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Crop yield prediction models (CYPMs) are essential for ensuring global food security and sustainable agricultural
planning. This systematic literature review compared the overview of historical and contemporary CYPMs
evolution, challenges, innovations, and key lessons learned from peer-reviewed literature. The study analyzed
peer-reviewed papers published between 2015 and 2025, sourced from the Scopus, Web of Science, and PubMed
databases, following PRISMA guidelines. Twenty-three studies met the inclusion criteria and were evaluated for
methodological quality and risk of bias. Historical empirical and mechanistic models offered valuable theoretical
foundations but were limited by data scarcity and scalability. Contemporary approaches, particularly those using
machine learning, deep learning, and remote sensing, demonstrated superior predictive accuracy (R®> =
0.85-0.93) compared with traditional models (R? = 0.60-0.75). Key lessons emphasize the importance of data
integration, contextual calibration, and expert validation. Persisting challenges include computational demands
and limited applicability in data-scarce regions. The review concludes that hybrid, interpretable, and resource-
efficient models are critical for improving prediction reliability and achieving sustainable, equitable food
systems.

collapsed with climate change and other agricultural barriers. Climate
variability greatly reduces food production and agricultural activity.

1. Introduction

The UN report [1] demonstrates that the global population is pro-
jected to increase from 7.7 billion in 2019 to 8.5 billion in 2030 with (10
% increment), and 9.7 billion in 2050 with (26 % increment). Tilman
et al. [2] suggested the global population is increasing at unpredicted
rate and in 2050, additional 60 % food is necessary. Foley et al. [3]
stated that there must be a significant change in agriculture like in crop
yields, resource utilization, and sustainable farming practice because of
the necessity to produce more food in the next 40 years more than the
previous 8000 years farming practice. On the other hand, World Food
and Agriculture Organization-FAO [4] reported that in 2050, an addi-
tional 70 % food is required. To achieve food security, it needs a great
effort in improving agricultural innovations with science and technology
to provide immediate agricultural solutions. Science and Technology
innovations support building resilient agriculture that is not easily
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Lobell et al. [5] estimated that climate change can reduce the food
production by 10-25 % in 2050. The situation urges to ensure food se-
curity and provide accurate prediction of food accessibility around the
world. Therefore, it is essential to provide yield models that help the
agriculture prediction through early warnings, resource allocation, risk
management, climate adaptation, integration of technologies (i.e., Al
prediction models) to address food security. Yield prediction models are
indispensable for modern agriculture, offering solutions to challenges
such as resource scarcity, climate change, and food security. Jabed et al.
[6] highlighted the role of Artif. Intell. Agric. for addressing food se-
curity and sustainability.

Crop yield prediction models have evolved significantly over the
years. It evolved as a simple empirical process to advanced data-driven
and machine learning approaches, recently. Models from pre-1980s era
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were based on basically uses historical types of simple statistical
regression analysis and empirical crop yield modelling was done by
integrating weather and soil factors. Fisher et al. [7] provided the
earliest statistical approach to understanding a crop yield variability.
After the 1980s the process based (Mechanistic) crop yield models have
evolved and add more properties of crops like photosynthesis, respira-
tion, and nutrient cycling. Computationally intensive data analysis
models like DSSAT and APSIM were developed. Jones et al. [8] dis-
cussed about DSSATs interdisciplinary research application to solve
problems in agricultural farming. After 1990s, remote sensing and GIS
(Geographical Information System)-based large geographical area yield
prediction models evolved by analyzing vegetation indices using satel-
lite and drone imagery. Lobel [9] reviewed the use of remote sensing in
yield prediction and crop yield gap analysis. After 2000s, the machine
learning (ML) approach was developed to capture complex data and
non-linear relationships with large datasets in crop yield predictions
[10]. In 2010s, deep learning, big data and cloud computing revolu-
tionized yield prediction used to process complex and high dimensional
data with high accuracy and scalability [11]. Recently, precision agri-
culture and Internet of Things (IoT) have enhanced agriculture practice
through data-driven decision making, advanced tools, and technologies
to monitor, analyze, and manage agricultural practices [12]. IoT with
smart sensors and drones enables real-time agricultural monitoring for
yield predicts [13]. The historical details will be explained in (Section 3)
of the review.

This review is aimed at systematically comparing historical and
recent crop yield prediction models. The primary goal of this paper is to
analyze the most typical approaches to the issue, and their strong and
weak points, and hence, the paper intended to draw conclusions about
the development of prediction models through history. Besides, it comes
along the path of the next generation, and the different ways that this
mathematical methodology may be useful to set up a world production
system that is sustainable and less affected by food production are also
demonstrated. The outcome of this systematic review is not focus on
making new model like primary research, but a novel comparative
framework and a synthesized knowledge base. The effectiveness of our
review methodology will be demonstrated through its ability to delin-
eate clear evolutionary patterns, extract transferable lessons, and iden-
tify critical, actionable gaps in the field of crop yield prediction.

While numerous reviews have examined either historical crop yield
modelling approaches or recent advances in machine learning-based
prediction, the paper presents a novel, systematic comparison that
bridges these two eras. Unlike the existing literature that often treats
historical and contemporary models in isolation, our work integrates
empirical, mechanistic, remote sensing, machine learning, deep
learning, and hybrid modelling paradigms within a unified analytical
framework. We go beyond technical descriptions to extract cross-
generating lessons, identify persistent challenges in low-resource con-
texts (e.g. Ethiopia), and evaluate how innovations such as real-time IoT
integration, multimodal data fusion, and Al-driven scalability address
(exacerbate) these gaps. Furthermore, this review is among the first to
explicitly link model evolution to food security outcomes in data-scarce
environments, advocating for context-sensitive, hybrid solutions that
balance accuracy with accessibility. This integrative and equity-focused
perspective constructs the core novelty of our contribution. Therefore,
the study aims to address the following specific objectives:

e To systematically compare historical and contemporary CYPMs in
terms of their methodological approaches, data requirements, scal-
ability, accuracy, real-time adaptability, and technological
integration,

To identify the key lessons learned from both historical (empirical
and mechanistic) and contemporary (machine learning, deep
learning, remote sensing, IoT-enabled) models that can inform cur-
rent and future agricultural modelling practices, particularly in
scarce data regions,
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e To synthesize recent innovations in CYPMs (including Al-driven ar-
chitectures, multimodal data fusion, real-time sensing, and hybrid
modelling) and evaluate their contributions to improving prediction
accuracy, resilience to climate variability, and support for global
food security,

e To critically assess the performance limitations and practical chal-
lenges of existing models across diverse agroecological and socio-
economic contexts, with emphasis on data quality, computational
demands, interpretability, and accessibility,

The study provides a scientific contribution such as:

i) Providing an overview of early and recent crop prediction models
in general,

ii) Making a comparison between different measuring features of
traditional and modern crop yield prediction models,

iii) The key lessons learned from both crop yield prediction models
demonstrate an important insight or knowledge from an experi-
ence passed through successes and failures in crop yield
prediction,

iv) Discussing the key innovations achieved towards accurate crop
yield prediction for accurate yield predictions,

v) Identifying the key challenges faced in both crop yield prediction
models in different measuring circumstances.

The remaining part of the paper is arranged as follows: Section 2
brings the systematic research approach applied in this study. Section 3
discusses the general overview of Historical and Contemporary Crop
Yield Prediction Models. Section 4 reveals a critical review based on
selected literature and a meta-synthesis of the studies to draw insight
into crop yield prediction models. Section 5 deals with the conclusion
which illustrates the role of the study, its significance, and limitations.
Lastly, Section 6 indicates the future research consideration to improve
crop yield prediction techniques.

2. Research methodology
2.1. Justification for research methodology selection

This study used a systematic review of literature approach, based on
Charter and Kitchenhams’ guidelines for the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) approach [14], to
accomplish its objectives. The primary aim of this study is to synthesize
and compare the vast and heterogeneous body of research on crop yield
prediction models (CYPMs) across different technological eras. To ach-
ieve this objectively and comprehensively, a Systematic Literature Re-
view (SLR) was identified as the most suitable research method. This
choice is justified on both theoretical and practical grounds. First, SLR is
designed to address broad, synthesis-oriented research questions like
ours through a systematic, reproducible, and unbiased process for
identifying, evaluating, and interpreting all relevant literature [14]. This
is in direct contrast to traditional narrative review, which risks being
non-comprehensive and influenced by author selection bias. Given our
objectives to provide a balanced comparative overview, the rigorous
structure of an SLR was imperative.

To ensure the highest standard of reporting and conduct, this SLR
adheres to the PRISMA (Preferred Reporting Items for Systematic Re-
views and Meta-Analyses) guidelines. PRISMA was selected because it
provides a globally recognized and validated framework that enhances
transparency, accuracy, and completeness of systematic reviews. The
use of the PRISMA flow diagram (Fig. 1), for instance, is a critical tool for
documenting the article selection process and ensuring reproducibility.

The literature search was conducted across three major databases:
Scopus, Web of Science (WoS), and PubMed. This multi-database
approach was taken to mitigate database coverage bias and ensure the
most exhaustive retrieval of relevant literature possible. Scopus and
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Identification of Studies via Databases

g Recorded Identified from:
E chssf?gsisc;n:;‘(?i):i 18) DRec;).rfs Rlez:m‘ovzc‘l ll:efore S;reefzir;%:
% PubMed (n=127) uplicate Records Removed (n=210)
= Total Records (n=880)
Records Screened Records Excluded
(n=670) (n=580)
. l
2 Reports sought for retrieval Reports not retrieved:
8 (n=90) (n=7)
A
Reports assessed for eligibility Reports excluded :
B (n=83) (n=60)
low - quality
2
B Studies included in review
& (n=23)

Fig. 1. PRISMA 2020 flow diagram illustrating the study identification,
screening, and inclusion process:.

WosS are the leading multidisciplinary citation databases with extensive
coverage in engineering, computer science, and agricultural sciences.
PubMed was included to capture interdisciplinary studies at the inter-
section of agronomy, environmental science, and biology that might be
missed by the other two.

Finally, the nature of the collected studies (geographical focus,
specific models, publication type, time frame) precluded to analysis.
Therefore, the data analysis was conducted through a structured
narrative synthesis. This established qualitative methodology allows for
the systematic organization of finding into thematic categories (e.g.,
comparison factors, challenges, innovations) to draw robust, evidence-
based conclusions and identify overarching patterns in the field. This
approach is uniquely suited to answer our “what”, “how”, and “why”
questions regarding the evolution and lessons of CYPMs.

2.2. Research questions (RQs)

Research questions were designed to guide the whole review process
in providing help in consistent, coherent, and structured synthesis and
summary of works of literature. Hence, the following research questions
developed to reach the objectives.

RQ1: What is the difference between the Historical and Contempo-
rary crop yield prediction models in different measuring circumstances?

This question involves answering the detailed difference between the
two models in different aspects like data requirement, scalability, pre-
diction accuracy, methods it uses, and other related criteria.

RQ2: What are the main challenges of historical and contemporary
crop yield prediction models in different measuring scenarios?

This question encompasses the main challenges faced during the
application of crop yield prediction models. There were different tack-
ling factors towards yield model application like environmental factors,
technology, skill and techniques, data access and quality, adaptability,
and other immutable field factors will be discussed

RQ3: What are the key lessons learned from historical and contem-
porary crop yield prediction models that inform current practices?

In this context, both crop yield prediction models have provided
valuable insights, and lessons learned from their application in agri-
cultural research and practice will be discussed.

RQ4: What are the innovations in crop yield prediction models, and
how have they shaped the field for global food security?

This research question addresses the great revolutions in crop yield
prediction due to its importance in accuracy, scalability, real-time pre-
diction, and other factors used for agriculture for recent and future trend
predictions. In addition to this, the role of these models towards global
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food security will be described.
2.3. Article search strategy

The article search strategy was planned based on the intent of sys-
tematic literature review and the research questions. The data for this
review was sourced from the academic databases: Scopus, PubMed, and
Web of Science. These databases were selected due to possessing high-
impact factors related to technology and agriculture, broad search
tools for academic publications, reliable resources for articles, and large
databases for peer-reviewed literature. The key characteristics of the
collected literature were defined by a focus on crop yield prediction
models. The search queries combined general terms (e.g., “Crop Yield
Prediction”), historical keywords (e.g., “Empirical”, “Mechanistic”), and
contemporary keywords (e.g., “Machine Learning”, “Remote Sensing”,
“IoT”) as described in (Table 1). The authors used two stage dedupli-
cation process. The first stage is performed automated deduplication
reduction by using Rayyan Al tool. Then, the rest is manually verified by
the research team.

2.4. Article selection criteria

The selection criteria for articles were defined to ensure the review
was based on relevant and high-quality dataset. The primary charac-
teristics of the included data were:

M Temporal Scope: Primarily recent works (2015-2025), with supple-
mentary inclusions of seminal historical references (pre-1980s) to
contextualize foundational modeling approaches.

l Publication Venue: Peer-reviewed journal articles, and conference
proceedings from reputable sources.

W Model types covered: Empirical, mechanistic, machine learning (e.g.,
Random Forest, SVM), deep learning (e.g., CNN, LSTM), remote
sensing-based, IoT, and hybrid models.

B Geographic Distribution: Studies originated from 18 countries, with
a majority from high-income nations (e.g., USA, China, EU mem-
bers); only limited representation from low-income regions such as
Sub-Saharan Africa (including Ethiopia).

W Language: Exclusively English language publications.

M Content: Studies that provided empirical data, case studies, or
comparative analyses of CYPMs performance, including discussions
on challenges, lessons learned, or innovations.

The Boolean operators (e.g., OR, AND, and NOT) were used to
enhance searches and combine related terms. The subsequent screening
process based on titles, abstracts, and full texts, as illustrated in the
PRISMA flow diagram (Fig. 1), ensured the final dataset adhered to these
characteristics.

2.5. Exclusion, inclusion standards and prisma approach

The review included peer-reviewed journal article papers that
analyzed both old and modern crop yield prediction models; papers
across geography, datasets, and agricultural practices; studies that deal
with crop yield prediction using modern technology or methods.
Exclusion criteria applied in other cases did not focus on crop yield
prediction; articles that do not satisfy the comparison between old and
new methods; journals that are not peer-reviewed and lack methodo-
logical particulars that have general qualification check assessment as
expressed in Table 2.

Time Frame: The search included relevant articles published from
2015 to 2025 for analysis. We will prioritize articles that were published
during recent years for quality and accuracy. However, some papers that
include historical crop yield modeling added to fill the historical data
gap.

Language Restriction: The articles published in English language
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Table 1
Search queries and database filters.

Smart Agricultural Technology 13 (2026) 101672

Table 2
Checklist provided for article Quality check.

Databases Search Query Date Filters No  Provided weighting Description/Evaluation Focus
Executed Applied Checklists

TITLE-ABS-KEY ((“crop yield” OR Q Objective clarifications Are the study’s goals clearly defined and aligned

Scopus “yield prediction” OR “yield March 6, English with the results?
forecast””) AND (“empirical model” 2025 Language Q2 Methodological rigor Does the study use clear and appropriate
OR “mechanistic model” OR methods?
“machine learning” OR “deep Qs  Relevance to the review Is the study directly related to CYPMs?
learning” OR “remote sensing”OR topic
“IoT” OR “internet of things™) AND Q4 Data transparency Are data sources and assumptions clearly
(“challenges” OR “lesson” OR described?
“innovation” OR “comparision”)) Qs Analytical robustness Are performance metrics (RZ, RMSE, MAE,) well
AND PUBYEAR > 2014 defined and validated?
AND PUBYEAR < 2026 Q¢  Reproducibility & Are model codes, datasets, or workflows
AND (LIMIT-TO (LANGUAGE, documentation described for replication?
“English™)) Q;  Fills knowledge gap Does limitations, challenges & innovations
AND (LIMIT-TO(DOCTYPE, “ar) OR addressed?
LIMIT-TO (DOCTYPE, “cp™)) - Overall quality score Total score (Yes=1, Partial=0.5, No=0); include
TS=((“crop yield” OR “yield cutoff >70 % for inclusion.

Web of prediction” OR “crop modeling™)) March 8, English

Science AND 2025 Language
TS=((“empirical model” OR relevance, and full-text articles were evaluated based on the predefined

mechanistic model” OR “DSSAT” OR inclusion and exclusion criteria. Fig. 1 presents the detailed PRISMA

“APSIM™) AND 2020 fl di .. thi
TS— ((“machine learning” OR “deep ow diagram summarlzllng is process. . . .
learning” OR “LSTM” OR “CNN” OR The flow chart summarizes the systematic selection of studies
“random forest”)) AND retrieved from Scopus, Web of Science, and PubMed databases between
TS=(("remote sensing” OR “Sentinel- 2015 and 2025. Out of 880 initial records identified, 210 duplicates
rzno?il:r’l\gg?gg 3;3,1,0;{ OR “hybrid were removed, leaving 670 unique records for screening. After title and
“evolution™)) abstract screening, 580 records were excluded for irrelevance. Ninety
AND full-text reports were sought for retrieval, with seven not accessible. A
DT=(Article OR Proceedings Paper) total of 83 articles were assessed for eligibility, and 60 were excluded for
SgD(zms 2025) not meeting inclusion criteria (e.g., drawbacks seen such as insufficient
AND - methodological detail, and lacking comparative analysis). Finally, 23
LA=(english) studies were included in the systematic review and synthesis.
((“crop yield” [Title/Abstract] OR

PubMed “yield prediction” [Title/Abstract] March 10, English X R L
OR “yield forecast” [Title/Abstract]) 2025 Language 2.6. Article quality check criteria

AND

(“empirical model” [Title/Abstract]
OR “mechanistic model” [Title/
Abstract] OR “machine learning”
[Title/Abstract] OR “deep learning”
[Title/Abstract] OR “remote sensing”
[Title/Abstract] OR “IoT” [Title/
Abstract])

AND

(“challenge” [Title/Abstract] OR
“lesson” [Title/Abstract] OR
“innovation” [Title/Abstract] OR
“comparison” [Title/Abstract]))
AND ((*2015/01/01" [Date -
Publication]: “2025/03/10” [Date -
Publication]))

AND

English [la]

AND

(journalarticle [pt] OR congresses

[ptD

only considered to ensure consistency and accuracy in interpretation.
Screening: First, articles were searched. Then, titles, abstracts, and
keywords were checked. After that, we read the full text to make sure we
include only good and relevant papers. We also looked at the references
of the chosen articles (snowballing) to find more studies that were not
found in the initial search. Following the Preferred Reporting Items for
Systematic Reviews and Meta-Analysis (PRISMA) 2020 guidelines [14],
the article selection process was systematically documented to ensure
transparency and reproducibility. The search was conducted in Scopus,
Web of Science, and PubMed using predefined keywords and Boolean
operators targeting studies published between 2015 and 2025. After
removing duplicates, records were screened by title and abstract for

A standardized data extraction and quality assessment process was
employed. Two reviewers independently extracted data from each
included study, capturing details on authors, year, objectives, method-
ology, and key findings. The methodological quality and risk of bias of
each study were then evaluated using a pre-defined 7-point checklist
adapted from Kitchenham and Charters [15] (Table). The checklist
assessed clarity of objectives, methodological rigor, data transparency,
analytical robustness, and reproducibility. Each item was scored as
“Yes” (1), “Partial” (0.5), or “No” (0). Inter-rater reliability was sub-
stantial (Cohen’s k = 0.61-0.80) to almost perfect (Cohen’s k =
0.81-1.0), and all discrepancies were resolved through consensus.
Studies scoring > 5/7, a pre-specified threshold indicating acceptable
methodological quality, were included in the synthesis.

In general, the search strategy aims to ensure a detailed, systematic
collection of relevant literature, providing a comprehensive under-
standing of evolution, innovations, and lessons learned from both his-
torical and contemporary crop yield prediction models.

3. Overview of crop yield prediction

The section provides a clear overview of Crop Yield Prediction and
Crop Yield Prediction models. It deals with general history, components
(such as technology, data source, and modelling approaches), different
factors used for comparison, application, and introduction in historical
as well as contemporary in crop yield predictions as shown in (Fig. 2).
The section will be used further for discussion and analysis.

3.1. Crop yield prediction models (CYPMs)

Crop yield prediction has evolved over time through advancing
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Fig 2. Overviews of Crop Yield Prediction Models.

statistical methods, computing power, data availability, and the growing
need for predictive tools. Crop yield prediction modeling has its roots in
the early 1900s, when scientists started relating crop yields to envi-
ronmental variables like temperature and rainfall using simple statistical
techniques. Simple regression models were created between the 1920s
and 1950s to forecast yields from observed data. According to Jones
et al. [16], the need to comprehend how crops react to environmental
variability led to the advent of quantitative approaches in agriculture
through this time. Although these early models were empirical with
limited datasets and simple statistical methods, they laid the ground-
work for more advanced predictive modeling. Crop yield prediction
models became formalized in the 1960s to 1970s as both empirical and
mechanistic methods were developed and gained popularity.

Based on monthly weather data, empirical models used regression
techniques were proposed by Thompson [17] for crops like corn and
wheat in USA, which is simple, data efficient, and used for specific re-
gions. Subsequently, a mechanistic approach was proposed by Stewart
et al. [18] using water stress model by including relationships like
evapotranspiration and yield. After these the interest of modelling for
crop management and climate impact studies, driven by advances in
computing and data collection [19]. During the 1980s mechanistic crop
yield models show a significant advancement in computing power and
solving environmental challenges. Wen Guang et al. [20] proposed a
soybean yield simulation model using thousands of equations to

describe factors such as light interception, carbon partitioning, and
nutrient uptake, representing a milestone in mechanistic modeling in-
tricacy. In the 1990s remote sensing and geographical information
system (GIS) used refining and validating crop yield prediction models.
Baez Gonzalez et al. [21] explained how satellite-derived leaf area index
(LAI) to reduce errors during calibration in observation, by using to
improve empirical yield prediction for maize crop in Mexico. Empirical
models also adapt advanced solving techniques including the nonlinear
models. Schlenker et al. [22] developed empirical models to predict
yield responses to temperature extremes in the USA, showing the
non-linear effects of temperature on many crops. As Basso et al. [23]
developed a mechanistic model which validated across diverse crops
and regions, simulating daily variables like biomass and nutrient uptake
to support accurate yield forecasting.

In 2000s the emergence of Machine Learning and Big Data which
marked as a transformative period for a crop yield prediction model. You
et al. [22] applied deep learning models, specifically LSTM and CNN, to
predict soybean yields in the U.S using high resolution satellite and
weather data gives a promising result over traditional approaches. In
2010s to present is characterized by a paradigm shift in crop yield
prediction due to availability of diverse and real time data assimilation,
technological advancements, high computational power, and integra-
tion of other interdisciplinary approaches. Filippi et al. [24] used
real-time satellite and weather data, achieving higher accuracy in wheat
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crop yield prediction in Australia, by gaining continuous data update
during growing seasons.

3.2. Comparison factors for crop yield prediction

These factors are used to evaluate how well a predictive model
performs in terms of usability, reliability, and impact on agricultural
decision-making. The criteria were selected based on technological
modelling advancement, challenges in crop yield prediction (like envi-
ronmental property, data availability), and practical applications.
Among the main comparison criteria are model complexity, approach
and methods used, data source, model accuracy, computational power,
model flexibility, real-time adaptability, scalability and accessibility,
climate and environmental variability, skill/expert dependency, and
technological advancements.

3.2.1. Approach and methods

It includes a variety of techniques and strategies employed to predict
yield outputs. These methodologies combine diverse data sources and
analytical techniques to enhance yield prediction accuracy. Therefore,
these approaches and methods collectively contribute to the develop-
ment of robust models for accurate crop yield prediction, supporting
informed decision-making in agriculture practice. In crop yield predic-
tion approaches (i.e. Machine learning, Deep learning, hybrid models),
and methods (i.e. data collection, feature selection, model training,
performance evaluation) can create reliable models that predict crop
yield.

3.2.2. Data source

Crop yield prediction needs diverse and high-quality data like
metrological data, soil characteristics data, yield history data, and
agricultural management practice data from different sources for
building a robust yield prediction model. The ability to access and
quality of these data influence the performance of predictive models
[25], [26].

3.2.3. Model complexity

It is the sophistication of a predictive model, encompassing factors
like number of parameters, model structure, and complexity of re-
lationships that it can capture. Simpler models couldn’t fully handle
underlying data patterns, potentially leading to underfitting. On the
other hand, complex models could signify intricate patterns in data but
may also be prone to overfitting, where it may learn noise instead of
identifying broader, generalizable trends. Engen et al. [27] indicated
that used a hybrid large number of parameters of satellite images and
weather data through Convolutional Neural Network (CNN) to enhance
prediction accuracy. Due to model complexity during training, it used
stochastic epoch sampling to mitigate overfitting during model training.

3.2.4. Computational power

The capacity of computing devices and systems to process and
analyze vast and complex datasets using advanced algorithms (like
machine learning and deep learning models) for yield prediction is very
necessary. Recently, predictive models have become sophisticated, as a
result it needs high computational resources to operate high dimen-
sional data, perform calculations, and generate accurate and timely
predictions. The advancement of computational power enhances crop
yield prediction models, enabling the processing of large datasets and
the application of complex algorithms. Jeong et al. [28] discussed
combining deep learning models and process-based crop models as a
hybrid model and emphasizing the computational demands associated
with integrating these complex systems [28]. As a result, high compu-
tational power factors can develop efficient and scalable predictive
models and allow timely and informed decision making in agriculture.

Smart Agricultural Technology 13 (2026) 101672

3.2.5. Model flexibility

The adaptability of reliable and accurate predictive models to sup-
port diverse crops, environmental conditions, and data inputs was
essential. Filippi et al. [24] emphasized the advantage of building a
machine learning crop yield prediction model that integrates many data
layers (such as soil variation, terrain, weather, and satellite imagery) to
make a prediction, thereby enhancing model flexibility [24]. The
improvement of flexible models is so important in developing robust
crop yield prediction approach capable of making decision making with
in diverse agricultural circumstances.

3.2.6. Real-time adaptability

The need for dynamic adjustment of predictive models is based on
ongoing changes in environmental conditions, crop development stages,
and management practice in agriculture by integrating with real-time
adaptability. The approach integrates advanced technologies such as
machine learning, [oT, and remote sensing to improve the accuracy and
timeliness of yield prediction [29].

3.2.7. Scalability and accessibility

These factors are essential in crop yield prediction models, due to
their effectiveness and usability in different applications circumstances
of agriculture.

Scalability indicates the ability of predictive models and systems to
effectively handle increasing amounts of data which perform an analysis
in large areas. D. Lobell et al. [30] developed a scalable satellite-based
crop yield mapper model that was applied in large (extensive) area for
estimating maize crop yield in Midwestern of United States. Accessi-
bility shows the easiness of utilizing tools and the availability of
necessary data in crop yield prediction. It encompasses user-friendly
interfaces, affordable technologies, and open access data for safe-
guarding predictive insights are attainable for diverse users.

3.2.8. Climate and environmental variability

These factors had important application in crop yield prediction that
the fluctuations in climatic factors (like temperature, precipitation, and
humidity) and environmental conditions (soil properties and topog-
raphy) that influence crop growth and productivity. Gardner et al. [31]
demonstrated how temporal and spatial variations microclimate data
affect climate suitability, providing better approximations of predicted
yields and informing agricultural decision making.

3.2.9. Skill and expert dependency

In crop yield prediction, the extent of accuracy and reliability of
predictive models relied on the expertise and specialized knowledge in
the area of agriculture. These factors include the ability to select
appropriate variables, preprocess data effectively, choose suitable
modelling techniques, and interpret model outputs accurately. Van
Klompenburg et al. [32] provided a machine learning based decision
support tool for crop yield prediction supporting in crop growth and
growing seasons. This explains the role of expert knowledge in effec-
tively utilizing machine learning algorithms in decision making. More-
over, Jabed et al. [33] demonstrated the application of deep learning,
machine learning remote sensing, and considering factors affecting crop
yield prediction. These underscore the necessity of different expertise in
integrating different technological approaches and data sources.

3.2.10. Technological advancements

The advancement of technology in crop yield prediction enables the
analysis of complex datasets, encompassing environmental conditions,
soil characteristics, and crop health indicators enabling precise and ac-
curate prediction. Advanced integration of modern technologies (such
as machine learning, remote sensing, [oT devices, and advanced data
analytics) that enhance accuracy and efficiency of crop yield prediction.
Jabed and Murad [33] reviewed the importance of machine learning
and deep learning technology in yield prediction. Moreover, it
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emphasizes the role of remote sensing data integration with machine
learning to observe critical insights in crop growth and growth estima-
tion [33].

3.3. Technology application in crop yield prediction

The use of technology in crop yield prediction indicates that the
application of scientific knowledge and tools to enhance efficiency in
yields forecast. Several technologies and tools used to predict the crop
yield prediction (such as remote sensing, Geographic Information Sys-
tem (GIS), IoT, Big Data analytics and other technology) are commonly
used in crop yield prediction.

3.3.1. Remote sensing technology (RS)

RS indicates non-physical contact by covering large geographical
areas with the use of satellite or drone imagery to collect data about a
crop’s health and growth for the estimation of yield by analyzing
vegetation indices and other derived parameters for spatial and tem-
poral information’s with greater accuracy [34]. Remote sensing tech-
nology is comprised of sensors (which detect electromagnetic radiation
emitted from earth surface), platforms (such as devices to carry satellite,
drone or ground-based systems), and data processing systems (including
software for analysis) [35]. Remote sensing is equipped with multi-
function sensor technologies like thermal, optical (hyperspectral-high
resolution in specific area band and multispectral-moderate resolution over
large area coverage bands) [36], radar and microwave, LiDAR, Atmo-
spheric sensors, and more functions with different satellite bands.
Remote atmospheric sensors measure the atmospheric conditions and
properties, such as humidity, aerosol levels, pressure, gas concentration,
and temperature [37], [38]. Pantya et al. [39] provided a soyabean crop
yield prediction by integrating remote sensing based atmospheric
climate data, and vegetation indices. Optical sensors capture wavelengths
of visible light, near infrared, and shortwave infrared that are reflected
from the Earth’s surface [40]. Radar and microwave sensors are remote
sensing technologies which use microwave (wavelengths ranging 1 cm
to 1 m) to observe the Earth’s surface [41]. It detects light and dark
conditions and applied in all types of weather conditions (i.e. effective in
any cloud cover penetration, and extreme weather properties unlike
optical sensors). Thermal remote sensing refers to the use of thermal
infrared part of electromagnetic spectrum which measures the temper-
ature of objects in a range of 3 —14 um at a distant which emitted by the
objects [42]. Ahmad et al. [43] reviewed the impact of water stress in
crops by using a remote sensing based thermal sensing system in land
surface temperature. LiDAR remote sensing technology in crop yield pre-
diction uses laser pulses to measure distances and create high-resolution
three-dimensional images on the Earth’s surface [44]. It applied in crop
canopy structures, crop height and biomass estimation, and yield pre-
diction. Choudhary et al. [45] proposed a non-parametric grain yield
estimation of wheat crop using thermal, microwave and optical remote
sensing techniques in India.

3.3.2. Geographic information system (GIS)

GIS technology used to capture, store, interpret, analyze, manage,
and demonstrate spatial data for the users by maps, reports and charts by
using computer hardware and software applications. Sentil G.A et al.
[46] provided a yield prediction mapping system with GIS technology
helps accurate, real time, and effective decision makings. Li et al. [47]
proposed a GIS based model focused on agricultural decision making
and crop yield simulation. The proposed model effectively improved the
crop yield prediction management.

3.3.3. IoT

IoT technology is the integration of technologies such as sensors,
data analytics, and connectivity for real-time monitoring and decision
making in crop yield prediction. IoT enhances accuracy, resource opti-
mization, higher yields, and risk mitigation in crop yield prediction
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[48]. Galavarni et al. [49] proposed a smart irrigation system using IoT
technology. Tzounis et al. [S0]discussed the integration of IoT in agri-
culture, in the application of precision farming and yield prediction.

3.3.4. Big data analytics

This technology designed to access, store, process, integrate, anal-
ysis, and extract valuable insights from large and complex datasets in
yield prediction [51]. Big data analytics basically performs huge tasks
like data storage, data processing, data querying, data integration, data
analytics, data visualization, data management, and decision support
system. Oussous et al. [52] reviewed about various big data analytics
technology features, advantages, limitations, and applications with
different layers, including data storage, processing, querying, accessing,
and management. Bibri et al. [53] examined the key data processing
platforms and cloud computing technologies that are essential for big
Data analytics. Chergui et al. [54] discussed the architecture of big data
analytics systems in agriculture, focusing on data analysis layers, data
types, sources, gathering techniques, and learning algorithms. Jharna
Majumdar et al. [55] explored the application of Big Data in crop yield
prediction through the data mining process.

3.4. Data sources and tools in crop yield prediction

Data sources in crop yield prediction include both historical and real-
time data. There are common crop yield data sources like weather data,
soil data, agricultural practice, remote sensing data, and historical yield
data. Other agricultural data tools such as IoT sensors, Cloud computing
system, and Big data analytics are tools for processing, collecting and
handling data.

3.4.1. Weather data

Weather data are crucial in yield prediction. Weather data enables
short term yield prediction, long term yield projections and risk
assessment during yield losses. Weather data recorded hourly, daily and
monthly in satellite or in station levels such as minimum and maximum
temperature, wind speed, humidity, solar radiation, evapotranspiration,
precipitation, wind pressure, and other data used for yield prediction.
Kumar et al. [56] reviewed the importance of weather property data on
crop yield prediction. Singh et al. [57] studied the effect of weather
properties like temperature, rainfall, and humidity in crop yield pre-
diction by using machine learning.

3.4.2. Soil data

Soils are important factors for growth and yield of crops. Fischer
etal. [58] provided soil qualities for crop production. Soils have physical
property such as soil structure, bulk density, soil texture (sand, silt, clay
content), water holding capacity and drainage, soil depth and compac-
tion, Chemical properties like soil pH, nutrient content (Nitrogen,
Phosphorus, Potassium, and micronutrients), cation exchange capa-
bility, organic matter content, soil organic carbon, and salinity levels,
and Biological properties like microorganisms, soil biodiversity, nitrogen
fixation, and soil respiration that greatly influence the yield prediction
[59-60]. K.Samundeeswari et al. [61] proposed a system to predict crop
yield from soil data using decision tree and C5.0 algorithms, imple-
mented using R software. Mahesh T R and Sindhu Madhuri G. et al. [62]
employed a decision tree algorithm to predict crop yield based on soil
moisture parameters, aiming to enhance agricultural productivity.
Tziachris et al. [63] provide a soil property dataset from 2015-2019 in
Greece, comprising 781 surveys. with 16 individual parameters.
Depending on the crop type, these soil factors influence should be
aggregated and optimized for better yield forecasting [64].

3.4.3. Agronomic practices data

Agronomic data refers to the collection and analysis of information
using various techniques and methods related to crop yield prediction
[65]. It is a vast use of data and information throughout agricultural
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practice. Some common data which consider agronomic practice in-
cludes soil and weather data. Others crop data like crop type and variety,
plantation date, growth stage, seed quality, yield data, crop station
schedules: fertilization application data, pest and disease data, weed
management data, harvest data, environmental data are necessary for
accurate yield predictions. S.Pereira et al. [66] studied water usage and
irrigation data for efficient monitoring of resource and improve crop
yields. Xing and Wang [67] performed practical research in tracking
fertilizer application rates and nutrient uptake efficiency to minimize
environmental impact. Jha et al. [68] provided weed management data
and herbicide application principles.

3.4.4. Historical yield data

Historical yield data basically refers to the recorded information on
the yields of crops over a specified period in the past. It serves as a basis
for future predictions because it provides a quantitative record of past
yield data. It helps to understand climate condition, technology uses,
crop yield amount and distribution, and risk assessment in crop failure.
Lobell et al. [69] used historical yield data to investigate the influence of
climate change on global crop production. Generally, historical crop
yield data have a great importance in making trend analysis, model
calibrations, yield predictions and risk assessments [70].

3.4.5. Remote sensing data

Remote sensing-based yield data refers to the collection of infor-
mation from several sensors attached in satellites or unnamed aerial
vehicles, or ground-based vehicles to monitor crop health, growth stage,
and environment conditions. Remote sensing gathers a lot of data by the
equipped sensor technology. Among those data weather data (temper-
ature, precipitation, humidity, etc.), soil data, crop physiology, soil
moisture, crop structure and species, plant height and canopy structure,
and other data collected with different remote sensing techniques. Using
optical and multispectral based remote sensing crop yield data gathers
vegetation indices like Natural Difference Vegetation Indices (NDVI),
Enhanced Vegetation Indices (EVI), etc., can be identified. Mena et al.
[71] developed an adaptive crop yield prediction model as Multiview
gated fusion model that integrates a Sentinel-2 multi-spectral optical
images, weather data, soil properties, and topographic information to
predict crops like soybean, wheat, and rapeseed in Argentina, Germany,
and Uruguay and gained better result from the conventional. M.Sanchis
et al. [72] proposed by combining multisensory data in Enhanced
Vegetation Index (EVI) from MODIS satellite, and Vegetation Optical
Depth (VOD) from Soil Moisture Active and Passive (SMAP), to estimate
crop yields. Cunha et al. [73] described a five-year crop yield prediction
including remote sensing data, crop calendars, and weather forecast
information to provide accurate pre-season and in-season yield through
addressing cloud cover using a deep learning model. Joshi et al. [74]
discussed a deep learning-based model as an effective tool for mapping
and yield prediction from remote sensing data. Kumari et al. [75] also
reviewed a crop yield prediction method by remote sensing, crop model,
and crop assimilation to enhance crop monitoring and yield prediction
at large-scale.

3.4.6. IoT in crop yield prediction

The use of smart sensors, wireless data communication, cloud
computing, and Machine learning to make Decision Support Systems by
examining environmental conditions and predict agricultural output is
now possible using IOT [76]. The IoT architecture integrates sensors (e.
g., soil pH, humidity, light), device (e.g., cameras within drones, satel-
lites), and actuators (e.g., for spraying, dispensing fertilizer, or motor
control) [77], connection or networking (i.e. data transmission with
wireless Zigbee, LoRa or cellular data 4 G, 5 G or remotely communi-
cation using satellites), data processing(i.e. filter, clean and process raw
data using cloud system like AWS IoT, stores data linking with data bases
like SQL, etc.), data analysis application (i.e. machine learning for pre-
dictive analysis or decision support system in irrigation, fertilizer, etc.),
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decision making with agricultural systems, and security interfaces [78],
[79], [80], [811], [82]. Research shows that the vast application of IoT in
the field of agriculture with real data collection and making decision
system with integrating other models. In the study [83] use devices like
FC-28 sensor, DHT11 sensor, and JXBS-3001 sensors. The study collects
data on soil parameters including soil composition, moisture, humidity,
temperature, and for nutrient levels. In other studies, [84] provides an
IoT system to access real time data in field like sunlight, relative hu-
midity, temperature, and moisture with low-cost Arduino hardware and
software integration. Moreover, [oT system has an application in crop
growth and health monitoring system. M. Galaverni et al. [85] made a
smart agriculture system using IoT system with a tomato plant in irri-
gation agriculture, denoted as Irri-frame. The proposed platform per-
forms information evaluation, monitoring field parameters like water
stress, soil plant analysis, and agronomic data collection on the planta-
tion area. Generally, the IoT system in yield prediction plays a great role
in improving yield accuracy, risk alleviation, resource management, and
increase production efficiency [86].

3.4.7. Big data and cloud computing in crop yield prediction

In context of crop yield prediction, big data refers to the large,
complex datasets collected from multiple data sources (i.e. IoT sensors,
remote sensing data, historical yield data, and weather data) which are
processed and analyzed using specialized tools to predict crop yield
accurately [87]. Cloud computing refers to the use of a cloud-platform to
store, manage, process, and analyze agricultural data (i.e. weather data,
historical data, satellite data, yield data, management data. soil data) to
predict crop yield accurately and make informed decisions for farming
stakeholders [88]. Big data analytics reveal patterns and trends that
improve prediction accuracy, while cloud computing provides scalable
storage, computational power, and real-time data processing. These
technologies improve timely decision-making in farming practices
through data-driven insights.

3.5. Modeling approaches in crop yield prediction

According to data sources, computational approaches, technological
advancement, and other factors crop yield prediction models classified
as Historical and Contemporary crop yield prediction models

3.5.1. Historical CYPMs

Although no single traditional model exists, this section refers to
early models that are limited in their capability to solve problems and
basically laid the foundation for recent models, which existed before the
1980s. The section considers historical yield prediction models before
the 1980s and grouped into two classes.

3.5.1.1. Empirical models. Empirical models basically use mathematical
and/or that predict crop yield based on observed relationships between
yield and environmental factors [89]. Observational estimation (used as
indigenous knowledge) based qualitative approach to estimating crop
yields with local knowledge in prior expertise and experience using
specific crops, local weather patterns, and farming practices [90] in
prior histories of crop yield prediction. This approach is a
non-data-driven approach and depends on observationally based
judgement. In the 1920s to 1950s, it is marked as a transition in crop
yield prediction from qualitative to quantitative statistical approaches.
Fisher [91] described one of the earliest works in statistical approaches
that used correlation and regression analysis to quantify the relation
between rainfall and wheat yield during 1920s. During the 1930s, Frank
Yates [92] developed advanced statistical methods by using factorial
experiments and analysis of variance to analyze crop yield data, corre-
lating yields with fertilizer, soil type, and weather conditions. In the
1950s, Snedecor [93] provided a formalized statistical regression yield
prediction technique based on soil fertility, weather, and management



A.G. Betew et al.

practices. In the 1960s to 1970s advanced empirical statistical modelling
evolved by integrating optimizing yields for new high-yield varieties.
Time series analysis yield prediction adopted to manage temporal and
spatial variability. Thompson [17] widely used regression model by
including multiple variables (such as weather, soil fertility, and tech-
nology adoption) to improve yield prediction accuracy. Even though
there are improvements greatly after 1980s empirical models have many
limitations. Empirical models experience issues like overfitting, a lack of
biological insight, and difficulties in generalizing across various regions
or conditions, tricky calibration and validation processes, and chal-
lenges related to scaling and temporal dynamics are among common
ones. These issues emphasize the necessity for enhanced data collection,
improved model integration, and a more profound understanding of
local conditions and biological processes.

3.5.1.2. Mechanistic models. These models are mathematical represen-
tations of crop growth and development that simulate the effect of
physiological and biophysical processes as a function of environmental
conditions, genetic variations, and management practices [89], [94]. As
Hammer et al. [94] explained these models describe the interactions
between crop growth processes and environmental factors such as
climate, soil characteristics, and farming practices. In 1960s deWit [95]
introduced a mechanistic modeling of crop growth using photosynthesis
and light interception further used as a foundation for WOFOST model.
In the 1970s mechanistic approaches gain popularity when researchers
developed a mathematical framework that describes crop growth and
yield at various levels of sophistication. Kumar et al. [96] demonstrated
that this era showed the prediction of yield under diverse conditions due
to the development of models in climate and management practice.
Patrico et al. [97] developed a model to simulate crop yield responses to
water stress, by considering the mechanistic link between evapotrans-
piration and yield. During 1980s mechanistic approaches in yield pre-
diction became more advanced and respond to emerging challenges like
elevated CO5 levels [97]. These models had limitations in data avail-
ability and quality limitation, model over fitting, and less integration of
modern technologies.

3.5.2. Contemporary crop yield prediction models

Contemporary crop prediction models are defined as an advanced
data-driven computational framework designed to predict future yields
using modern technologies (such as machine learning, deep learning,
remote sensing, IoT, Big Data analytics, or and hybrid approaches)
which make integration and analysis of data for accurate and real-time
yield prediction which have great application in precision agriculture,
food security, and climate change adaption [29], [98]. Contemporary
crop yield prediction models have equipped with recent agricultural
technologies to provide more accurate and real time yield predictions
[99]. These models have a great role for improved prediction accuracy,
scalability and automation, better decision drawing, securing food de-
mand and enabling sustainable agricultural practice. Key contemporary
crop yield prediction models, which are gamechangers, include:

3.5.2.1. Remote sensing. Remote sensing can provide a repetitive
observation without a non-destructive data acquisition in large
geographical areas [100]. It creates maps, models, and other visual
representations of the Earth’s surface by integrating with emerging
technologies [101]. Ali et al. [102] described remote sensing models can
integrate with geographic information systems to monitor crop condi-
tions and then predict yields through satellite or drone imagery in large
geographical area [102]. This technique collects data from vegetation
indices like natural difference vegetation indices(NDVI), weather data,
soil data [103] and integrating with crop-specific models, to assess crop
health, environmental stress, and climatic factors that impacting yields
[104]. Khan et al. [105] provided a remote sensing based on a Corn yield
prediction through vegetation indices and deep learning. The study also
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evaluated the effectiveness of remote sensing data by dividing into
different growing seasons. Another study Nevavuori et al. [106] used
Unnamed Arial Vehicles (UAV) high resolution images to apply on crop
yield prediction model by image classification method integrating with
convolutional neural network (CNN). Meshesha & Abeje [107] devel-
oped a crop yield prediction model for four major Ethiopian crops. The
study used a 10-meter resolution and 5-days temporal coverage, satellite
Sentinel-2, with 3 vegetation indices for yield of crops (like teff, maize,
wheat, and rice) compared with ground yield data. The study used
remote sensing and machine learning methods to provide a better level
of yield prediction. As Tripathi et al. [108] described remote sensing
technology gives a great offer such as real-time monitoring, large
geographical area coverage, applied in different agroecological zones, it
doesn’t need physical crop samples, and scalability across various
agricultural scales [108]. Previously done research demonstrated
remarkable progress in crop yield prediction using remote sensing,
machine learning, and hybrid modeling approaches. For instance, Nagiv
et al. [109] integrated land-use policy and remote sensing data to
improve agricultural monitoring. However, their study was limited by
regional specificity and lacked dynamic temporal analysis, which re-
duces global scalability. More recently, Vafaeinejad, Sharifi et al. [110]
integrated multi-sensor satellite data for near real-time crop monitoring,
marketing a promising step toward operational systems but still con-
strained by cost and network infrastructure. However, the system is
challenge-full in the need for data calibration, cloud cover interference,
complex data interpretation, and resolution limitations [111]. Although
the presence of many challenges, these models integrating with other
models like deep learning and big data are considered a valuable tool for
improving yield prediction accuracy [112].

3.5.2.2. Machine learning models in crop yield prediction. Machine
learning (ML) is a branch of artificial intelligence (AI) that focuses on
developing algorithms and statistical models that enable computers to
perform tasks without explicit instructions, relying instead on patterns
and inferences from data [113-116]. Shawon et al. [98] used machine
learning in crop yield prediction which has a significant value which
trace and analyze large farm datasets like weather data, soil data, his-
torical yield data, and crop management practices to predict future crop
yield accurately [98]. Machine learning algorithms makes greater
importance in crops yield predictions through analyzing complex data,
enhance prediction accuracy, resource use optimization, risk manage-
ment and early warning, climate change adaptation, and improve de-
cision making [11], [117], [118]. Paudel et al. [119]used large dataset
by combining agronomic principles of crop modeling with machine
learning baseline (i.e. correct, modular and reusable data) to predict
large scale crop yield. the research predicted the yield of 7 types of crops
within 3 European countries namely France, Germany, and Netherlands.
Another investigator Dey et al. [120] used machine learning based crop
recommendation by integrating with Kaggle dataset (i.e. 10 horticul-
tural crops and 11 agricultural crops) and evaluates the individual data
sets for better prediction and accuracy. Studies showed Kumar et al.
[121] that there are many types of machine learning models used in crop
yield prediction [121] based on nature of data, model training and
evaluation, and model selection used, there are many types of machine
learning models available.

e Linear Regression: It is a simple model that predicts crop yield based
on linear relationships between input features (e.g., rainfall, tem-
perature, soil nutrients) and crop yield [122]. Research [123] used a
linear regression machine learning model to analyze the relationship
between environmental factors (i.e. area under cultivation, food
price index, and annual rainfall) and yield outcome.

o Decision Trees: It is the one of powerful machine learning tree-based
model that splits data into branches based on feature values to pre-
dict yield [124]. Research done [125] with crop predictive analytics
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with tree-based ensemble machine learning model for the future in
crop suitability and productivity prediction.

Random Forest: It is an ensemble of decision trees that reduces
overfitting and improves prediction accuracy [126]. The model of-
fers high robustness and versatility. In the research [127], the
random forest machine learning algorithm was employed to forecast
maize yield and agronomic efficiency in Ghana, taking into account
various factors such as soil characteristics, climatic conditions,
environmental influences, and management practices, including the
application of fertilizers. The research approved that there is a better
suggestion in drivers of Maize yield and increased agronomic
efficiency.

Support Vector Machines: It is a machine learning model that is
capable of handle high-dimensional and non-linear datasets [128].
The study M.Rajakumaran et al. [129] demonstrated the
multi-attribute weighted tree based support vector machine
approach used to enhance crop yield prediction accuracy through
integrating multiple attributes effectively.

Gradient Boosting Machines (GBM): 1t is an ensemble technique that
builds trees orderly to correct errors from previous trees and have
variants include XGBoost, LightGBM, and CatBoost, which are highly
effective for crop yield prediction. Pavithra et al. [130] showed the
performance of three gradient based machine learning algorithms:
CatBoost Light Gradient Boosting Machine, and eXtreme gradient
boosting for rice yield prediction. The models utilized parameters
such as pesticide, rainfall, and average temperature. These algo-
rithms show a promising result in their outputs.

k-Nearest Neighbors (k-NN): These models are a non-parametric
model that predicts yield based on the average of the k-nearest
data points [131], [132], [133]. Farhat et al. [134] used proximal
sensing data (such as soil moisture, normalized difference vegetation
indices) applied k-NN among other algorithms to predict potato
yields. The k-NN model demonstrated lower performance compared
to others like Support Vector Regression with higher root mean
square error values across many datasets. In contrary, Wilson et al.
[135] research done in regard to rice yield prediction in Kerel, India,
found k-NN regression outperform other models, achieving an ac-
curacy of 98.77 %.

3.5.2.3. Deep learning in crop yield prediction. Deep learning models are
advanced machine learning models that are capable of capturing com-
plex, non-linear relationships (neural networks) in large agricultural
datasets, making them adapted for s crop yield prediction analysis
[136].

e Convolutional Neural Networks (CNNs): It is a powerful tool that is
commonly used for processing image classification and processing
for spatial data such as satellite or drone imagery vegetation indices
(e.g., NDVI) to predict crop yield at regional or field-level [137].
Srivastava et al. [138] used a CNN based for winter wheat prediction
by including the phenological and environmental data while Morales
and Sheppard [139] used a winter Wheat early yield prediction with
two-dimensional CNN architectures and gained a better yield result.
Lei Wang et al. [140] on the other hand, provides a hybrid crop yield
prediction model that with temporal and spatial by integrating deep
learning frameworks like convolutional neural network (CNN), long
short-term memory (LSTM), and graph attention network (GAT)
modules to magnify the prediction accuracy. The proposed model
demonstrates as the model shows increase the performance by 6 %
from the previous model.

Artificial Neural Network (ANNs) can model a crop yield prediction
due to their capability to model complex, non-linear relationships
between various influencing parameters [141]. Khaki and Wang
et al. [142] a Deep Neural Network-ANN model to predict the maize
yield using temporary dataset and environmental variables. The
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model exhibited with a root-mean-square-error (RMSE) of 12 % of
the average yield from the existing model.

Recurrent Neural Networks (RNNs): RNN model is an effective crop
yield prediction by its efficiency in modelling temporal dependencies
for time series data accurately [143]. Jiang et al. (2018) showed that
a corn yield prediction with Long Short-Term Memory (LSTM) RNN
model by using temporal weather data at county level, which got a
promising result. Fan et al. [144] demonstrated a hybrid approach of
Graph Neural Networks (GNN)-RNN for spatial and temporal data in
crop yield prediction in USA showed a greater performance over the
existing models.

3.5.2.4. Hybrid model approach in crop yield prediction. Hybrid crop
yield prediction models are the integration of two or more models (from
historical, contemporary or both) to achieve necessary solution of
problems in crop yield prediction [11]. These models are crucial for
enhancing agricultural outcomes by providing more reliable predictions
based on complex interactions between environmental conditions and
crop-specific traits [145]. Aniké Kern, et al. [146] used a hybrid
approach of statistical model for crop yield by using climate data and
remote sensing in Central Europe. The result gained an impressive
resilient model for spatially yield forecast and future projections by
integrating remote sensing and statistical methods. Hybrid crop yield
prediction models integrate diverse data sources to capture the multi-
faceted nature of crop yield. Huimin Zhuang et al. [147] proposed a
hybrid model for crop yield prediction by integrating a data assimilated
crop model with machine learning for the winter Wheat crop to improve
yield prediction in the North China from 2009 to 2015. The research
articulated that integrating various sources of crop enhance the crop
model’s ability to predict grain yields. Cerreta et al. [148] demonstrated
that coupling remote sensing with process-based models improves yield
estimation, but such mechanistic models often require extensive cali-
bration and are computationally demanding for real-time applications.
Sabas Patrick et al. [149] uses a hybrid model with ensemble techniques
to combine banana plant future yield prediction from (1961-2020) yield
data and multiple base models in Tanzanian Agriculture. The study used
statistical time series models, state space, Long Short-Term Memory
(LSTM) regression models, and ensemble models applying a weighted
average approach to forecast yield of banana plant. Abdelouafi Boukhris
et al. [149] used an integrated hybrid predictive yield model by
including Sentinel-2 satellite imagery (such as NDVI, etc.), IoT (Rasp-
berry Pi B+), big data, and deep learning techniques with mobile
application in Morocco for wheat yield prediction. The research in-
tegrates both spatial and temporal crop yield data and enhances the
yield of wheat crops by 14 % from the previous yield. Sharifi & Safari
et al. [150] and Mahmoodi et al. [151] proposed explainable AI
frameworks and spatiotemporal deep learning methods, respectively,
yet both approaches remain limited by high computational re-
quirements and dependency on large, labeled data datasets. Recent
advances have employed deep learning and multi-sensor fusion to
address these gaps. For example, Safari et al. [152] and Vafaeinejad
et al. [153] applied CNNs to Sentinel-2 satellite data for large-scale yield
estimation, achieving higher accuracy but still facing issues with data
heterogeneity and explainability. These limitations underscore the need
for hybrid, context-aware, and computationally efficient prediction
models that balance accuracy with accessibility. Generally, these ap-
proaches have high acceptance due to having a combination solving
ability of many models which provide accurate and reliable predictions.

Consequently, these models have improved accuracy, robustness,
interpretability, handling complex data, sustainability, risk manage-
ment, and resource optimization in crop yield prediction by combining
the strengths of multiple modeling techniques through multiple data
[11]. Even though the approach has an impressive result, but also it
suffers with data quality, model complexity, less interpretability and
other challenges.
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3.6. Application of crop yield predictive models

The section provides a general importance of crop yield prediction
models. These models offer significant benefits in agriculture like food
security, economic planning, climate adaptation, resource optimization,
decision making, precision agriculture, and risk management.

3.6.1. Food security

Food security is essentially very important to address around the
world. For these reasons accurate crop yield prediction takes the great
role. The estimation will be done with crop prediction models. Food
security basically covers sufficient crop production, consistent food ac-
cess overtime, and other dimensions. Therefore, to address these issues
it’s necessary to forecast food production levels, identification of scarce
food regions, and take proactive measures to balance food production by
adjusting food scarce and surpluses. Crop yield prediction models
takeover the responsibility of building resilient food security system.
Jabed and Murad [11] provided an important insight in the role of Al in
ensuring sustainability in agriculture and food security.

3.6.2. Economic planning

The crop yield prediction models can accurately predict economic
outcomes for decision-making. There are many methodologies
employed in crop yield prediction models to support economic planning.
Among these methods statistical models, remote sensing, machine
learning or hybrid models are among those methods that are responsible
for agricultural management, real-time monitoring of crop health and
growth, and yield estimation. Liakos et al. [154] highlighted the role of
machine learning in crop yield prediction and its significance for pre-
cision agriculture and economic planning.

3.6.3. Resource optimization

Resource optimization is essential in agriculture that increases the
efficiency of farmers productivity, profit, and economic sustainability by
optimizing fertilizers and pesticide, improving water management,
enhance soil health, and reduce food waste. Chlingaryan [155] provided
a review focuses on machine learning techniques for yield prediction
and their application in optimizing nitrogen use. Morchid et al. [156]
done research in smart irrigation by installing soil moisture sensors with
IoT devices to ensure crops receive the right amount of water by
adjusting the amount automatically.

3.6.4. Decision making

Crop yield prediction models can possibly be used to make decisions
in agricultural activity like planting, harvesting and post-harvest activ-
ities, seed and crop varieties selection, Soil Preparation and irrigation
setup through increasing profit by minimizing waste. Klompenburg et al.
[2] highlighted how models like neural networks and support vector
machines can reduce uncertainties by forecasting yields under varying
environmental conditions, aiding farmers in decision-making for
resource allocation and planning.

3.6.5. Climate adaptation

Climate adaptation indicates that the principle of adjustment to the
actual or predictive climate change and its effects. Climate change is the
main challenge for food security. Crop yield prediction models takeover
risk management and resilience like early warning of crop failures,
supporting climate smart agriculture, confirm economic stability, and
integrate with emerging technologies. Wei et al. [142] provided a case
study that explores resilient farming practices to mitigate flood risks in
vulnerable agricultural regions. Kang et al. [157] provided a review
discusses in the role of yield prediction in addressing food security under
climate change.

3.6.6. Precision agriculture
Todays agriculture practice is integrated with recent technology
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tools (like GPS-guided tractors, drones, sensors, satellite imagery, etc.)
to optimize crop production, reduce waste, and improve efficiency.
These may refer to precision agriculture. Nyéki and Neményi [99] pin-
out that precision agriculture must be supported by technologies like
remote accessing system, data analytics and management tools. play a
great role in improving crop yield and quality. Moreover, big data in
precision agriculture creates a comprehensive and long-term analysis of
agricultural factors with various circumstances. Wolfert et al. [158]
highlighted how data-driven approaches in precision agriculture can
enhance yield forecasting, improve farm management, and support
sustainable practices.

3.6.7. Risk management

Crop yield prediction models have invaluable insights, in giving a
necessary measurement for farmers for better preparation in risk
handling like frost, drought stress, flood, pest infestation, market fluc-
tuation, weed propagation, disease breakout, or post-harvest losses.
Taking proactive measures, yield predictive models play a great role.
Klompenburg et al. [32] provided a comprehensive review of machine
learning techniques for crop yield prediction, emphasizing their role in
managing agricultural risks. Pantazi et al. [159] addressed the risk
management in wheat crop by demonstrating how precise yield pre-
dictions can help farmers adjust inputs like fertilizers and irrigation,
reducing the risk of overinvestment or crop failure in unpredictable
conditions.

4. Results and discussion

The section presents a comparison, existing challenges, key lessons
learned, and great innovations achieved on crop yield prediction
models. A total of 23 documents, published between 2015 and 2025 and
authored by researchers from 18 countries, were analyzed. The discus-
sion flow structure is as shown in (Fig. 3) that deals with CYPMs in
different comparison aspects.

4.1. Document analysis and risk-of-bias assessment

The 23 studies included in this review reflect a clear global and
methodological trend in crop yield prediction research in (Table 3).
First, geographic representation is highly skewed: 16 of the 23 studies
(70 %) originate from high-income countries (e.g., USA, China, Austria,
EU nations), while only 4 explicitly address low -income contexts
(Ethiopia, Rwanda), highlighting a critical gap in context-specific vali-
dation for data-scarce regions. Secondly, model evolution is evident: all
contemporary studies fully integrate advanced data sources such as
sentinel-2, MODIS, IoT sensors and machine learning or deep learning
techniques, with hybrid approaches (e.g., ML with APSIM, RS with
statistical model) gaining traction in 9 of studies (39 %).

Thirdly, the performance metrics are consistently reported (R?
ranging from 0.73 - 0.93 and RMSE/MAE is used where applicable)
which provide empirical support for the superior accuracy of contem-
porary models over historical baselines (e.g., DSSAT R2=0.62 vs. LSTM
R?=0.85 in Liu [153]). Finally, practical innovations are emerging,
real-time systems such as SMART-CYPS (Kuradusenge et al. [170]), and
scalable global datasets like yield5min Wu et al. [162] demonstrate a
shift toward operational deployment. However, computational in-
tensity, data dependency, and low interpretability remain persistent
trade-offs, needs context adapted and light weighted solutions for the
regions like Ethiopia.

According to the 23 reviewed studies, quantitative performance
comparisons consistently show that contemporary models outperform
historical ones. On average, deep learning models achieved R? values
between 0.85-0.93, compared to 0.60-0.75 for traditional empirical and
mechanistic models. Hybrid frameworks combining remote sensing with
machine learning further reduced RMSE by 15-20 % relative to stand-
alone approaches. These trends experimentally confirm the effectiveness
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and the robustness of contemporary CYPMs under diverse agroecologi-
cal conditions.

4.2. Risk-of-bias and quality assessment findings

The consensus quality assessment revealed that the majority of the
included studies were of high quality, with a mean score of 6.4/7. As
detailed in Table 4, 19 studies (83 %), were rated as Low Risk-of-Bias,
while the remaining 4 studies (17 %) received a score of 5, still
meeting the inclusion threshold but with minor limitations, typically in
performance metric limitation, reproducibility or detailed documenta-
tion of assumptions. The high overall quality scores strengthen the
validity of the insights and conclusions drawn from this body of
literature.

The inter-rater reliability, measured by Cohen’s Kappa, was k=0.78,
(calculated with R statistical software), indicating substantial agreement.
All discrepancies were resolved through consensus discussion.

4.3. Comparison between historical and contemporary crop yield
prediction models

The section provides clear and concise comparisons between recent
and historical crop prediction models as mentioned before in first
Research Question, RQ1. Crop yield prediction models have their own
strength and limitations. This comparison shows the strength of
contemporary yield predictive models handling complex and real-time
data, but traditional models remain relevant where simplicity and
transparency are prioritized.
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4.3.1. Approach and methods

Historical models relied on statistical methods (e.g., linear regres-
sion) or process-based crop yield models (e.g., DSSAT, APSIM) which
simulate biophysical processes using predefined equations which lack
complex, nonlinear relationships between yield variables. As Timlin
et al. [163] describes that historical/traditional process-based models
quantify the soil-plant-atmosphere continuum to anticipate yield re-
sponses to environmental changes, while empirical statistical models
rely on historical correlations. On the other hand, contemporary crop
yield prediction models use ML and DL to capture complex nonlinear
relationships without predefined assumptions. Shahhosseini et al. [160]
demonstrated that, regarding maize yield variance, the use of LSTM
deep learning model exhibited better performance than process-based
models by 73 % than traditional process based which performs 16 %,
due to hold nonlinear relationships between soil and weather
conditions.

4.3.2. Data availability

Historical models are characterized by limited, sparse, and localized
data (such as yield record data, weather data) through manual collec-
tion, and often incomplete data with lack of spatial/temporal resolution.
Timlin et al. [163] stated that process-based models depend on accurate
quantification of physiological responses, which require comprehensive
field data often unavailable at large scales or in data-scarce regions.
However, contemporary crop yields predictive models leverage large,
diverse datasets including IoT sensors, remote sensing, and availability
of large global datasets which are characterized by real-time, high--
resolution data crucial for accurate yield prediction. As Klompenburg
et al. [164] described the integration of ML with remote sensing and
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Table 3

Characteristics of studies included in the review.
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S/ Authors Country Model Type(s) Data Source Metric(s) Key Finding
N
1 You et al. [22] USA DL (CNN, LSTM) Sentinel-2, weather R2=0.89 DL outperformed process-based models
by capturing nonlinear relationships
2 Meshesha & Abeje Ethiopia ML (RF) + RS Sentinel-2 (10 m), R? = 0.76 (Teff) Demonstrated feasibility of RS+ML in
[108] NDVI data-scarce SSA
3 Zhuang et al. [145] China HY (APSIM + ML) LAI, weather, soil RMSE Hybrid improved accuracy by 18 % over
=0.32t/ha standalone models
4 Filippi et al. [24] Australia ML + RS MODIS, weather MAE = 0.21 t/ha Real-time updates enhanced in-season
prediction
5 Liu et al. [154] USA DL (LSTM) vs. DSSAT Weather, soil R? = 0.85 (DL) vs. DL better modeled temp extremes and
0.62 (DSSAT) nonlinear responses
6 Shahhosseini et al. USA LSTM vs. APSIM Weather, soil RMSE reduced by 23 DL showed 73 % better variance
[160] % with LSTM explanation than mechanistic models
7 Engen et al. [27] Norway DL (CNN hybrid) Satellite, weather R?=0.81 Stochastic sampling reduced overfitting
in high-parameter models
8 Jeong et al. [28] South Korea HY (ML + process-based) Remote sensing, crop  R*> = 0.88 Integration improved realism but
model increased computational load
9 Lobell et al. [30] USA RS (satellite mapper) MODIS, yield surveys ~ R*=0.78 Scalable framework enabled large-area
yield estimation
10 Kraaijvanger & Ethiopia Empirical + field data On-farm trials, R?=0.56 Local factors (fertilizer, altitude)
Veldkamp [167] management data explained over half of yield variance
11 Barrot et al. [168] France Expert-knowledge PerSyst Agronomic rules, Qualitative Expert-guided calibration improved
local data validation adaptability across farms
12 Darra et al. [169] Greece Review + case studies Meta-analysis N/A Simpler models lack flexibility for
spatiotemporal complexity
13 Kassa et al. [172] Ethiopia RS + climate data NDV], rainfall, temp R?>=0.73 Cost-effective RS approach viable for
Ethiopian food security
14 Kuradusenge et al. Rwanda IoT + ML (SMART-CYPS) Soil sensors, cloud Accuracy Real-time dashboard improved
[161] =92% accessibility for smallholders
15 Mena et al. [71] Argentina/ Multiview gated fusion (DL) Sentinel-2, weather, R?=0.91 Multimodal fusion outperformed single-
Germany/ soil data models
Uruguay
16 Sanchis et al. [72] Global RS (MODIS + SMAP) EVI, VOD R?=0.79 Microwave data compensated for
optical cloud gaps
17 Cunha et al. [73] Brazil DL + RS Satellite, crop RMSE = 0.28 t/ha Cloud-cover mitigation via deep
calendar learning improved reliability
18 Nevavuori et al. Finland DL (CNN) + UAV High-res UAV R?>=0.84 UAV + CNN enabled field-level yield
[106] imagery mapping
19 Paudel et al. [117] Europe (FR, DE, ML baseline Agronomic + MAE = 0.41 t/ha Modular ML framework scalable across
NL) weather crops/regions
20 Rajakumaran et al. India ML (SVM + ensemble) Soil, weather Accuracy = 88 % Multi-attribute weighting improved
[127] prediction robustness
21 Pavithra et al. [128] India GBM (XGBoost, LightGBM) Temp, rainfall, R?=0.86 Gradient boosting outperformed RF and
pesticide SVM
22 Wang et al. [138] China Temporal-Geospatial DL Remote sensing, R?>=0.93 Graph attention improved spatial
(CNN+LSTM-+GAT) weather dependency modeling
23 Kern et al. [144] Europe HY (statistical + RS) Climate, NDVI R%=0.82 Hybrid statistical-RS model resilient for

seasonal forecasting

*Q=Quality score, DL=Deep Learning, GBM=Gradient Boost Method, HY=Hybrid, ML=Machine Learning, RS=Remote sensing, SVM=Support Vector Machine.

metrological data for yield prediction needs high quality, representative
data for accurate prediction.

4.3.3. Model complexity

Historical crop yield prediction has simpler models with fewer pa-
rameters, relying on empirical or mechanistic assumptions. Process-
based models require extensive calibration but were computationally
less intensive. Feng et al. [165] presented process-based models can
handle some complicated formula to describe crop growth leads to de-
viation in yield prediction, while statistical models are simple that
limited to handle nonlinear relationships. Contemporary yield predic-
tive models can run complex models with nonlinear relationships which
requires significand computational resources and expertise.

4.3.4. Skills and knowledge dependency

historical models require domain-specific expertise in yield predic-
tion and crop physiology for model calibration and interpretation. It
requires fewer need for computational skills. However, it highly relied
on manual parameters. As Tamlin et al. [163] stated that process-based
models involve extensive parameter -calibration, which requires
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specialized skill and knowledge of crop and environmental interactions.
On the other hand, Contemporary crop yield prediction uses advanced
computational skills (such as data science, programming, etc.) parallel
to agronomic knowledge. Kaya [166] explained that intelligent systems
integrating ML and IoT reduce human input by automating data pro-
cessing and decision-making requires data science skills.

4.3.5. Technology advancement

Historical CYPM depends on basic computational tools and manual
data collection. It has limited integration with advanced technologies
such as IoT, remote sensing, which restrict scalability and precision.
Feng et al. [165] noted that traditional models, such as empirical sta-
tistical models, developed using basic regression techniques and manual
data collection, have limitations to integrate with modern technologies.
Contemporary CYPM has integrated with advanced technological tools
to automatic collect, process, and interpret large datasets for real time
processing and accurate prediction. Salgado et al. [167] described that a
cloud-based transformative crop recommendation model using ML,
deployed on Amazon Web Service (AWS) Lambda for scalable, real-time
crop recommendations, as showcasing of the integration of advanced
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Table 4
Risk-of-Bias and Quality Assessment.
S/N Authors Q1 Q2 Q3 Q4 Qs Qs Q, QU7) Risk-of-Bias
1 You et al. [22] v X v v v v v 6 Low
2 Meshesha & Abeje [108] v v v v v v v 7 Low
3 Zhuang et al. [145] v v v v v v v 6.5 Low
4 Filippi et al. [24] v v X v v v v 6 Low
5 Liu et al. [154] v v v v v v v 7 Low
6 Shahhosseini et al. [154] v v v v v v v 7 Low
7 Engen et al. [27] v v v v v v v 7 Low
8 Jeong et al. [28] v v v v v v v 6 Low
9 Lobell et al. [30] v v v v v v v 7 Low
10 Kraaijvanger [167] v 4 v v v v v 5 Low
11 Barrot et al. [168] v v X v X v v 5 Low
12 Darra et al. [169] v v v v X X v 5 Low
13 Kassa et al. [172] v v v v v v v 7 Low
14 Kuradusenge et al. [170] v v v v v v v 7 Low
15 Mena et al. [71] v v v v v v v 6.5 Low
16 Sanchis et al. [72] v v v v v v v 7 Low
17 Cunha et al. [73] v v v v v v v 7 Low
18 Nevavuori et al. [106] v v v v v v v 6.5 Low
19 Paudel et al. [117] v v v X v v X 5 Low
20 Rajakumaran et al. [127] v v v v v v v 7 Low
21 Pavithra et al. [128] v v v v v v v 7 Low
22 Wang et al. [138] v v v v v v v 6 Low
23 Kern et al. [144] v v v v v v v 7 Low

*Legend: Q;-Q; = Quality check parameters as shown in (Table 2), “v” =Yes (1 points), “x” = No (0 points), “P” = Partial (0.5 points). *.
*Inter-rater reliability, measured by Cohen’s kappa, was k = 0.78, indicating a substantial agreement. *.

technologies application.

4.3.6. Climate and environmental variability

Historical CYPMs struggle to account for extreme weather and
climate variability due to rigid assumptions and limited data. In addition
to this, process-based models often fail in under novel climate condi-
tions. Tamlin et al. [163] emphasized that uncertainties in long-term
climate projection and extreme weather events happen challenges for
traditional models, which needs ensemble approaches to solve its vari-
ability. In other cases, Contemporary CYPMs can handle climate vari-
ability using ML and DL to model nonlinear interactions under climate
changing conditions. Liu et al. [160] demonstrates that LSTMatt model
maintains high accuracy during drought years, showed better perfor-
mance than process-based models by adapting to metrological vari-
ability in the U.S. Corn Belt.

4.3.7. Real-time adaptability

Historical CYPMs mostly comprise static models and lack of real-time
adaptivity due to reliance on historical data. As Feng et al. [165] noted
that traditional models lack real-time feedback mechanisms, limiting
their capability to adjust predictions during the growing seasons. In
contemporary CYPMs is integrated with modern advanced technologies
which support real-time adaptability for accurate dynamic predictions
and recommendations. Kaya [166] described an intelligent greenhouse
system that uses ML and sensors data for real-time environmental con-
trol, adapting irrigation and lighting to optimize crop growth.

4.4.8. Scalability and accessibility

Historical CYPMs have low adaptability due to data and computa-
tional constraints. It has also limited accessibility for the large farms
with resources for field experiments and calibration. Tilmin et al. [163]
articulated that the scalability of process-based models is constrained by
data and calibration requirements, making them less accessible in
resource-poor settings. While contemporary CYPM is highly scalable
through platforms and open-access datasets. Wu et al. [162] introduced
a global crop yield5min, a ML-based dataset for wheat, soybean, rice,
and maize yields at 5 arc-min resolution, exhibits R? between 0.7-0.95,
demonstrates scalability across the globe.
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4.4. Challenges faced in both crop yield prediction models

This section provides a clear demarcation of challenges faced in
Historical and Contemporary crop yield prediction models based on
common selected comparison criteria as described in RQ2, previously.
The criteria were selected based on key limitations and advancement of
agricultural modelling. The criteria derived from fundamental aspects
that influence the effectiveness and applicability of predictive models.
Among these criteria; data availability (quantity and quality of data),
model complexity, expert dependency (the need to rely on expert
knowledge), technological constraints (role of technology in shaping
model performance), climate and environmental variability (models
ability to handle unpredictable environmental change), real-time
adaptability (dynamically prediction update with timely data), and
scalability and accessibility (models’ level in application across different
regions) which summarized in the Table 5.

The qualitative synthesis of (Table 5) reveals how challenges in
CYPMs have evolved over years rather than disappeared. Historically,
models were constrained by limited data and simple concepts, struggling
with environmental variability due to inadequate information and
computing power [165]. In contrast, modern models face challenges of
data abundance and complexity, where ensuring data quality, integra-
tion, and interpretability has become more difficult than data collection
itself [173]. A persistent accessibility gap is also evident. Although
modern models are technically scalable, their use is limited by high
costs, computational demands, and the need for specialized expertise
(creating a digital divide that favors high-income regions and reinforces
global inequality in agricultural predictions) [167]. Furthermore, there
is a growing trade-off between predictive power and transparency. Older
models were simple but interpretable, while current deep learning and
hybrid systems are powerful yet opaque “black boxes,” shifting expertise
from agronomy to data science [170]. This highlights the need for
Explainable Al to restore interpretability and user trust. Overall, the
evolution of CYPMs represents a shift from scarcity to complexity, and
future models must balance accuracy and scalability with transparency,
affordability, and equity to achieve sustainable and inclusive agricul-
tural forecasting.
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Table 5
Summary of the challenges faced in both Historical and Contemporary CYPMs.

c) Expert-based knowledge remains valuable. Incorporating expert-based
knowledge in crop yield prediction develops effective models, en-

hances prediction accuracy and adaptability across various agricul-

S/ Challenges Historical CYP Models Contemporary CYP

n Models tural circumstances. Barrot et al. [177] used the PerSyst model with

1 Data Availability  Subjected to limited & Vast data: limited to expert-based knowledge in parameterize factors such as reference
localized data, manual quality and integration yields, crop sequence variations, and crop management practices.
gathering data leads to ~ [169], [11] The approach improves model application and reliability by adapt-
S[Il’:r:]e information ing diverse farming conditions [177].

5 Model Complexity  Simple, Linear Complex, non-linear d) Sl.m;.)llﬁed models face ﬂexlblllty challenges. In Historical bz%se.q pre-
regression-based models: Difficult to diction models, simplified approaches often lack the flexibility to
models: Based on interpret [170] account for the complex interactions among various factors influ-
experts’ judgement encing crop yields. Darra et al. [178] found there was a challenge in
[165] . :

simpler models to fully capture spatial and temporal complex data

3 Skill and It depends on the Skilled people need to lik P h . y cap di p h Pf . Il)d hich
knowledge expertise of model develop, understand, .1 e.weat er pr(?pertles to predictin the OUtC?ITl? o crop. yield, w l(f

Dependency development and and utilize; [172] indicates that simpler models have less flexibility and inaccurate in

interpretation [171] yield prediction. The finding briefs that the necessity of adaptable

4 Technological Less computational Demand of high and comprehensive modelling techniques in crop yield prediction to

constraints power, computational . ies PP .
. . effectively address the complexities characteristic in agricultural
Simple and rely on resources and quality N
manual data, less data: [173] practice [178].
accurate prediction
[165]: 4.5.2. Key lessons learned from contemporary crop yield prediction model

5 Climate and Inconsistent to Consistent with long-

Environmental environmental changes:  term climate trends: but i D . . h ield . ield dicti
Variability [174] vulnerable to extreme i. Data integration enhances yield accuracy: Recent yield predictive
weather events: [170] models involve with the combining of multiple, diverse and

6 Real-time Provide static Integrates with real- complex datasets that provide complete and nuanced under-

Adaptability predictions limited to time data: but suffers standing the factors influencing crop yield prediction. By inte-
real-time adaption with data latency and . . . .
[165]; gap; [167] grating data from various sources like remote sensing, weather

7 Scalability and Localized: limited to Highly Scalable: data, soil data, farm management data, and yield data to pre-

Accessibility specific region However, its cost, and dictive models can constitute complex interactions between

infrastructure need is
high [167];

predictions [164], [33]:

4.5. Key lessons learned from both crop yield prediction models

The section provides important insights, best practices, opportunities

and challenges, discovered throughout the development and use of crop
yield prediction models as mentioned in RQ3 earlier. Clearly, for both
Historical and Contemporary crop yield models which taught an
important lesson in agriculture is described as a comparison.

4.5.1. Lessons learned from historical crop yield production model

Historical crop yield prediction models have been laid a foundation

for contemporary crop yield predictive models’ development. The
adaptation principle of these models further helps to evolve over time to
develop advanced technological crop yield predictive models. There are
many key lessons that provide for the advancement of CYPM. These
models provided critical insights for agriculture development, such as:

a)

b

-

Local background is vital. These indicate that the necessity and
importance of deep understanding of local factors affect crop yield
prediction such as soil property, weather patterns, local agricultural
management practices, and previous yield data. These historical crop
yield models are crucial in development of local based crop yield
prediction factors. The study by Kraaijvanger et al. [175] revealed
the importance of local factors as about 56 % of grain yield vari-
ability was explained by management practice, altitude, and nitro-
gen fertilizer input, was conducted in Tigray, norther part of Ethiopia
[175].

Data availability is a key factor. Reliable, high-quality data are critical
inputs for accurate yield prediction [176]. Unlikely, historical yield
prediction models limited with structured data leads to prediction
inaccuracy. These limitations further learned to create recent ap-
proaches like artificial intelligence data models, IoT systems, Big
Data, and others to integrate high dimensional complex nonlinear
data analysis and processing.
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environment as well as human factors. This temporal and spatial
data holistic method leads to more accurate and reliable result for
crop yield prediction.

ii. AI Models are Innovative: Artificial Intelligence (AI) has been
increasingly employed to enhance yield prediction, using Ma-
chine Learning (Ml) and Deep Learning (DI1). These innovative
models analyze diversified datasets like weather patterns, envi-
ronmental factors, and soil conditions, to provide accurate yield
prediction. Jabed and Murad [11] provided a comprehensive
review about the application of Al in agriculture and its trans-
formative potential improvement in crop yield estimation, agri-
cultural planning, and resource management [11].

iii. Immediate Feedback is Essential: Real-time feedback has a great
importance in crop yield prediction through immediate data
gathering and analysis, which helps for timely decision-making
process in crop yield prediction. Contemporary predictive
models integrate advanced technologies tools like IoT, remote
sensing, and Al significantly improved the reliability and accu-
racy of yield prediction system. Fatma M. Talaat [11] developed a
crop yield prediction algorithm by integrating IoT techniques and
climate data to support precision agriculture through real-time
data with sensors to monitor environmental conditions, thereby
enhancing accuracy of yield prediction. Yin et al. [161] studied a
real-time corn yield monitoring and predicting Deep Neural
Network (DNN) based prediction model system which facilitates
a prompt adjustment in farming strategies to enhance
productivity.

iv. Scalability and Accessibility support for diverse agricultural needs:
Recent advancement in crop yield predictions focus on
combining IoT, machine learning algorithms, and remote sensing
technologies to address diverse agricultural outcomes in user
friendly and applicable. Kuradusenge et al. [161] developed a
combination of IoT and machine learning to facilitate real-time
data gathering and visualization which deploys sensors in fields
to continuously collect environmental data, transmitting to cloud
systems for storage and analysis which is known as SMART-CYPS
(Smart Crop Yield Prediction system). The user-friendly
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dashboard allows the user to monitor crop conditions in real-time
to enhance the Accessibility. On the other hand, the modular
system design helps various crop types and farming practices
which describes its Scalability in many agricultural
circumstances.

v. Underscores Critical Insights in Climate Change: Contemporary crop
yield prediction models have a critical impact of climate change
in crop yield. These models can integrate IoT devices, remote
sensing data, machine learning, Big Data analytics, and Cloud
Computing to store, analyze, and interpret weather data to
mitigate climate change in crop yield prediction through the
analysis in forecasting extreme weather events, predict weather
shifts in crop growing seasons, analysis of regional variability of
weather, and integration of climate data [179].

4.6. Innovations in crop yield prediction

This part presents the new methods, advancement of technologies, or
improvement that significantly enhances the way of crop yield predic-
tion techniques, with referring to RQ4. Innovation in crop yield pre-
diction, basically refers to the recent advancement of crop yield
prediction models than Historical yield predictive models. It emphasizes
the application and advancement of technologies, procedures, and data-
driven approaches to predict yield accurately. Based on these concepts
the key innovations in crop yield prediction are focused below.

a) Remote Sensing and Geo-Spatial data integration: Remote sensing and
Geospatial data can provide timely, accurate, and comprehensive
data (spatial detailed information’s) about crop health, assessing
environmental conditions and forecast crop yield effectively. The
integration makes accurate information large geographical areas
with cost effective way to assess climate change, pest infestation, soil
analysis, crop monitoring, and other factors that help to predict
yields accurately. Kassa et al. [180] studied the yield of corn and
wheat crops by integrating remote sensing and climate data, in
Ethiopia. Combining climatic factors with Normalized Difference
Vegetation Indices (NDVI), researchers achieved more accurate yield
prediction in cost effective way helps food security initiatives.

b) Real-time data processing approach: It is an innovative principle in
crop yield prediction by integrating different advanced technologies
like IoT sensors data, Al, RS, and Big Data analytics accurate timely,
data driven decision making towards in crop yield prediction. It
makes big difference by reducing risks, optimizing resource use, and
enhancing crop yield prediction as well as the agriculture in efficient,
sustainable, and resilient way [181].

c) Artificial Intelligence (AI): Artificial intelligence is an influential

innovation that has effectively transformed crop yield prediction as

well as the agriculture as a whole to the next step. integrates
advanced tools like machine learning and deep learning method with
data fusion techniques revolutionized the crop yield prediction.

These innovations support precise, data-driven agricultural prac-

tices, enhancing productivity and sustainability [182].

Climate Change Adaptability: It indicates the process of using

advanced tools, technologies, and strategies to mitigate the impact of

climate change and building resilient, sustainable agriculture sys-
tems. Climate adaptability not only denotes climate change measures
but also strives to foster an equitable and sustainable world. Hayman
et al. [183] provided an innovative, spatially explicit frameworks for
modelling the impacts of climate change on winter wheat crop yield
prediction using remote sensing and crop models in United Kingdom.
The research assessed climate change risks and designed
climate-resilient agricultural systems [183].

d

=

5. Conclusion

In this systematic review, the evolution, lessons, innovations, and
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challenges of historical and contemporary CYPM are summarized,
underscoring their critical role in improving global food security. His-
torical CYPMs, primarily empirical and mechanistic models developed
before the 1980s, were based on fundamental principles but were
limited by sparse data, observational data, low scaling of data, and static
predictions. While historical empirical and mechanistic models provided
essential insights, they were fundamentally constrained by data scarcity
and simplistic assumptions. In contrast, contemporary models
leveraging machine learning, deep learning, and IoT demonstrably
achieve greater accuracy, with deep learning models consistently
reporting R? values of 0.85-0.93, an important improvement over the R*
range of 0.60-0.75 typical of traditional methods. Advance in yield
prediction, real-time monitoring and climate-environmental frame-
works have enabled precision agriculture and resilience to environ-
mental challenges using geospatial data fusion. However, this
advancement comes with significant computational demands. The high-
dimensional data processing and complex algorithms underpinning
contemporary models, particularly deep learning and hybrid ap-
proaches, create a substantial barrier to their adoption. These compu-
tational limitations directly impact scalability and processing efficiency,
restricting access for users in regions with limited computing infra-
structure or financial resources.

Despite this, ongoing issues such as data quality, computational de-
mands, climate variability, and limited access in regions with low re-
sources are necessitate for inclusive approaches. The development of
hybrid modelling, edge computing, transfer learning, and explainable AI
are necessary for future research to improve prediction accuracy and
accessibility. CYPM can overcome these barriers and promote sustain-
able farming practices, contributing to food security for expanding
global community.

Although this review may not exhaustively capture all modeling
paradigms, it provides a reproducible and structured synthesis based on
PRISMA 2020 principles, offering a methodological foundation for
future meta-analyses.

The study, while offering a comprehensive systematic review of
historical and contemporary crop yield prediction models, has limita-
tions. The analysis is predominantly based on English-language peer-
reviewed literature from high income countries (particularly USA,
China, and European nations), with very limited representations from
low-income regions such as Ethiopia and other Sub-Saharan Africa,
potentially limiting the applicability of findings to data-scarce, resource-
constrained settings. The reliance on secondary citations for historical
models (pre-1980s) may omit nuanced methodological details from
original sources. Additionally, the grey literature and non-English pub-
lication exclusion, though necessary for consistency, that may have
overlooked good, localized insights. Due to high heterogeneity in crops,
regions, model types, and evaluation metrics across the 23 selected
studies, a quantitative meta-analysis was not feasible, limiting the syn-
thesis to qualitative interpretation. Finally, incorporating articles after
early 2025 not captured, that may include the recent CYPMs of Al and
remote sensing publications.

6. Future research direction

Future research should consider the following key topics to reduce
the challenges in crop yield prediction.

i. Model Hybridism: By combine multiple techniques from historical
or/and contemporary yield predictive models to improve the
accuracy and efficiency of yield prediction. These models can
solve the limitation of standalone models by integrating many
parameters and efficiency in crop yield prediction. The integra-
tion of models can enhance prediction accuracy, improve data-
driven decision-making system, assess the ongoing environ-
mental changes and adapt climate variability, improve resource
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use, enabling real-time monitoring, and more promising advan-

tages can be found in through hybrid models/approaches.
ii. Edge computing: These approaches can address data dependency
in cloud computing. It integrates edge devices (such as IoT sen-
sors, drones, smart devices) to process data locally for real-time
data analysis directly from the source site for analysis of crop
yield prediction. These approaches can improve security, speed,
efficiency, and reliability by processing data from source of data
generated than storing to cloud.
Transfer learning: In transfer learning uses in pretrained models
for new agricultural datasets, when data is limited, and fast
computational capability, with existing model of knowledge.
These models help in addressing data shortages and reduce the
need of high computational power demands, high accuracy,
adaptability in many crop types across different regions, and
reduce agricultural data collection.
Multimodal Data Fusion: The integration of diverse data sources
such as weather data, soil properties, remote sensing data, his-
torical yield data, and farming practice to enhance prediction
accuracy. By using models like machine learning and deep
learning for analysis of data provides a comprehensive and reli-
able crop yield prediction through data fusion system.
v. Explainable AI: Beyond accurate prediction of yield, knowing how
and why prediction process has permed, is very essential for
direct decision making. The technique is used to understand the
most influential factors (such as temperature, precipitation,
nutrient level, or other factors) and helps for trusted, transparent,
and clear decision making in agricultural practices.
Digital Twins: These technologies improve predictions by
enhancing accuracy, optimizing resources use, enabling scenario
testing, supporting early detections, and driving data decisions by
using virtual models. It simulates crop growth by using real-time
data from sensors, weather, soil and agronomic practices.

jii.

iv.

vi.

By addressing these challenges, future research can pave the way for
more accurate, efficient, adaptive, and universally applicable crop yield
prediction models, significantly improving agricultural productivity and
sustainability worldwide.
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