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A B S T R A C T

Crop yield prediction models (CYPMs) are essential for ensuring global food security and sustainable agricultural 
planning. This systematic literature review compared the overview of historical and contemporary CYPMs 
evolution, challenges, innovations, and key lessons learned from peer-reviewed literature. The study analyzed 
peer-reviewed papers published between 2015 and 2025, sourced from the Scopus, Web of Science, and PubMed 
databases, following PRISMA guidelines. Twenty-three studies met the inclusion criteria and were evaluated for 
methodological quality and risk of bias. Historical empirical and mechanistic models offered valuable theoretical 
foundations but were limited by data scarcity and scalability. Contemporary approaches, particularly those using 
machine learning, deep learning, and remote sensing, demonstrated superior predictive accuracy (R² =
0.85–0.93) compared with traditional models (R² = 0.60–0.75). Key lessons emphasize the importance of data 
integration, contextual calibration, and expert validation. Persisting challenges include computational demands 
and limited applicability in data-scarce regions. The review concludes that hybrid, interpretable, and resource- 
efficient models are critical for improving prediction reliability and achieving sustainable, equitable food 
systems.

1. Introduction

The UN report [1] demonstrates that the global population is pro
jected to increase from 7.7 billion in 2019 to 8.5 billion in 2030 with (10 
% increment), and 9.7 billion in 2050 with (26 % increment). Tilman 
et al. [2] suggested the global population is increasing at unpredicted 
rate and in 2050, additional 60 % food is necessary. Foley et al. [3] 
stated that there must be a significant change in agriculture like in crop 
yields, resource utilization, and sustainable farming practice because of 
the necessity to produce more food in the next 40 years more than the 
previous 8000 years farming practice. On the other hand, World Food 
and Agriculture Organization-FAO [4] reported that in 2050, an addi
tional 70 % food is required. To achieve food security, it needs a great 
effort in improving agricultural innovations with science and technology 
to provide immediate agricultural solutions. Science and Technology 
innovations support building resilient agriculture that is not easily 

collapsed with climate change and other agricultural barriers. Climate 
variability greatly reduces food production and agricultural activity. 
Lobell et al. [5] estimated that climate change can reduce the food 
production by 10–25 % in 2050. The situation urges to ensure food se
curity and provide accurate prediction of food accessibility around the 
world. Therefore, it is essential to provide yield models that help the 
agriculture prediction through early warnings, resource allocation, risk 
management, climate adaptation, integration of technologies (i.e., AI 
prediction models) to address food security. Yield prediction models are 
indispensable for modern agriculture, offering solutions to challenges 
such as resource scarcity, climate change, and food security. Jabed et al. 
[6] highlighted the role of Artif. Intell. Agric. for addressing food se
curity and sustainability.

Crop yield prediction models have evolved significantly over the 
years. It evolved as a simple empirical process to advanced data-driven 
and machine learning approaches, recently. Models from pre-1980s era 
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were based on basically uses historical types of simple statistical 
regression analysis and empirical crop yield modelling was done by 
integrating weather and soil factors. Fisher et al. [7] provided the 
earliest statistical approach to understanding a crop yield variability. 
After the 1980s the process based (Mechanistic) crop yield models have 
evolved and add more properties of crops like photosynthesis, respira
tion, and nutrient cycling. Computationally intensive data analysis 
models like DSSAT and APSIM were developed. Jones et al. [8] dis
cussed about DSSATs interdisciplinary research application to solve 
problems in agricultural farming. After 1990s, remote sensing and GIS 
(Geographical Information System)-based large geographical area yield 
prediction models evolved by analyzing vegetation indices using satel
lite and drone imagery. Lobel [9] reviewed the use of remote sensing in 
yield prediction and crop yield gap analysis. After 2000s, the machine 
learning (ML) approach was developed to capture complex data and 
non-linear relationships with large datasets in crop yield predictions 
[10]. In 2010s, deep learning, big data and cloud computing revolu
tionized yield prediction used to process complex and high dimensional 
data with high accuracy and scalability [11]. Recently, precision agri
culture and Internet of Things (IoT) have enhanced agriculture practice 
through data-driven decision making, advanced tools, and technologies 
to monitor, analyze, and manage agricultural practices [12]. IoT with 
smart sensors and drones enables real-time agricultural monitoring for 
yield predicts [13]. The historical details will be explained in (Section 3) 
of the review.

This review is aimed at systematically comparing historical and 
recent crop yield prediction models. The primary goal of this paper is to 
analyze the most typical approaches to the issue, and their strong and 
weak points, and hence, the paper intended to draw conclusions about 
the development of prediction models through history. Besides, it comes 
along the path of the next generation, and the different ways that this 
mathematical methodology may be useful to set up a world production 
system that is sustainable and less affected by food production are also 
demonstrated. The outcome of this systematic review is not focus on 
making new model like primary research, but a novel comparative 
framework and a synthesized knowledge base. The effectiveness of our 
review methodology will be demonstrated through its ability to delin
eate clear evolutionary patterns, extract transferable lessons, and iden
tify critical, actionable gaps in the field of crop yield prediction.

While numerous reviews have examined either historical crop yield 
modelling approaches or recent advances in machine learning-based 
prediction, the paper presents a novel, systematic comparison that 
bridges these two eras. Unlike the existing literature that often treats 
historical and contemporary models in isolation, our work integrates 
empirical, mechanistic, remote sensing, machine learning, deep 
learning, and hybrid modelling paradigms within a unified analytical 
framework. We go beyond technical descriptions to extract cross- 
generating lessons, identify persistent challenges in low-resource con
texts (e.g. Ethiopia), and evaluate how innovations such as real-time IoT 
integration, multimodal data fusion, and AI-driven scalability address 
(exacerbate) these gaps. Furthermore, this review is among the first to 
explicitly link model evolution to food security outcomes in data-scarce 
environments, advocating for context-sensitive, hybrid solutions that 
balance accuracy with accessibility. This integrative and equity-focused 
perspective constructs the core novelty of our contribution. Therefore, 
the study aims to address the following specific objectives: 

• To systematically compare historical and contemporary CYPMs in 
terms of their methodological approaches, data requirements, scal
ability, accuracy, real-time adaptability, and technological 
integration,

• To identify the key lessons learned from both historical (empirical 
and mechanistic) and contemporary (machine learning, deep 
learning, remote sensing, IoT-enabled) models that can inform cur
rent and future agricultural modelling practices, particularly in 
scarce data regions,

• To synthesize recent innovations in CYPMs (including AI-driven ar
chitectures, multimodal data fusion, real-time sensing, and hybrid 
modelling) and evaluate their contributions to improving prediction 
accuracy, resilience to climate variability, and support for global 
food security,

• To critically assess the performance limitations and practical chal
lenges of existing models across diverse agroecological and socio
economic contexts, with emphasis on data quality, computational 
demands, interpretability, and accessibility,

The study provides a scientific contribution such as: 

i) Providing an overview of early and recent crop prediction models 
in general,

ii) Making a comparison between different measuring features of 
traditional and modern crop yield prediction models,

iii) The key lessons learned from both crop yield prediction models 
demonstrate an important insight or knowledge from an experi
ence passed through successes and failures in crop yield 
prediction,

iv) Discussing the key innovations achieved towards accurate crop 
yield prediction for accurate yield predictions,

v) Identifying the key challenges faced in both crop yield prediction 
models in different measuring circumstances.

The remaining part of the paper is arranged as follows: Section 2
brings the systematic research approach applied in this study. Section 3
discusses the general overview of Historical and Contemporary Crop 
Yield Prediction Models. Section 4 reveals a critical review based on 
selected literature and a meta-synthesis of the studies to draw insight 
into crop yield prediction models. Section 5 deals with the conclusion 
which illustrates the role of the study, its significance, and limitations. 
Lastly, Section 6 indicates the future research consideration to improve 
crop yield prediction techniques.

2. Research methodology

2.1. Justification for research methodology selection

This study used a systematic review of literature approach, based on 
Charter and Kitchenhams’ guidelines for the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) approach [14], to 
accomplish its objectives. The primary aim of this study is to synthesize 
and compare the vast and heterogeneous body of research on crop yield 
prediction models (CYPMs) across different technological eras. To ach
ieve this objectively and comprehensively, a Systematic Literature Re
view (SLR) was identified as the most suitable research method. This 
choice is justified on both theoretical and practical grounds. First, SLR is 
designed to address broad, synthesis-oriented research questions like 
ours through a systematic, reproducible, and unbiased process for 
identifying, evaluating, and interpreting all relevant literature [14]. This 
is in direct contrast to traditional narrative review, which risks being 
non-comprehensive and influenced by author selection bias. Given our 
objectives to provide a balanced comparative overview, the rigorous 
structure of an SLR was imperative.

To ensure the highest standard of reporting and conduct, this SLR 
adheres to the PRISMA (Preferred Reporting Items for Systematic Re
views and Meta-Analyses) guidelines. PRISMA was selected because it 
provides a globally recognized and validated framework that enhances 
transparency, accuracy, and completeness of systematic reviews. The 
use of the PRISMA flow diagram (Fig. 1), for instance, is a critical tool for 
documenting the article selection process and ensuring reproducibility.

The literature search was conducted across three major databases: 
Scopus, Web of Science (WoS), and PubMed. This multi-database 
approach was taken to mitigate database coverage bias and ensure the 
most exhaustive retrieval of relevant literature possible. Scopus and 
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WoS are the leading multidisciplinary citation databases with extensive 
coverage in engineering, computer science, and agricultural sciences. 
PubMed was included to capture interdisciplinary studies at the inter
section of agronomy, environmental science, and biology that might be 
missed by the other two.

Finally, the nature of the collected studies (geographical focus, 
specific models, publication type, time frame) precluded to analysis. 
Therefore, the data analysis was conducted through a structured 
narrative synthesis. This established qualitative methodology allows for 
the systematic organization of finding into thematic categories (e.g., 
comparison factors, challenges, innovations) to draw robust, evidence- 
based conclusions and identify overarching patterns in the field. This 
approach is uniquely suited to answer our “what”, “how”, and “why” 
questions regarding the evolution and lessons of CYPMs.

2.2. Research questions (RQs)

Research questions were designed to guide the whole review process 
in providing help in consistent, coherent, and structured synthesis and 
summary of works of literature. Hence, the following research questions 
developed to reach the objectives.

RQ1: What is the difference between the Historical and Contempo
rary crop yield prediction models in different measuring circumstances?

This question involves answering the detailed difference between the 
two models in different aspects like data requirement, scalability, pre
diction accuracy, methods it uses, and other related criteria.

RQ2: What are the main challenges of historical and contemporary 
crop yield prediction models in different measuring scenarios?

This question encompasses the main challenges faced during the 
application of crop yield prediction models. There were different tack
ling factors towards yield model application like environmental factors, 
technology, skill and techniques, data access and quality, adaptability, 
and other immutable field factors will be discussed

RQ3: What are the key lessons learned from historical and contem
porary crop yield prediction models that inform current practices?

In this context, both crop yield prediction models have provided 
valuable insights, and lessons learned from their application in agri
cultural research and practice will be discussed.

RQ4: What are the innovations in crop yield prediction models, and 
how have they shaped the field for global food security?

This research question addresses the great revolutions in crop yield 
prediction due to its importance in accuracy, scalability, real-time pre
diction, and other factors used for agriculture for recent and future trend 
predictions. In addition to this, the role of these models towards global 

food security will be described.

2.3. Article search strategy

The article search strategy was planned based on the intent of sys
tematic literature review and the research questions. The data for this 
review was sourced from the academic databases: Scopus, PubMed, and 
Web of Science. These databases were selected due to possessing high- 
impact factors related to technology and agriculture, broad search 
tools for academic publications, reliable resources for articles, and large 
databases for peer-reviewed literature. The key characteristics of the 
collected literature were defined by a focus on crop yield prediction 
models. The search queries combined general terms (e.g., “Crop Yield 
Prediction”), historical keywords (e.g., “Empirical”, “Mechanistic”), and 
contemporary keywords (e.g., “Machine Learning”, “Remote Sensing”, 
“IoT”) as described in (Table 1). The authors used two stage dedupli
cation process. The first stage is performed automated deduplication 
reduction by using Rayyan AI tool. Then, the rest is manually verified by 
the research team.

2.4. Article selection criteria

The selection criteria for articles were defined to ensure the review 
was based on relevant and high-quality dataset. The primary charac
teristics of the included data were: 

■ Temporal Scope: Primarily recent works (2015–2025), with supple
mentary inclusions of seminal historical references (pre-1980s) to 
contextualize foundational modeling approaches.

■ Publication Venue: Peer-reviewed journal articles, and conference 
proceedings from reputable sources.

■ Model types covered: Empirical, mechanistic, machine learning (e.g., 
Random Forest, SVM), deep learning (e.g., CNN, LSTM), remote 
sensing-based, IoT, and hybrid models.

■ Geographic Distribution: Studies originated from 18 countries, with 
a majority from high-income nations (e.g., USA, China, EU mem
bers); only limited representation from low-income regions such as 
Sub-Saharan Africa (including Ethiopia).

■ Language: Exclusively English language publications.
■ Content: Studies that provided empirical data, case studies, or 

comparative analyses of CYPMs performance, including discussions 
on challenges, lessons learned, or innovations.

The Boolean operators (e.g., OR, AND, and NOT) were used to 
enhance searches and combine related terms. The subsequent screening 
process based on titles, abstracts, and full texts, as illustrated in the 
PRISMA flow diagram (Fig. 1), ensured the final dataset adhered to these 
characteristics.

2.5. Exclusion, inclusion standards and prisma approach

The review included peer-reviewed journal article papers that 
analyzed both old and modern crop yield prediction models; papers 
across geography, datasets, and agricultural practices; studies that deal 
with crop yield prediction using modern technology or methods. 
Exclusion criteria applied in other cases did not focus on crop yield 
prediction; articles that do not satisfy the comparison between old and 
new methods; journals that are not peer-reviewed and lack methodo
logical particulars that have general qualification check assessment as 
expressed in Table 2.

Time Frame: The search included relevant articles published from 
2015 to 2025 for analysis. We will prioritize articles that were published 
during recent years for quality and accuracy. However, some papers that 
include historical crop yield modeling added to fill the historical data 
gap.

Language Restriction: The articles published in English language 

Fig. 1. PRISMA 2020 flow diagram illustrating the study identification, 
screening, and inclusion process:.
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only considered to ensure consistency and accuracy in interpretation.
Screening: First, articles were searched. Then, titles, abstracts, and 

keywords were checked. After that, we read the full text to make sure we 
include only good and relevant papers. We also looked at the references 
of the chosen articles (snowballing) to find more studies that were not 
found in the initial search. Following the Preferred Reporting Items for 
Systematic Reviews and Meta-Analysis (PRISMA) 2020 guidelines [14], 
the article selection process was systematically documented to ensure 
transparency and reproducibility. The search was conducted in Scopus, 
Web of Science, and PubMed using predefined keywords and Boolean 
operators targeting studies published between 2015 and 2025. After 
removing duplicates, records were screened by title and abstract for 

relevance, and full-text articles were evaluated based on the predefined 
inclusion and exclusion criteria. Fig. 1 presents the detailed PRISMA 
2020 flow diagram summarizing this process.

The flow chart summarizes the systematic selection of studies 
retrieved from Scopus, Web of Science, and PubMed databases between 
2015 and 2025. Out of 880 initial records identified, 210 duplicates 
were removed, leaving 670 unique records for screening. After title and 
abstract screening, 580 records were excluded for irrelevance. Ninety 
full-text reports were sought for retrieval, with seven not accessible. A 
total of 83 articles were assessed for eligibility, and 60 were excluded for 
not meeting inclusion criteria (e.g., drawbacks seen such as insufficient 
methodological detail, and lacking comparative analysis). Finally, 23 
studies were included in the systematic review and synthesis.

2.6. Article quality check criteria

A standardized data extraction and quality assessment process was 
employed. Two reviewers independently extracted data from each 
included study, capturing details on authors, year, objectives, method
ology, and key findings. The methodological quality and risk of bias of 
each study were then evaluated using a pre-defined 7-point checklist 
adapted from Kitchenham and Charters [15] (Table). The checklist 
assessed clarity of objectives, methodological rigor, data transparency, 
analytical robustness, and reproducibility. Each item was scored as 
“Yes” (1), “Partial” (0.5), or “No” (0). Inter-rater reliability was sub
stantial (Cohen’s k = 0.61–0.80) to almost perfect (Cohen’s k =
0.81–1.0), and all discrepancies were resolved through consensus. 
Studies scoring ≥ 5/7, a pre-specified threshold indicating acceptable 
methodological quality, were included in the synthesis.

In general, the search strategy aims to ensure a detailed, systematic 
collection of relevant literature, providing a comprehensive under
standing of evolution, innovations, and lessons learned from both his
torical and contemporary crop yield prediction models.

3. Overview of crop yield prediction

The section provides a clear overview of Crop Yield Prediction and 
Crop Yield Prediction models. It deals with general history, components 
(such as technology, data source, and modelling approaches), different 
factors used for comparison, application, and introduction in historical 
as well as contemporary in crop yield predictions as shown in (Fig. 2). 
The section will be used further for discussion and analysis.

3.1. Crop yield prediction models (CYPMs)

Crop yield prediction has evolved over time through advancing 

Table 1 
Search queries and database filters.

Databases Search Query Date 
Executed

Filters 
Applied

Scopus
TITLE-ABS-KEY ((“crop yield” OR 
“yield prediction” OR “yield 
forecast”) AND (“empirical model” 
OR “mechanistic model” OR 
“machine learning” OR “deep 
learning” OR “remote sensing”OR 
“IoT” OR “internet of things”) AND 
(“challenges” OR “lesson” OR 
“innovation” OR “comparision”)) 
AND PUBYEAR > 2014 
AND PUBYEAR < 2026 
AND (LIMIT-TO (LANGUAGE, 
“English”)) 
AND (LIMIT-TO(DOCTYPE, “ar”) OR 
LIMIT-TO (DOCTYPE, “cp”))

March 6, 
2025

English 
Language

Web of 
Science

TS=((“crop yield” OR “yield 
prediction” OR “crop modeling”)) 
AND 
TS=((“empirical model” OR 
“mechanistic model” OR “DSSAT” OR 
“APSIM”) AND 
TS= ((“machine learning” OR “deep 
learning” OR “LSTM” OR “CNN” OR 
“random forest”)) AND 
TS=((“remote sensing” OR “Sentinel- 
2″ OR “MODIS” OR “IoT” OR “hybrid 
model” OR “big data” OR 
“evolution”)) 
AND 
DT=(Article OR Proceedings Paper) 
AND 
PY=(2015–2025) 
AND 
LA=(english)

March 8, 
2025

English 
Language

PubMed
((“crop yield” [Title/Abstract] OR 
“yield prediction” [Title/Abstract] 
OR “yield forecast” [Title/Abstract]) 
AND 
(“empirical model” [Title/Abstract] 
OR “mechanistic model” [Title/ 
Abstract] OR “machine learning” 
[Title/Abstract] OR “deep learning” 
[Title/Abstract] OR “remote sensing” 
[Title/Abstract] OR “IoT” [Title/ 
Abstract]) 
AND 
(“challenge” [Title/Abstract] OR 
“lesson” [Title/Abstract] OR 
“innovation” [Title/Abstract] OR 
“comparison” [Title/Abstract])) 
AND ((“2015/01/01″ [Date - 
Publication]: “2025/03/10” [Date - 
Publication])) 
AND 
English [la] 
AND 
(journalarticle [pt] OR congresses 
[pt])

March 10, 
2025

English 
Language

Table 2 
Checklist provided for article Quality check.

No Provided weighting 
Checklists

Description/Evaluation Focus

Q1 Objective clarifications Are the study’s goals clearly defined and aligned 
with the results?

Q2 Methodological rigor Does the study use clear and appropriate 
methods?

Q3 Relevance to the review 
topic

Is the study directly related to CYPMs?

Q4 Data transparency Are data sources and assumptions clearly 
described?

Q5 Analytical robustness Are performance metrics (R2, RMSE, MAE,) well 
defined and validated?

Q6 Reproducibility & 
documentation

Are model codes, datasets, or workflows 
described for replication?

Q7 Fills knowledge gap Does limitations, challenges & innovations 
addressed?

- Overall quality score Total score (Yes=1, Partial=0.5, No=0); include 
cutoff ≥70 % for inclusion.
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statistical methods, computing power, data availability, and the growing 
need for predictive tools. Crop yield prediction modeling has its roots in 
the early 1900s, when scientists started relating crop yields to envi
ronmental variables like temperature and rainfall using simple statistical 
techniques. Simple regression models were created between the 1920s 
and 1950s to forecast yields from observed data. According to Jones 
et al. [16], the need to comprehend how crops react to environmental 
variability led to the advent of quantitative approaches in agriculture 
through this time. Although these early models were empirical with 
limited datasets and simple statistical methods, they laid the ground
work for more advanced predictive modeling. Crop yield prediction 
models became formalized in the 1960s to 1970s as both empirical and 
mechanistic methods were developed and gained popularity.

Based on monthly weather data, empirical models used regression 
techniques were proposed by Thompson [17] for crops like corn and 
wheat in USA, which is simple, data efficient, and used for specific re
gions. Subsequently, a mechanistic approach was proposed by Stewart 
et al. [18] using water stress model by including relationships like 
evapotranspiration and yield. After these the interest of modelling for 
crop management and climate impact studies, driven by advances in 
computing and data collection [19]. During the 1980s mechanistic crop 
yield models show a significant advancement in computing power and 
solving environmental challenges. Wen Guang et al. [20] proposed a 
soybean yield simulation model using thousands of equations to 

describe factors such as light interception, carbon partitioning, and 
nutrient uptake, representing a milestone in mechanistic modeling in
tricacy. In the 1990s remote sensing and geographical information 
system (GIS) used refining and validating crop yield prediction models. 
Baez Gonzalez et al. [21] explained how satellite-derived leaf area index 
(LAI) to reduce errors during calibration in observation, by using to 
improve empirical yield prediction for maize crop in Mexico. Empirical 
models also adapt advanced solving techniques including the nonlinear 
models. Schlenker et al. [22] developed empirical models to predict 
yield responses to temperature extremes in the USA, showing the 
non-linear effects of temperature on many crops. As Basso et al. [23] 
developed a mechanistic model which validated across diverse crops 
and regions, simulating daily variables like biomass and nutrient uptake 
to support accurate yield forecasting.

In 2000s the emergence of Machine Learning and Big Data which 
marked as a transformative period for a crop yield prediction model. You 
et al. [22] applied deep learning models, specifically LSTM and CNN, to 
predict soybean yields in the U.S using high resolution satellite and 
weather data gives a promising result over traditional approaches. In 
2010s to present is characterized by a paradigm shift in crop yield 
prediction due to availability of diverse and real time data assimilation, 
technological advancements, high computational power, and integra
tion of other interdisciplinary approaches. Filippi et al. [24] used 
real-time satellite and weather data, achieving higher accuracy in wheat 

Fig 2. Overviews of Crop Yield Prediction Models.
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crop yield prediction in Australia, by gaining continuous data update 
during growing seasons.

3.2. Comparison factors for crop yield prediction

These factors are used to evaluate how well a predictive model 
performs in terms of usability, reliability, and impact on agricultural 
decision-making. The criteria were selected based on technological 
modelling advancement, challenges in crop yield prediction (like envi
ronmental property, data availability), and practical applications. 
Among the main comparison criteria are model complexity, approach 
and methods used, data source, model accuracy, computational power, 
model flexibility, real-time adaptability, scalability and accessibility, 
climate and environmental variability, skill/expert dependency, and 
technological advancements.

3.2.1. Approach and methods
It includes a variety of techniques and strategies employed to predict 

yield outputs. These methodologies combine diverse data sources and 
analytical techniques to enhance yield prediction accuracy. Therefore, 
these approaches and methods collectively contribute to the develop
ment of robust models for accurate crop yield prediction, supporting 
informed decision-making in agriculture practice. In crop yield predic
tion approaches (i.e. Machine learning, Deep learning, hybrid models), 
and methods (i.e. data collection, feature selection, model training, 
performance evaluation) can create reliable models that predict crop 
yield.

3.2.2. Data source
Crop yield prediction needs diverse and high-quality data like 

metrological data, soil characteristics data, yield history data, and 
agricultural management practice data from different sources for 
building a robust yield prediction model. The ability to access and 
quality of these data influence the performance of predictive models 
[25], [26].

3.2.3. Model complexity
It is the sophistication of a predictive model, encompassing factors 

like number of parameters, model structure, and complexity of re
lationships that it can capture. Simpler models couldn’t fully handle 
underlying data patterns, potentially leading to underfitting. On the 
other hand, complex models could signify intricate patterns in data but 
may also be prone to overfitting, where it may learn noise instead of 
identifying broader, generalizable trends. Engen et al. [27] indicated 
that used a hybrid large number of parameters of satellite images and 
weather data through Convolutional Neural Network (CNN) to enhance 
prediction accuracy. Due to model complexity during training, it used 
stochastic epoch sampling to mitigate overfitting during model training.

3.2.4. Computational power
The capacity of computing devices and systems to process and 

analyze vast and complex datasets using advanced algorithms (like 
machine learning and deep learning models) for yield prediction is very 
necessary. Recently, predictive models have become sophisticated, as a 
result it needs high computational resources to operate high dimen
sional data, perform calculations, and generate accurate and timely 
predictions. The advancement of computational power enhances crop 
yield prediction models, enabling the processing of large datasets and 
the application of complex algorithms. Jeong et al. [28] discussed 
combining deep learning models and process-based crop models as a 
hybrid model and emphasizing the computational demands associated 
with integrating these complex systems [28]. As a result, high compu
tational power factors can develop efficient and scalable predictive 
models and allow timely and informed decision making in agriculture.

3.2.5. Model flexibility
The adaptability of reliable and accurate predictive models to sup

port diverse crops, environmental conditions, and data inputs was 
essential. Filippi et al. [24] emphasized the advantage of building a 
machine learning crop yield prediction model that integrates many data 
layers (such as soil variation, terrain, weather, and satellite imagery) to 
make a prediction, thereby enhancing model flexibility [24]. The 
improvement of flexible models is so important in developing robust 
crop yield prediction approach capable of making decision making with 
in diverse agricultural circumstances.

3.2.6. Real-time adaptability
The need for dynamic adjustment of predictive models is based on 

ongoing changes in environmental conditions, crop development stages, 
and management practice in agriculture by integrating with real-time 
adaptability. The approach integrates advanced technologies such as 
machine learning, IoT, and remote sensing to improve the accuracy and 
timeliness of yield prediction [29].

3.2.7. Scalability and accessibility
These factors are essential in crop yield prediction models, due to 

their effectiveness and usability in different applications circumstances 
of agriculture.

Scalability indicates the ability of predictive models and systems to 
effectively handle increasing amounts of data which perform an analysis 
in large areas. D. Lobell et al. [30] developed a scalable satellite-based 
crop yield mapper model that was applied in large (extensive) area for 
estimating maize crop yield in Midwestern of United States. Accessi
bility shows the easiness of utilizing tools and the availability of 
necessary data in crop yield prediction. It encompasses user-friendly 
interfaces, affordable technologies, and open access data for safe
guarding predictive insights are attainable for diverse users.

3.2.8. Climate and environmental variability
These factors had important application in crop yield prediction that 

the fluctuations in climatic factors (like temperature, precipitation, and 
humidity) and environmental conditions (soil properties and topog
raphy) that influence crop growth and productivity. Gardner et al. [31] 
demonstrated how temporal and spatial variations microclimate data 
affect climate suitability, providing better approximations of predicted 
yields and informing agricultural decision making.

3.2.9. Skill and expert dependency
In crop yield prediction, the extent of accuracy and reliability of 

predictive models relied on the expertise and specialized knowledge in 
the area of agriculture. These factors include the ability to select 
appropriate variables, preprocess data effectively, choose suitable 
modelling techniques, and interpret model outputs accurately. Van 
Klompenburg et al. [32] provided a machine learning based decision 
support tool for crop yield prediction supporting in crop growth and 
growing seasons. This explains the role of expert knowledge in effec
tively utilizing machine learning algorithms in decision making. More
over, Jabed et al. [33] demonstrated the application of deep learning, 
machine learning remote sensing, and considering factors affecting crop 
yield prediction. These underscore the necessity of different expertise in 
integrating different technological approaches and data sources.

3.2.10. Technological advancements
The advancement of technology in crop yield prediction enables the 

analysis of complex datasets, encompassing environmental conditions, 
soil characteristics, and crop health indicators enabling precise and ac
curate prediction. Advanced integration of modern technologies (such 
as machine learning, remote sensing, IoT devices, and advanced data 
analytics) that enhance accuracy and efficiency of crop yield prediction. 
Jabed and Murad [33] reviewed the importance of machine learning 
and deep learning technology in yield prediction. Moreover, it 
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emphasizes the role of remote sensing data integration with machine 
learning to observe critical insights in crop growth and growth estima
tion [33].

3.3. Technology application in crop yield prediction

The use of technology in crop yield prediction indicates that the 
application of scientific knowledge and tools to enhance efficiency in 
yields forecast. Several technologies and tools used to predict the crop 
yield prediction (such as remote sensing, Geographic Information Sys
tem (GIS), IoT, Big Data analytics and other technology) are commonly 
used in crop yield prediction.

3.3.1. Remote sensing technology (RS)
RS indicates non-physical contact by covering large geographical 

areas with the use of satellite or drone imagery to collect data about a 
crop’s health and growth for the estimation of yield by analyzing 
vegetation indices and other derived parameters for spatial and tem
poral information’s with greater accuracy [34]. Remote sensing tech
nology is comprised of sensors (which detect electromagnetic radiation 
emitted from earth surface), platforms (such as devices to carry satellite, 
drone or ground-based systems), and data processing systems (including 
software for analysis) [35]. Remote sensing is equipped with multi
function sensor technologies like thermal, optical (hyperspectral-high 
resolution in specific area band and multispectral-moderate resolution over 
large area coverage bands) [36], radar and microwave, LiDAR, Atmo
spheric sensors, and more functions with different satellite bands. 
Remote atmospheric sensors measure the atmospheric conditions and 
properties, such as humidity, aerosol levels, pressure, gas concentration, 
and temperature [37], [38]. Pantya et al. [39] provided a soyabean crop 
yield prediction by integrating remote sensing based atmospheric 
climate data, and vegetation indices. Optical sensors capture wavelengths 
of visible light, near infrared, and shortwave infrared that are reflected 
from the Earth’s surface [40]. Radar and microwave sensors are remote 
sensing technologies which use microwave (wavelengths ranging 1 cm 
to 1 m) to observe the Earth’s surface [41]. It detects light and dark 
conditions and applied in all types of weather conditions (i.e. effective in 
any cloud cover penetration, and extreme weather properties unlike 
optical sensors). Thermal remote sensing refers to the use of thermal 
infrared part of electromagnetic spectrum which measures the temper
ature of objects in a range of 3 − 14 µm at a distant which emitted by the 
objects [42]. Ahmad et al. [43] reviewed the impact of water stress in 
crops by using a remote sensing based thermal sensing system in land 
surface temperature. LiDAR remote sensing technology in crop yield pre
diction uses laser pulses to measure distances and create high-resolution 
three-dimensional images on the Earth’s surface [44]. It applied in crop 
canopy structures, crop height and biomass estimation, and yield pre
diction. Choudhary et al. [45] proposed a non-parametric grain yield 
estimation of wheat crop using thermal, microwave and optical remote 
sensing techniques in India.

3.3.2. Geographic information system (GIS)
GIS technology used to capture, store, interpret, analyze, manage, 

and demonstrate spatial data for the users by maps, reports and charts by 
using computer hardware and software applications. Sentil G.A et al. 
[46] provided a yield prediction mapping system with GIS technology 
helps accurate, real time, and effective decision makings. Li et al. [47] 
proposed a GIS based model focused on agricultural decision making 
and crop yield simulation. The proposed model effectively improved the 
crop yield prediction management.

3.3.3. IoT
IoT technology is the integration of technologies such as sensors, 

data analytics, and connectivity for real-time monitoring and decision 
making in crop yield prediction. IoT enhances accuracy, resource opti
mization, higher yields, and risk mitigation in crop yield prediction 

[48]. Galavarni et al. [49] proposed a smart irrigation system using IoT 
technology. Tzounis et al. [50]discussed the integration of IoT in agri
culture, in the application of precision farming and yield prediction.

3.3.4. Big data analytics
This technology designed to access, store, process, integrate, anal

ysis, and extract valuable insights from large and complex datasets in 
yield prediction [51]. Big data analytics basically performs huge tasks 
like data storage, data processing, data querying, data integration, data 
analytics, data visualization, data management, and decision support 
system. Oussous et al. [52] reviewed about various big data analytics 
technology features, advantages, limitations, and applications with 
different layers, including data storage, processing, querying, accessing, 
and management. Bibri et al. [53] examined the key data processing 
platforms and cloud computing technologies that are essential for big 
Data analytics. Chergui et al. [54] discussed the architecture of big data 
analytics systems in agriculture, focusing on data analysis layers, data 
types, sources, gathering techniques, and learning algorithms. Jharna 
Majumdar et al. [55] explored the application of Big Data in crop yield 
prediction through the data mining process.

3.4. Data sources and tools in crop yield prediction

Data sources in crop yield prediction include both historical and real- 
time data. There are common crop yield data sources like weather data, 
soil data, agricultural practice, remote sensing data, and historical yield 
data. Other agricultural data tools such as IoT sensors, Cloud computing 
system, and Big data analytics are tools for processing, collecting and 
handling data.

3.4.1. Weather data
Weather data are crucial in yield prediction. Weather data enables 

short term yield prediction, long term yield projections and risk 
assessment during yield losses. Weather data recorded hourly, daily and 
monthly in satellite or in station levels such as minimum and maximum 
temperature, wind speed, humidity, solar radiation, evapotranspiration, 
precipitation, wind pressure, and other data used for yield prediction. 
Kumar et al. [56] reviewed the importance of weather property data on 
crop yield prediction. Singh et al. [57] studied the effect of weather 
properties like temperature, rainfall, and humidity in crop yield pre
diction by using machine learning.

3.4.2. Soil data
Soils are important factors for growth and yield of crops. Fischer 

et al. [58] provided soil qualities for crop production. Soils have physical 
property such as soil structure, bulk density, soil texture (sand, silt, clay 
content), water holding capacity and drainage, soil depth and compac
tion, Chemical properties like soil pH, nutrient content (Nitrogen, 
Phosphorus, Potassium, and micronutrients), cation exchange capa
bility, organic matter content, soil organic carbon, and salinity levels, 
and Biological properties like microorganisms, soil biodiversity, nitrogen 
fixation, and soil respiration that greatly influence the yield prediction 
[59–60]. K.Samundeeswari et al. [61] proposed a system to predict crop 
yield from soil data using decision tree and C5.0 algorithms, imple
mented using R software. Mahesh T R and Sindhu Madhuri G. et al. [62] 
employed a decision tree algorithm to predict crop yield based on soil 
moisture parameters, aiming to enhance agricultural productivity. 
Tziachris et al. [63] provide a soil property dataset from 2015–2019 in 
Greece, comprising 781 surveys. with 16 individual parameters. 
Depending on the crop type, these soil factors influence should be 
aggregated and optimized for better yield forecasting [64].

3.4.3. Agronomic practices data
Agronomic data refers to the collection and analysis of information 

using various techniques and methods related to crop yield prediction 
[65]. It is a vast use of data and information throughout agricultural 
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practice. Some common data which consider agronomic practice in
cludes soil and weather data. Others crop data like crop type and variety, 
plantation date, growth stage, seed quality, yield data, crop station 
schedules: fertilization application data, pest and disease data, weed 
management data, harvest data, environmental data are necessary for 
accurate yield predictions. S.Pereira et al. [66] studied water usage and 
irrigation data for efficient monitoring of resource and improve crop 
yields. Xing and Wang [67] performed practical research in tracking 
fertilizer application rates and nutrient uptake efficiency to minimize 
environmental impact. Jha et al. [68] provided weed management data 
and herbicide application principles.

3.4.4. Historical yield data
Historical yield data basically refers to the recorded information on 

the yields of crops over a specified period in the past. It serves as a basis 
for future predictions because it provides a quantitative record of past 
yield data. It helps to understand climate condition, technology uses, 
crop yield amount and distribution, and risk assessment in crop failure. 
Lobell et al. [69] used historical yield data to investigate the influence of 
climate change on global crop production. Generally, historical crop 
yield data have a great importance in making trend analysis, model 
calibrations, yield predictions and risk assessments [70].

3.4.5. Remote sensing data
Remote sensing-based yield data refers to the collection of infor

mation from several sensors attached in satellites or unnamed aerial 
vehicles, or ground-based vehicles to monitor crop health, growth stage, 
and environment conditions. Remote sensing gathers a lot of data by the 
equipped sensor technology. Among those data weather data (temper
ature, precipitation, humidity, etc.), soil data, crop physiology, soil 
moisture, crop structure and species, plant height and canopy structure, 
and other data collected with different remote sensing techniques. Using 
optical and multispectral based remote sensing crop yield data gathers 
vegetation indices like Natural Difference Vegetation Indices (NDVI), 
Enhanced Vegetation Indices (EVI), etc., can be identified. Mena et al. 
[71] developed an adaptive crop yield prediction model as Multiview 
gated fusion model that integrates a Sentinel-2 multi-spectral optical 
images, weather data, soil properties, and topographic information to 
predict crops like soybean, wheat, and rapeseed in Argentina, Germany, 
and Uruguay and gained better result from the conventional. M.Sanchis 
et al. [72] proposed by combining multisensory data in Enhanced 
Vegetation Index (EVI) from MODIS satellite, and Vegetation Optical 
Depth (VOD) from Soil Moisture Active and Passive (SMAP), to estimate 
crop yields. Cunha et al. [73] described a five-year crop yield prediction 
including remote sensing data, crop calendars, and weather forecast 
information to provide accurate pre-season and in-season yield through 
addressing cloud cover using a deep learning model. Joshi et al. [74] 
discussed a deep learning-based model as an effective tool for mapping 
and yield prediction from remote sensing data. Kumari et al. [75] also 
reviewed a crop yield prediction method by remote sensing, crop model, 
and crop assimilation to enhance crop monitoring and yield prediction 
at large-scale.

3.4.6. IoT in crop yield prediction
The use of smart sensors, wireless data communication, cloud 

computing, and Machine learning to make Decision Support Systems by 
examining environmental conditions and predict agricultural output is 
now possible using IOT [76]. The IoT architecture integrates sensors (e. 
g., soil pH, humidity, light), device (e.g., cameras within drones, satel
lites), and actuators (e.g., for spraying, dispensing fertilizer, or motor 
control) [77], connection or networking (i.e. data transmission with 
wireless Zigbee, LoRa or cellular data 4 G, 5 G or remotely communi
cation using satellites), data processing(i.e. filter, clean and process raw 
data using cloud system like AWS IoT, stores data linking with data bases 
like SQL, etc.), data analysis application (i.e. machine learning for pre
dictive analysis or decision support system in irrigation, fertilizer, etc.), 

decision making with agricultural systems, and security interfaces [78], 
[79], [80], [81], [82]. Research shows that the vast application of IoT in 
the field of agriculture with real data collection and making decision 
system with integrating other models. In the study [83] use devices like 
FC-28 sensor, DHT11 sensor, and JXBS-3001 sensors. The study collects 
data on soil parameters including soil composition, moisture, humidity, 
temperature, and for nutrient levels. In other studies, [84] provides an 
IoT system to access real time data in field like sunlight, relative hu
midity, temperature, and moisture with low-cost Arduino hardware and 
software integration. Moreover, IoT system has an application in crop 
growth and health monitoring system. M. Galaverni et al. [85] made a 
smart agriculture system using IoT system with a tomato plant in irri
gation agriculture, denoted as Irri-frame. The proposed platform per
forms information evaluation, monitoring field parameters like water 
stress, soil plant analysis, and agronomic data collection on the planta
tion area. Generally, the IoT system in yield prediction plays a great role 
in improving yield accuracy, risk alleviation, resource management, and 
increase production efficiency [86].

3.4.7. Big data and cloud computing in crop yield prediction
In context of crop yield prediction, big data refers to the large, 

complex datasets collected from multiple data sources (i.e. IoT sensors, 
remote sensing data, historical yield data, and weather data) which are 
processed and analyzed using specialized tools to predict crop yield 
accurately [87]. Cloud computing refers to the use of a cloud-platform to 
store, manage, process, and analyze agricultural data (i.e. weather data, 
historical data, satellite data, yield data, management data. soil data) to 
predict crop yield accurately and make informed decisions for farming 
stakeholders [88]. Big data analytics reveal patterns and trends that 
improve prediction accuracy, while cloud computing provides scalable 
storage, computational power, and real-time data processing. These 
technologies improve timely decision-making in farming practices 
through data-driven insights.

3.5. Modeling approaches in crop yield prediction

According to data sources, computational approaches, technological 
advancement, and other factors crop yield prediction models classified 
as Historical and Contemporary crop yield prediction models

3.5.1. Historical CYPMs
Although no single traditional model exists, this section refers to 

early models that are limited in their capability to solve problems and 
basically laid the foundation for recent models, which existed before the 
1980s. The section considers historical yield prediction models before 
the 1980s and grouped into two classes.

3.5.1.1. Empirical models. Empirical models basically use mathematical 
and/or that predict crop yield based on observed relationships between 
yield and environmental factors [89]. Observational estimation (used as 
indigenous knowledge) based qualitative approach to estimating crop 
yields with local knowledge in prior expertise and experience using 
specific crops, local weather patterns, and farming practices [90] in 
prior histories of crop yield prediction. This approach is a 
non-data-driven approach and depends on observationally based 
judgement. In the 1920s to 1950s, it is marked as a transition in crop 
yield prediction from qualitative to quantitative statistical approaches. 
Fisher [91] described one of the earliest works in statistical approaches 
that used correlation and regression analysis to quantify the relation 
between rainfall and wheat yield during 1920s. During the 1930s, Frank 
Yates [92] developed advanced statistical methods by using factorial 
experiments and analysis of variance to analyze crop yield data, corre
lating yields with fertilizer, soil type, and weather conditions. In the 
1950s, Snedecor [93] provided a formalized statistical regression yield 
prediction technique based on soil fertility, weather, and management 
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practices. In the 1960s to 1970s advanced empirical statistical modelling 
evolved by integrating optimizing yields for new high-yield varieties. 
Time series analysis yield prediction adopted to manage temporal and 
spatial variability. Thompson [17] widely used regression model by 
including multiple variables (such as weather, soil fertility, and tech
nology adoption) to improve yield prediction accuracy. Even though 
there are improvements greatly after 1980s empirical models have many 
limitations. Empirical models experience issues like overfitting, a lack of 
biological insight, and difficulties in generalizing across various regions 
or conditions, tricky calibration and validation processes, and chal
lenges related to scaling and temporal dynamics are among common 
ones. These issues emphasize the necessity for enhanced data collection, 
improved model integration, and a more profound understanding of 
local conditions and biological processes.

3.5.1.2. Mechanistic models. These models are mathematical represen
tations of crop growth and development that simulate the effect of 
physiological and biophysical processes as a function of environmental 
conditions, genetic variations, and management practices [89], [94]. As 
Hammer et al. [94] explained these models describe the interactions 
between crop growth processes and environmental factors such as 
climate, soil characteristics, and farming practices. In 1960s deWit [95] 
introduced a mechanistic modeling of crop growth using photosynthesis 
and light interception further used as a foundation for WOFOST model. 
In the 1970s mechanistic approaches gain popularity when researchers 
developed a mathematical framework that describes crop growth and 
yield at various levels of sophistication. Kumar et al. [96] demonstrated 
that this era showed the prediction of yield under diverse conditions due 
to the development of models in climate and management practice. 
Patrico et al. [97] developed a model to simulate crop yield responses to 
water stress, by considering the mechanistic link between evapotrans
piration and yield. During 1980s mechanistic approaches in yield pre
diction became more advanced and respond to emerging challenges like 
elevated CO2 levels [97]. These models had limitations in data avail
ability and quality limitation, model over fitting, and less integration of 
modern technologies.

3.5.2. Contemporary crop yield prediction models
Contemporary crop prediction models are defined as an advanced 

data-driven computational framework designed to predict future yields 
using modern technologies (such as machine learning, deep learning, 
remote sensing, IoT, Big Data analytics, or and hybrid approaches) 
which make integration and analysis of data for accurate and real-time 
yield prediction which have great application in precision agriculture, 
food security, and climate change adaption [29], [98]. Contemporary 
crop yield prediction models have equipped with recent agricultural 
technologies to provide more accurate and real time yield predictions 
[99]. These models have a great role for improved prediction accuracy, 
scalability and automation, better decision drawing, securing food de
mand and enabling sustainable agricultural practice. Key contemporary 
crop yield prediction models, which are gamechangers, include:

3.5.2.1. Remote sensing. Remote sensing can provide a repetitive 
observation without a non-destructive data acquisition in large 
geographical areas [100]. It creates maps, models, and other visual 
representations of the Earth’s surface by integrating with emerging 
technologies [101]. Ali et al. [102] described remote sensing models can 
integrate with geographic information systems to monitor crop condi
tions and then predict yields through satellite or drone imagery in large 
geographical area [102]. This technique collects data from vegetation 
indices like natural difference vegetation indices(NDVI), weather data, 
soil data [103] and integrating with crop-specific models, to assess crop 
health, environmental stress, and climatic factors that impacting yields 
[104]. Khan et al. [105] provided a remote sensing based on a Corn yield 
prediction through vegetation indices and deep learning. The study also 

evaluated the effectiveness of remote sensing data by dividing into 
different growing seasons. Another study Nevavuori et al. [106] used 
Unnamed Arial Vehicles (UAV) high resolution images to apply on crop 
yield prediction model by image classification method integrating with 
convolutional neural network (CNN). Meshesha & Abeje [107] devel
oped a crop yield prediction model for four major Ethiopian crops. The 
study used a 10-meter resolution and 5-days temporal coverage, satellite 
Sentinel-2, with 3 vegetation indices for yield of crops (like teff, maize, 
wheat, and rice) compared with ground yield data. The study used 
remote sensing and machine learning methods to provide a better level 
of yield prediction. As Tripathi et al. [108] described remote sensing 
technology gives a great offer such as real-time monitoring, large 
geographical area coverage, applied in different agroecological zones, it 
doesn’t need physical crop samples, and scalability across various 
agricultural scales [108]. Previously done research demonstrated 
remarkable progress in crop yield prediction using remote sensing, 
machine learning, and hybrid modeling approaches. For instance, Nagiv 
et al. [109] integrated land-use policy and remote sensing data to 
improve agricultural monitoring. However, their study was limited by 
regional specificity and lacked dynamic temporal analysis, which re
duces global scalability. More recently, Vafaeinejad, Sharifi et al. [110] 
integrated multi-sensor satellite data for near real-time crop monitoring, 
marketing a promising step toward operational systems but still con
strained by cost and network infrastructure. However, the system is 
challenge-full in the need for data calibration, cloud cover interference, 
complex data interpretation, and resolution limitations [111]. Although 
the presence of many challenges, these models integrating with other 
models like deep learning and big data are considered a valuable tool for 
improving yield prediction accuracy [112].

3.5.2.2. Machine learning models in crop yield prediction. Machine 
learning (ML) is a branch of artificial intelligence (AI) that focuses on 
developing algorithms and statistical models that enable computers to 
perform tasks without explicit instructions, relying instead on patterns 
and inferences from data [113–116]. Shawon et al. [98] used machine 
learning in crop yield prediction which has a significant value which 
trace and analyze large farm datasets like weather data, soil data, his
torical yield data, and crop management practices to predict future crop 
yield accurately [98]. Machine learning algorithms makes greater 
importance in crops yield predictions through analyzing complex data, 
enhance prediction accuracy, resource use optimization, risk manage
ment and early warning, climate change adaptation, and improve de
cision making [11], [117], [118]. Paudel et al. [119]used large dataset 
by combining agronomic principles of crop modeling with machine 
learning baseline (i.e. correct, modular and reusable data) to predict 
large scale crop yield. the research predicted the yield of 7 types of crops 
within 3 European countries namely France, Germany, and Netherlands. 
Another investigator Dey et al. [120] used machine learning based crop 
recommendation by integrating with Kaggle dataset (i.e. 10 horticul
tural crops and 11 agricultural crops) and evaluates the individual data 
sets for better prediction and accuracy. Studies showed Kumar et al. 
[121] that there are many types of machine learning models used in crop 
yield prediction [121] based on nature of data, model training and 
evaluation, and model selection used, there are many types of machine 
learning models available. 

• Linear Regression: It is a simple model that predicts crop yield based 
on linear relationships between input features (e.g., rainfall, tem
perature, soil nutrients) and crop yield [122]. Research [123] used a 
linear regression machine learning model to analyze the relationship 
between environmental factors (i.e. area under cultivation, food 
price index, and annual rainfall) and yield outcome.

• Decision Trees: It is the one of powerful machine learning tree-based 
model that splits data into branches based on feature values to pre
dict yield [124]. Research done [125] with crop predictive analytics 
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with tree-based ensemble machine learning model for the future in 
crop suitability and productivity prediction.

• Random Forest: It is an ensemble of decision trees that reduces 
overfitting and improves prediction accuracy [126]. The model of
fers high robustness and versatility. In the research [127], the 
random forest machine learning algorithm was employed to forecast 
maize yield and agronomic efficiency in Ghana, taking into account 
various factors such as soil characteristics, climatic conditions, 
environmental influences, and management practices, including the 
application of fertilizers. The research approved that there is a better 
suggestion in drivers of Maize yield and increased agronomic 
efficiency.

• Support Vector Machines: It is a machine learning model that is 
capable of handle high-dimensional and non-linear datasets [128]. 
The study M.Rajakumaran et al. [129] demonstrated the 
multi-attribute weighted tree based support vector machine 
approach used to enhance crop yield prediction accuracy through 
integrating multiple attributes effectively.

• Gradient Boosting Machines (GBM): It is an ensemble technique that 
builds trees orderly to correct errors from previous trees and have 
variants include XGBoost, LightGBM, and CatBoost, which are highly 
effective for crop yield prediction. Pavithra et al. [130] showed the 
performance of three gradient based machine learning algorithms: 
CatBoost Light Gradient Boosting Machine, and eXtreme gradient 
boosting for rice yield prediction. The models utilized parameters 
such as pesticide, rainfall, and average temperature. These algo
rithms show a promising result in their outputs.

• k-Nearest Neighbors (k-NN): These models are a non-parametric 
model that predicts yield based on the average of the k-nearest 
data points [131], [132], [133]. Farhat et al. [134] used proximal 
sensing data (such as soil moisture, normalized difference vegetation 
indices) applied k-NN among other algorithms to predict potato 
yields. The k-NN model demonstrated lower performance compared 
to others like Support Vector Regression with higher root mean 
square error values across many datasets. In contrary, Wilson et al. 
[135] research done in regard to rice yield prediction in Kerel, India, 
found k-NN regression outperform other models, achieving an ac
curacy of 98.77 %.

3.5.2.3. Deep learning in crop yield prediction. Deep learning models are 
advanced machine learning models that are capable of capturing com
plex, non-linear relationships (neural networks) in large agricultural 
datasets, making them adapted for s crop yield prediction analysis 
[136]. 

• Convolutional Neural Networks (CNNs): It is a powerful tool that is 
commonly used for processing image classification and processing 
for spatial data such as satellite or drone imagery vegetation indices 
(e.g., NDVI) to predict crop yield at regional or field-level [137]. 
Srivastava et al. [138] used a CNN based for winter wheat prediction 
by including the phenological and environmental data while Morales 
and Sheppard [139] used a winter Wheat early yield prediction with 
two-dimensional CNN architectures and gained a better yield result. 
Lei Wang et al. [140] on the other hand, provides a hybrid crop yield 
prediction model that with temporal and spatial by integrating deep 
learning frameworks like convolutional neural network (CNN), long 
short-term memory (LSTM), and graph attention network (GAT) 
modules to magnify the prediction accuracy. The proposed model 
demonstrates as the model shows increase the performance by 6 % 
from the previous model.

• Artificial Neural Network (ANNs) can model a crop yield prediction 
due to their capability to model complex, non-linear relationships 
between various influencing parameters [141]. Khaki and Wang 
et al. [142] a Deep Neural Network-ANN model to predict the maize 
yield using temporary dataset and environmental variables. The 

model exhibited with a root-mean-square-error (RMSE) of 12 % of 
the average yield from the existing model.

• Recurrent Neural Networks (RNNs): RNN model is an effective crop 
yield prediction by its efficiency in modelling temporal dependencies 
for time series data accurately [143]. Jiang et al. (2018) showed that 
a corn yield prediction with Long Short-Term Memory (LSTM) RNN 
model by using temporal weather data at county level, which got a 
promising result. Fan et al. [144] demonstrated a hybrid approach of 
Graph Neural Networks (GNN)-RNN for spatial and temporal data in 
crop yield prediction in USA showed a greater performance over the 
existing models.

3.5.2.4. Hybrid model approach in crop yield prediction. Hybrid crop 
yield prediction models are the integration of two or more models (from 
historical, contemporary or both) to achieve necessary solution of 
problems in crop yield prediction [11]. These models are crucial for 
enhancing agricultural outcomes by providing more reliable predictions 
based on complex interactions between environmental conditions and 
crop-specific traits [145]. Anikó Kern, et al. [146] used a hybrid 
approach of statistical model for crop yield by using climate data and 
remote sensing in Central Europe. The result gained an impressive 
resilient model for spatially yield forecast and future projections by 
integrating remote sensing and statistical methods. Hybrid crop yield 
prediction models integrate diverse data sources to capture the multi
faceted nature of crop yield. Huimin Zhuang et al. [147] proposed a 
hybrid model for crop yield prediction by integrating a data assimilated 
crop model with machine learning for the winter Wheat crop to improve 
yield prediction in the North China from 2009 to 2015. The research 
articulated that integrating various sources of crop enhance the crop 
model’s ability to predict grain yields. Cerreta et al. [148] demonstrated 
that coupling remote sensing with process-based models improves yield 
estimation, but such mechanistic models often require extensive cali
bration and are computationally demanding for real-time applications. 
Sabas Patrick et al. [149] uses a hybrid model with ensemble techniques 
to combine banana plant future yield prediction from (1961–2020) yield 
data and multiple base models in Tanzanian Agriculture. The study used 
statistical time series models, state space, Long Short-Term Memory 
(LSTM) regression models, and ensemble models applying a weighted 
average approach to forecast yield of banana plant. Abdelouafi Boukhris 
et al. [149] used an integrated hybrid predictive yield model by 
including Sentinel-2 satellite imagery (such as NDVI, etc.), IoT (Rasp
berry Pi B+), big data, and deep learning techniques with mobile 
application in Morocco for wheat yield prediction. The research in
tegrates both spatial and temporal crop yield data and enhances the 
yield of wheat crops by 14 % from the previous yield. Sharifi & Safari 
et al. [150] and Mahmoodi et al. [151] proposed explainable AI 
frameworks and spatiotemporal deep learning methods, respectively, 
yet both approaches remain limited by high computational re
quirements and dependency on large, labeled data datasets. Recent 
advances have employed deep learning and multi-sensor fusion to 
address these gaps. For example, Safari et al. [152] and Vafaeinejad 
et al. [153] applied CNNs to Sentinel-2 satellite data for large-scale yield 
estimation, achieving higher accuracy but still facing issues with data 
heterogeneity and explainability. These limitations underscore the need 
for hybrid, context-aware, and computationally efficient prediction 
models that balance accuracy with accessibility. Generally, these ap
proaches have high acceptance due to having a combination solving 
ability of many models which provide accurate and reliable predictions.

Consequently, these models have improved accuracy, robustness, 
interpretability, handling complex data, sustainability, risk manage
ment, and resource optimization in crop yield prediction by combining 
the strengths of multiple modeling techniques through multiple data 
[11]. Even though the approach has an impressive result, but also it 
suffers with data quality, model complexity, less interpretability and 
other challenges.
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3.6. Application of crop yield predictive models

The section provides a general importance of crop yield prediction 
models. These models offer significant benefits in agriculture like food 
security, economic planning, climate adaptation, resource optimization, 
decision making, precision agriculture, and risk management.

3.6.1. Food security
Food security is essentially very important to address around the 

world. For these reasons accurate crop yield prediction takes the great 
role. The estimation will be done with crop prediction models. Food 
security basically covers sufficient crop production, consistent food ac
cess overtime, and other dimensions. Therefore, to address these issues 
it’s necessary to forecast food production levels, identification of scarce 
food regions, and take proactive measures to balance food production by 
adjusting food scarce and surpluses. Crop yield prediction models 
takeover the responsibility of building resilient food security system. 
Jabed and Murad [11] provided an important insight in the role of AI in 
ensuring sustainability in agriculture and food security.

3.6.2. Economic planning
The crop yield prediction models can accurately predict economic 

outcomes for decision-making. There are many methodologies 
employed in crop yield prediction models to support economic planning. 
Among these methods statistical models, remote sensing, machine 
learning or hybrid models are among those methods that are responsible 
for agricultural management, real-time monitoring of crop health and 
growth, and yield estimation. Liakos et al. [154] highlighted the role of 
machine learning in crop yield prediction and its significance for pre
cision agriculture and economic planning.

3.6.3. Resource optimization
Resource optimization is essential in agriculture that increases the 

efficiency of farmers productivity, profit, and economic sustainability by 
optimizing fertilizers and pesticide, improving water management, 
enhance soil health, and reduce food waste. Chlingaryan [155] provided 
a review focuses on machine learning techniques for yield prediction 
and their application in optimizing nitrogen use. Morchid et al. [156] 
done research in smart irrigation by installing soil moisture sensors with 
IoT devices to ensure crops receive the right amount of water by 
adjusting the amount automatically.

3.6.4. Decision making
Crop yield prediction models can possibly be used to make decisions 

in agricultural activity like planting, harvesting and post-harvest activ
ities, seed and crop varieties selection, Soil Preparation and irrigation 
setup through increasing profit by minimizing waste. Klompenburg et al. 
[2] highlighted how models like neural networks and support vector 
machines can reduce uncertainties by forecasting yields under varying 
environmental conditions, aiding farmers in decision-making for 
resource allocation and planning.

3.6.5. Climate adaptation
Climate adaptation indicates that the principle of adjustment to the 

actual or predictive climate change and its effects. Climate change is the 
main challenge for food security. Crop yield prediction models takeover 
risk management and resilience like early warning of crop failures, 
supporting climate smart agriculture, confirm economic stability, and 
integrate with emerging technologies. Wei et al. [142] provided a case 
study that explores resilient farming practices to mitigate flood risks in 
vulnerable agricultural regions. Kang et al. [157] provided a review 
discusses in the role of yield prediction in addressing food security under 
climate change.

3.6.6. Precision agriculture
Todays agriculture practice is integrated with recent technology 

tools (like GPS-guided tractors, drones, sensors, satellite imagery, etc.) 
to optimize crop production, reduce waste, and improve efficiency. 
These may refer to precision agriculture. Nyéki and Neményi [99] pin
out that precision agriculture must be supported by technologies like 
remote accessing system, data analytics and management tools. play a 
great role in improving crop yield and quality. Moreover, big data in 
precision agriculture creates a comprehensive and long-term analysis of 
agricultural factors with various circumstances. Wolfert et al. [158] 
highlighted how data-driven approaches in precision agriculture can 
enhance yield forecasting, improve farm management, and support 
sustainable practices.

3.6.7. Risk management
Crop yield prediction models have invaluable insights, in giving a 

necessary measurement for farmers for better preparation in risk 
handling like frost, drought stress, flood, pest infestation, market fluc
tuation, weed propagation, disease breakout, or post-harvest losses. 
Taking proactive measures, yield predictive models play a great role. 
Klompenburg et al. [32] provided a comprehensive review of machine 
learning techniques for crop yield prediction, emphasizing their role in 
managing agricultural risks. Pantazi et al. [159] addressed the risk 
management in wheat crop by demonstrating how precise yield pre
dictions can help farmers adjust inputs like fertilizers and irrigation, 
reducing the risk of overinvestment or crop failure in unpredictable 
conditions.

4. Results and discussion

The section presents a comparison, existing challenges, key lessons 
learned, and great innovations achieved on crop yield prediction 
models. A total of 23 documents, published between 2015 and 2025 and 
authored by researchers from 18 countries, were analyzed. The discus
sion flow structure is as shown in (Fig. 3) that deals with CYPMs in 
different comparison aspects.

4.1. Document analysis and risk-of-bias assessment

The 23 studies included in this review reflect a clear global and 
methodological trend in crop yield prediction research in (Table 3). 
First, geographic representation is highly skewed: 16 of the 23 studies 
(70 %) originate from high-income countries (e.g., USA, China, Austria, 
EU nations), while only 4 explicitly address low -income contexts 
(Ethiopia, Rwanda), highlighting a critical gap in context-specific vali
dation for data-scarce regions. Secondly, model evolution is evident: all 
contemporary studies fully integrate advanced data sources such as 
sentinel-2, MODIS, IoT sensors and machine learning or deep learning 
techniques, with hybrid approaches (e.g., ML with APSIM, RS with 
statistical model) gaining traction in 9 of studies (39 %).

Thirdly, the performance metrics are consistently reported (R2 

ranging from 0.73 - 0.93 and RMSE/MAE is used where applicable) 
which provide empirical support for the superior accuracy of contem
porary models over historical baselines (e.g., DSSAT R2=0.62 vs. LSTM 
R2=0.85 in Liu [153]). Finally, practical innovations are emerging, 
real-time systems such as SMART-CYPS (Kuradusenge et al. [170]), and 
scalable global datasets like yield5min Wu et al. [162] demonstrate a 
shift toward operational deployment. However, computational in
tensity, data dependency, and low interpretability remain persistent 
trade-offs, needs context adapted and light weighted solutions for the 
regions like Ethiopia.

According to the 23 reviewed studies, quantitative performance 
comparisons consistently show that contemporary models outperform 
historical ones. On average, deep learning models achieved R2 values 
between 0.85–0.93, compared to 0.60–0.75 for traditional empirical and 
mechanistic models. Hybrid frameworks combining remote sensing with 
machine learning further reduced RMSE by 15–20 % relative to stand
alone approaches. These trends experimentally confirm the effectiveness 
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and the robustness of contemporary CYPMs under diverse agroecologi
cal conditions.

4.2. Risk-of-bias and quality assessment findings

The consensus quality assessment revealed that the majority of the 
included studies were of high quality, with a mean score of 6.4/7. As 
detailed in Table 4, 19 studies (83 %), were rated as Low Risk-of-Bias, 
while the remaining 4 studies (17 %) received a score of 5, still 
meeting the inclusion threshold but with minor limitations, typically in 
performance metric limitation, reproducibility or detailed documenta
tion of assumptions. The high overall quality scores strengthen the 
validity of the insights and conclusions drawn from this body of 
literature.

The inter-rater reliability, measured by Cohen’s Kappa, was к=0.78, 
(calculated with R statistical software), indicating substantial agreement. 
All discrepancies were resolved through consensus discussion.

4.3. Comparison between historical and contemporary crop yield 
prediction models

The section provides clear and concise comparisons between recent 
and historical crop prediction models as mentioned before in first 
Research Question, RQ1. Crop yield prediction models have their own 
strength and limitations. This comparison shows the strength of 
contemporary yield predictive models handling complex and real-time 
data, but traditional models remain relevant where simplicity and 
transparency are prioritized.

4.3.1. Approach and methods
Historical models relied on statistical methods (e.g., linear regres

sion) or process-based crop yield models (e.g., DSSAT, APSIM) which 
simulate biophysical processes using predefined equations which lack 
complex, nonlinear relationships between yield variables. As Timlin 
et al. [163] describes that historical/traditional process-based models 
quantify the soil-plant-atmosphere continuum to anticipate yield re
sponses to environmental changes, while empirical statistical models 
rely on historical correlations. On the other hand, contemporary crop 
yield prediction models use ML and DL to capture complex nonlinear 
relationships without predefined assumptions. Shahhosseini et al. [160] 
demonstrated that, regarding maize yield variance, the use of LSTM 
deep learning model exhibited better performance than process-based 
models by 73 % than traditional process based which performs 16 %, 
due to hold nonlinear relationships between soil and weather 
conditions.

4.3.2. Data availability
Historical models are characterized by limited, sparse, and localized 

data (such as yield record data, weather data) through manual collec
tion, and often incomplete data with lack of spatial/temporal resolution. 
Timlin et al. [163] stated that process-based models depend on accurate 
quantification of physiological responses, which require comprehensive 
field data often unavailable at large scales or in data-scarce regions. 
However, contemporary crop yields predictive models leverage large, 
diverse datasets including IoT sensors, remote sensing, and availability 
of large global datasets which are characterized by real-time, high-
resolution data crucial for accurate yield prediction. As Klompenburg 
et al. [164] described the integration of ML with remote sensing and 

Fig. 3. Discussion flow chart in CYPMs.
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metrological data for yield prediction needs high quality, representative 
data for accurate prediction.

4.3.3. Model complexity
Historical crop yield prediction has simpler models with fewer pa

rameters, relying on empirical or mechanistic assumptions. Process- 
based models require extensive calibration but were computationally 
less intensive. Feng et al. [165] presented process-based models can 
handle some complicated formula to describe crop growth leads to de
viation in yield prediction, while statistical models are simple that 
limited to handle nonlinear relationships. Contemporary yield predic
tive models can run complex models with nonlinear relationships which 
requires significand computational resources and expertise.

4.3.4. Skills and knowledge dependency
historical models require domain-specific expertise in yield predic

tion and crop physiology for model calibration and interpretation. It 
requires fewer need for computational skills. However, it highly relied 
on manual parameters. As Tamlin et al. [163] stated that process-based 
models involve extensive parameter calibration, which requires 

specialized skill and knowledge of crop and environmental interactions. 
On the other hand, Contemporary crop yield prediction uses advanced 
computational skills (such as data science, programming, etc.) parallel 
to agronomic knowledge. Kaya [166] explained that intelligent systems 
integrating ML and IoT reduce human input by automating data pro
cessing and decision-making requires data science skills.

4.3.5. Technology advancement
Historical CYPM depends on basic computational tools and manual 

data collection. It has limited integration with advanced technologies 
such as IoT, remote sensing, which restrict scalability and precision. 
Feng et al. [165] noted that traditional models, such as empirical sta
tistical models, developed using basic regression techniques and manual 
data collection, have limitations to integrate with modern technologies. 
Contemporary CYPM has integrated with advanced technological tools 
to automatic collect, process, and interpret large datasets for real time 
processing and accurate prediction. Salgado et al. [167] described that a 
cloud-based transformative crop recommendation model using ML, 
deployed on Amazon Web Service (AWS) Lambda for scalable, real-time 
crop recommendations, as showcasing of the integration of advanced 

Table 3 
Characteristics of studies included in the review.

S/ 
N

Authors Country Model Type(s) Data Source Metric(s) Key Finding

1 You et al. [22] USA DL (CNN, LSTM) Sentinel-2, weather R² = 0.89 DL outperformed process-based models 
by capturing nonlinear relationships

2 Meshesha & Abeje 
[108]

Ethiopia ML (RF) + RS Sentinel-2 (10 m), 
NDVI

R² = 0.76 (Teff) Demonstrated feasibility of RS+ML in 
data-scarce SSA

3 Zhuang et al. [145] China HY (APSIM + ML) LAI, weather, soil RMSE 
= 0.32 t/ha

Hybrid improved accuracy by 18 % over 
standalone models

4 Filippi et al. [24] Australia ML + RS MODIS, weather MAE = 0.21 t/ha Real-time updates enhanced in-season 
prediction

5 Liu et al. [154] USA DL (LSTM) vs. DSSAT Weather, soil R² = 0.85 (DL) vs. 
0.62 (DSSAT)

DL better modeled temp extremes and 
nonlinear responses

6 Shahhosseini et al. 
[160]

USA LSTM vs. APSIM Weather, soil RMSE reduced by 23 
% with LSTM

DL showed 73 % better variance 
explanation than mechanistic models

7 Engen et al. [27] Norway DL (CNN hybrid) Satellite, weather R² = 0.81 Stochastic sampling reduced overfitting 
in high-parameter models

8 Jeong et al. [28] South Korea HY (ML + process-based) Remote sensing, crop 
model

R² = 0.88 Integration improved realism but 
increased computational load

9 Lobell et al. [30] USA RS (satellite mapper) MODIS, yield surveys R² = 0.78 Scalable framework enabled large-area 
yield estimation

10 Kraaijvanger & 
Veldkamp [167]

Ethiopia Empirical + field data On-farm trials, 
management data

R² = 0.56 Local factors (fertilizer, altitude) 
explained over half of yield variance

11 Barrot et al. [168] France Expert-knowledge PerSyst Agronomic rules, 
local data

Qualitative 
validation

Expert-guided calibration improved 
adaptability across farms

12 Darra et al. [169] Greece Review + case studies Meta-analysis N/A Simpler models lack flexibility for 
spatiotemporal complexity

13 Kassa et al. [172] Ethiopia RS + climate data NDVI, rainfall, temp R² = 0.73 Cost-effective RS approach viable for 
Ethiopian food security

14 Kuradusenge et al. 
[161]

Rwanda IoT + ML (SMART-CYPS) Soil sensors, cloud Accuracy 
= 92 %

Real-time dashboard improved 
accessibility for smallholders

15 Mena et al. [71] Argentina/ 
Germany/ 
Uruguay

Multiview gated fusion (DL) Sentinel-2, weather, 
soil

R² = 0.91 Multimodal fusion outperformed single- 
data models

16 Sanchis et al. [72] Global RS (MODIS + SMAP) EVI, VOD R² = 0.79 Microwave data compensated for 
optical cloud gaps

17 Cunha et al. [73] Brazil DL + RS Satellite, crop 
calendar

RMSE = 0.28 t/ha Cloud-cover mitigation via deep 
learning improved reliability

18 Nevavuori et al. 
[106]

Finland DL (CNN) + UAV High-res UAV 
imagery

R² = 0.84 UAV + CNN enabled field-level yield 
mapping

19 Paudel et al. [117] Europe (FR, DE, 
NL)

ML baseline Agronomic +
weather

MAE = 0.41 t/ha Modular ML framework scalable across 
crops/regions

20 Rajakumaran et al. 
[127]

India ML (SVM + ensemble) Soil, weather Accuracy = 88 % Multi-attribute weighting improved 
prediction robustness

21 Pavithra et al. [128] India GBM (XGBoost, LightGBM) Temp, rainfall, 
pesticide

R² = 0.86 Gradient boosting outperformed RF and 
SVM

22 Wang et al. [138] China Temporal–Geospatial DL 
(CNN+LSTM+GAT)

Remote sensing, 
weather

R² = 0.93 Graph attention improved spatial 
dependency modeling

23 Kern et al. [144] Europe HY (statistical + RS) Climate, NDVI R² = 0.82 Hybrid statistical-RS model resilient for 
seasonal forecasting

*Q=Quality score, DL=Deep Learning, GBM=Gradient Boost Method, HY=Hybrid, ML=Machine Learning, RS=Remote sensing, SVM=Support Vector Machine.
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technologies application.

4.3.6. Climate and environmental variability
Historical CYPMs struggle to account for extreme weather and 

climate variability due to rigid assumptions and limited data. In addition 
to this, process-based models often fail in under novel climate condi
tions. Tamlin et al. [163] emphasized that uncertainties in long-term 
climate projection and extreme weather events happen challenges for 
traditional models, which needs ensemble approaches to solve its vari
ability. In other cases, Contemporary CYPMs can handle climate vari
ability using ML and DL to model nonlinear interactions under climate 
changing conditions. Liu et al. [160] demonstrates that LSTMatt model 
maintains high accuracy during drought years, showed better perfor
mance than process-based models by adapting to metrological vari
ability in the U.S. Corn Belt.

4.3.7. Real-time adaptability
Historical CYPMs mostly comprise static models and lack of real-time 

adaptivity due to reliance on historical data. As Feng et al. [165] noted 
that traditional models lack real-time feedback mechanisms, limiting 
their capability to adjust predictions during the growing seasons. In 
contemporary CYPMs is integrated with modern advanced technologies 
which support real-time adaptability for accurate dynamic predictions 
and recommendations. Kaya [166] described an intelligent greenhouse 
system that uses ML and sensors data for real-time environmental con
trol, adapting irrigation and lighting to optimize crop growth.

4.4.8. Scalability and accessibility
Historical CYPMs have low adaptability due to data and computa

tional constraints. It has also limited accessibility for the large farms 
with resources for field experiments and calibration. Tilmin et al. [163] 
articulated that the scalability of process-based models is constrained by 
data and calibration requirements, making them less accessible in 
resource-poor settings. While contemporary CYPM is highly scalable 
through platforms and open-access datasets. Wu et al. [162] introduced 
a global crop yield5min, a ML-based dataset for wheat, soybean, rice, 
and maize yields at 5 arc-min resolution, exhibits R2 between 0.7–0.95, 
demonstrates scalability across the globe.

4.4. Challenges faced in both crop yield prediction models

This section provides a clear demarcation of challenges faced in 
Historical and Contemporary crop yield prediction models based on 
common selected comparison criteria as described in RQ2, previously. 
The criteria were selected based on key limitations and advancement of 
agricultural modelling. The criteria derived from fundamental aspects 
that influence the effectiveness and applicability of predictive models. 
Among these criteria; data availability (quantity and quality of data), 
model complexity, expert dependency (the need to rely on expert 
knowledge), technological constraints (role of technology in shaping 
model performance), climate and environmental variability (models 
ability to handle unpredictable environmental change), real-time 
adaptability (dynamically prediction update with timely data), and 
scalability and accessibility (models’ level in application across different 
regions) which summarized in the Table 5.

The qualitative synthesis of (Table 5) reveals how challenges in 
CYPMs have evolved over years rather than disappeared. Historically, 
models were constrained by limited data and simple concepts, struggling 
with environmental variability due to inadequate information and 
computing power [165]. In contrast, modern models face challenges of 
data abundance and complexity, where ensuring data quality, integra
tion, and interpretability has become more difficult than data collection 
itself [173]. A persistent accessibility gap is also evident. Although 
modern models are technically scalable, their use is limited by high 
costs, computational demands, and the need for specialized expertise 
(creating a digital divide that favors high-income regions and reinforces 
global inequality in agricultural predictions) [167]. Furthermore, there 
is a growing trade-off between predictive power and transparency. Older 
models were simple but interpretable, while current deep learning and 
hybrid systems are powerful yet opaque “black boxes,” shifting expertise 
from agronomy to data science [170]. This highlights the need for 
Explainable AI to restore interpretability and user trust. Overall, the 
evolution of CYPMs represents a shift from scarcity to complexity, and 
future models must balance accuracy and scalability with transparency, 
affordability, and equity to achieve sustainable and inclusive agricul
tural forecasting.

Table 4 
Risk-of-Bias and Quality Assessment.

S/N Authors Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q (/7) Risk-of-Bias

1 You et al. [22] ✓ х ✓ ✓ ✓ ✓ ✓ 6 Low
2 Meshesha & Abeje [108] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7 Low
3 Zhuang et al. [145] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 6.5 Low
4 Filippi et al. [24] ✓ ✓ х ✓ ✓ ✓ ✓ 6 Low
5 Liu et al. [154] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7 Low
6 Shahhosseini et al. [154] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7 Low
7 Engen et al. [27] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7 Low
8 Jeong et al. [28] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 6 Low
9 Lobell et al. [30] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7 Low
10 Kraaijvanger [167] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 5 Low
11 Barrot et al. [168] ✓ ✓ х ✓ х ✓ ✓ 5 Low
12 Darra et al. [169] ✓ ✓ ✓ ✓ х х ✓ 5 Low
13 Kassa et al. [172] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7 Low
14 Kuradusenge et al. [170] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7 Low
15 Mena et al. [71] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 6.5 Low
16 Sanchis et al. [72] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7 Low
17 Cunha et al. [73] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7 Low
18 Nevavuori et al. [106] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 6.5 Low
19 Paudel et al. [117] ✓ ✓ ✓ x ✓ ✓ x 5 Low
20 Rajakumaran et al. [127] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7 Low
21 Pavithra et al. [128] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7 Low
22 Wang et al. [138] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 6 Low
23 Kern et al. [144] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7 Low

*Legend: Q1-Q7 = Quality check parameters as shown in (Table 2), “✓” =Yes (1 points), “x” = No (0 points), “P” = Partial (0.5 points). *.
*Inter-rater reliability, measured by Cohen’s kappa, was k = 0.78, indicating a substantial agreement. *.
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4.5. Key lessons learned from both crop yield prediction models

The section provides important insights, best practices, opportunities 
and challenges, discovered throughout the development and use of crop 
yield prediction models as mentioned in RQ3 earlier. Clearly, for both 
Historical and Contemporary crop yield models which taught an 
important lesson in agriculture is described as a comparison.

4.5.1. Lessons learned from historical crop yield production model
Historical crop yield prediction models have been laid a foundation 

for contemporary crop yield predictive models’ development. The 
adaptation principle of these models further helps to evolve over time to 
develop advanced technological crop yield predictive models. There are 
many key lessons that provide for the advancement of CYPM. These 
models provided critical insights for agriculture development, such as: 

a) Local background is vital. These indicate that the necessity and 
importance of deep understanding of local factors affect crop yield 
prediction such as soil property, weather patterns, local agricultural 
management practices, and previous yield data. These historical crop 
yield models are crucial in development of local based crop yield 
prediction factors. The study by Kraaijvanger et al. [175] revealed 
the importance of local factors as about 56 % of grain yield vari
ability was explained by management practice, altitude, and nitro
gen fertilizer input, was conducted in Tigray, norther part of Ethiopia 
[175].

b) Data availability is a key factor. Reliable, high-quality data are critical 
inputs for accurate yield prediction [176]. Unlikely, historical yield 
prediction models limited with structured data leads to prediction 
inaccuracy. These limitations further learned to create recent ap
proaches like artificial intelligence data models, IoT systems, Big 
Data, and others to integrate high dimensional complex nonlinear 
data analysis and processing.

c) Expert-based knowledge remains valuable. Incorporating expert-based 
knowledge in crop yield prediction develops effective models, en
hances prediction accuracy and adaptability across various agricul
tural circumstances. Barrot et al. [177] used the PerSyst model with 
expert-based knowledge in parameterize factors such as reference 
yields, crop sequence variations, and crop management practices. 
The approach improves model application and reliability by adapt
ing diverse farming conditions [177].

d) Simplified models face flexibility challenges. In Historical based pre
diction models, simplified approaches often lack the flexibility to 
account for the complex interactions among various factors influ
encing crop yields. Darra et al. [178] found there was a challenge in 
simpler models to fully capture spatial and temporal complex data 
like weather properties to predict in the outcome of crop yield, which 
indicates that simpler models have less flexibility and inaccurate in 
yield prediction. The finding briefs that the necessity of adaptable 
and comprehensive modelling techniques in crop yield prediction to 
effectively address the complexities characteristic in agricultural 
practice [178].

4.5.2. Key lessons learned from contemporary crop yield prediction model

i. Data integration enhances yield accuracy: Recent yield predictive 
models involve with the combining of multiple, diverse and 
complex datasets that provide complete and nuanced under
standing the factors influencing crop yield prediction. By inte
grating data from various sources like remote sensing, weather 
data, soil data, farm management data, and yield data to pre
dictive models can constitute complex interactions between 
environment as well as human factors. This temporal and spatial 
data holistic method leads to more accurate and reliable result for 
crop yield prediction.

ii. AI Models are Innovative: Artificial Intelligence (AI) has been 
increasingly employed to enhance yield prediction, using Ma
chine Learning (Ml) and Deep Learning (Dl). These innovative 
models analyze diversified datasets like weather patterns, envi
ronmental factors, and soil conditions, to provide accurate yield 
prediction. Jabed and Murad [11] provided a comprehensive 
review about the application of AI in agriculture and its trans
formative potential improvement in crop yield estimation, agri
cultural planning, and resource management [11].

iii. Immediate Feedback is Essential: Real-time feedback has a great 
importance in crop yield prediction through immediate data 
gathering and analysis, which helps for timely decision-making 
process in crop yield prediction. Contemporary predictive 
models integrate advanced technologies tools like IoT, remote 
sensing, and AI significantly improved the reliability and accu
racy of yield prediction system. Fatma M. Talaat [11] developed a 
crop yield prediction algorithm by integrating IoT techniques and 
climate data to support precision agriculture through real-time 
data with sensors to monitor environmental conditions, thereby 
enhancing accuracy of yield prediction. Yin et al. [161] studied a 
real-time corn yield monitoring and predicting Deep Neural 
Network (DNN) based prediction model system which facilitates 
a prompt adjustment in farming strategies to enhance 
productivity.

iv. Scalability and Accessibility support for diverse agricultural needs: 
Recent advancement in crop yield predictions focus on 
combining IoT, machine learning algorithms, and remote sensing 
technologies to address diverse agricultural outcomes in user 
friendly and applicable. Kuradusenge et al. [161] developed a 
combination of IoT and machine learning to facilitate real-time 
data gathering and visualization which deploys sensors in fields 
to continuously collect environmental data, transmitting to cloud 
systems for storage and analysis which is known as SMART-CYPS 
(Smart Crop Yield Prediction system). The user-friendly 

Table 5 
Summary of the challenges faced in both Historical and Contemporary CYPMs.

S/ 
n

Challenges Historical CYP Models Contemporary CYP 
Models

1 Data Availability Subjected to limited & 
localized data, manual 
gathering data leads to 
sparse information 
[168]

Vast data: limited to 
quality and integration 
[169], [11]

2 Model Complexity Simple, Linear 
regression-based 
models: Based on 
experts’ judgement 
[165]

Complex, non-linear 
models: Difficult to 
interpret [170]

3 Skill and 
knowledge 
Dependency

It depends on the 
expertise of model 
development and 
interpretation [171]

Skilled people need to 
develop, understand, 
and utilize; [172]

4 Technological 
constraints

Less computational 
power, 
Simple and rely on 
manual data, less 
accurate prediction 
[165]:

Demand of high 
computational 
resources and quality 
data: [173]

5 Climate and 
Environmental 
Variability

Inconsistent to 
environmental changes: 
[174]

Consistent with long- 
term climate trends: but 
vulnerable to extreme 
weather events: [170]

6 Real-time 
Adaptability

Provide static 
predictions limited to 
real-time adaption 
[165];

Integrates with real- 
time data: but suffers 
with data latency and 
gap; [167]

7 Scalability and 
Accessibility

Localized: limited to 
specific region 
predictions [164], [33]:

Highly Scalable: 
However, its cost, and 
infrastructure need is 
high [167];
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dashboard allows the user to monitor crop conditions in real-time 
to enhance the Accessibility. On the other hand, the modular 
system design helps various crop types and farming practices 
which describes its Scalability in many agricultural 
circumstances.

v. Underscores Critical Insights in Climate Change: Contemporary crop 
yield prediction models have a critical impact of climate change 
in crop yield. These models can integrate IoT devices, remote 
sensing data, machine learning, Big Data analytics, and Cloud 
Computing to store, analyze, and interpret weather data to 
mitigate climate change in crop yield prediction through the 
analysis in forecasting extreme weather events, predict weather 
shifts in crop growing seasons, analysis of regional variability of 
weather, and integration of climate data [179].

4.6. Innovations in crop yield prediction

This part presents the new methods, advancement of technologies, or 
improvement that significantly enhances the way of crop yield predic
tion techniques, with referring to RQ4. Innovation in crop yield pre
diction, basically refers to the recent advancement of crop yield 
prediction models than Historical yield predictive models. It emphasizes 
the application and advancement of technologies, procedures, and data- 
driven approaches to predict yield accurately. Based on these concepts 
the key innovations in crop yield prediction are focused below. 

a) Remote Sensing and Geo-Spatial data integration: Remote sensing and 
Geospatial data can provide timely, accurate, and comprehensive 
data (spatial detailed information’s) about crop health, assessing 
environmental conditions and forecast crop yield effectively. The 
integration makes accurate information large geographical areas 
with cost effective way to assess climate change, pest infestation, soil 
analysis, crop monitoring, and other factors that help to predict 
yields accurately. Kassa et al. [180] studied the yield of corn and 
wheat crops by integrating remote sensing and climate data, in 
Ethiopia. Combining climatic factors with Normalized Difference 
Vegetation Indices (NDVI), researchers achieved more accurate yield 
prediction in cost effective way helps food security initiatives.

b) Real-time data processing approach: It is an innovative principle in 
crop yield prediction by integrating different advanced technologies 
like IoT sensors data, AI, RS, and Big Data analytics accurate timely, 
data driven decision making towards in crop yield prediction. It 
makes big difference by reducing risks, optimizing resource use, and 
enhancing crop yield prediction as well as the agriculture in efficient, 
sustainable, and resilient way [181].

c) Artificial Intelligence (AI): Artificial intelligence is an influential 
innovation that has effectively transformed crop yield prediction as 
well as the agriculture as a whole to the next step. integrates 
advanced tools like machine learning and deep learning method with 
data fusion techniques revolutionized the crop yield prediction. 
These innovations support precise, data-driven agricultural prac
tices, enhancing productivity and sustainability [182].

d) Climate Change Adaptability: It indicates the process of using 
advanced tools, technologies, and strategies to mitigate the impact of 
climate change and building resilient, sustainable agriculture sys
tems. Climate adaptability not only denotes climate change measures 
but also strives to foster an equitable and sustainable world. Hayman 
et al. [183] provided an innovative, spatially explicit frameworks for 
modelling the impacts of climate change on winter wheat crop yield 
prediction using remote sensing and crop models in United Kingdom. 
The research assessed climate change risks and designed 
climate-resilient agricultural systems [183].

5. Conclusion

In this systematic review, the evolution, lessons, innovations, and 

challenges of historical and contemporary CYPM are summarized, 
underscoring their critical role in improving global food security. His
torical CYPMs, primarily empirical and mechanistic models developed 
before the 1980s, were based on fundamental principles but were 
limited by sparse data, observational data, low scaling of data, and static 
predictions. While historical empirical and mechanistic models provided 
essential insights, they were fundamentally constrained by data scarcity 
and simplistic assumptions. In contrast, contemporary models 
leveraging machine learning, deep learning, and IoT demonstrably 
achieve greater accuracy, with deep learning models consistently 
reporting R² values of 0.85–0.93, an important improvement over the R² 
range of 0.60–0.75 typical of traditional methods. Advance in yield 
prediction, real-time monitoring and climate-environmental frame
works have enabled precision agriculture and resilience to environ
mental challenges using geospatial data fusion. However, this 
advancement comes with significant computational demands. The high- 
dimensional data processing and complex algorithms underpinning 
contemporary models, particularly deep learning and hybrid ap
proaches, create a substantial barrier to their adoption. These compu
tational limitations directly impact scalability and processing efficiency, 
restricting access for users in regions with limited computing infra
structure or financial resources.

Despite this, ongoing issues such as data quality, computational de
mands, climate variability, and limited access in regions with low re
sources are necessitate for inclusive approaches. The development of 
hybrid modelling, edge computing, transfer learning, and explainable AI 
are necessary for future research to improve prediction accuracy and 
accessibility. CYPM can overcome these barriers and promote sustain
able farming practices, contributing to food security for expanding 
global community.

Although this review may not exhaustively capture all modeling 
paradigms, it provides a reproducible and structured synthesis based on 
PRISMA 2020 principles, offering a methodological foundation for 
future meta-analyses.

The study, while offering a comprehensive systematic review of 
historical and contemporary crop yield prediction models, has limita
tions. The analysis is predominantly based on English-language peer- 
reviewed literature from high income countries (particularly USA, 
China, and European nations), with very limited representations from 
low-income regions such as Ethiopia and other Sub-Saharan Africa, 
potentially limiting the applicability of findings to data-scarce, resource- 
constrained settings. The reliance on secondary citations for historical 
models (pre-1980s) may omit nuanced methodological details from 
original sources. Additionally, the grey literature and non-English pub
lication exclusion, though necessary for consistency, that may have 
overlooked good, localized insights. Due to high heterogeneity in crops, 
regions, model types, and evaluation metrics across the 23 selected 
studies, a quantitative meta-analysis was not feasible, limiting the syn
thesis to qualitative interpretation. Finally, incorporating articles after 
early 2025 not captured, that may include the recent CYPMs of AI and 
remote sensing publications.

6. Future research direction

Future research should consider the following key topics to reduce 
the challenges in crop yield prediction. 

i. Model Hybridism: By combine multiple techniques from historical 
or/and contemporary yield predictive models to improve the 
accuracy and efficiency of yield prediction. These models can 
solve the limitation of standalone models by integrating many 
parameters and efficiency in crop yield prediction. The integra
tion of models can enhance prediction accuracy, improve data- 
driven decision-making system, assess the ongoing environ
mental changes and adapt climate variability, improve resource 
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use, enabling real-time monitoring, and more promising advan
tages can be found in through hybrid models/approaches.

ii. Edge computing: These approaches can address data dependency 
in cloud computing. It integrates edge devices (such as IoT sen
sors, drones, smart devices) to process data locally for real-time 
data analysis directly from the source site for analysis of crop 
yield prediction. These approaches can improve security, speed, 
efficiency, and reliability by processing data from source of data 
generated than storing to cloud.

iii. Transfer learning: In transfer learning uses in pretrained models 
for new agricultural datasets, when data is limited, and fast 
computational capability, with existing model of knowledge. 
These models help in addressing data shortages and reduce the 
need of high computational power demands, high accuracy, 
adaptability in many crop types across different regions, and 
reduce agricultural data collection.

iv. Multimodal Data Fusion: The integration of diverse data sources 
such as weather data, soil properties, remote sensing data, his
torical yield data, and farming practice to enhance prediction 
accuracy. By using models like machine learning and deep 
learning for analysis of data provides a comprehensive and reli
able crop yield prediction through data fusion system.

v. Explainable AI: Beyond accurate prediction of yield, knowing how 
and why prediction process has permed, is very essential for 
direct decision making. The technique is used to understand the 
most influential factors (such as temperature, precipitation, 
nutrient level, or other factors) and helps for trusted, transparent, 
and clear decision making in agricultural practices.

vi. Digital Twins: These technologies improve predictions by 
enhancing accuracy, optimizing resources use, enabling scenario 
testing, supporting early detections, and driving data decisions by 
using virtual models. It simulates crop growth by using real-time 
data from sensors, weather, soil and agronomic practices.

By addressing these challenges, future research can pave the way for 
more accurate, efficient, adaptive, and universally applicable crop yield 
prediction models, significantly improving agricultural productivity and 
sustainability worldwide.
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