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e Detection of genes involved in mercury
methylation in lake water columns.

e Mercury methylation genes more abun-
dant in low-oxygen conditions.

e Desulfobacteroa, Bacteroidales and Kir-
itimatiellales are the most abundant
mercury methylators in lake water
columns.
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ABSTRACT

Methylmercury (MeHg) is a hazardous neurotoxin, predominantly formed by microbial transformation of inor-
ganic mercury in oxygen-depleted aquatic and terrestrial ecosystems. The ongoing deoxygenation of aquatic
ecosystems due to global warming is likely to expand microbial niches for MeHg production. Although mercury
methylators have also been reported to thrive in oxyge-deficients conditions in a few marine and freshwater
ecosystems, there is a lack of comprehensive understanding of how they are distributed in freshwater systems. In
this study, we retrieved hgcA genes, genomic marker for mercury methylation potential, from 586 metagenomes
from the water column of 186 freshwater systems. Overall, hgcA genes were detected in the water column of 30
lakes, with the highest richness and abundance being detected in anoxic (0 mg Oor.™!) and hypoxic (>0-2 mg O™
1y compared to oxic conditions (>2 mg Oy). Although Desulfobacterota had the highest hgcA gene richness
across most freshwater systems, certain systems were dominated by hgcA genes from Bacteroidales and Kir-
itimatiellales, implying metabolic and ecological versatility of mercury methylators as a group. Our findings
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suggest that projected expanding deoxygenation may lead to new niches for mercury methylators in inland

waters.

1. Introduction

The presence of mercury in the environment is a continuous and
widespread health hazard with potentially serious consequences for the
health of aquatic organisms and humans. Although mercury has always
been present in ecosystems due to natural processes such as weathering
and volcanic eruptions, anthropogenic emissions resulting from e.g.,
cement production and fossil fuel combustion (Pirrone et al., 2010) have
increased mercury concentrations in the environment by more than
threefold (Mason et al., 2012). While anthropogenic emissions have
been reduced in the Northern Hemisphere, mercury is still circulating in
food webs and ecosystems as it is only slowly sequestered. Thus, mer-
cury is classified as a ‘ubiquitous, persistent, bioaccumulative and toxic’
substance, particularly in its methylated form (MeHg). MeHg is a potent
neurotoxin that can bypass the blood-brain barrier and accumulate in
the central nervous system (Aschner and Aschner, 1990), exacerbating
harmful effects that manifest as neurological and cardiovascular symp-
toms (Choi et al., 2009). The presence of MeHg in the environment is
mainly driven by the transformation of inorganic mercury into MeHg by
microorganisms that carry two genes involved in mercury methylation:
hgcA and hgcB (Parks et al., 2013). As the amino acid sequences of the
proteins coded from these genes contain highly conserved regions, it is
possible to identify mercury methylators from the detection of those
genes directly in environmental DNA samples. This approach has been
widely adopted to determine the diversity and prevalence of mercury
methylators in different ecosystems (Podar et al., 2015; Gionfriddo
et al., 2020; Capo et al., 2023a).

Mercury methylation is well known to occur in a wide range of
aquatic ecosystems (Bravo and Cosio, 2020); however, there are few
studies assessing the distribution of mercury methylators in the water
columns of these ecosystems through omics approaches (i.e., meta-
genomics, metabarcoding), making it difficult to determine how envi-
ronmental conditions relate to the presence of mercury methylators.
While many mercury methylators have been identified in coastal waters
and sediments (Lin et al., 2021; Capo et al., 2022a), only a few lake
ecosystems have been studied in this regard (Jones et al., 2019; Peterson
et al., 2020; BD 2023; Gallorini and Loizeau, 2022; Capo et al., 2023b;
Gambardella et al., 2025). Lakes, being highly variable in typology,
hydrological dynamics, and biodiversity, are excellent study objects to
gain a comprehensive understanding of how environmental factors
shape mercury-methylating communities. In mono-, di-, and polymictic
lakes, surface and deep waters mix once, twice, or multiple times per
year due to the difference in density between upper and lower waters (i.
e., thermal mixing). This creates strong and dynamic chemical gradients
as oxygen and nutrients (from sediments) are imported to hypoxic and
anoxic water masses (Woolway et al., 2020). With current global in-
creases in land, air, and water temperatures, hypoxic and anoxic con-
ditions are predicted (and have been shown) to increase in freshwater
systems due to lower oxygen solubility (Jane et al., 2021; Zhang et al.,
2025) and induced thermal stratification of water columns. Addition-
ally, enhanced primary production and algal blooms - fuelled by climate
warming and eutrophication — contribute to the depletion of oxygen
(Friedrich et al., 2014). Bacterial decomposition of decaying algae
(Hintelmann, 2010) leads to the formation of so-called ‘dead zones’ that
can continuously promote algal blooms due to nutrient (i.e., phos-
phorus) cycling from sediments back up towards the epilimnion (Zou
et al., 2020). Altogether these environmental changes are expected to
augment niches for mercury methylators, know to transform mercury
into MeHg in oxygen-deficient conditions as reported from both incu-
bation experiments (Pereira-Garcia et al., 2025) and long-term envi-
ronmental records (Zhong et al., 2025).

In this project, we analyzed 586 publicly available metagenomes
from a total of 186 freshwater systems (lakes, ponds and reservoirs)
mostly located in the Northern Hemisphere, using the bioinformatic
pipeline marky-coco (Capo et al., 2023a) to detect and quantify hgcA
genes from water columns. This enabled us to (i) investigate the pres-
ence of mercury methylators in the water columns of freshwater sys-
tems, (ii) assess the impact of oxygen availability in controlling the
presence and abundance of potential mercury methylators, and (iii)
explore biogeographic distribution patterns of mercury methylators in a
variety of freshwater ecosystems.

2. Material and methods
2.1. Dataset

The dataset compiled in this study (Table 1) contained metagenomes
from the water column across 186 freshwater systems (lakes, ponds,
reservoirs) distributed worldwide with predominant representation
from the Northern Hemisphere. For each sample, the raw sequencing
data obtained were associated with metadata containing a compilation
of environmental parameters including depth (m), dissolved oxygen
concentrations (mg OzL'l), temperature ( °C), pH, nutrient concentra-
tions and other physicochemical characteristics (Datasheet 1A).

2.2. Bioinformatics

The detection, counting and taxonomic identification of hgcA genes
from metagenomes was done using the pipeline marky-coco (Capo et al.,
2023a). The metagenomes were trimmed and cleaned using fastp (Chen
et al, 2018) with the following parameters;q 30 -1 25
—detect_adapter_for_pe —trim_poly_g —trim_poly_x. A de novo single as-
sembly approach was applied using the assembler megahit 1.1.2 (Li
et al., 2015) with default settings. Then, microbial community compo-
sition was determined using the software MetaPhlan2 v4.1.1 (Truong
et al., 2015) (Datasheet 1B). The annotation of contigs for prokaryotic
protein-coding gene prediction was done with the software prodigal
v2.6.3 (Hyatt et al., 2010). The DNA reads were mapped against the
contigs with bowtie2 (Langmead and Salzberg, 2012), and the resulting .
sam files were converted to .bam files using samtools 1.9 (Li et al.,
2009). The .bam files and the prodigal output .gff file were used to es-
timate read counts by using featureCounts (Liao et al., 2014). To detect
hgcA genes, we used the procedure described in Capo et al. (2023a).

Table 1
Dataset of metagenomes used in the present study. Detailed information is
provided in Datasheet 1A.

References #freshwater #metagenomes  Location
systems

BD Peterson et al. 1 33 Brownlee Reservoir
(2023) (Us)

Capo et al. 1 11 Lake Geneva (France-
(2023b) Switzerland)

Garner et al. 160 160 Canada
(2023)

Sanseverinoetal. 1 24 Lake Varese (Italy)
(2022)

Buck et al. (2021) 38 258 Worldwide

Jones et al. 2 5 Lake Manganika &
(2019) McQuade (US)

Peterson et al. 1 5 Lake Mendota (US)
(2020)

Xing et al. (2020) 1 5 Lake Fuxian (China)

Yangetal. (2019) 23 57 Worldwide
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HMM profiles from the Hg-MATE database (v1) were applied to the
amino acid FASTA file generated from each assembly with the function
hmmsearch from HMMER v3.2.1 (Finn et al., 2011). Genes with E-values
<1072 were considered as significant hits. To further confirm putative
hgcA genes within the HMM search hits, we used the high stringency
cutoff defined by Capo et al. (2023a) by screening hgcA homologs for 6
amino acids with the following motifs: NVWCAAGK, NVWCASGK,
NVWCAGGK, NIWCAAGK, NIWCAGGK or NVWCSAGK.

Coverage values of hgcA genes were calculated as the number of
reads mapped to the gene divided by its length in base pairs and were
further normalized by dividing them by the summed coverage values of
the single copy gene rpoB (both bacteria and archaea together) (Data-
sheet 1C). The rpoB genes were detected using the HMM profile
TIGR02013.hmm and TGR03670.hmm for bacterial and archaeal rpoB
genes, respectively, and applying the trusted cutoff provided in HMM
files. The reference package ‘hgcA’ from Hg-MATE.db.v1 was used for
phylogenetic analysis of the HgcA amino acid sequences. Briefly, amino
acid sequences from a gene identified as hgcA gene homolog were (i)
compiled in a FASTA file, (ii) aligned to Stockholm formatted alignment
of hgcA sequences from the reference package with the function
hmmalign from HMMER (iii) placed onto the HgcA reference tree with
the function pplacer and (iv) classified using the functions rppr and
guppy._classify from the program pplacer v1.1.alphal9 (Matsen et al.,
2010). A taxonomic identifier (NCBI txid) was therefore assigned to each
gene and used to create an hgcA™ taxa abundance table for downstream
statistical analysis (Datasheet 1D).

2.3. Data analysis

Data analysis was conducted in R version 4.3.3 (2023-10-31 ucrt) (R
Core Team, 2023). A map was done using the package rnaturalearth
v1.0.1 (South and South, 2017) (Datasheet 1E), barplots and the dotplot
using the package ggplot2 v3.5.2 (Wickham, 2011) and the PCoA
analysis was performed using the function ordinate from phyloseq
v1.46.0 (McMurdie and Holmes, 2013). A Kruskal-Wallis test pairwise
comparisons were performed using Dunn’s test with Benjamini-Hoch-
berg correction (dunnTest() from the FSA package v0.10.0 (Ogle and
Ogle, 2017). To investigate the relationships between hgcA gene distri-
bution and oxygen concentrations, samples were categorized into four
categories: oxic (> 2 mg Oy L'l), hypoxic (>0-2 mg O, '} and anoxic (0
mg Oy 1), and samples with no measured oxygen concentrations
(Jiirgens and Taylor, 2018). The ANOSIM analysis was performed by
using the anosim function in vegan v2.6-10 (Oksanen et al., 2013).
Pearson correlation coefficients were calculated to assess linear re-
lationships between hgcA gene abundance and the environmental pa-
rameters that have <60 % of “na”s values (Datasheet 1F) i.e., Pearson
correlation coefficients were then computed on the filtered dataset and
visualized as a heatmap using the corrplot package in R (Wei and Simko,
2021) and hmisc R package (Harrell and Harrell, 2019). The TITAN2
package v2.4.2 (Baker and King, 2010) was used to detect changes in
hgcA™ taxa distributions along an oxygen gradient over the lakes that
found hgcA genes, and assess synchrony among taxa change points as
evidence for community thresholds. Taxa that occurred in <3 meta-
genomes (27 txid) were excluded to ensure robust indicator selection.
Then, indicator species z scores (rescaled “IndVal” score) (Dufrene and
Legendre, 1997; Baker and King, 2010) were calculated to integrate
occurrence, abundance and directionality of taxa responses by using
TITAN2 default settings (minSplt = 5, numPerm = 2, nBoot = 500, pur.
cut = 0.95, etc.). Other packages that assisted in the above analysis and
illustration include: dplyr v1.1.4 (Wickham et al., 2024), tidyr v1.3.1
(Wickham et al., 2024), viridis v0.6.5 (Garnier et al., 2024), packcircles
v0.3.7 (Bedward et al., 2024), ggforce v0.4.2 (Pedersen, 2023), scales
v1.4.0 (Wickham et al., 2016) and ggchicklet v0.5.2 (Rudis and Bichat,
2023).
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3. Results

A total of 2294 hgcA genes were detected in the water columns across
30 of the 186 studied freshwater systems, corresponding to 217 meta-
genomes out of the total 586 analyzed (Graphical abstract, Fig. S1,
Datasheet 1A). From metagenomes where hgcA genes were detected, the
hgcA gene abundance (hgcA coverage values normalized by rpoB
coverage values) ranged from 0.0003 — 0.4339 (Datasheet 1C). The hcgA
genes were taxonomically assigned to 119 microbial taxa (NCBI txid,
different taxonomic levels from phylum to genus) with the highest di-
versity observed for Desulfobacterota (39), Firmicutes (14), Eur-
yarchaeota (11), Chloroflexota (8) and Spirochaetes (8) (Datasheet 1D).
The composition of hgcA assemblages differed between the 30 fresh-
water systems (Fig. 1, Fig. S1). At the order level, certain taxa appeared
to be broadly prevalent i.e., Kiritimatiellales (txid2026799, detected in
23 systems) and Bacteroidales (txid171549, 22 systems). At the genus
level, Syntrophus (tixd2676650) and Methanoregula (txid2052170) were
both detected in 13 systems. A high number of txids were found in <15
lakes i.e., Bacteroidetes (txid976, 14 systems), BSN033 (txid122706, 7
systems) and Desulfobulbaceae (txid21321, 3 systems). The most
abundant taxa were always found in multiple systems while others like
Smithellaceae (txid182623, 8 samples from Lake Alinen Mustajarvi),
and Desulfovibrio (txid2593640, 6 samples from Alinen Mustajarvi) were
only detected in a single lake. Overall, some freshwater systems i.e.,
Alinen Mustajarvi, Kuujjuarapik-Whapmagoosti and Mekkojarvi
exhibited higher hgcA richness and abundance, compared to other
systems.

Most hgcA genes were found in metagenomes obtained from hypoxic
(128) and anoxic (27) samples compared to oxic samples (17) (45
samples had no oxygen data available) (Datasheet 1E). Additionally, the
average relative abundance of hgcA genes was higher in hypoxic-anoxic
samples with significant differences observed between oxic and hypoxic-
anoxic samples (Kruskal-Wallis post-hoc tests, p < 0.001) but not be-
tween hypoxic and anoxic samples (p = 0.08) (Fig. 2). Overall, a Pearson
correlation analysis showed that hgcA gene abundance was significantly
and negatively correlated with oxygen concentrations, temperature and
pH and negatively to ammonium concentrations (Fig. S2). In terms of
community structure, a PCoA analysis showed that both the broader
prokaryotic communities (Fig. 3A) and the hgcA assemblages (Fig. 3B)
were similar within the same lake, although some intra-lake heteroge-
neity could be observed in e.g., Lake Loclat. ANOSIM analysis showed
statistical differences of both the structure of the prokaryotic community
and hgcA assemblage based on oxygen categories (ANOSIM, p < 0.001),
as illustrated by ellipsoids in the PCoA plots. The prokaryotic commu-
nity structure showed significant separation between anoxic and hyp-
oxic (p < 0.001), as well as hypoxic and oxic (p < 0.001), but no
significant difference was detected between anoxic and oxic samples (p
= 0.296). In contrast, the hgcA assemblages in anoxic and hypoxic
samples were significantly different from each other (p < 0.001) while a
less marked difference was found for anoxic and oxic (p = 0.045) and
there were no significant differences between hypoxic and oxic samples
(@ =0.117).

A TITAN2 analysis was used to detect the presence of microbial taxa
that serve as indicators of shifts in hgcA assemblage structure along the
oxygen gradient (Fig. 4, Fig. S3). Based on the 0.95 thresholds chosen for
purity and reliability parameters, 15 out of 119 taxa were deemed to be
statistically pure and reliable indicators. Among them, 13 were
considered to have decreasing hgcA abundance (z-) with dissolved ox-
ygen increases. Most of these indicator taxa exhibited pronounced de-
creases in hgcA abundance with increasing oxygen concentrations
around 0.1 to 0.4 mg O, ! such as Actinobacteria (txid1883427) and
Geobacterales (txid213422). Among them, two indicator taxa showed
decreased abundance in hgcA with increasing oxygen (>0 mg Oo™)), iLe.,
Aminicenantes (txid910038) and Syntrophales (txid213463). In
contrast, Methanoregula (txid2649730) and Desulfobulbaceae
(txid213121), exhibited stronger and more consistent increases in hgcA
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Fig. 1. Heatmap showing the hgcA abundance of each txid in the 30 lakes where hgcA genes were found.
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Fig. 2. Boxplot displaying the hgcA abundance from each metagenome with
different oxygen concentrations: light blue for oxic (> 2 mg O, 1), blue for
hypoxic (>0-2 mg O, 1) and dark blue for anoxic (0 mg Oy D). The number of
samples considered for each category is displayed in the figure (n values).

abundance (z+) along the oxygen gradient with peaked z+ values found
at 0.55 and 0.4 mg O,L}, respectively.

4. Discussion

Oxygen is a critical controlling factor for mercury methylation, but
its effects on the diversity and ecology of mercury-methylating micro-
organisms remain poorly understood (Cabrol et al., 2023). Previous
studies have investigated the relationship between hgcA abundance and
oxygen levels (Capo et al., 2022a; Ji et al., 2020a, 2020b). Generally, an
increase in oxygen is paralleled by a decrease in hgcA abundance. This
inverse correlation between oxygen and hgcA has proven so strong that
some successful mitigation strategies have implemented oxygen nano-
bubbles to reduce hgcA abundance and mercury bioavailability (Ji et al.,

2020a, 2020b). Interestingly, some evidence of aerobic mercury
methylation has been reported leading researchers to hypothesise the
existence of other metabolic pathways for aerobic mercury methylation
(Cao et al., 2021).

The dataset compiled in this study encompasses environmental
genomic data from both systems previously unexplored for mercury
cycling (Yang et al., 2019; Buck et al., 2021; Garner et al., 2023) and
environments where mercury methylators have been the focus (Jones
et al., 2019; Peterson et al., 2020; BD 2023). Noticeably, most fresh-
water systems from which metagenomic data could be collected were
located in socially developed regions as a consequence of the inequities
in global lake science (Jiang et al., 2025). A systematic re-analysis of all
metagenomes from these systems with the consensus protocol developed
by Capo et al. (2023b) allows for an unbiased comparison of the di-
versity and prevalence of mercury methylators across a large collection
of metagenomes from various freshwater bodies, as well as statistically
sound assessments of relationships between oxygen conditions and the
abundance of hgcA genes, the genetic marker for mercury methylation. It
has been showed that the abundance and expression of hgcA genes in the
environment do not necessarily correlated for all mercury methylation
(e.g., Capo et al., 2022b), precluding the use hgcA abundance estimates
from metagenomes as direct evidence of mercury methylation on
ecosystems.

4.1. Prevalence of mercury methylators in freshwater ecosystems

Prior to the discovery of the hgcAB gene pair (Parks et al., 2013), the
vast majority of mercury methylators, cultivated and tested in labora-
tory experiments (Gilmour et al., 2013), were identified as Desulfo-
bacterota (previously referred to as Deltaproteobacteria), Firmicutes
(including Clostridia), and Euryarchaeota (Methanobacteria). Most of
the recent molecular studies looking for hgcA genes from environmental
genomic datasets revealed that Desulfobacterota accounted for most of
the taxa in mercury-methylating assemblages (Capo et al., 2022a;
Peterson et al., 2020). They are also occasionally predominant in terms
of hgcA gene abundance, with pertinent examples from the water col-
umn of the Baltic Sea (Capo et al., 2022a), Black Sea (Cabrol et al., 2023)
and thermokarst lakes (Gambardella et al., 2025). In the present study
focusing on freshwater ecosystems, Desulfobacterota featured the
largest hgcA richness with 39 microbial taxa (from genus to phylum) and
was dominant in most systems e.g., Mekkojarvi, Lake TroutBog,
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Lomtjarnan, Kuujjuarapik-Whapmapgoostui (Fig. 1). However, they
were not predominant in the majority of the freshwater systems
analyzed e.g., Lake Alinen Mustajarvi or Lake Loclat dominated by
Kiritimatiellales and Bacteroidales. In agreement with Jones et al.
(2019), our re-analysis of water metagenomes from the hypereutrophic
sulfidic Lake Manganika and mesotrophic McQuade revealed that
Aminicenantes (txid910038), Spirochaetes (txid1130380) and Kir-
itimatiellales (txid2026799) were the taxa with the highest hgcA abun-
dance. In the sulfate-enriched eutrophic Lake Mendota (Minnesota,
USA), Kiritimatiellaeota and Bacteroidetes were the dominant mercury
methylators while Desulfobacterota accounted only for 22 % of the hgcA
genes (Peterson et al., 2020). The re-analysis of Peterson et al.5 (2020)
metagenomic data with the updated Hg-MATE database confirmed the
previously found pattern with dominant microbial taxa in Lake Mendota
water columns being txid2026799 (Kiritimatiellales) and txid171549
(Bacteroidales) (Fig. S1). In Lake Geneva, predominant hgcA genes were

identified as Firmicutes from sediment trap samples (Capo et al., 2023b),
further annotated as Clostridiales in the present study (txid31979,
txid186802) (Datasheet 1C). Moreover, the high hgcA richness found in
Kuujjuarapik-Whapmapgoostui aligned with recent findings in such
areas, making this region a point of interest for the study of mercury
methylation in the Arctic (Gambardella et al., 2025). Altogether, the
findings of our meta-analysis illustrate the high diversity of mercury
methylators, many of which remain poorly understood in terms of their
ecology.

4.2. Mercury methylators thrive in low-oxygen conditions in freshwater
systems

Mercury methylators convert inorganic mercury into MeHg under
anaerobic conditions (Bravo and Cosio, 2020), with the highest
methylation rates hypothesized to occur in anoxic conditions, including
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anoxic water columns (Capo et al., 2022a; Eckley and Hintelmann,
2006; Hintelmann, 2010). Consistently, hgcA genes are predominantly
found in water columns with hypoxic and anoxic/euxinic conditions
such as the Black Sea (Cabrol et al., 2023), the Baltic Sea (Capo et al.,
2022a), the Saanich Inlet (Lin et al., 2021) and Lake Mendota (Peterson
et al.,, 2020). Our meta-analysis revealed that hgcA genes were pre-
dominantly found in anoxic (0 mg Oo!) and hypoxic (>0-2 mg Oy ')
conditions, with only a slightly higher abundance in anoxic environ-
ments. Previous studies have studied the links between hgcA gene
abundance and MeHg concentrations and mercury methylation rates in
lake water columns (Jones et al., 2019; Peterson et al., 2020; BD 2023)
but there is only a few studies highligting such links in oxygen deficient
environments.

In our meta-analysis, we found a clear pattern showing that hgcA
genes are more abundant in anoxic than hypoxic or in oxic conditions
(Fig. 3) and that hgcA assemblages are also clustered according to pre-
vailing oxygen levels (Fig. 4, ANOSIM analysis). Sulfate-reducing bac-
teria, iron-reducing bacteria, and methanogens were the most
commonly reported mercury methylators (Fleming et al., 2006; Gilmour
et al., 2013), all of them being known to respire without oxygen via
anaerobic respiration. However, more recent studies revealed the
versatility of mercury methylators including potential capability for
microaerophily or syntrophy (McDaniel et al., 2020; Lin et al., 2021;
Vigneron et al., 2021) open discussions about the relationships between
oxic conditions and mercury methylation. In our study, the TITAN2
analysis identified 15 out of 119 microbial taxa as statistically signifi-
cant indicators of community shifts along the dissolved oxygen gradient
(Fig. 4). Of these, 13 taxa exhibited negative z-scores (z—), indicating a
significant decline in hgcA-associated abundance with increasing oxygen
concentrations. This suggests a preference for suboxic or anoxic condi-
tions. In contrast, two taxa—Methanoregula (txid2649730) and a
representative of the Desulfobulbaceae family (txid213121)—displayed
positive z-scores (z+), representing increasing abundance with higher
(but still hypoxic) oxygen levels. Although Methanoregula is known as an
anaerobic methanogen, a recent study revealed its presence in oxic
waters (Kallistova et al., 2023). Breakpoints for each responsive taxon
were distributed across the lower-to-intermediate range of the oxygen
gradient, highlighting the transitional zone as a hotspot for community
turnover of the mercury-methylating assemblage. All the taxa identified
as potential indicators of community shifts are microorganisms that are
typically favored by oxygen-deficient conditions. As metabolic capac-
ities of microorganisms can vary even within families, it is difficult to
provide robust inferences about their actual metabolic roles in these
ecosystems.

Considering that oxic environments preferentially select for micro-
organisms that use oxygen as their predominant electron acceptor (with
higher energy yield), mercury methylators are not expected to be found
in such water masses. However, it has been shown that hgcA genes can
be found in sediment traps underlying the oxic water column of Lake
Geneva (Capo et al., 2023b) where relatively high MeHg concentrations
and significant mercury methylation rates were previously observed
(Gascon Diez et al., 2016). In the oxic water column, mercury methyl-
ators would have the potential to persist and grow in anaerobic micro-
habitats such as sinking particles (Bianchi et al., 2018; Gallorini and
Loizeau, 2021; 2022), animal guts (Gorokhova et al., 2020) or periph-
yton (Cleckner et al. 1999). However, hgcA genes are rarely detected
directly in oxic water samples using metagenomic data. In the present
study, 17 metagenomes in which hgcA genes were detected had oxic
conditions (> 2 mg O, .}). Noticeably, most oxygen values were below
fully oxic conditions (range 2.18-9.02 mg O 1}, mean = 6.40, sd =
2.20), potentially explaining the detection of putative mercury meth-
ylators in conditions defined as oxic, while these environments may in
fact represent the redox transition zone or sinking/suspended particles.
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5. Conclusions

Our study identified the presence of hgcA genes in specific lakes,
indicating potential hotspots for methylmercury production. Specif-
ically, low-oxygen — both hypoxic and anoxic - water layers appear to be
favorable ecological niches for hgcA™ microorganisms with inter-lake
differences in the taxonomy of mercury-methylating groups. These
findings suggest that certain freshwater systems may be particularly
vulnerable to mercury methylation, especially as climate change and
enhanced deoxygenation the likelihood of low-oxygen water layers—-
even within water layers that are currently oxic. This underscores the
need for closer monitoring of these ecosystems and provides a valuable
resource for informing lake management strategies and guiding fish
consumption advisories to protect both environmental and human
health.

Supplementary information

Datasheet 1. This datasheet includes the following information (A)
List of metagenomic data with related metadata (sequencing run, bio-
informatics metrics, environmental parameters and associated refer-
ences) (B) Outputs of the metaphlan analysis showing the community
composition signal obtained for each metagenome (C) The hgcA gene
abundance table showing information about the gene abundance,
normalization and taxonomu (D) The hgcA gene abundance table at the
txid level (NCBI taxonomic identifier) (E) Table used for the map
generated in the Graphical abstract (F) Table used for the Pearson cor-
relation analysis.

Figure S1. Composition barplots of the hgcA assemblages for each of
the 30 lakes where hgcA genes were found. Oxygen concentrations are
depicted by the colors of the id of each metagenome with the following
color code: light blue for oxic (> 2 mg O, 1}, blue for hypoxic (0-2 mg
(o)) L'l) and dark blue for anoxic (0 mg Oy L'l).

Figure S2. Pearson correlation heatmap of environmental parame-
ters, hgcA gene abundance and number of DNA reads (cleaned reads).
See Datasheet 1A for further information about environmental param-
eters and how they were obtained for each sample.

Figure S3. Community-level TITAN2 analysis showing indicator
response strength along an oxygen gradient. The solid blue and red lines
represent the cumulative sum of standardized z-scores (fsumz* for pos-
itive responders and fsumz~ for negative responders, respectively),
indicating the aggregated strength of taxa responses increasing or
decreasing with oxygen. Shaded areas or density curves depict the dis-
tribution of individual taxa change points. The filtered sum(z) curve
highlights zones of significant community response, where indicator
taxa exhibit consistent directional change along the gradient.
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