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A B S T R A C T

Comparative studies of silk mechanical properties often highlight spider silk as superior to silkworm silk, but 
such claims are frequently based on inconsistent methodologies and limited species selection. This study revisits 
the comparison by emphasising the importance of accurate fibre cross-sectional area measurements, particularly 
given the irregular geometry of many silkworm silks. By correcting for overestimated cross-sectional areas, which 
were often assumed to be circular, we show that spider and silkworm silks exhibit comparable mechanical 
properties. The highest-performing natural silk in our dataset is not from a spider but from a bagworm. Addi
tionally, we apply the theoretical framework based on fracture mechanics proposed by Porter, demonstrating 
that fibre strength scales with Young’s modulus and inversely with diameter, in line with Griffith-Irwin fracture 
theory. This scaling holds for both natural and synthetic fibres, suggesting a universal failure mechanism. Our 
findings advocate for broader consideration of non-model silks and a more physics-informed approach to un
derstanding silk mechanics.

1. Main text

Silk materials have long been regarded as a holy grail for textile and 
biomedical industries, captivating scientists for millennia [1]. Produced 
by many animals, silk has been most studied in silkworms and spiders. 
With more than 150,000 silk-producing Lepidoptera species and 52,000 
known spider species, by necessity research has focused on a few 
“model” silks: the domesticated silkworm Bombyx mori and the major 
ampullate silk of spiders [2].

Major ampullate silk has often been considered among the best 
biological materials in terms of mechanical properties. This fascination 
pushed the community to produce large datasets such as the Silkome 
database [3] and notable discoveries, including the 2010 study on 
Caerostris darwini [4], whose major ampullate silk showed a toughness 
modulus over 350 MJ/m3—the highest reported for a biological mate
rial. This result inspired work on its protein sequences and recombinant 
production.

That study is often cited to claim that spider silk is tougher and 
mechanically superior to silkworm silk. But is this true? More recently, 
attention has turned toward exploring novel silk types within Lepidop
tera with a view to better appreciate the performance envelope of silks in 

general [5]. Such efforts may help answer the question; is spider silk 
inherently “better” than silkworm silk?

When comparing silks, fibre collection and testing methodologies are 
crucial [6]. Collection speed, testing strain rate, humidity, and tem
perature can all influence measured properties. However, the greatest 
impact arises from two factors: (i) whether true or engineering stress–
strain values are used (as thoroughly discussed in Greco et al. [6]), and 
(ii) the method used to calculate the fibre cross-sectional area. Spider 
silks typically exhibit circular cross-sections, whereas Lepidoptera silks 
often display irregular geometries [7]. Yet many studies estimate area by 
assuming circularity, taking the widest diameter—an approach that can 
overestimate true area by a considerable amount (Fig. 1a-c).

Using data from various studies on Lepidoptera silks and by 
embedding and sectioning 16 Lepidopteran species, we calculated the 
ratio between the actual cross-sectional area and the value obtained by 
assuming a circular cross-section. On average, this ratio is approxi
mately 2, meaning the circular assumption can overestimate the true 
area by a factor of two (Fig. 1d). However, the difference between true 
and measured values for the 16 species varied greatly, ranging from a 
10.6% decrease for Bombyx mori to a 59.5% decrease for Philosamia 
cynthia. Therefore, species- specific correction factors should be 
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determined.
Applying this correction we compared the mechanical properties of 

spider and Lepidoptera silks (Fig. 1e, Supplementary Data Sheet, Sup
plementary information). After correction, spider silks no longer appear 
universally superior: average values across both groups are comparable, 
and the highest-performing natural silk in our dataset comes from 
bagworms, as shown in Yoshioka et al. [8]. Reported silkworm silk 
values often mix native and degummed samples; the thick sericin layer 
in non-degummed fibres likely leads to an underestimation of the 
intrinsic strength of the fibroin core, which gentler degumming could 
better reveal. The curious observation of pores/nanovoids in silks is 
likely to lead to further underestimations of the contribution of the 
fibroin brins to the fibre mechanical properties and is something that 
requires more attention in the future [9,10]. In addition, the typical 
irregularities in cross-sectional area or porosity often observed in Lepi
doptera silks may also induce undesirable stress concentrations, poten
tially leading to premature fracture [6].

The persistent narrative of spider silk superiority largely arises from 
selective comparisons between orb-weaving spiders and domesticated 
B. mori. Domestication focused on easier reeling and reduced sericin, not 

on mechanical optimization [11]. As a result, B. mori silk is something of 
an evolutionary oddity, with altered fibre properties compared to wild 
silks [12]. Moreover, degumming protocols can weaken fibres, while 
wild silkworm silks are often tested without optimization—making 
comparisons with unprocessed spider silks uneven [13]. Additionally, 
when comparing spider and Lepidoptera silks, the natural variability of 
spider silk is rarely acknowledged [14], with most reported values ob
tained under idealized conditions.

A helpful framework for interpreting silk mechanics comes from 
Porter et al. [15], who argued that silk’s strength is not due to unique 
molecular features but to reduced fibre dimensions. Building on Grif
fith’s fracture theory and Irwin’s revisions, they suggested fibre strength 
(σ) scales with:

σ ∼

̅̅̅̅̅
GE
d

√

where E is Young’s modulus, d is fibre diameter, and G is the 
strain energy release rate.

We tested this prediction using our expanded dataset, plotting 
strength, Young’s modulus, and diameter for spider and Lepidoptera 
silks, alongside carbon and Kevlar® fibres. The fit (R² = 0.708) supports 
the universal fracture mechanism proposed by Porter et al., indicating 
that both natural and synthetic polymer fibres follow similar scaling. 

Fig. 1. Comparison of real vs. estimated cross-sectional area between different species of silkworm. Cross-sectional outlines (black) superimposed onto estimated 
(red) circular diameters as viewed from above and their difference in areas for a) Bombyx mori, b) Antheraea pernyi, c) Philosamia cynthia. Graph d) shows the 
comparison of estimated cross-sectional area (red) against measured cross-sectional area (black) for 16 species of silkworm. Data are presented as mean ± standard 
error. The real cross-sectional area is typically much smaller than estimated, thus the real stress on the fibre under tension is much higher, which increases the 
calculated values of strength, Young’s modulus and toughness modulus. e) Ashby plot of spider (blue) vs. silkworm (orange) silk properties. Gray diamonds represent 
degummed silkworm silk and green triangles represent synthetic fibres (these data were obtained from the literature). Spider silk data are corrected based on Greco 
et al. 20236. Dashed lines represent averages. The averages on silkworms were taken considering only non-degummed fibres. f) Plot inspired by Porter et al.15, in 
which the strength of the fibre is fitted vs the square root of the ratio between its Young’s modulus and diameter. In addition to original data, further mechanical 
properties were obtained from the literature (see supporting information).
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That said, it is important to note that silk fracture mechanisms may 
differ due to its unique molecular structure.

In conclusion, this study offers two key takeaways. First, spider silk is 
not universally superior to Lepidoptera silk; meaningful comparisons 
must specify species and methods. Second, the scaling of fibre strength 
with Young’s modulus and diameter supports a universal fracture 
mechanism across natural and synthetic fibres.

This work is timely, for it encourages exploration of underrepre
sented silk types beyond traditional models and promotes a physics- 
informed view of silk mechanics grounded in polymer science.
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Supplementary information to this article can be found online at 

https://doi.org/10.1016/j.matdes.2025.115224.

Data availability
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