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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Detection of genes involved in mercury 
methylation in lake water columns.

• Mercury methylation genes more abun
dant in low-oxygen conditions.

• Desulfobacteroa, Bacteroidales and Kir
itimatiellales are the most abundant 
mercury methylators in lake water 
columns.
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A B S T R A C T

Methylmercury (MeHg) is a hazardous neurotoxin, predominantly formed by microbial transformation of inor
ganic mercury in oxygen-depleted aquatic and terrestrial ecosystems. The ongoing deoxygenation of aquatic 
ecosystems due to global warming is likely to expand microbial niches for MeHg production. Although mercury 
methylators have also been reported to thrive in oxyge-deficients conditions in a few marine and freshwater 
ecosystems, there is a lack of comprehensive understanding of how they are distributed in freshwater systems. In 
this study, we retrieved hgcA genes, genomic marker for mercury methylation potential, from 586 metagenomes 
from the water column of 186 freshwater systems. Overall, hgcA genes were detected in the water column of 30 
lakes, with the highest richness and abundance being detected in anoxic (0 mg O2L-1) and hypoxic (>0–2 mg O2L- 

1) compared to oxic conditions (>2 mg O2L-1). Although Desulfobacterota had the highest hgcA gene richness 
across most freshwater systems, certain systems were dominated by hgcA genes from Bacteroidales and Kir
itimatiellales, implying metabolic and ecological versatility of mercury methylators as a group. Our findings 

* Corresponding author.
E-mail address: eric.capo@umu.se (E. Capo). 

Contents lists available at ScienceDirect

Water Research

journal homepage: www.elsevier.com/locate/watres

https://doi.org/10.1016/j.watres.2025.125014
Received 29 September 2025; Received in revised form 17 November 2025; Accepted 18 November 2025  

Water Research 290 (2026) 125014 

Available online 19 November 2025 
0043-1354/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0002-4343-332X
https://orcid.org/0000-0002-4343-332X
https://orcid.org/0000-0003-0233-7224
https://orcid.org/0000-0003-0233-7224
https://orcid.org/0000-0002-4265-1835
https://orcid.org/0000-0002-4265-1835
https://orcid.org/0000-0001-9570-8738
https://orcid.org/0000-0001-9570-8738
https://orcid.org/0000-0002-8341-3462
https://orcid.org/0000-0002-8341-3462
https://orcid.org/0000-0001-9143-7061
https://orcid.org/0000-0001-9143-7061
mailto:eric.capo@umu.se
www.sciencedirect.com/science/journal/00431354
https://www.elsevier.com/locate/watres
https://doi.org/10.1016/j.watres.2025.125014
https://doi.org/10.1016/j.watres.2025.125014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2025.125014&domain=pdf
http://creativecommons.org/licenses/by/4.0/


suggest that projected expanding deoxygenation may lead to new niches for mercury methylators in inland 
waters.

1. Introduction

The presence of mercury in the environment is a continuous and 
widespread health hazard with potentially serious consequences for the 
health of aquatic organisms and humans. Although mercury has always 
been present in ecosystems due to natural processes such as weathering 
and volcanic eruptions, anthropogenic emissions resulting from e.g., 
cement production and fossil fuel combustion (Pirrone et al., 2010) have 
increased mercury concentrations in the environment by more than 
threefold (Mason et al., 2012). While anthropogenic emissions have 
been reduced in the Northern Hemisphere, mercury is still circulating in 
food webs and ecosystems as it is only slowly sequestered. Thus, mer
cury is classified as a ‘ubiquitous, persistent, bioaccumulative and toxic’ 
substance, particularly in its methylated form (MeHg). MeHg is a potent 
neurotoxin that can bypass the blood-brain barrier and accumulate in 
the central nervous system (Aschner and Aschner, 1990), exacerbating 
harmful effects that manifest as neurological and cardiovascular symp
toms (Choi et al., 2009). The presence of MeHg in the environment is 
mainly driven by the transformation of inorganic mercury into MeHg by 
microorganisms that carry two genes involved in mercury methylation: 
hgcA and hgcB (Parks et al., 2013). As the amino acid sequences of the 
proteins coded from these genes contain highly conserved regions, it is 
possible to identify mercury methylators from the detection of those 
genes directly in environmental DNA samples. This approach has been 
widely adopted to determine the diversity and prevalence of mercury 
methylators in different ecosystems (Podar et al., 2015; Gionfriddo 
et al., 2020; Capo et al., 2023a).

Mercury methylation is well known to occur in a wide range of 
aquatic ecosystems (Bravo and Cosio, 2020); however, there are few 
studies assessing the distribution of mercury methylators in the water 
columns of these ecosystems through omics approaches (i.e., meta
genomics, metabarcoding), making it difficult to determine how envi
ronmental conditions relate to the presence of mercury methylators. 
While many mercury methylators have been identified in coastal waters 
and sediments (Lin et al., 2021; Capo et al., 2022a), only a few lake 
ecosystems have been studied in this regard (Jones et al., 2019; Peterson 
et al., 2020; BD 2023; Gallorini and Loizeau, 2022; Capo et al., 2023b; 
Gambardella et al., 2025). Lakes, being highly variable in typology, 
hydrological dynamics, and biodiversity, are excellent study objects to 
gain a comprehensive understanding of how environmental factors 
shape mercury-methylating communities. In mono-, di-, and polymictic 
lakes, surface and deep waters mix once, twice, or multiple times per 
year due to the difference in density between upper and lower waters (i. 
e., thermal mixing). This creates strong and dynamic chemical gradients 
as oxygen and nutrients (from sediments) are imported to hypoxic and 
anoxic water masses (Woolway et al., 2020). With current global in
creases in land, air, and water temperatures, hypoxic and anoxic con
ditions are predicted (and have been shown) to increase in freshwater 
systems due to lower oxygen solubility (Jane et al., 2021; Zhang et al., 
2025) and induced thermal stratification of water columns. Addition
ally, enhanced primary production and algal blooms – fuelled by climate 
warming and eutrophication – contribute to the depletion of oxygen 
(Friedrich et al., 2014). Bacterial decomposition of decaying algae 
(Hintelmann, 2010) leads to the formation of so-called ‘dead zones’ that 
can continuously promote algal blooms due to nutrient (i.e., phos
phorus) cycling from sediments back up towards the epilimnion (Zou 
et al., 2020). Altogether these environmental changes are expected to 
augment niches for mercury methylators, know to transform mercury 
into MeHg in oxygen-deficient conditions as reported from both incu
bation experiments (Pereira-Garcia et al., 2025) and long-term envi
ronmental records (Zhong et al., 2025).

In this project, we analyzed 586 publicly available metagenomes 
from a total of 186 freshwater systems (lakes, ponds and reservoirs) 
mostly located in the Northern Hemisphere, using the bioinformatic 
pipeline marky-coco (Capo et al., 2023a) to detect and quantify hgcA 
genes from water columns. This enabled us to (i) investigate the pres
ence of mercury methylators in the water columns of freshwater sys
tems, (ii) assess the impact of oxygen availability in controlling the 
presence and abundance of potential mercury methylators, and (iii) 
explore biogeographic distribution patterns of mercury methylators in a 
variety of freshwater ecosystems.

2. Material and methods

2.1. Dataset

The dataset compiled in this study (Table 1) contained metagenomes 
from the water column across 186 freshwater systems (lakes, ponds, 
reservoirs) distributed worldwide with predominant representation 
from the Northern Hemisphere. For each sample, the raw sequencing 
data obtained were associated with metadata containing a compilation 
of environmental parameters including depth (m), dissolved oxygen 
concentrations (mg O2L-1), temperature ( ◦C), pH, nutrient concentra
tions and other physicochemical characteristics (Datasheet 1A).

2.2. Bioinformatics

The detection, counting and taxonomic identification of hgcA genes 
from metagenomes was done using the pipeline marky-coco (Capo et al., 
2023a). The metagenomes were trimmed and cleaned using fastp (Chen 
et al., 2018) with the following parameters:q 30 -l 25 
–detect_adapter_for_pe –trim_poly_g –trim_poly_x. A de novo single as
sembly approach was applied using the assembler megahit 1.1.2 (Li 
et al., 2015) with default settings. Then, microbial community compo
sition was determined using the software MetaPhlan2 v4.1.1 (Truong 
et al., 2015) (Datasheet 1B). The annotation of contigs for prokaryotic 
protein-coding gene prediction was done with the software prodigal 
v2.6.3 (Hyatt et al., 2010). The DNA reads were mapped against the 
contigs with bowtie2 (Langmead and Salzberg, 2012), and the resulting . 
sam files were converted to .bam files using samtools 1.9 (Li et al., 
2009). The .bam files and the prodigal output .gff file were used to es
timate read counts by using featureCounts (Liao et al., 2014). To detect 
hgcA genes, we used the procedure described in Capo et al. (2023a). 

Table 1 
Dataset of metagenomes used in the present study. Detailed information is 
provided in Datasheet 1A.

References #freshwater 
systems

#metagenomes Location

BD Peterson et al. 
(2023)

1 33 Brownlee Reservoir 
(US)

Capo et al. 
(2023b)

1 11 Lake Geneva (France- 
Switzerland)

Garner et al. 
(2023)

160 160 Canada

Sanseverino et al. 
(2022)

1 24 Lake Varese (Italy)

Buck et al. (2021) 38 258 Worldwide
Jones et al. 

(2019)
2 5 Lake Manganika & 

McQuade (US)
Peterson et al. 

(2020)
1 5 Lake Mendota (US)

Xing et al. (2020) 1 5 Lake Fuxian (China)
Yang et al. (2019) 23 57 Worldwide
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HMM profiles from the Hg-MATE database (v1) were applied to the 
amino acid FASTA file generated from each assembly with the function 
hmmsearch from HMMER v3.2.1 (Finn et al., 2011). Genes with E-values 
<10–3 were considered as significant hits. To further confirm putative 
hgcA genes within the HMM search hits, we used the high stringency 
cutoff defined by Capo et al. (2023a) by screening hgcA homologs for 6 
amino acids with the following motifs: NVWCAAGK, NVWCASGK, 
NVWCAGGK, NIWCAAGK, NIWCAGGK or NVWCSAGK.

Coverage values of hgcA genes were calculated as the number of 
reads mapped to the gene divided by its length in base pairs and were 
further normalized by dividing them by the summed coverage values of 
the single copy gene rpoB (both bacteria and archaea together) (Data
sheet 1C). The rpoB genes were detected using the HMM profile 
TIGR02013.hmm and TGR03670.hmm for bacterial and archaeal rpoB 
genes, respectively, and applying the trusted cutoff provided in HMM 
files. The reference package ‘hgcA’ from Hg-MATE.db.v1 was used for 
phylogenetic analysis of the HgcA amino acid sequences. Briefly, amino 
acid sequences from a gene identified as hgcA gene homolog were (i) 
compiled in a FASTA file, (ii) aligned to Stockholm formatted alignment 
of hgcA sequences from the reference package with the function 
hmmalign from HMMER (iii) placed onto the HgcA reference tree with 
the function pplacer and (iv) classified using the functions rppr and 
guppy_classify from the program pplacer v1.1.alpha19 (Matsen et al., 
2010). A taxonomic identifier (NCBI txid) was therefore assigned to each 
gene and used to create an hgcA+ taxa abundance table for downstream 
statistical analysis (Datasheet 1D).

2.3. Data analysis

Data analysis was conducted in R version 4.3.3 (2023–10–31 ucrt) (R 
Core Team, 2023). A map was done using the package rnaturalearth 
v1.0.1 (South and South, 2017) (Datasheet 1E), barplots and the dotplot 
using the package ggplot2 v3.5.2 (Wickham, 2011) and the PCoA 
analysis was performed using the function ordinate from phyloseq 
v1.46.0 (McMurdie and Holmes, 2013). A Kruskal–Wallis test pairwise 
comparisons were performed using Dunn’s test with Benjamini–Hoch
berg correction (dunnTest() from the FSA package v0.10.0 (Ogle and 
Ogle, 2017). To investigate the relationships between hgcA gene distri
bution and oxygen concentrations, samples were categorized into four 
categories: oxic (≥ 2 mg O2 L

-1), hypoxic (>0–2 mg O2 L
-1) and anoxic (0 

mg O2 L-1), and samples with no measured oxygen concentrations 
(Jürgens and Taylor, 2018). The ANOSIM analysis was performed by 
using the anosim function in vegan v2.6–10 (Oksanen et al., 2013). 
Pearson correlation coefficients were calculated to assess linear re
lationships between hgcA gene abundance and the environmental pa
rameters that have <60 % of “na”s values (Datasheet 1F) i.e., Pearson 
correlation coefficients were then computed on the filtered dataset and 
visualized as a heatmap using the corrplot package in R (Wei and Simko, 
2021) and hmisc R package (Harrell and Harrell, 2019). The TITAN2 
package v2.4.2 (Baker and King, 2010) was used to detect changes in 
hgcA+ taxa distributions along an oxygen gradient over the lakes that 
found hgcA genes, and assess synchrony among taxa change points as 
evidence for community thresholds. Taxa that occurred in <3 meta
genomes (27 txid) were excluded to ensure robust indicator selection. 
Then, indicator species z scores (rescaled “IndVal” score) (Dufrêne and 
Legendre, 1997; Baker and King, 2010) were calculated to integrate 
occurrence, abundance and directionality of taxa responses by using 
TITAN2 default settings (minSplt = 5, numPerm = 2, nBoot = 500, pur. 
cut = 0.95, etc.). Other packages that assisted in the above analysis and 
illustration include: dplyr v1.1.4 (Wickham et al., 2024), tidyr v1.3.1 
(Wickham et al., 2024), viridis v0.6.5 (Garnier et al., 2024), packcircles 
v0.3.7 (Bedward et al., 2024), ggforce v0.4.2 (Pedersen, 2023), scales 
v1.4.0 (Wickham et al., 2016) and ggchicklet v0.5.2 (Rudis and Bichat, 
2023).

3. Results

A total of 2294 hgcA genes were detected in the water columns across 
30 of the 186 studied freshwater systems, corresponding to 217 meta
genomes out of the total 586 analyzed (Graphical abstract, Fig. S1, 
Datasheet 1A). From metagenomes where hgcA genes were detected, the 
hgcA gene abundance (hgcA coverage values normalized by rpoB 
coverage values) ranged from 0.0003 – 0.4339 (Datasheet 1C). The hcgA 
genes were taxonomically assigned to 119 microbial taxa (NCBI txid, 
different taxonomic levels from phylum to genus) with the highest di
versity observed for Desulfobacterota (39), Firmicutes (14), Eur
yarchaeota (11), Chloroflexota (8) and Spirochaetes (8) (Datasheet 1D). 
The composition of hgcA assemblages differed between the 30 fresh
water systems (Fig. 1, Fig. S1). At the order level, certain taxa appeared 
to be broadly prevalent i.e., Kiritimatiellales (txid2026799, detected in 
23 systems) and Bacteroidales (txid171549, 22 systems). At the genus 
level, Syntrophus (tixd2676650) and Methanoregula (txid2052170) were 
both detected in 13 systems. A high number of txids were found in <15 
lakes i.e., Bacteroidetes (txid976, 14 systems), BSN033 (txid122706, 7 
systems) and Desulfobulbaceae (txid21321, 3 systems). The most 
abundant taxa were always found in multiple systems while others like 
Smithellaceae (txid182623, 8 samples from Lake Alinen Mustajärvi), 
and Desulfovibrio (txid2593640, 6 samples from Alinen Mustajärvi) were 
only detected in a single lake. Overall, some freshwater systems i.e., 
Alinen Mustajarvi, Kuujjuarapik-Whapmagoosti and Mekkojarvi 
exhibited higher hgcA richness and abundance, compared to other 
systems.

Most hgcA genes were found in metagenomes obtained from hypoxic 
(128) and anoxic (27) samples compared to oxic samples (17) (45 
samples had no oxygen data available) (Datasheet 1E). Additionally, the 
average relative abundance of hgcA genes was higher in hypoxic-anoxic 
samples with significant differences observed between oxic and hypoxic- 
anoxic samples (Kruskal–Wallis post-hoc tests, p < 0.001) but not be
tween hypoxic and anoxic samples (p = 0.08) (Fig. 2). Overall, a Pearson 
correlation analysis showed that hgcA gene abundance was significantly 
and negatively correlated with oxygen concentrations, temperature and 
pH and negatively to ammonium concentrations (Fig. S2). In terms of 
community structure, a PCoA analysis showed that both the broader 
prokaryotic communities (Fig. 3A) and the hgcA assemblages (Fig. 3B) 
were similar within the same lake, although some intra-lake heteroge
neity could be observed in e.g., Lake Loclat. ANOSIM analysis showed 
statistical differences of both the structure of the prokaryotic community 
and hgcA assemblage based on oxygen categories (ANOSIM, p < 0.001), 
as illustrated by ellipsoids in the PCoA plots. The prokaryotic commu
nity structure showed significant separation between anoxic and hyp
oxic (p < 0.001), as well as hypoxic and oxic (p < 0.001), but no 
significant difference was detected between anoxic and oxic samples (p 
= 0.296). In contrast, the hgcA assemblages in anoxic and hypoxic 
samples were significantly different from each other (p < 0.001) while a 
less marked difference was found for anoxic and oxic (p = 0.045) and 
there were no significant differences between hypoxic and oxic samples 
(p = 0.117).

A TITAN2 analysis was used to detect the presence of microbial taxa 
that serve as indicators of shifts in hgcA assemblage structure along the 
oxygen gradient (Fig. 4, Fig. S3). Based on the 0.95 thresholds chosen for 
purity and reliability parameters, 15 out of 119 taxa were deemed to be 
statistically pure and reliable indicators. Among them, 13 were 
considered to have decreasing hgcA abundance (z-) with dissolved ox
ygen increases. Most of these indicator taxa exhibited pronounced de
creases in hgcA abundance with increasing oxygen concentrations 
around 0.1 to 0.4 mg O2 L-1 such as Actinobacteria (txid1883427) and 
Geobacterales (txid213422). Among them, two indicator taxa showed 
decreased abundance in hgcA with increasing oxygen (>0 mg O2L-1), i.e., 
Aminicenantes (txid910038) and Syntrophales (txid213463). In 
contrast, Methanoregula (txid2649730) and Desulfobulbaceae 
(txid213121), exhibited stronger and more consistent increases in hgcA 
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abundance (z+) along the oxygen gradient with peaked z+ values found 
at 0.55 and 0.4 mg O2L-1, respectively.

4. Discussion

Oxygen is a critical controlling factor for mercury methylation, but 
its effects on the diversity and ecology of mercury-methylating micro
organisms remain poorly understood (Cabrol et al., 2023). Previous 
studies have investigated the relationship between hgcA abundance and 
oxygen levels (Capo et al., 2022a; Ji et al., 2020a, 2020b). Generally, an 
increase in oxygen is paralleled by a decrease in hgcA abundance. This 
inverse correlation between oxygen and hgcA has proven so strong that 
some successful mitigation strategies have implemented oxygen nano
bubbles to reduce hgcA abundance and mercury bioavailability (Ji et al., 

2020a, 2020b). Interestingly, some evidence of aerobic mercury 
methylation has been reported leading researchers to hypothesise the 
existence of other metabolic pathways for aerobic mercury methylation 
(Cao et al., 2021).

The dataset compiled in this study encompasses environmental 
genomic data from both systems previously unexplored for mercury 
cycling (Yang et al., 2019; Buck et al., 2021; Garner et al., 2023) and 
environments where mercury methylators have been the focus (Jones 
et al., 2019; Peterson et al., 2020; BD 2023). Noticeably, most fresh
water systems from which metagenomic data could be collected were 
located in socially developed regions as a consequence of the inequities 
in global lake science (Jiang et al., 2025). A systematic re-analysis of all 
metagenomes from these systems with the consensus protocol developed 
by Capo et al. (2023b) allows for an unbiased comparison of the di
versity and prevalence of mercury methylators across a large collection 
of metagenomes from various freshwater bodies, as well as statistically 
sound assessments of relationships between oxygen conditions and the 
abundance of hgcA genes, the genetic marker for mercury methylation. It 
has been showed that the abundance and expression of hgcA genes in the 
environment do not necessarily correlated for all mercury methylation 
(e.g., Capo et al., 2022b), precluding the use hgcA abundance estimates 
from metagenomes as direct evidence of mercury methylation on 
ecosystems.

4.1. Prevalence of mercury methylators in freshwater ecosystems

Prior to the discovery of the hgcAB gene pair (Parks et al., 2013), the 
vast majority of mercury methylators, cultivated and tested in labora
tory experiments (Gilmour et al., 2013), were identified as Desulfo
bacterota (previously referred to as Deltaproteobacteria), Firmicutes 
(including Clostridia), and Euryarchaeota (Methanobacteria). Most of 
the recent molecular studies looking for hgcA genes from environmental 
genomic datasets revealed that Desulfobacterota accounted for most of 
the taxa in mercury-methylating assemblages (Capo et al., 2022a; 
Peterson et al., 2020). They are also occasionally predominant in terms 
of hgcA gene abundance, with pertinent examples from the water col
umn of the Baltic Sea (Capo et al., 2022a), Black Sea (Cabrol et al., 2023) 
and thermokarst lakes (Gambardella et al., 2025). In the present study 
focusing on freshwater ecosystems, Desulfobacterota featured the 
largest hgcA richness with 39 microbial taxa (from genus to phylum) and 
was dominant in most systems e.g., Mekkojärvi, Lake TroutBog, 

Fig. 1. Heatmap showing the hgcA abundance of each txid in the 30 lakes where hgcA genes were found.

Fig. 2. Boxplot displaying the hgcA abundance from each metagenome with 
different oxygen concentrations: light blue for oxic (≥ 2 mg O2 L-1), blue for 
hypoxic (>0–2 mg O2 L

-1) and dark blue for anoxic (0 mg O2 L
-1). The number of 

samples considered for each category is displayed in the figure (n values).
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Lomtjärnan, Kuujjuarapik-Whapmapgoostui (Fig. 1). However, they 
were not predominant in the majority of the freshwater systems 
analyzed e.g., Lake Alinen Mustajärvi or Lake Loclat dominated by 
Kiritimatiellales and Bacteroidales. In agreement with Jones et al. 
(2019), our re-analysis of water metagenomes from the hypereutrophic 
sulfidic Lake Manganika and mesotrophic McQuade revealed that 
Aminicenantes (txid910038), Spirochaetes (txid1130380) and Kir
itimatiellales (txid2026799) were the taxa with the highest hgcA abun
dance. In the sulfate-enriched eutrophic Lake Mendota (Minnesota, 
USA), Kiritimatiellaeota and Bacteroidetes were the dominant mercury 
methylators while Desulfobacterota accounted only for 22 % of the hgcA 
genes (Peterson et al., 2020). The re-analysis of Peterson et al.́s (2020)
metagenomic data with the updated Hg-MATE database confirmed the 
previously found pattern with dominant microbial taxa in Lake Mendota 
water columns being txid2026799 (Kiritimatiellales) and txid171549 
(Bacteroidales) (Fig. S1). In Lake Geneva, predominant hgcA genes were 

identified as Firmicutes from sediment trap samples (Capo et al., 2023b), 
further annotated as Clostridiales in the present study (txid31979, 
txid186802) (Datasheet 1C). Moreover, the high hgcA richness found in 
Kuujjuarapik-Whapmapgoostui aligned with recent findings in such 
areas, making this region a point of interest for the study of mercury 
methylation in the Arctic (Gambardella et al., 2025). Altogether, the 
findings of our meta-analysis illustrate the high diversity of mercury 
methylators, many of which remain poorly understood in terms of their 
ecology.

4.2. Mercury methylators thrive in low-oxygen conditions in freshwater 
systems

Mercury methylators convert inorganic mercury into MeHg under 
anaerobic conditions (Bravo and Cosio, 2020), with the highest 
methylation rates hypothesized to occur in anoxic conditions, including 

Fig. 3. PCoA plots showing Bray-Curtis dissimilarity values of the whole prokaryotic community (A) and of hgcA assemblages (B). Ellipsoids depicted the oxygen 
categories associated with each sample: light blue for oxic (≥ 2 mgO2 L-1), blue for hypoxic (>0–2 mg O2 L-1) and dark blue for anoxic (0 mg O2 L-1).

Fig. 4. TITAN2 analysis. TITAN2 analysis linking hgcA txid abundance to an oxygen gradient. Each point represents a txid, with its position along the x-axis 
indicating its change point (i.e., the point along the oxygen gradient where its abundance shifts most strongly), and the y-axis showing the strength and direction of 
the response (positive or negative). Significant taxa identified as indicators of increasing (red colors) or decreasing (dark colors) oxygen are highlighted.
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anoxic water columns (Capo et al., 2022a; Eckley and Hintelmann, 
2006; Hintelmann, 2010). Consistently, hgcA genes are predominantly 
found in water columns with hypoxic and anoxic/euxinic conditions 
such as the Black Sea (Cabrol et al., 2023), the Baltic Sea (Capo et al., 
2022a), the Saanich Inlet (Lin et al., 2021) and Lake Mendota (Peterson 
et al., 2020). Our meta-analysis revealed that hgcA genes were pre
dominantly found in anoxic (0 mg O2L-1) and hypoxic (>0–2 mg O2 L

-1) 
conditions, with only a slightly higher abundance in anoxic environ
ments. Previous studies have studied the links between hgcA gene 
abundance and MeHg concentrations and mercury methylation rates in 
lake water columns (Jones et al., 2019; Peterson et al., 2020; BD 2023) 
but there is only a few studies highligting such links in oxygen deficient 
environments.

In our meta-analysis, we found a clear pattern showing that hgcA 
genes are more abundant in anoxic than hypoxic or in oxic conditions 
(Fig. 3) and that hgcA assemblages are also clustered according to pre
vailing oxygen levels (Fig. 4, ANOSIM analysis). Sulfate-reducing bac
teria, iron-reducing bacteria, and methanogens were the most 
commonly reported mercury methylators (Fleming et al., 2006; Gilmour 
et al., 2013), all of them being known to respire without oxygen via 
anaerobic respiration. However, more recent studies revealed the 
versatility of mercury methylators including potential capability for 
microaerophily or syntrophy (McDaniel et al., 2020; Lin et al., 2021; 
Vigneron et al., 2021) open discussions about the relationships between 
oxic conditions and mercury methylation. In our study, the TITAN2 
analysis identified 15 out of 119 microbial taxa as statistically signifi
cant indicators of community shifts along the dissolved oxygen gradient 
(Fig. 4). Of these, 13 taxa exhibited negative z-scores (z− ), indicating a 
significant decline in hgcA-associated abundance with increasing oxygen 
concentrations. This suggests a preference for suboxic or anoxic condi
tions. In contrast, two taxa—Methanoregula (txid2649730) and a 
representative of the Desulfobulbaceae family (txid213121)—displayed 
positive z-scores (z+), representing increasing abundance with higher 
(but still hypoxic) oxygen levels. Although Methanoregula is known as an 
anaerobic methanogen, a recent study revealed its presence in oxic 
waters (Kallistova et al., 2023). Breakpoints for each responsive taxon 
were distributed across the lower-to-intermediate range of the oxygen 
gradient, highlighting the transitional zone as a hotspot for community 
turnover of the mercury-methylating assemblage. All the taxa identified 
as potential indicators of community shifts are microorganisms that are 
typically favored by oxygen-deficient conditions. As metabolic capac
ities of microorganisms can vary even within families, it is difficult to 
provide robust inferences about their actual metabolic roles in these 
ecosystems.

Considering that oxic environments preferentially select for micro
organisms that use oxygen as their predominant electron acceptor (with 
higher energy yield), mercury methylators are not expected to be found 
in such water masses. However, it has been shown that hgcA genes can 
be found in sediment traps underlying the oxic water column of Lake 
Geneva (Capo et al., 2023b) where relatively high MeHg concentrations 
and significant mercury methylation rates were previously observed 
(Gascón Díez et al., 2016). In the oxic water column, mercury methyl
ators would have the potential to persist and grow in anaerobic micro
habitats such as sinking particles (Bianchi et al., 2018; Gallorini and 
Loizeau, 2021; 2022), animal guts (Gorokhova et al., 2020) or periph
yton (Cleckner et al. 1999). However, hgcA genes are rarely detected 
directly in oxic water samples using metagenomic data. In the present 
study, 17 metagenomes in which hgcA genes were detected had oxic 
conditions (≥ 2 mg O2 L

-1). Noticeably, most oxygen values were below 
fully oxic conditions (range 2.18–9.02 mg O2 L-1, mean = 6.40, sd =
2.20), potentially explaining the detection of putative mercury meth
ylators in conditions defined as oxic, while these environments may in 
fact represent the redox transition zone or sinking/suspended particles.

5. Conclusions

Our study identified the presence of hgcA genes in specific lakes, 
indicating potential hotspots for methylmercury production. Specif
ically, low-oxygen – both hypoxic and anoxic - water layers appear to be 
favorable ecological niches for hgcA+ microorganisms with inter-lake 
differences in the taxonomy of mercury-methylating groups. These 
findings suggest that certain freshwater systems may be particularly 
vulnerable to mercury methylation, especially as climate change and 
enhanced deoxygenation the likelihood of low-oxygen water layers—
even within water layers that are currently oxic. This underscores the 
need for closer monitoring of these ecosystems and provides a valuable 
resource for informing lake management strategies and guiding fish 
consumption advisories to protect both environmental and human 
health.
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Datasheet 1. This datasheet includes the following information (A) 
List of metagenomic data with related metadata (sequencing run, bio
informatics metrics, environmental parameters and associated refer
ences) (B) Outputs of the metaphlan analysis showing the community 
composition signal obtained for each metagenome (C) The hgcA gene 
abundance table showing information about the gene abundance, 
normalization and taxonomu (D) The hgcA gene abundance table at the 
txid level (NCBI taxonomic identifier) (E) Table used for the map 
generated in the Graphical abstract (F) Table used for the Pearson cor
relation analysis.

Figure S1. Composition barplots of the hgcA assemblages for each of 
the 30 lakes where hgcA genes were found. Oxygen concentrations are 
depicted by the colors of the id of each metagenome with the following 
color code: light blue for oxic (≥ 2 mg O2 L

-1), blue for hypoxic (0–2 mg 
O2 L

-1) and dark blue for anoxic (0 mg O2 L
-1).

Figure S2. Pearson correlation heatmap of environmental parame
ters, hgcA gene abundance and number of DNA reads (cleaned reads). 
See Datasheet 1A for further information about environmental param
eters and how they were obtained for each sample.

Figure S3. Community-level TITAN2 analysis showing indicator 
response strength along an oxygen gradient. The solid blue and red lines 
represent the cumulative sum of standardized z-scores (fsumz⁺ for pos
itive responders and fsumz⁻ for negative responders, respectively), 
indicating the aggregated strength of taxa responses increasing or 
decreasing with oxygen. Shaded areas or density curves depict the dis
tribution of individual taxa change points. The filtered sum(z) curve 
highlights zones of significant community response, where indicator 
taxa exhibit consistent directional change along the gradient.
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