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Terrestrial mammals are in many ways connected to water bodies, although studies on habitat selection
within anthropogenic landscapes often overlook the importance of water. The recolonization of grey
wolves, Canis lupus, across parts of Europe, together with developments in GPS technology, has offered
opportunities to study detailed spatial movements of this large carnivore in human-influenced land-
scapes. Here, we investigated wolf use, habitat selection and step length in relation to water bodies in the
boreal forest during winter. We hypothesized that wolves select for larger water bodies during ice periods
and use them as travel corridors for efficient movement, similar to forest roads. We used step selection
analyses with data from 71 GPS-collared adult wolves in 44 wolf territories in Scandinavia to investigate
habitat selection in relation to water bodies, time of day and season. The study included >50 000 GPS
positions taken at 4 h intervals between 2001 and 2023. Wolves selected for lakes and rivers during ice
periods, especially at night, with step length increasing when travelling on ice. Deep snow generally
impeded wolf step length, but not more on frozen water than in other habitats. These results indicate that
wolves utilize frozen water bodies as travel corridors for easier mobility during winter, possibly to reduce
human-encounter risk. Our findings emphasize the adaptability of wolves and, more generally, contribute
to our understanding of mammalian movement patterns and space use in the boreal zone.

© 2025 The Author(s). Published by Elsevier Ltd on behalf of The Association for the Study of Animal
Behaviour. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0]).

Water bodies connect aquatic and terrestrial trophic systems,
increasing productivity, species richness and diversity in sur-
rounding areas (Burgis et al., 2007). Most terrestrial mammals are
partly connected to riparian areas, as they offer the primary source
of fresh water necessary for hydration, body functions and ther-
moregulation (Campbell & Norman, 1998; Degen, 1997). Several
terrestrial predatory mammals have adapted to utilize water, such
as brown bears, Ursus arctos, hunting for migrating salmon, Onco-
rhynchus keta (Levi et al., 2020; Mangipane et al., 2020); jaguars,
Panthera onca, hunting for aquatic prey (Franco et al., 2018); and
wolves, Canis lupus, ambushing North American beaver, Castor
canadensis, and fishing (Freund et al., 2023; Gable et al., 2018).

Water bodies are strongly affected by seasonality, especially in
the boreal and arctic parts of the northern hemisphere. Large open
water (lakes and, to a lesser extent, rivers) during summer can
hinder movement and fragment the landscape (Leblond et al.,
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2016; Newton et al., 2017) while providing resources at the same
time. During winter, much of this water freezes to ice and gives
way to new terrains (Banfield, 1954). This can facilitate movement,
thereby reducing energetic costs. For example, polar bears, Ursus
maritimus (Pagano et al, 2021), arctic foxes, Vulpes lagopus
(Pamperin et al.,, 2008), and caribou, Rangifer tarandus caribou
(Leblond et al., 2016), use (sea) ice as part of their home range and
for migration and dispersal movements. However, if and how the
availability of water bodies affects the ecology and space use of
terrestrial species in boreal ecosystems, especially in Scandinavia,
is an overlooked topic in ecological research.

The grey wolf, C. lupus, being one of the key apex predators of
boreal ecosystems, has recolonized large parts of northern Europe
since its near extirpation (Chapron et al., 2014; Ordiz et al., 2015;
Wabakken et al., 2001). It was previously shown that water bodies
are used by wolves for foraging and movement in North America
(Latham et al., 2011; Mech, 1981), especially along the Pacific
Northwest (Roffler et al., 2018). For instance, wolves have been
found to make frequent kills near open water (Bojarska et al., 2017;
K. E. Kunkel & Pletscher, 2000) and on ice (Kauffman et al., 2007;
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McPhee et al., 2012; Webb, 2010), while ungulate prey seek refuge
in water as a survival strategy (Mech et al., 2015). Moreover, frozen
water bodies could serve as travel corridors (Kingdon et al., 2025;
Kittle et al., 2017; Newton et al., 2017), similar to roads, trails and
power lines (Johnson-Bice et al., 2023; Muhly et al., 2019). How-
ever, the use of human infrastructure by wolves, in particular main
roads, is mostly restricted to night-time and varies with road
density, probably to maintain cryptic behaviour towards humans
(Bojarska et al., 2020; Zimmermann et al., 2014). Thus, frozen
water bodies might be used as travel corridors when human in-
fluence is high, as wolves tend to avoid areas of high human
density, perceiving them as a risk (Hebblewhite & Merrill, 2008;
Ordiz et al., 2015). Conversely, large rivers are situated in valley
bottoms, where snow is less deep and prey accumulate during
winter (Bunnefeld et al., 2011; Mysterud et al., 2011; Ordiz et al.,
2020), but where roads and settlements are also situated.

Snow is known to affect mammals in the boreal zone (Boelman
et al., 2019), causing increased energetic costs of travel (Créte &
Lariviere, 2003) and decreased movement activity (Droghini &
Boutin, 2018a, 2018b; Melin et al.,, 2023). Therefore, wolves
might select habitats with lower snow depth during periods of
increased snowfall (K. Kunkel & Pletscher, 2001). Snow might be
less deep on frozen water, as it repeatedly melts and freezes on top
of the ice and forms snow-ice (Jeffries et al., 2005), blows away on
larger lakes (Bengtsson, 1986; Burgis et al., 2007) or starts accu-
mulating later than on surrounding land if the water is not yet
frozen during the first snowfall. Forest roads, however, are
ploughed irregularly (Zimmermann et al., 2014) and only partially,
probably causing ploughed sections to have increased human
traffic and unploughed sections to have deep snow unfavourable
for mobility.

Overall, little is known about the importance of water for
wolves in Europe, including Scandinavia, and the influence of ice.
The primary aim of this study was to investigate wolf habitat use
and selection in relation to water bodies during winter. We hy-
pothesized that (H1) wolves would select water bodies depending
on whether they facilitate or obstruct their movement. We pre-
dicted wolves to select larger ice-covered water bodies (lakes,
rivers), using them as travel corridors (similar to roads), but to
avoid them during ice-free periods because these may then rather
obstruct their movements (while we expected smaller streams to
neither facilitate nor hinder movement irrespective of ice cover).
Additionally, we hypothesized that (H2) wolves would adjust the
use of water bodies depending on the time of day based on their
activity patterns and human encounter risk. We predicted that
they use frozen water bodies more during night-time when wolves
are generally more active and human encounter risk is low, and
that during daytime wolves select for ice-covered rivers for trav-
elling rather than roads or lakes (lacking vegetation cover) to
reduce human encounter risk. Furthermore, we hypothesized that
(H3) movement distances by wolves would vary with water body
characteristics and snow depth because of their effects on travel
efficiency. Accordingly, we predicted an increased step length by
wolves when travelling on ice, because frozen water bodies facil-
itate linear movement and might have shallower snow depths
than surrounding habitats. Finally, we hypothesized that (H4)
snow depth would affect wolf use of forest roads depending on
whether roads are ploughed. We predicted wolves to reduce forest
road use at deeper snow depths when roads are unploughed, due
to deeper snow hindering movement efficiency, having instead to
select ploughed sections of road with increased human encounter
risk (due to concentrated traffic there). Through these hypotheses,
this study aimed to explore the adaptive movement behaviour of
wolves in response to natural water features and temperature
changes during winter.

METHODS
Study Area and Animals

The study was conducted in the core of the wolf breeding range
of the Scandinavian population in Norway and Sweden (Fig. 1). We
used GPS data of 71 adult, territorial wolves (31 females, 40 males,
average pack size of 6; Chapron et al., 2016), collected between
February 2001 and November 2023 (see Table S1 in the Supple-
mentary Material) by the Scandinavian Wolf Research Project
(SKANDULYV). Fix rates were set to a standard of 4-hourly intervals
and the position data were collected into the Wireless Remote
Animal Monitoring (WRAM) database system for data validation
and management (Dettki et al., 2013). Wolf winter territories (N =
44,100% MCP between 10 October and 1 May) had a mean (+ SD)
area of 1068 + 853 km? per territory (Fig. 1). The territories were
mainly covered by boreal coniferous forest (69 + 9%), followed by
open areas, mainly including bogs, natural grasslands and moun-
tainous areas (20 + 11%), lakes (6 + 4%), other forests (3 + 2%),
agricultural areas (2 + 3%), rivers (0.2 + 0.2%) and built-up areas
(0.4 + 0.7%; European Environment Agency, 2024b). Forests were
dominated by Scots pine, Pinus sylvestris, and Norway spruce, Picea
abies, mixed with deciduous species such as the birch Betula
pubescens, aspen, Populus tremula, willow, Salix sp., and alder, Alnus
sp. There was a mean length (+ SD) of 1182 + 940 km of forest
roads (gravel) per wolf territory, with forest road density being
1.14 + 0.24 km/km?. Main roads (paved) had a mean length of 265
+ 253 km per territory and main road density was one-quarter of
forest road density (0.28 + 0.16 km/km?). Building density within
territories was 2.14 + 1.58 buildings per km?. The territories had a
mean human population density of 8.32 persons per km? (Earth
Science Data System, NASA, 2024). The mean length of shoreline
was 2012 + 1598 km per territory (lakes 605 + 516 km, rivers 286 +
342 km, streams 1120 + 883 km). River density per territory was
0.22 + 0.14 km/km?. The mean area covered by lakes per territory
was 60 + 57 km?. The main prey of Scandinavian wolves is moose,
Alces alces, representing 73% of the food biomass during winter,
with roe deer as secondary prey species (Sand et al., 2016). Smaller
prey include Eurasian beaver, Castor fiber, badger, Meles meles, red
fox, Vulpes vulpes, mountain hare, Lepus timidus, western caper-
caillie, Tetrao urogallus, and black grouse, Lyrurus tetrix (Di Bernardi
et al., 2021; Sand et al., 2016).

GPS Data Preparation

The original data set consisted of 72 360 winter GPS positions,
defined from 10 October (generally earliest ice cover) until 1 May
(generally latest ice cover) from 92 wolves. We removed the first 7
days of data after an individual was captured and used data from
winters where an individual had >14 days of data. Furthermore, as
the breeding pair mostly travels together (Carricondo-Sanchez
et al.,, 2020; Nordli et al., 2023), we retained only the individual
with the most GPS positions per territory per winter if both adults
were collared. We converted individual wolf GPS positions to
tracks, using the make_track function from the R package amt
(Signer et al.,, 2019, 2024), for the subsequent step selection
analysis (SSA) (Avgar et al., 2016) in R (R Core Team, 2024). We
resampled the tracks to 4-hourly positions with a 15 min tolerance
and then transformed them into steps (distance moved between
4-hourly GPS positions) using the steps_by_burst function. After
resampling, we were left with 50 077 4-hourly actual steps from 71
individuals (44 territories). Each actual step consists of a start
and end position, turning angle and step length. Using the
random_steps function, we generated 10 random steps for each
actual step (Signer et al,, 2019; Zimmermann et al., 2014). This
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Figure 1. Map of the study area in Scandinavia, showing the 100% minimum convex polygons (MCPs) of the 44 wolf winter territories.

created a data set of grouped wolf steps, each set including one
actual step and 10 random steps, and a total of 549 871 steps. Each
set of actual and random steps were assigned a step ID.

Climate Data

To determine periods when water bodies were covered by ice
(hereafter ‘ice periods’), we used daily temperature data that were
obtained from the R package nasapower (Sparks et al., 2024),
retrieving data from NASA at 0.5 x 0.625 degree resolution (NASA
Langley Research Center POWER Project, 2024). We retrieved daily
mean temperatures in °C at 2 m above ground for each territory
centroid. As there are no public data available on ice cover in the
study area, and different water bodies freeze over at different
times and conditions, we set ice periods according to a basic set of
requirements and standard climate indices (Reig-Gracia et al.,
2021). This functions as a proxy and captures most of the period
in winter when water bodies are frozen. The ice period would start
after daily mean air temperatures were <0 °C for 14 consecutive
days (mean freezing). The ice period would end after there was a
daily mean temperature >0 °C for 10 consecutive days. The dates of
the ice periods were then matched with the according wolf posi-
tions by date. This created a binary column that indicated water
bodies covered by ice (= 1) or not covered by ice (= 0) for each
territory and winter. In addition, we retrieved daily mean snow
depth data in cm for each territory and winter from the nasapower
package (Sparks et al., 2024).

Landscape and Human Variables

For landscape and anthropogenic variables, we used several
vector and raster layers, which were processed in QGIS 3.28.14-
Firenze (QGIS Development Team, 2024). GIS vector data for wa-
ter, roads and buildings were retrieved from the Norwegian Water
Resources and Energy Directorate (NVE, 2024) and N50-kartdata
from the Norwegian Mapping Authority (Kartverket, 2024) for

Norway, and Topografi 50 from the Swedish Land Survey for
Sweden (Lantmateriet, 2024). We categorized water bodies as
either lakes, rivers (>5 m wide flowing water) or streams (all
smaller flowing water bodies). We categorized roads as either
forest roads or main roads. Forest roads consisted of mainly gravel
roads, while main roads were paved. We used line density in QGIS
to generate density maps of forest roads and main roads. We used
the Tree Cover Density raster from 2012 (20 m spatial resolution),
2015 (20 m) and 2018 (10 m; European Environment Agency,
2024a) to account for habitat type, with high densities indicating
dense forests and low densities indicating open habitats. We used
a digital elevation model (DEM) raster, consisting of data from
DTM50 for Norway (Kartverket, 2024) and from the Markhojd-
modell grid 50 for Sweden (Lantmateriet, 2024), both with a res-
olution of 50 x 50 m. Lastly, we used the DEM to generate a slope
layer using the slope function in QGIS.

We then calculated distances of the closest lake, river, stream,
main road, forest road and building at the end of each step. We also
extracted elevation, slope and the densities of main roads, forest
roads and tree cover at the end of each step. To determine whether
a step was on water, we buffered water bodies with 10 m to
minimize potential steps on shorelines and simultaneously ac-
count for potential GPS error. Previous studies have used varying
distances to classify wolf positions on linear features, usually
considering distances between 0 and 50 m from the feature
depending on the aim of the study (Whittington et al., 2005;
Zimmermann et al., 2014). We used the same threshold to define
whether wolf positions were on forest roads and main roads. To
account for wolf activity patterns, as wolves are mostly active
during the night and rest during the day (Mech, 1992; Sand et al.,
2005; Sunde et al., 2024; Theuerkauf et al., 2003), the data sets
were split into day and night using the suncalc package (Thieurmel
& Elmarhraoui, 2022), which we used to calculate times of sunrise
and sunset for each territory and date. Positions taken from sunrise
until sunset were classified as day and positions from sunset until
sunrise were classified as night. For the step selection analyses, we
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categorized each step based on its end timestamp, whereas for the
step length analyses we used the midpoint timestamp between
the start and end of the step.

Statistical Analyses

First, we explored the spatial patterns of wolves in relation to
water bodies by comparing proportions of positions that ended
on water bodies depending on water body type (lake, rivers,
streams), day or night and during ice or ice-free periods. We used
a set of candidate models (Table 1) to analyse habitat selection,
consisting of generalized linear mixed models (GLMMs) with a
binomial family and logit link using the glmmTMB package
(Brooks et al., 2017). As response variable, we used a binary term
of 1 for the actual steps and O for the random steps. The full
models (Table 1) included being on a water body (on = 1) or not
(off = 0; separately for lakes, rivers and streams) as main pre-
dictor variables, including interactions with the binary variable
for ice period. The binary term for being on forest roads was
included in interaction with snow depth. Furthermore, we
included distance to closest building, main road density, forest
road density, tree cover density, slope and elevation as additional
predictor variables, to account for other factors potentially
affecting wolf habitat selection. We included the step ID nested
within wolf ID to make sure the model compared each actual step
to the generated random steps that belonged to it. We analysed
the data separately for daytime and night-time to account for
wolf activity patterns.

To investigate whether wolves utilized water bodies for more
efficient displacement during winter, using step length of actual
steps (defined as distance moved between 4-hourly GPS positions)
as response variable, we ran sets of candidate model (Table 1)
GLMMs with a gamma family and log link. Here we only used step
lengths that were >200 m to exclude steps of resting wolves, and
only GPS positions during ice periods. The full model (Table 1)
contained the binary variables that indicated whether the current
and/or previous step ended on lakes, rivers, streams or forest roads
(one or both on water/road = 1, both off water/road = 0) to analyse
the displacement when moving to and from these features,
including interactions with snow depth. We included steps ending
at forest roads as response variable to compare the usage of water

Table 1

bodies with already known travel corridors. We did not include
steps on main roads, as the number of actual steps on main roads
was low (N = 156 for all individuals during ice periods). Building
distance, main road density, forest road density, elevation, slope
and tree cover density were included as fixed effects and wolf ID as
random effect. Again, the data were analysed separately for day-
time and night-time.

All continuous variables were scaled and tested for correlation.
Distance to main roads was not included in the analyses, as main
road distance and main road density (Pearson correlation r =
—0.63) were highly correlated. For each analysis, we created a set
of eight candidate models based on our hypotheses, including a
full model and intercept-only model (Table 1). The models were
compared using the MuMIn package (Barton, 2024) and the best
model was selected based on AICc (Table S3 to S6). Estimates of
fixed effect variables whose 95% confidence intervals (CI) over-
lapped zero were considered uninformative (Arnold, 2010;
Tables S5 and S6). Selection plots show the relative selection
strength (RSS) on a log scale, which was calculated from the
relative selection coefficient for ‘on’ divided by ‘off’ (Avgar et al.,
2017).

Ethical Note

The wolves (N = 92) were tracked on snow, immobilized using
a CO,-powered dart gun from a helicopter and equipped with GPS
collars (GPS-Simplex or Tellus, TVP Positioning, Lindesberg, Swe-
den, and GPS-Plus, Vectronic Aerospace, Berlin, Germany, https://
www.vectronic-aerospace.com; Sand et al., 2005). Helicopter
chase time was always minimized to a few minutes (mean 5.75
min, range 1.0—20.0 min, median 1.0 min) and total anaesthesia
duration (from dart injection to reversal) was on average 90.3 min
(range 17—160 minutes, median 98.5 min; Ausilio, n.d.). All cap-
ture, handling and collaring procedures were conducted by trained
personnel according to standardized biomedical protocols
(Arnemo & Evans, 2017), complying with international guidelines
(ASAB Ethical Committee/ABS Animal Care Committee, 2025).
Necessary ethical permits and approval were provided by the
Swedish Animal Welfare Agency (no. 5.8.18—18473/2020, C 150/
15, 407/12) and the Norwegian Experimental Animal Ethics
Committee (FOTS ID 7224, 15370 and 26561). GPS-collar weight

Candidate models for habitat selection, including the full model and intercept-only model, for both habitat selection and step length analyses

Model name Model structure

Habitat selection daytime/night-time models
Intercept-only model selection ~ 1 + (1 | Wolf ID / Step ID)

selection ~ On lake * Ice period + On river * Ice period + On stream * Ice period + On forest road * Snow depth + Building distance + Main

road density + Forest road density + Elevation + Slope + Tree cover density + Sex + (1 | Wolf ID / Step ID)

selection ~ On lake * Ice period + On river * Ice period + On stream * Ice period + (1 | Wolf ID / Step ID)

Full model

Water model selection ~ On lake + On river + On stream + (1 | Wolf ID / Step ID)
Water and ice model

Road model selection ~ On forest road + (1 | Wolf ID / Step ID)

Road and snow model
Human model
Landscape model
Step length daytime/night-time models

Intercept-only model step length ~ 1 + (1 | Wolf ID / Step ID)

selection ~ On forest road * Snow depth + (1 | Wolf ID / Step ID)
selection ~ Building distance + Main road density + Forest road density + (1 | Wolf ID / Step ID)
selection ~ Elevation + Slope + Tree cover density + Snow depth + (1 | Wolf ID / Step ID)

step length ~ To/from lake * Snow depth + To/from river * Snow depth + To/from stream * Snow depth + To/from forest road * Snow

depth + Building distance + Main road density + Forest road density + Elevation + Slope + Tree cover density + Sex + (1 | Wolf ID)

step length ~ To/from lake * Snow depth + To/from river * Snow depth + To/from stream * Snow depth + (1 | Wolf ID)

Full model

Water model step length + To/from lake + To/from river + To/from stream -+ (1 | Wolf ID)
Water and ice model

Road model step length ~ To/from forest road + (1 | Wolf ID)

Road and snow model
Human model
Landscape model

step length ~ To/from forest road * Snow depth + (1 | Wolf ID)
step length ~ Building distance + Main road density + Forest road density + (1 | Wolf ID)
step length ~ Elevation + Slope + Tree cover density + Snow depth + (1 | Wolf ID)

Given are the model names and model structures. Models for daytime/night-time analyses had the same structure and are therefore described together.
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did not exceed 2% of the wolves’ body weight and had mechanical RESULTS
drop-off units preprogrammed to release after 900 days (regard-
less of earlier battery failure). GPS collars functioned on average (+
SD) for 148 + 146 days, with a mean fix success rate of 85 + 14%.

For the period of 1998—2024, there were six cases of capture-

Wolf GPS positions that ended on water throughout the winter
constituted on average (+ SE) 6.9 + 0.6% of total positions
(Table S2, Fig. 2). The proportion of positions on water bodies was

related mortality (2.7% of individuals, 1.9% of captures), see 2.2 times higher during ice periods (8.6 + 0.9%) than during
Arnemo et al. (2006) and Liberg et al. (2011). periods withoutice (3.9 + 0.4%). This increased use of water bodies
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Figure 2. Box plots comparing the percentages of GPS positions of 71 individual wolves on (a) lakes, (b) rivers and (c) streams, comparing ice-free periods (left columns) and ice
periods (right columns). The middle row plots show the percentages of GPS positions of wolves on (d) lakes, (e) rivers and (f) streams, compared to the cover (%) of these water
bodies per territory. Shapes indicate night (triangles) and day (circles), and colours indicate ice periods (blue) and ice-free periods (red). Dashed line indicates positions in
proportion to availability. The bottom plot (g) shows the mean step length (km) for each wolf, divided by lakes, rivers, streams and off all features, and separated by night and day.
Plots (a)—(f) are based on the entire data set, while (g) is based only on active steps (step length >200 m) during ice periods. Box plots in plots (a)—(c) and (g) represent the
median, interquartile range (IQR) and data spread (whiskers), while the jittered points indicate individual observations, with values beyond the whiskers representing statistical
outliers (1.5 x IQR).



during ice periods was related to lakes and rivers, with 3.8 and 4.0
times higher proportions of positions on water during ice versus
ice-free periods, respectively (Table S2). Streams were used
slightly less in ice periods than in ice-free periods (Table S2).

Habitat Selection

For both daytime and night-time analyses, the full model was
the best performing model (Tables S3 and S5). During ice-free
nights, wolves avoided lakes and neither avoided nor selected
for being on rivers (Fig. 3a). During nights with ice cover, wolves

W. Veenbrink et al. / Animal Behaviour 231 (2026) 123401

selected for lakes and rivers (Fig. 3a). The probability of selecting
for rivers during ice periods was similar to that of selecting for
forest roads (Fig. 3a). Streams were neither selected for nor avoi-
ded during nights, regardless of ice cover (Fig. 3a). Wolves selected
for greater distances from buildings, lower main road density,
lower forest road density, lower elevation, steeper slope and
higher tree cover density (Table S5).

During daytime, wolves avoided lakes, but less so during ice
periods (Fig. 3b). Wolves selected for rivers in ice periods, but
showed no selection for or avoidance of being on rivers during ice-
free periods (Fig. 3b). Streams were neither selected for nor
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avoided regardless of ice period (Fig. 3b). Wolves selected for Step Length
forest roads during night-time irrespective of snow depth whereas

increased snow depth resulted in avoidance of forest roads during The full model was the best performing model from the
daytime (Fig. 3¢). Similar to night-time, wolves selected for greater candidate models (Table S4). During both winter days and nights,
distances from buildings, lower main and forest road densities, wolves moved larger distances when travelling on as compared to
lower elevation, steeper slope and higher tree cover density during off lakes, rivers and forest roads, albeit with smaller distances
daytime (Table S5). during days than during nights (Fig. 4a). Step length generally
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Figure 4. (a) Effect plots of step length analysis from generalized linear mixed models (GLMMs), showing the step length when travelling to/from lakes (dark blue), rivers (light
blue), forest roads (red) and all other habitats (grey) during winter days (triangles) and nights (circles). Bottom plots (b—d) show the effect of snow depth on step lengths in
interaction with (b) lakes, (c) rivers and (d) forest roads. Lines represent the effect during night-time (solid) and daytime (dashed), and the grey lines refer to step lengths in all
other habitats as a baseline. (a) Whiskers and (b)—(d) shading represent the 95% confidence intervals derived from model prediction bounds.
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decreased with increasing snow depth, also when travelling on
forest roads and rivers, but not when on lakes (Fig. 4b—d). Step
length increased closer to buildings, at lower forest road density,
higher main road density (during nights only), less slope, lower
elevation and lower tree cover density (Table S6).

DISCUSSION

This study explored movement patterns and habitat selection
of wolves in relation to water bodies in the boreal zone of Scan-
dinavia. We found that wolves selected for lakes and rivers during
ice periods and increased their step length when travelling on
frozen lakes and rivers. Below, we discuss how these findings help
us to better understand the use of frozen water bodies by terres-
trial mammals.

Our results show that wolves avoided lakes during ice-free
periods in winter, indicating that larger open water bodies create
barrier effects for terrestrial mammals (Leblond et al.,, 2016;
Newton et al.,, 2017). Conversely, wolves selected for lakes and
rivers during ice periods (H1), indicating that wolves are capable of
identifying and adapting to this seasonal change. This adaptation is
similar to other species’ utilization of frozen water. For example,
ice cover had a positive influence on caribou movement rates and
directionality, with caribou selecting for ice cover when moving
across large water bodies (Leblond et al., 2016). There was no se-
lection for or avoidance of streams, with or without ice cover,
possibly because streams are too small to have a barrier effect for
wolves (Kingdon et al., 2025) or to function as connective linear
features for movements during ice periods, and deep snow might
completely cover them in the landscape. Wolves selected frozen
water bodies mainly during night-time (H2), suggesting that they
use them more when they are active, rather than during daytime
when activity is lower (Sand et al., 2005; Theuerkauf et al., 2003),
similar to the use of forest roads (Carricondo-Sanchez et al., 2020;
Zimmermann et al., 2014).

Larger frozen water bodies could form corridors that connect
key areas of wolf territories, similar to human-made linear fea-
tures, such as forest roads (Johnson-Bice et al., 2023; Malcolm
et al., 2020; Muhly et al., 2019). Previous research identifying
frozen water bodies as travel corridors suggested wolves only used
frozen water bodies in areas with low availability or absence of
anthropogenic features (Kittle et al., 2017; Newton et al., 2017). In
contrast, our results indicate that wolves selected for frozen water
bodies while forest roads were widely available (mean density 1.14
km/km?). Wolves travelled more efficiently on ice compared to
when they did not travel on ice, as shown by longer step length
when travelling on larger frozen water bodies, both during day-
time and night-time (H3). Step lengths were comparable on frozen
rivers and forest roads, similar to Musiani et al. (1998).

Additionally, the use of frozen water bodies during night-time
by wolves might correlate with high prey density and lower ele-
vations with less snow (Hjeljord, 2001; Mysterud et al., 2011).
Frozen rivers, often located in valleys, may serve as travel corridors
and foraging areas for prey, thus potentially increasing the likeli-
hood of prey encounters. For example, moose have been shown to
partly migrate into valleys during winter (Bunnefeld et al., 2011)
and wolves have been found to follow their seasonal migration as a
hunting strategy (Ordiz et al., 2020). Although wolves do not
necessarily select for hunting near frozen water bodies (McPhee
et al., 2012), they have been found to kill prey frequently near or
on frozen water (Bojarska et al., 2017; K. E. Kunkel & Pletscher,
2000, 2001; Webb, 2010).

The effect of snow on the selection of forest roads was only
found during daytime, thus partially supporting the hypothesis
that wolves decrease their use of forest roads with increased snow

depths (H4). As forest roads are ploughed irregularly
(Zimmermann et al., 2014) or only partially, only ploughed sec-
tions of forest roads will facilitate efficient mobility (except at
relatively low snow depths). However, during daytime, ploughed
roads might also have increased human traffic, causing a trade-off
between efficient travel and increased human encounter risk.
Additionally, the snow cover will be shallower in forests with high
tree cover density when compared to adjacent open areas
(including forest roads). Coyotes are known to select habitat on a
very fine scale, strongly influenced by snow depth (Créte &
Lariviere, 2003; Murray & Boutin, 1991), suggesting similar
behaviour might occur in wolves. As our snow depth variable was
on a coarse spatial and temporal scale, we suggest there may exist
a more complex, fine-scale relationship between wolf selection for
travel corridors and snow than we could untangle. However, we
did find clear effects of snow depth on step lengths, showing that
wolf step lengths were indeed impeded by deeper snow (Droghini
& Boutin, 2018a), but not more on water bodies and roads than in
other habitats. Wolf step lengths remained quite stable when
travelling on frozen lakes with increased snow depth in the ter-
ritory, which could be explained by a different microclimate on
lakes as compared to other habitat types (Bengtsson, 1986; Burgis
etal.,, 2007) and the formation of snow-ice causing shallower snow
depths on lakes (Jeffries et al., 2005). Wolf step lengths were lower
on frozen rivers only during daytime, suggesting that wolves
might not use rivers for long-distance travel during daytime.

When interpreting step lengths with regards to linear features,
human-made or natural, it is important to approach inferences
with care, as these results require nuance and are best understood
in combination with other factors of importance for wolves. Linear
features lead to more directed movement, thus directly increasing
the likelihood of longer distances between steps (Dickie et al.,
2017, 2020). Increased step lengths on linear features supports
this hypothesis but, combined with the results on habitat selec-
tion, our study shows that wolves actively selected for frozen
water bodies as travel corridors. The 4-hourly sampling interval of
our GPS data were too coarse to analyse space-use patterns of
wolves on frozen water bodies in detail. Lastly, our study was
limited by our estimation of ice periods, as there were no detailed
ice-cover data available. As a consequence, our estimates could not
account for differences in water body type, size and depth, alti-
tude, stream flow or water temperature, which might affect ice
cover and thickness.

Our findings provide new insights on how wolves use water
and contribute to our understanding of mammalian mobility in
boreal regions. We show that wolves are highly adaptable con-
cerning their habitat selection, utilizing frozen water bodies for
efficient winter travel. To better understand if wolves utilize water
bodies for other purposes, such as hunting and/or as meeting
points, future studies could investigate finer-scale GPS data that
allow for analysing GPS clusters, kill sites and more specific be-
haviours. For example, relating kill sites and moose densities to
water might further explain the use of water bodies as a hunting
strategy in both summer and winter. Similarly, further investiga-
tion of den sites, rendezvous sites and daybeds could address the
importance of water availability during reproduction, pup rearing
and resting. Considering the effect of ice, in combination with
other variables such as snow and human-made objects, can
contribute to our understanding of mammalian seasonal move-
ment patterns and space use in the boreal zone.
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