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Abstract

Quantifying the impact of lower trophic level species abundance on higher tro-
phic level predators (and vice versa) is critical for understanding marine ecosys-
tem dynamics and for implementing ecosystem-based management. Trophic
ecosystem models generally predict a tight coupling between prey and fish preda-
tors, such that higher abundance of lower trophic species increases the abun-
dance of higher trophic level predators. This assumes that predator feeding rates
are limited by prey availability to some degree. Despite being a key component
of predator-prey interactions and multispecies fisheries management, relatively
few studies have assessed the impacts of prey availability on predation patterns
of mobile, generalist fish predators using spatiotemporal models and local-scale
stomach content, predator, and prey data. In this study, we explore the associa-
tion between local density of key prey and predator stomach contents, and
predator-prey spatiotemporal overlap and predation indices, using the Baltic Sea
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as a case study. We use three decades of spatially resolved biomass and stomach
content data on Atlantic cod (Gadus morhua), and biomass data on three of its
key prey: herring (Clupea harengus), the isopod Saduria entomon, and sprat
(Sprattus sprattus). Using geostatistical generalized linear mixed-effects models
fitted to relative biomass density and prey-mass-per-predator-mass, we estimate
spatiotemporal trends and annual indices of biomass- weighted and area-
expanded per-capita and population-level predation, predator—prey overlap, and
the correlation between these indices. Range shifts have resulted in reduced
predator—prey overlap over time, which is now the lowest in three decades. For
Saduria, we find an association between prey availability and stomach contents,
but not for herring or sprat. Similarly, only in Saduria do we find a positive cor-
relation between population-level predation indices and the spatiotemporal over-
lap. Although behavioral interactions with pelagic prey are challenging to infer
from stomach content and acoustic data due to high mobility leading to fine-
scale spatiotemporal mismatch, the weak connection with local-scale availability,
and low correlation between population-level predation and spatial overlap,
could imply weaker coupling between pelagic prey and cod than previously
thought. These findings provide key information on the strength of species inter-
actions, which is crucial for the continued development of multispecies models

and ecosystem-based fisheries management.

KEYWORDS

INTRODUCTION

Temperate marine ecosystems are shaped by complex
combinations of bottom-up and top-down processes
(Lynam et al., 2017). In coastal or upwelling systems,
these two processes can be linked at intermediate tro-
phic levels by small pelagic planktivorous fish, which
can control lower trophic levels with top-down effects
and upper trophic levels via bottom-up effects—also
referred to as wasp-waist control (Bakun, 2006; Cury
et al., 2000). Ecological theory generally suggests a
tight coupling between prey and predators (Poggiale,
1998) such that higher prey densities benefit predator
populations. This positive link between prey abun-
dance and predator performance has been supported
by a range of trophic ecosystem models (Chagaris
et al., 2020; Pikitch et al., 2014; Smith et al., 2011),
although this may vary depending on structural model
assumptions (Walters et al., 2016). Such findings have
led in some circumstances to management strategies
that aim to reduce fishing pressure on lower trophic
level fish to avoid negative impacts on higher trophic
levels (Chagaris et al., 2020; Cury et al., 2011; Pikitch
et al., 2012).

Atlantic cod, Baltic Sea, diet, ecosystem-based fisheries management, predator-prey
dynamics, spatiotemporal mixed models, species distribution modeling, stomach data

Empirical support for this form of bottom-up or “donor
effect” (i.e., positive effects of prey on the predator but no
clear negative effects of predators on prey, sensu
Jennings & Kaiser, 1998) from intermediate to upper tro-
phic levels is, however, fairly limited (Jensen et al., 2012).
This could be because marine predatory fish are typically
mobile generalists, with diets changing through their
ontogeny, which implies many but weak trophic links
(Jennings & Kaiser, 1998; Strong, 1992). Not surprisingly,
one of the clearer examples of a donor effect is the decline
in productivity of Atlantic cod (Gadus morhua) in the
Barents Sea. This decline occurred because cod had lim-
ited ability to switch prey due to low diversity
in the intermediate trophic levels, leading to reduced
productivity after the main prey species, capelin (Mallotus
villosus) and herring (Clupea harengus), collapsed
(Hamre, 1994; Jensen et al., 2012; Mehl & Sunnand, 1991).

Another reason why these effects are difficult to
detect relates to spatial dynamics and the scale at which
trophic interactions occur (Hunsicker et al., 2011). Often
trophic interactions are assessed by relating time series
of population abundance of predators and prey (Hilborn
et al., 2017; Jennings & Kaiser, 1998; Overholtz &
Link, 2007), which neglects the important spatial
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dimension. While there are several examples of the
importance of local scale prey availability and donor
effects on upper trophic levels, most are for central place
foragers (e.g., for seabirds, Crawford, 2007; Cury et al.,
2011; Hentati-Sundberg et al.,, 2021; Robinson et al.,
2015), and few involve commercially exploited mobile
fish predators (Hilborn et al., 2017; Pikitch et al., 2018)
(but see Fall et al., 2021). Recent studies have illustrated
the potential of spatiotemporal modeling of predator and
prey density and stomach content data to quantify fine-
scale spatial and temporal variability in diet and to derive
model-based indices of consumption (Gartland &
Latour, 2024; Goodman et al., 2022; Griiss et al., 2020).
For example, Gartland and Latour (2024) related model-
based consumption indices derived from spatiotemporal
models to stock-level biomass of prey and found positive
associations. In a similar study, Goodman et al. (2022)
correlated annual spatial overlap and predation indices,
and found that the support for such correlations varied
across species. These studies did not, however, include
spatially explicit prey covariates, which may be impor-
tant, because local prey densities can be high and suffi-
cient for predators even though total prey population
abundance is low (Hilborn et al., 2017), and because the
spatial overlap between predators and their prey can vary
in the studied time period.

In this study, we investigated the relationship bet-
ween local prey availability and the relative mass of prey
in predator stomachs, as well as the relationship
between spatial overlap and predation at a population
level, using the Baltic Sea as a case study. We used three
decades of biomass and stomach content data from sur-
veys for the predator Atlantic cod (G. morhua), and bio-
mass data for some of its main prey, sprat (Sprattus
sprattus), herring (Clupea harengus), and the benthic
isopod Saduria entomon (henceforth only Saduria). The
central Baltic Sea ecosystem is a species-poor ecosystem
where sprat and herring make up more than 75% of the
diet by mass in cod around 35 cm (Kulatska et al., 2019;
Lindmark et al., 2025). Moreover, within this time
period, the feeding rates on sprat and Saduria, as well as
the growth, condition, and size-at-maturity of cod have
declined substantially (Lindmark et al., 2023; Mion
et al, 2021; Neuenfeldt et al, 2020; Sveding
et al., 2024). Together with an increased natural mortal-
ity (Eero et al., 2023; International Council for the
Exploration of the Sea [ICES], 2022a), this has severely
impacted the conservation status of cod, to the degree
that even in the absence of a commercial targeted fish-
ery (by European Union [EU] countries), the stock is
expected to remain below its biological limit reference
point in the near future (ICES, 2021). Hence, it is criti-
cally important to understand the drivers behind these

changes in the physiological performance of cod in the
Baltic Sea. Reduced feeding opportunities on benthic
and pelagic prey have been proposed as two of the possi-
ble underlying causes (Casini et al, 2016; Neuenfeldt
et al., 2020). Reduced feeding on benthic prey is thought
to be due to increased competition for dwindling benthic
prey resources mainly linked to the deterioration of the
benthic habitats (Neuenfeldt et al., 2020), while reduced
feeding on pelagic prey has been hypothesized to be due to
a reduction of the prey in the main areas of cod occur-
rence (Casini et al., 2016; ICES, 2023). This has led to sug-
gestions that pelagic fisheries should be limited in the
current main distribution area of cod to improve growth
(Casini et al., 2016; Eero et al., 2012; ICES, 2015). How-
ever, it is largely unknown how the overall local-scale
overlap and encounter rates have changed over time and
how the local prey availability affects feeding opportunities
for cod.

Here, we aim to answer the following research
questions: (1) Is the relative mass of sprat, herring, and
Saduria in cod stomachs related to the local availability
of these prey? (2) Have the relative masses of, and pre-
dation on, these prey in the diet changed over space
and time? (3) Has the spatial overlap between cod and
its prey changed over time? (4) Do spatial overlap indi-
ces correlate with population-level predation indices
over time?

METHODS
Data
Stomach data

Stomach content data for Baltic cod have been collected
by national institutes (opportunistically or within desig-
nated programs) over the past decades. In this study, we
use mainly data collated in EU-funded projects (Huwer
et al., 2014; Jacobsen et al., 2023), available at the newly
updated ICES stomach content database (https://www.
ices.dk/data/data-portals/Pages/Stomach-content.aspx).
We complement these data with data collated
in Lindmark et al. (2025), and historical data (Huwer
et al., 2014). We used 31 years (1993-2023) of data, mainly
collected on the biannual Baltic International Trawl Sur-
vey (BITS) conducted in the first and fourth quarters of
the year, but also from other cruises conducted at other
times of the year (see Huwer et al. (2014) and Jacobsen
et al. (2023) for a detailed description of the data sources).
Therefore, the spatial coverage of stomach sampling has
varied over time (see Figure 1 for the spatiotemporal distri-
bution of data).
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FIGURE 1 Location of stomach samples in the southern Baltic Sea. Colored contours correspond to depth, the fill color of the points

corresponds to year, and the size (area) of the points corresponds to sample size by year at that location. Rectangles correspond to

International Council for the Exploration of the Sea (ICES) rectangles.

Over time, the treatment of regurgitated stomachs
(and thereby the classification of empty stomachs)
has changed (Neuenfeldt et al., 2020). In the early part
of the time series, gall bladder status was used to
separate nonfeeding predators from feeding predators
with stomachs regurgitated in the trawl. In recent years,
recording gall bladder status is not mandatory, and pre-
dators with visible signs of regurgitation are replaced on
board. These differences in sampling over time can lead
to biased estimates of the proportion of empty stomachs
(Neuenfeldt et al., 2020). We acknowledge there may be
trends due to sampling in the proportion of nonfeeding

cod and that we cannot assess this bias. Therefore, we
opted to include all stomachs in our main analysis, and
reran the analysis with empty stomachs omitted (across all
years, the mean proportion of empty stomachs was 0.19).
For each cod predator, we calculated the total mass of
sprat, herring and Saduria in the stomachs. Any of these
prey were found in 43% of predator stomachs. In cases
where individual prey length but not prey mass was
available, we estimated mass using species-specific condi-
tion factors and mass-length exponents. The condition
factor and exponent for Saduria are means for isopods in
Robinson et al. (2010), and for fish prey (herring and
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sprat) they were retrieved from FishBase (Froese &
Pauly, 2025). These individual-level prey masses were
used to calculate prey-mass-per-predator-mass—hereafter
referred to as “relative prey mass.” The size distribution
of cod, and the distribution of relative prey masses can be
seen in Appendix S1: Figures S1 and S2. Similarly, cod
mass was estimated from cod length if missing in the
data. Because the length-mass relationship in Baltic cod
has varied substantially over the time period, affecting
the relative prey mass, we estimated annual values of the
condition factor from the trawl survey BITS (see Biomass
density models). After data processing, 33,243 cod
stomachs were available for analysis.

Prey data

ICES rectangle-level (Figure 1) biomass estimates for
sprat and herring were acquired from the ICES Baltic
International Fish Survey Working Group (WGBIFS)
database for the Baltic International Acoustic Survey

Q1: Changes in

'

Spatiotemporal
diet models

l

Predict
relative prey weight (R)
on spatial grid
tkg/kg]

Spatiotemporal trends in
population-level
predation intensity (Pp,,-)

FIGURE 2

Q2: Changes in
diet? predation intensity ?

Spatiotemporal trends in
per capita
predation intensity (P, ;)

(BIAS) (https://www.ices.dk/community/groups/pages/
WGBIFS.aspx). As in Lindmark et al. (2023), biomass
density of Saduria was extracted from a habitat distribu-
tion model coupled with modeled hydrographical data
from the regional coupled ocean biogeochemical model
Ecological Regional Ocean Model (ERGOM) (Gogina
et al., 2020; Neumann et al., 2021). The model was trained
to the time period 1981-2019 and predicted for the time
period 1993-2019 (but note that this prediction is constant
over time and therefore represents the core Saduria
habitat).

Predator biomass density

To calculate spatially explicit, weighted predation metrics
and predator-prey overlap metrics (Figure 2), we
modeled the spatiotemporal distribution of cod using
catch per unit effort data (CPUE, in numbers per hour)
by length class from the fishery-independent Baltic Inter-
national Trawl Survey (BITS) conducted in the first and

Q83: Changes in
spatial overlap?

} l

Spatiotemporal Spatiotemporal
cod models prey data
Predict
cod density (D)
on spatial grid
[kg/km2]
Spatiotemporal
predator-prey overlap
(“local index

of collocation”)

Q4: Correlation

between overlap

and predation

Chart describing the data and modeling process to acquire predation indices (population level and per capita) as well as

predator-prey overlap. For the definition of P,; and P, see Equations (10) and (11). Research questions are indicated in darker blue boxes.
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fourth quarter between 1993 and 2023 in the ICES subdivi-
sions 24-28. We used data from the ICES trawl survey
database DATRAS (https://www.ices.dk/data/data-portals/
Pages/DATRAS.aspx). CPUE data were standardized based
on gear dimensions and towing speed (TVL trawl with
75-m sweeps at three knots) to units of kilograms per
square kilometer, following Lindmark et al. (2023) and
Orio et al. (2017), using length-mass relationships
fitted by year to convert from numbers-at-length
to mass.

Environmental data

We included dissolved sea bottom oxygen concentration
(in PSU), sea bottom temperature (in degrees Celsius),
and sea bottom salinity (in per mille) from the Coperni-
cus Marine Service Baltic Monitoring and Forecasting
Centre (BAL MFC) as covariates in our biomass density
models. Dissolved oxygen values at the sea floor stem
from the Baltic Sea biogeochemical model (https://doi.
org/10.48670/moi-00009), which is based on ERGOM
(https://ergom.net/) (Neumann et al., 2021), coupled with
the NEMO ocean model (Madec et al., 2023). Sea floor
temperature and salinity stem from the Baltic Sea Physical
Reanalysis (https://doi.org/10.48670/moi-00013), based on
simulations from the NEMO 3D ocean-ice model version
4.0 (Gurvan et al., 2019). These variables were matched to
the survey catch data on a monthly resolution. We also
included depth (in meters) in the model, which was
extracted from the EMODnet Bathymetry project
(https://emodnet.ec.europa.eu/en/bathymetry)
(EMODnet Bathymetry Consortium, 2022).

Spatiotemporal modeling framework
Model description

We used spatiotemporal generalized linear mixed-effects
models (GLMMs) to model stomach contents and bio-
mass density of cod. Per-capita and population-level pre-
dation, and predator-prey overlap, were calculated from
predictions onto a 3 X 3 km spatiotemporal grid. Figure 2
illustrates the workflow and how the models and data
come together. The full model can be written as follows,
but note that the biomass density and diet models do not
contain all these terms:

E [ys,t} = Hs 1> (1)

M, =S~ ! (Xg,lzainﬁ + oy + X;Yng,t + XE,Vng,s + s + €s,t) )

(2)

LINDMARK ET AL.
&~ MVN(0, %), (3)
® ~MVN(0, %,,), (4)
€ ~MVN(0,X,), (5)

where yj, is the response variable (relative prey mass or
cod biomass density) in location s at time ¢, p is the
mean, f ~1 s the inverse link function, X™" X% and
X%¢ are design matrices for fixed-effects, time-varying
coefficients, and spatially varying coefficients, respec-
tively. Their corresponding coefficient vectors are f, v,,
and &, where each y, represents a temporally varying
coefficient for covariate g, and each ¢, represents a spa-
tial field for the k-th spatially varying coefficient. All
fixed-effect covariates were standardized by subtracting
their mean and dividing by their SD. The parameter o,
represents a random intercept for month m. The spatially
varying coefficients (§), spatial (ws), and spatiotemporal
random effects (eg;), are assumed drawn from Gaussian
Markov random fields (GMRFs) with covariance matrices
(i.e., inverse precision matrices) X, X, and X
constrained by Matérn covariance functions (Lindgren
et al., 2011; Rue et al., 2009). The spatially varying coeffi-
cients ¢ are included in the biomass density model to
allow the distribution of cod to vary between quarters in
addition to the variation given by changes in dynamic
covariates, while os and €, reflect spatially correlated
latent effects that are constant through time and that vary
through time, respectively. The Stochastic Partial Differen-
tial Equation (SPDE) approach (Lindgren et al., 2011),
which links continuous Gaussian random fields with dis-
cretely indexed GMRFs, requires piece-wise linear basis
functions defined by a triangulated mesh. We defined this
mesh using triangles with a cutoff distance (minimum dis-
tance between vertices) of 8km and 10km for diet and
biomass models, respectively, and kept all other argu-
ments in fm rcdt 2d inla() (fmesher R package;
Lindgren, 2023) at their defaults (Appendix S1: Figures S3
and S4). Across all models, the cutoff distance was
between 2.5 and 10 times smaller than the estimated
Matérn range, which is defined as the distance where spa-
tial correlation effectively disappears (~0.13, Lindgren
et al., 2011).

To propagate uncertainty in both stomach content
predictions and cod density predictions when calculating
predation and overlap indices (see Predation indices and
Spatiotemporal overlap indices), we simulated 500 draws
from the joint parameter precision matrix to make model
predictions on the grid. For each draw, we calculated
overlap or predation metrics and we present the median,
mean, or CV of these draws. We predict from the model
for a cod length of 33 cm, which is the mean in the
diet data.
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Diet models

The relative prey mass models were fit to each prey spe-
cies separately. Since these response variables are positive
continuous and contain zeroes, we modeled them with
either a Tweedie distribution (herring and sprat) or as
a “Poisson-link” delta-gamma model (Thorson, 2018)
(Saduria), which has the flexibility of a classic delta or
hurdle model (Aitchison, 1955) but enables a simpler
interpretation of covariates due to log links on both linear
predictors (Anderson et al., 2024; Thorson, 2018). The
model family (delta-gamma or Tweedie) was chosen
based on convergence diagnostics. We included a linear
depth effect on all prey, as it has been shown previously
to affect cod diets (Pachur & Horbowy, 2013). Month was
included as a random effect in the Saduria model, but
not the herring and sprat models because the SD of
the month random effect was estimated near zero.
We included a linear effect of predator length, reflecting
the underlying ontogenetic diet shift cod undergo. To
be able to interpolate across a missing year (2011), we
modeled the intercept as a time-varying coefficient
following an AR(1) process:

Yo ~N(0,07), (6)

Yt>1NN(pth—1’ \/1—9305)» (7)

where p is the correlation between subsequent years and
o2 is the variance. We included spatially correlated latent
effects (ws) that are constant over time and that vary
independently each year (eg). Lastly, we included prey
biomass or biomass densities as covariates. For the sprat
and herring models, this was the estimated biomass per
ICES rectangle for ages 1-8+, while for Saduria, we
extracted rasterized local biomass densities. For each prey,
we explored three models: a breakpoint (hockey stick)
function (corresponding to a type I functional response
with saturation or a type II functional response), a linear
effect, and one without prey availability as covariate. In
the breakpoint term, prey X by is the effect below the
threshold, and by X b; is the value at the asymptote. We
compared the models using the (marginal) Akaike infor-
mation criterion (AIC; Akaike, 1973).

Biomass density models

We modeled cod biomass density as a Poisson-link delta—
gamma model (Thorson, 2018) and included year and
quarter as factors, where the latter was in addition
modeled as a spatially varying effect, linear effects of

salinity, temperature and temperature squared, as well as
a breakpoint effect of oxygen, to reflect that dissolved
oxygen tends to correlate with biomass density up to a
certain point (Essington et al., 2022). We also included
a time-varying effect of depth and depth squared follow-
ing a random walk. This was to allow the unimodal
depth preferences to change over time (English
et al.,, 2022), in line with the shallowing that has been
observed for eastern Baltic cod (Lindmark et al., 2023;
Orio et al., 2019).

v ~N(0.67), (3)

Yt>1NN(Yt—1’G$>’ (9)

Lastly we included both spatial random effects that
are constant in time (ws) and spatial random effects that
are independent each year (eg ).

Model fitting

We fit the spatiotemporal models with the R version 4.3.2
(R Core Team, 2024) package sdmTMB (Anderson
et al., 2024), version 0.6.0.9023. sdmTMB uses automatic
differentiation and the Laplace approximation from the R
package TMB (Kristensen et al., 2016) and sparse matrix
structures to set up the SPDE-based GMRFs from the R
package fmesher (Lindgren, 2023). We estimated
parameters via maximum marginal likelihood using the
nonlinear minimizer nlminb (R Core Team, 2024). We
confirmed that the optimization was consistent with con-
vergence by checking that the Hessian matrix was posi-
tive definite and the maximum absolute log-likelihood
gradient with respect to fixed effects was <0.001. We evalu-
ated consistency of the models with the data by calculating
simulation-based randomized quantile residuals (Dunn &
Smyth, 1996; Hartig, 2022) (Appendix S1: Figures S5
and S6). When calculating expected values for the purposes
of residual calculation, we took a single draw of the ran-
dom effects from their multivariate normal distribution
(Waagepetersen, 2006) rather than using the empirical
Bayes random effects estimates. This acknowledges that
the random effects are estimated from a distribution
(Thorson & Kristensen, 2024, p. 41; Waagepetersen, 2006).

Predation indices

We followed the approach presented in Goodman et al.
(2022) to calculate density-weighted per-capita and

85USD17 SUOLULLOD BAIER.D 3|1 (ddde 3y Aq pausenob a1 ol YO 18N JO S9N J0j ARIg1T 8UIIUO /B]1M UO (SUORIPUOD-PLE-SLLBI 0D A3 |1 ARRIq | pU1IU0//SANY) SUORIPUOD PUE SLLB 18U} 89S *[9202/T0/80] U0 ARIqIT 8UIIUO Ao|IM ‘S0WBRS RIMINOLBY JO AseAIN USIPeMS Ag 9ETOL de9/Z00T 0T/I0p/W0D" A3 1M AReIq 1PUIIUO'S FELINO fesa//Sdy oy pepeojumoq ‘L ‘GZ0Z ‘Z8556€6T



80f20 |

LINDMARK ET AL.

population-level predation intensity based on model-
predicted relative prey masses and predator densities
across the spatiotemporal grid. Population-level preda-
tion intensity, P, ;, for year i was calculated as

n
Pp,i:ZRi,]'XDiJ XAj, (10)
=

where R;; is the prey-specific relative prey masses (in
kilograms per kilogram) in grid cell j, D;; is the predicted
cod density (in kilograms per square kilometer), and 4; is
the area of the grid cell (in square kilometers). This repre-
sents a spatially explicit, density-weighted measure of
predation intensity (an instantaneous “snapshot” of total
mass of a prey species in cod stomachs in units of
kilograms) (Goodman et al., 2022). Temporal trends in
predation intensity in the domain were acquired by sum-
ming grid-level predictions by year. Prior to calculating
grid-cell-level predation, we omitted grid cells with
cod biomass density predictions greater than the
99.99th percentile across all simulations, and relative
prey mass predictions >1 (less than 0.001% of rows
in simulated values of relative sprat mass). These fil-
ters did not have a qualitative impact on the calcu-
lated metrics, but made sure draws where ecologically
realistic. We also omitted areas deeper than 130m in
the prediction grid, since trawl surveys are not
conducted at those depths.

Since both cod and pelagic species have undergone
shifts in their spatial distribution in this time window
(Bartolino et al., 2017; ICES, 2023; Lindmark et al.,
2023; Orio et al., 2019), and the average feeding rate of
cod has declined over time (Neuenfeldt et al., 2020), we
also wanted to disentangle the effect of distribution
shifts from changes in mean feeding rates. This
was done by dividing the population-level predation
(Pp,)) by the population-level cod biomass in year i (Good-
man et al., 2022), which yields a weighted average prey
biomass per unit predator biomass (per-capita preda-
tion), P, ;:

P Z;I:IRU XD;J XAj
T XhDyx4;

(1)

Spatiotemporal overlap indices

Predator-prey overlap metrics were calculated from grid-
level (3 X 3 km) predictions of cod biomass density, bio-
mass density of Saduria, and biomass of sprat and her-
ring at the ICES rectangle level (Figure 1). There are

numerous ways to calculate overlap metrics with slightly
different interpretations (for a review, see Carroll
et al., 2019). In this study, we use the “local index of col-
location” overlap metric (Pianka, 1973), as in Goodman
et al. (2022):

> (predi X prey; J)
Overlap, = , (12)

\/ 27 pred?; x ) prey}

where overlap in year i is calculated from the proportions
of total biomass of cod (pred;;) and its prey (prey;;) in
grid cell j. We use the same grid as for the stomach con-
tent predictions. This metric ranges between 0 and 1 and
estimates co-occurrence using correlations between pred-
ator and prey densities at the grid scale and is suitable for
estimating encounter rates (Carroll et al., 2019; Goodman
et al., 2022). When visualizing the overlap in space, we
omit the summation across grid cells.

For pelagic prey (sprat and herring), we used
only cod predictions in the fourth quarter, since that
is when the hydroacoustic survey (BIAS) takes place.
After confirming that the difference between quar-
ters was minimal for overlap with Saduria with
respect to trends, we presented only results for quar-
ter 4 also for Saduria. Given that the spatial predic-
tions of Saduria densities are constant over time,
changes in overlap with Saduria are only driven by
changes in the distribution of cod, while in reality,
Saduria also likely has changed their spatial distri-
bution (Gogina et al., 2020).

To quantify how overlap between cod and its prey
was related to the predation intensity, we tested the
correlation between annual predation intensity (per
capita and population level) and the annual spatial
overlap.

Lastly, to highlight trends over time in per-capita
and population-level predation and spatial overlap, we
fit generalized additive models (GAMs) to the annual
indices, with prey-specific smooth effects of year. We
assumed Gamma-distributed errors and a log link for the
predation indices, and Beta-distributed errors and a logit
link for the overlap indices. The models were fitted with
the R package brms (Biirkner, 2017). We used default
priors, that is, Student-t(3,0,2.5) for the intercept and the
SDs of spline coefficients, and flat priors for the prey coef-
ficients. The shape parameter in the Gamma model, and
the precision parameter in the Beta model, were given a
Gamma(0.01, 0.01) prior. We visualized predictions by
summarizing draws from the expectation of the posterior
predictive distribution, using the R package tidybayes
(Kay, 2023).
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RESULTS

The relative mass of a prey species in cod stomachs was
positively related to the local density of that prey for
Saduria, but not for sprat or herring. For sprat, the model
without prey biomass was favored by AIC (Table 1). For
herring, the breakpoint model and the model without
herring were indistinguishable in terms of AIC (Table 1),
and the herring covariate was negatively related to her-
ring in the stomachs of cod. Therefore, further analysis
was based on the simpler model without the breakpoint
herring covariate. The breakpoint model had the

TABLE 1 Difference in marginal Akaike information criterion
(AAIC) for all models fitted to stomach content data relative to the
model with the lowest AIC for that prey species.

AAIC
Prey Breakpoint Linear No prey covariate
Herring 0 274 0.09
Saduria 0 38.7 51.5
Sprat 1.78 2616 0
Herring

(@)

° Relative prey

58" N weight (kg/kg
0.0050

57° N & 0005

Latitude

Saduria

lowest AIC among the Saduria models; however, the
conditional predictions showed high uncertainty on the
total prediction (both model components combined)
(Appendix S1: Figure S7; Table S1).

We found clear spatial patterns in both stomach con-
tents and predation indices (Figures 3 and 4). The relative
prey mass of herring in the cod stomachs showed low
spatiotemporal variation compared to the other prey
apart from very local hotspots from year to year
(Figure 3a,d). Both the relative prey mass of and preda-
tion on Saduria were highest in the central parts of the
southern Baltic Sea (Figures 3b,e and 4b,e), which corre-
sponds to the core area of the Saduria distribution in
this region (Appendix S1: Figure S8b). Both the relative
prey mass of sprat (Figure 3c,f) and the predation on
sprat (Figure 4c,f) occurred throughout the Baltic Sea,
although the predation was more limited to the south-
western part in recent years due to the shift in distribu-
tion of cod (Figure 5).

Over time, the area-expanded per-capita predation on
herring increased steadily (with a small decline around
the mid 2000s), while the population-level predation
reached a peak around 2010 after which it declined to

Sprat

661

¢c0c

14°E 16°E 18°E 20°E 14°E 16°E 18°E 20°E 14°E 16°E 18°E 20°E
Longitude

FIGURE 3 Relative prey mass for a cod of 33 cm. Colors indicate the median value across 500 simulated spatial predictions for herring
(a, d), Saduria (b, e), and sprat (c, ), for years 1994 (top row, a-c) and 2022 (bottom row, d-f), as examples. The color scale is square-
root-transformed to better visualize the spatial patterns. Note that scales are shared within species, across years. Only grid cells with depth

<130 m are included in the plot.
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Herring
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FIGURE 4 Cod density X relative prey mass (i.e., predation) plotted in space. Colors indicate the mean across 500 simulated spatial

predictions of both relative prey mass and cod density for herring (a, d), Saduria (b, €), and sprat (c, f), for years 1994 (top row, a-c) and
2022 (bottom row, d—f), as examples. The sum of this metric (expanded by grid cell area) across space is the relative population-level
predation intensity depicted in Figure 6. Note that the color scale is 3rd-root-transformed and that scales are shared within species, across

years. Only grid cells with depth <130 m are included in the plot.

levels similar to the early 2000s (Figure 6a,d). Both per-
capita and population-level predation on Saduria showed
a peak at around 2007, after which it declined steadily to
very low levels (Figure 6b,e). Both per-capita and
population-level predation on sprat declined in the early
1990s (Figure 6c,f). From then, the per-capita predation
on sprat varied somewhat cyclically and showed a weak
tendency for an overall increase throughout the time
period (Figure 6¢). The population-level predation on sprat
instead peaked around 2010, and has declined since
(Figure 6f). The uncertainty around the per-capita and
total predation estimates is substantial when accounting
for uncertainty in both cod biomass density and relative
prey masses, especially for Saduria early in the time
series and sprat (Figure 6b,c), and this is largely due to
higher uncertainty in the stomach content predictions
(Appendix S1: Figure S9). Time series of per-capita and
population-level predation were nearly identical for
Saduria and sprat when empty stomachs were omitted.
For herring, trends over time tended to be flattened
when empty stomachs were omitted (Appendix S1:
Figure S10).

The overlap between cod and its prey was highest in
the central parts of the southern Baltic Sea, and along the
southeast coast of Sweden (Figure 7). Over time, the over-
lap with herring started to decline around 2005 (Figure 8a).
The spatial overlap with Saduria increased slightly between
1993 and 2009, but since 2010, it has been lower than aver-
age, resulting in a weakly negative trend over time
(Figure 8b). The spatial overlap with sprat also declined
over time, but in a more cyclic fashion. The current spatial
overlap with sprat is the lowest since 2007 (Figure 8c).

The correlation between annual estimates of per-
capita and population-level predation with spatial over-
lap was only clearly positive for Saduria (Figure 9b,e).
For herring and sprat, the correlation coefficients ranged
between —0.39 and —0.12, but the CIs overlapped zero
in all cases but the per-capita predation on herring
(Figure 9a,c,d,f). The results were nearly identical when
fitting diet models to data with empty stomachs omitted
for Saduria and sprat, whereas for herring, the main dif-
ference was that the CIs of the correlation between per-
capita herring predation and cod-herring overlap crossed
0 (Appendix S1: Figure S11).
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Cod biomass density in space. Colors indicate the mean across 500 simulated spatial predictions for years 1994 (a) and 2022

(b), as examples. Note that the color scale is square-root-transformed and truncated at the 99.9th percentile to better visualize the spatial
patterns (maximum cod biomass density is 3608 kg/km?). Only grid cells with depth <130 m are included in the plot.
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FIGURE 6 Relative per-capita (top row, a—c) and population-level predation (bottom row, d-f) by cod on herring (a, d), Saduria (b, ),

and sprat (c, ) over time. Points depict the median predation, and vertical lines depict the range between the 10th and 90th percentile of
predation, calculated from 500 simulated spatial predictions of both relative prey mass and cod density. Blue lines depict fits from a
generalized additive model with year modeled as a penalized spline, and ribbons correspond to the 50% and 90% credible interval of the

prediction.
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FIGURE 7 Spatial overlap between cod and its prey herring (a), Saduria (b), and sprat (c). Colors indicate the mean across
500 simulated spatial predictions of cod density in years 1994 (top row, a-c) and 2022 (bottom row, d-f), as examples. The color scale is 3rd-
root-transformed to better visualize the spatial patterns. Only grid cells with depth <130 m are included in the plot.
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FIGURE 8 Spatial overlap between cod and its prey herring (a), Saduria (b), and sprat (c). Points depict the median overlap, and
vertical lines depict the range between the 10th and 90th percentile of overlap, calculated from 500 simulated spatial predictions of cod
density. Blue lines depict fits from a generalized additive model with year modeled as a penalized spline, and ribbons correspond to the 50%
and 90% credible interval of the prediction.

DISCUSSION relationship between predation and spatial overlap of

predator and prey. Our analysis used the Baltic Sea
In this study, we quantified the effects of local prey as a case study. However, the spatiotemporal modeling
availability on the stomach contents of predators and the approach used, which scales up local-scale diet data to
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FIGURE 9 Correlation between relative per-capita predation and spatial overlap (top row, a—c), and relative population-level predation
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90th percentile of predation and spatial overlap, respectively, calculated from 500 simulated spatial predictions of predation and cod density.
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population-level predation metrics while accounting for
range shifts, can be applied generally, and is well suited
to improve our understanding of predator-prey inter-
actions in other systems. Our results suggest that the
effects of local prey availability are modest and uncertain
and that only in the case of the benthic isopod Saduria
is availability related to what is found in the stomachs
of cod. Furthermore, only for Saduria do we find a
correlation between predator-prey spatial overlap and
per-capita and population-level predation. Our analysis
therefore echoes previous studies on the challenges of
linking prey dynamics to predator performance in marine
generalist predators (Fall et al, 2021; Goodman
et al., 2022; Hilborn et al., 2017) and is at contrast with
the strong bottom-up effects present in trophic ecosys-
tem models (Chagaris et al., 2020; Smith et al., 2011).
Our analyses constitute important steps toward under-
standing the spatial scale of trophic interactions
(Amarasekare, 2008; Carroll et al., 2024), which are
needed to support the implementation of ecosystem-
based fisheries management.

Effects of prey availability on feeding of
generalist predators

It has been suggested that the large abundance fluctua-
tions of many small pelagic fish species would help iden-
tify relationships between forage fish and predators
(Hilborn et al., 2017) because it results in large contrasts
for analysis. This is also the case in our system. The Baltic
Sea sprat stock increased fivefold between 1991 and 1997
(ICES, 2022b), albeit in the entire Baltic Sea, and not
necessarily in the entire distributional range of cod. How-
ever, we did not detect an effect of sprat availability on
the relative mass of sprat in cod stomachs, and the per-
capita and population-level predation on sprat by cod
correlated negatively (but not significantly) with cod-
sprat spatial overlap. One potential reason for this could
be that cod are not limited by sprat biomass but by their
digestive capacity. This could limit predation even if the
population-level prey biomass is low, as long as there is
relatively high prey density locally (Fall & Fiksen, 2020;
Hilborn et al., 2017). Alternatively, it may be that the
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prey availability is not modeled at the appropriate spatial
or temporal scale. Prey biomass is aggregated over ICES
rectangles and is derived from a hydroacoustic survey
conducted in the fourth quarter (while approximately
60% of stomach data are sampled in the fourth quarter).
Hence, the spatiotemporal mismatch between data might
be too large to accurately reflect predator—prey interac-
tions, given the patchy distribution of schooling prey and
the fact that stomach content data reflect consumption
over a relatively short time period. Moreover, we measure
overlap and pelagic prey availability in two dimensions,
which may not accurately reflect encounter rates in a
three-dimensional environment. In line with this, Fall
et al. (2021), also found weak effects of prey (capelin,
Mallotus villosus) abundance on the consumption of cap-
elin by cod. Instead they found that the proximity of
capelin to the seafloor was a better predictor of capelin in
the cod diet, which illustrates the potential importance of
the third dimension (i.e., depth). Future studies could
explore whether this is also the case in the Baltic Sea,
potentially using high-resolution data on schooling fish
in combination with stomach content data to try and
determine appropriate scales for analysis.

The spatial and temporal scale is not only relevant for
the actual interaction (encounter and predation), but also
when it comes to “scaling-up” functional responses or
predation metrics from experimental or local scales to
scales more relevant for management, for example, to
the stock or population level (Hunsicker et al., 2011).
This is inherently difficult, as the relationship between
consumption and prey density can change over spatial
scales (Bergstrom & Englund, 2004). Another approach,
which overcomes this issue, is to use stock-level estim-
ates when estimating functional responses (Essington &
Hansson, 2004). However, a limitation is that spatial
heterogeneity in feeding dynamics or predator distribu-
tion and range shifts would not be accounted for. In the
alternative model-based approach used here, we arrive at
population-level predation metrics by summing spatially
explicit predictions over the heterogeneous domain.
This has the benefit that local-scale heterogeneity in prey
availability and stomach contents is explicitly considered,
providing more accurate estimates.

Implications for Baltic Sea cod

Our results on the spatiotemporal dynamics of predation
and overlap provide novel insights that both corrob-
orate and contrast previous hypotheses on Baltic cod.
Neuenfeldt et al. (2020) identified that cod feeding rates
on Saduria and sprat were substantially higher in the
period 1963-1989 than in 1994-2014. Within the second

time period, the physiological condition of cod declined
rapidly (Eero et al., 2023; Lindmark et al., 2023; Mion
et al., 2021). This makes it an important time period to
analyze for understanding the relationship between feed-
ing dynamics and predator-prey overlap. We observe that
feeding on Saduria continued to decline after 2014 to
near zero in the most recent years. Although the spatial
overlap with Saduria also declined slightly, it seems that
the loss of predation on Saduria is mainly driven by
changes in per-capita predation, because trends are simi-
lar for per-capita (where the total cod biomass is factored
out) and population-level predation rates. This could in
turn be due to declining local abundances of Saduria,
because even though Saduria does not seem to have
declined substantially over the last 30 years in shallow
areas (Sveding et al., 2022), its area occupied may have
declined, since its depth distribution is linked to oxygen
dynamics on the sea floor (Karlson et al., 2002). This,
however, is not currently possible to investigate further
due to the low spatiotemporal resolution of Saduria
biomass data. Increased competition for Saduria with
flounder (Platichthys spp.) may potentially explain the
declines in the availability of Saduria to cod, as hypo-
thesized in Haase et al. (2020). Support for this hypoth-
esis is found in recent years, as high flounder density is
associated with lower levels of Saduria in predator
stomachs (Lindmark et al., 2023). However, whether
competition explains the long-term decline in Saduria
in cod stomachs is not as clear, since in the 1980s and
early 1990s (Orio et al., 2017), flounder was more
numerous than now and cod still fed on Saduria in
high numbers.

Previous studies have hypothesized that the decline
in feeding rates on sprat is linked to availability and
spatial overlap (Casini et al., 2016; Eero et al., 2012;
Neuenfeldt et al., 2020), although this has never been
tested explicitly. While there is a spatial mismatch in the
sense that sprat biomass is highest in the northeast
(Appendix S1: Figure S8c) and cod is mainly found in the
southern parts, that does not necessarily mean cod is lim-
ited by low sprat abundances in the south. In line with
Eero et al. (2012), our results suggest that predation pres-
sure on sprat is highest in the south. We find fluctuations
in the spatial overlap with sprat, with a positive trend for
per-capita predation. Also considering the lack of effect
of sprat biomass on the relative mass of sprat in cod
stomachs (Table 1), our study does not support the
hypothesis that spatial dynamics and spatiotemporal
mismatch in overlap explain trends in cod feeding on
sprat. The lack of correlation between overlap and preda-
tion is also found in herring, and per-capita predation on
herring by cod even increased since 2010 when the spa-
tial overlap started to decline.
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Limitations and areas of future research

We made several simplifying assumptions that warrant
future research. When calculating the predation indices,
we used the total cod density in the survey catches, that
is, not resolved by length class. Since cod undergo strong
ontogenetic diet shifts (Kulatska et al., 2019; Lindmark
et al., 2025), it may be more appropriate to use the bio-
mass density of cod within specific size groups that
mainly feed on a specific prey. However, that may also
not have a strong impact, since the correlation between
local cod densities of different size groups is quite high
(Jacobsen et al., 2023), the population size structure is
highly truncated, and the main sizes currently in the
population feed on a mix of pelagic and benthic prey
(Lindmark et al., 2025). Moreover, the predation indices
calculated here are only for cod of 33 cm (for simplicity,
the mean size in the diet data), although they could be
predicted for any size since length is a covariate in the
models. This simplifying assumption effectively assumes
the entire cod stock is of a specific size, which can be
misleading for population-level predation metrics since
the size distribution of the cod population has been trun-
cated over time (Eero et al., 2023). However, it does facili-
tate comparison over time for the per-capita predation
metrics. Moreover, the indices are relative since the bio-
mass density of cod is relative (due to unknown survey
catchability), and since length is only a fixed effect in the
model, predicting for different lengths would just change
the relative value of the index identically over time.

The exact values of the predation indices are not
directly comparable to mortality rates because the units
are different. However, it would be straightforward to
expand our work by converting our predation metrics
to predation rates using gastric evacuation models (as in
e.g., Gartland & Latour, 2024; Tengvall et al., 2024).
A qualitative comparison between our predation esti-
mates and predation estimates from the Baltic Stochastic
Multi-Species model (SMS) (Lewy & Vinther, 2004) sug-
gests that population-level predation intensity and natu-
ral mortality of sprat and herring both increased from
1993 until around 2010, after which cod predation
declined to levels comparable to around the year 2000
(ICES, 2019). This implies that the stomach content data,
more than model type (spatiotemporal index or multi-
species assessment model) drives the result, although
more work is needed to identify which processes cause
discrepancies between the time series of predation and
mortality.

Stomach content sampling is often affected by gaps
and inconsistencies in space and time (Figure 1). This
represents a challenge for using stomach data in popula-
tion dynamic models without some form of

standardization, since there are clear spatiotemporal pat-
terns in stomach content data. This is, however, not rou-
tinely done (ICES, 2019; Neuenfeldt et al., 2020). The
approach used in this study represents a model-based
approach to estimate trophodynamic indices over the
spatial domain using spatial and spatiotemporal random
effects (Cao et al, 2017; Karp et al., 2025; Thorson
et al., 2015). This approach has benefits over design-based
indices by being able to include covariates and latent var-
iables, which can improve estimates when the sampling
is spatially or temporally unbalanced as the Baltic diet
data are (Figure 1). This means estimates in areas with
low sampling intensity for a given year depend on the
ability to estimate constant and time-varying spatial ran-
dom effects, which illustrates the importance of critically
evaluating models (Yalcin et al., 2023).

We believe there are several possibilities for future
work. For instance, this could include further exploration
of density dependence, or at which spatiotemporal scale
covariates should be included (Fall et al., 2021; Lindmark
et al., 2025). Another area of research could be the covari-
ation between different prey groups, since they are likely
not independent. For instance, if cod recently fed on her-
ring, they may not feed on benthic prey soon after, or cod
may switch to sprat if the abundance of herring declines.
Questions such as these could potentially be addressed
using dynamic structural equation models including
simultaneous or lagged effects (Thorson et al., 2024).

CONCLUSIONS

Predator-prey interactions play an important role in
defining ecosystem functioning and the trophic structure
of marine food webs. The relationship between predator
feeding dynamics and prey is a crucial aspect of this.
Understanding these interactions is critical for supporting
the implementation of broader food web considerations
in an ecosystem-based approach to fisheries manage-
ment. Essentially, this means being able to predict the
ecological effects on predators that may stem from
changes in prey abundance and distribution, fisheries
and other anthropogenic pressures. For increases in prey
to have a causal impact on predator productivity, there
has to be a link between prey availability and predation.
While our analysis does not control for all potential
confounding factors, we do not find evidence of such
positive associations between pelagic prey and predator
feeding dynamics despite large fluctuations in abun-
dance, local-scale availability, and population-level spa-
tiotemporal overlap. While we do acknowledge that
spatiotemporal dynamics of these interactions are com-
plex and scale-dependent and may be difficult to quantify
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(e.g., Fall et al., 2021), our results could mean that the
effects of specific prey are weaker than previously
thought. However, it is difficult to make general state-
ments given the mixed results in the literature (e.g., Free
et al., 2021; Goodman et al., 2022), and since it may have
implications for assessment and management, it should
be evaluated case by case. In the example of Baltic cod, it
could mean that management interventions aimed at
increasing the availability of pelagic prey would have lim-
ited impacts on the productivity of cod.
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