iff A(Ny) < A,

N, < Ny < N, < N, iff A(Ny) < 4,

Two intersections

for N, < N® < Ny < Ny, if A(N,,Ay) > ®(N,, Ay)

Table 7

Intersections of A with @ in the case (a2).
Intersections Conditions
No intersection «if Ny < N>

« for N < Ny, if A(N,.Ay)> ®(N,.Ay)

Unique intersection in
[N, Nyl

s for N, < N® < N, < Ny, if not (28)
s for N® < N, < Ny < NY

Two intersections in
[N®,NZ]

* for N, < N® <N <N,

—if A(N,,Ay)> ®(N,,Ay) and not (28)
—if A(N,,Ay) <®(N,,Ay) and (28)

« for N®© < N, if A(N,.Ay) < ®(N,.Ay)
s for N® <N, <N <N,

—if A(N,,Ay)> ®(N,, Ay) and not (28)
—if A(N,,Ay) < ®(N,,Ay) and (28)

Table 8

Intersections of A with @ in the case (a3).
Intersections Conditions
No intersection «if Ny < N*®

«for N, < N® < N, < N>, if A(N,)> F(Ny)

« for N, < N® < N, < Ny < N®, if A(Ny) < F(Ny)
« for N, < N® < N¥ < N,, if A(N,)>F(N,)

« for N® < N® < N, < N, < Ny, if A(Ny)>F(Ny)

Unique intersection in [N*®, Ny]

o

« for N, < N® < Ny < N2, if A(Np) < F(N,)
« for Ny, < N® <N, < Ny < NP, if A(Ny) > F(Ny)

Unique intersection in [N®, N, ]

for N® < N, < N, < Ny < NP, if A(Ny) < F(Ny)

Two intersections in [N, N{°]

s for N® < NQ® <N, < N, <N, if A(Ny) < F(Ny)
-forN,,ﬂiN_‘°"<ij"<NM<N0
—if A(Ny,Ay) <®(Ny,Ay) and not (28)
—if A(Ny,Ay)> DNy, Ay) and (28)
-forN[iN_°°<Nu<Nj°<N0
—if A(Ny,Ay) <®(Ny,Ay) and not (28)
—if ANy, Ay)> DNy, Ay) and (28)
« for N, < N® < N® < N,, if AN,) <F(N,)
« for N®* <N, <N, <N{Q <N,
+ for N <N, <N, <Ny <NY,
« for N2 <N, <NP <N, <N,
—if A(Ny,Ay) <®(Ny,Ay) and not (28)
—if A(Ny,Ay)> ®(Ny, Ay) and (28)

if ANy) > F(Np)

while
(k—¢N)@v+ N?)
uN —gv+ N2) ’

whose value depends on N but it is finite.

lim ®(N, A) =
A-+o0

Study of the curve A= y ¥

In the following analysis, some cases will hinge on the mutual
behavior of ® and A = y N ¥ as a — +oo. The latter is above the
surface if the following inequality holds, and conversely:

(k—¢N)(v+ N?) 4
uN —g(o+N2) b
We now turn to studying the curve A = y n¥. Because the former is
above the plane F = gb~! and the latter has the height of the maximum
F = ¥(N,, A), A being an arbitrary value as ¥ is a cylinder, they can
intersect only if ¥(N,, A\) > gb~!, a condition that explicitly becomes

(28)

bru > 2cqv + 2b(m + h)v. (29)

Because y raises up to infinity for A =0, i.e., on the N-F coordinate
plane, for increasing A it decreases toward its horizontal asymptote.

The first intersection with the cylinder ¥ must occur at a point X =
(Ay, Fx,Ny), with Ny N, \/v > 0. We must then have
x(N,,Ax)="¥(N,, Ay), from which follows

a=yf

The intersection exists only if Ay > 0, that is, if (29) holds. Finally, we
explicitly have

X = (Ay,P(V/0), V).

The curve A = yN¥ originates from X and consists of two branches,
A_and A +» respectively, for N < N, and N > N,. In view of the fact
that they lie on y, as A — +oo both approach F = ¢gb~! and on this
plane also, respectively, approach the values N = N, with N_ < N*®
and N° < N,. The latter is obtained by imposing that ¥(N) = gb™".
We find

2¢cpqu
bru — 2cqu — 2bv(m + h)’

© 1

- 2,22 _ 2
= = Jeqg 1 bm £ )] [brui \/b r’u? —4[cq + b(m + h)] U].

16
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Intersections of A with @ in the case (b1l).
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Intersections

Conditions

No intersection

s for N®* < NP <Ny <N, <N,
s for N®* <Ny <N, <N <N,
+ for N® <Ny <N, <N, <N,
e for Ny < N® <N <N, <N,

if A(Ny) < F(Ny)
if A(Ny) < F(Ny) and not (28)
if not (28) and

ANy, Ay) < ®(Ny, Ay)
« for Ny <N, < N® <Ny <N,

« for Ny< N, <N, <N® <NY,

if not (28)

One intersection

s for N® <Ny, < NP <N, <N,
+ for N® < Ny <N, <Ny <N,

if not (28)
if A(Ny)> F(Ny)

uw

* for N® <Ny <N, <N, <Ny
—if A(Ny) > F(Ny) and not (28)
—if A(Ny) < F(Ny) and (28)

One intersection in [N, N,]

s for Ny < N® <N, <NQ® <N,

e for Ny < N® <N, <N, <NY

One intersection in [N,,N>1

for Ny < N, < N® <N, < NP, if (28)

Two intersections

« for N® < Ny < N, < N, < N%, if A(Ny)> F(Ny) and (28)

« for Ny < N® < N® < N, <N,, if (28) and A(Ny,Ay) < ®(Ny,Ay)
* for Ny < N® <N <N, <N,
- if A(Ny) < F(Ny) and (28)
- if A(Ny)> F(Ny) and not (28)
« for Ny < N, <N, < N® < NP, if A(Ny) <F(Ny) and (28)
« for Ny < N® <N, <N, <N, if (28)

Table 10

Intersections of A with @ in the case (b2).

Intersections

Conditions

No intersection

s for N® <N <N, <N,

- if A(Ny)> F(Ny) and (28)

- if A(Ny) < F(Ny) and not (28)
* for N® < N, <N, < NP, if not (28)
«for N, < N® <N <N,
» for N, < N® < N, < N%, if not (28)

+

+ for N, <N, <N® <Ny
—if A(Ny)> F(Ny) and (28)
- if A(Ny) < F(Ny) and not (28)

One intersection

* for N® < N® <N, <N,, if (28)
+ for N, < N® <N, <N®

if (28)

40

Two intersections

* for N® < N® <N, <N,, if A(Ny)> F(Ny) and (28)

+ for N® <N, < N{° <N, if (28)

» for N* <N, <N, <N

if (28)

+

« for N, <N, <N® <Ny
— if A(Ny)> F(Ny) and not (28)
—if A(Ny) < F(Ny) and (28)

Intersections of the curve A with the surface ®

Coexistence is obtained from the intersection of the curve A with
the surface &. Several situations can arise, due to the various cases
(al)—(a3) and (b1)-(b3) examined above, in combination with the
location of the point X, the branches of A, and their asymptotes at
N. The existencs of the intersection relies on the fact that in the phase
space the curve A approaches the horizontal plane F = F_, see (22),
and that on F(N) the function @ has a vertical asymptote.

Our discussion focuses mainly on the location of the projection of
the point X, (Ny,Ay) on the N-A coordinate plane, from which the
projection A = A(N) of the curve A originates, and the feasible regions
where @ > 0 discovered in (al)-(a3) and (b1)-(b3) above. Note that
the curve A has vertical asymptotes at N = N2°.

The cases that can arise are many, too many to list exhaustively.
In addition, in several of them it is not clear whether the intersection

17

is unique or, in some cases, multiple (in general, double). In the latter
case, there would most likely be saddle-node bifurcations giving rise to
pairs of equilibria, but to specify the conditions under which they arise
would be very difficult, also because the coordinates of the coexistence
equilibrium point are not explicit. We therefore confine ourselves to
list the cases where the existence and uniqueness of the coexistence
equilibrium occur and disregard other more complicated situations. See
Tables 6, 7, 8, 9, 10, and 11.

Data availability

No data was used for the research described in the article.
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Table 11
Intersections of A with @ in the case (b3).
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Intersections Conditions

No intersection

«for N* < NP <N, <N, <N,

« for N <N, <N <N, <N,
« for N® <N, <N, <Ny <N,
«for N, < N® <N <N, <N,

« for Ny < N® <N, <NY
+ for N, < N, < N®
«for N, <N, <N*

<N,
< NP < Ny, if ANy) > F(Ny)
<Ny < N2, if ANy, Ay) <®(Ny,Ay)

«for Ny <N, <Ny < N® < NY if A(Ny)>F(Ny)
—if A(Ny,Ay) > ®(Ny, Ay) and (28)
—if A(Ny,Ay) < ®(Ny,Ay) and not (28)

One intersection

« for N® < N, <N, < Ny < NP, if (28)

« for N, < N® < N, < Ny < NP, if (28)
« for N, < N, < N® < Ny < N, if A(Ny,Ay)> ®(Ny, Ay) and
A(Ny) > F(Ny) or A(Ny) < F(Ny)

Two intersections

« for N, < N, < N® < N® < N,, if A(Ny) < F(Ny)

«for N, < N,<Ny<N®< NPy, if A(Ny) <F(Ny)
—if A(Ny,Ay)> ®(Ny, Ay) and not (28)
—if ANy, Ay) < DNy, Ay) and (28)
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