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A B S T R A C T

Study region: The Halil-Rud Basin in Iran, a semi-arid watershed, has been increasingly affected by 
climate change over the past decades, impacting hydrological processes and water resource
Study focus: This study introduces a Nonstationary Standardized Runoff Index (NSRI) to enhance 
hydrological drought assessment in the Halil-Rud Basin for the period 1980–2019. Using the 
GAMLSS framework with a time-varying gamma distribution, NSRI models incorporate linear 
relationships between runoff and hydroclimatic covariates, including precipitation, temperature, 
potential evapotranspiration, and antecedent runoff. Four models—one stationary (M0) and three 
nonstationary (M1–M3)—were evaluated across 14 covariate combinations using monthly runoff 
data from three stations (Pole-Baft, Meidan, Kenaroyeh), comparing drought severity, duration, 
and intensity.
New hydrological insights for the region: Results indicate that nonstationary models consistently 
outperform the stationary baseline, with M2 (temperature and antecedent runoff) providing the 
best fit. Analysis of S/NS drought indices along the Halil-Rud Basin reveals that NSRI more 
accurately captures spatiotemporal drought variability, especially in downstream regions affected 
by anthropogenic influences. Compared to SSRI, NSRI moderates extreme drought estimates, 
highlighting the risk of overestimation when using stationary assumptions. These findings 
demonstrate the value of nonstationary modeling for robust drought monitoring and adaptive 
water resource management in semi-arid regions.

1. Introduction

As a persistent and inherent aspect of our climate, drought exerts significant influence on global economic stability, social 
structures, and ecological health (Wilhite, 2000; Mishra and Singh, 2010; Moghaddasi et al., 2022; Anvari et al., 2019).

Drought is a complex and multifaceted natural phenomenon that typically emerges from a deficit in precipitation, leading to 
diminished soil moisture through the processes of evapotranspiration and a reduction in river flow. These conditions can have 
devastating effects on both plant health and human livelihoods. Drought is generally defined as a "deficiency of rainfall resulting in 
water scarcity" or as a "prolonged period of abnormally dry weather, characterized by scant rainfall and leading to a considerable 
hydrological imbalance" (Heim, 2002; Li et al., 2013). Additionally, drought is frequently associated with deficiencies in streamflow, 
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soil moisture, agricultural productivity, and various socioeconomic factors (e.g., Huang et al., 2016).
While a precise definition of drought remains challenging to establish, several indices have been developed to effectively monitor 

drought conditions. Among the most widely used tools are the Palmer Drought Severity Index (PDSI) (Palmer, 1965), the Standardized 
Precipitation Index (SPI) (McKee et al., 1993), the Reconnaissance Drought Index (RDI) (Tsakiris and Vangelis, 2005), and the 
Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010). These indices are primarily employed to 
assess precipitation-based meteorological droughts. Furthermore, the Standardized Runoff Index (SRI) is utilized to monitor hydro
logical droughts associated with runoff and streamflow (Shukla and Wood, 2008). For the evaluation of agricultural drought, the 
Standardized Soil Moisture Index (SSI) and the Agricultural Standardized Precipitation Index (aSPI) are commonly applied (Hao and 
AghaKouchak, 2013). Moreover, numerous drought indices have been devised to account for various climatic variables. Notable 
examples include the Standardized Precipitation-Evapotranspiration Index (SPEI), the Vegetation Drought Response Index (VegDRI) 
(Brown et al., 2008), the Reconnaissance Drought Index (RDI) (Tsakiris and Vangelis, 2005), the Multivariate Standardized Drought 
Index (MSDI) (Hao and AghaKouchak, 2013), and the Evaporative Stress Index (ESI) (Anderson et al., 2007). For a comprehensive 
review of drought indices, readers are encouraged to consult the works of Mishra and Singh (2010).

Notably, the SPI has gained prominence due to its computational simplicity, emerging as the most widely accepted and robust index 
in drought monitoring. It is often regarded as a fundamental component of an effective drought assessment system (Hayes et al., 2011; 
Pasho et al., 2011). The SPI can be calculated across various time scales and is particularly adept at statistically comparing drought 
severity both temporally and spatially (Bonaccorso et al., 2003).

As the frequency and severity of droughts increase due to climate change (Dai, 2011; Mishra and Singh, 2009; Moghaddasi et al., 
2022; Mohammadi et al., 2024), the need for an effective drought monitoring system becomes more crucial in the context of changing 
hydro-climatic conditions. Given the ongoing shifts in climate, it is vital to reassess, rethink, and enhance the computational aspects of 
existing drought indices. Typically, commonly used drought indices- including meteorological, hydrological, agricultural, and 
socio-economic measures- fail to account for environmental changes arising from climate change, anthropogenic influences, and 
human activities. This non-stationarity (NS) of drought indices presents significant challenges for researchers and practitioners (Sun 
et al., 2020; Das et al., 2021; Anvari and Moghaddasi, 2024; Delavar et al., 2024; Anvari and Rydén, 2025). To date, efforts have 
focused on developing drought indices that operate under conditions of non-stationarity (Li et al., 2015; Wang et al., 2015; Rashid and 
Beecham, 2019; Bazrafshan et al., 2022).

In the investigation of non-stationary drought indices (NSDI), the initial task is to identify a suitable covariate that effectively 
captures the trends in hydro-climatic variables. Following this, it is essential to select an appropriate statistical modeling tool for NS 
analysis. A prominent choice for researchers is the Generalized Additive Models for Location, Scale, and Shape (GAMLSS) package, 
which is not only widely utilized but also freely accessible (Rigby and Stasinopoulos 2005, Stasinopoulos and Rigby (2007), Rydén 
(2019); Delavar et al., 2024).

Since the 1990s, research on NS drought indices (NSDI) has gained momentum, beginning with Russo et al. (2013), who introduced 
the Standardized non-stationary Precipitation Index (SnsPI) using a NS Gamma distribution within the SPI framework. Wang et al. 
(2015) further advanced this field by proposing a time-dependent Standardized Precipitation Index (SPIt) for the Luanhe River Basin, 
modeling NS through a Gamma distribution with a time-dependent location parameter. Their findings indicated that the NS Gamma 
distribution generally outperforms its stationary counterpart in fitting precipitation series. Bazrafshan and Hejabi (2018) developed 
the Non-Stationary RDI (NRDI) to enhance drought monitoring across fifteen meteorological stations in Iran (1951–2014) using the 
GAMLSS algorithm, revealing significant differences between NRDI and traditional RDI, particularly for time windows exceeding six 
months. In the study of the upper Heihe River basin, China, Sun et al. (2020) introduced a non-stationary Standardized Runoff Index 
(NSRI) using a NS Gamma distribution within the GAMLSS framework. By integrating relevant covariates influencing the NS char
acteristics of runoff, they demonstrated that NS models offer enhanced robustness over stationary ones, with the model incorporating 
two covariates performing most effectively. Das et al. (2021) developed the NS Standardized Precipitation Index (NSPI) and 
Non-stationary Reconnaissance Drought Index (NRDI) by incorporating large-scale climatic oscillations, utilizing the GAMLSS model 
across 103 grid points in Maharashtra, India. Their results demonstrated that NS modeling significantly outperforms stationary ap
proaches at various drought scales. Similarly, Bazrafshan et al. (2022) created a Non-stationary SPEI (NSPEI) using monthly pre
cipitation and temperature data from 32 weather stations in Iran, employing a non-stationary log-logistic probability distribution. This 
model treated the location parameter as a multivariable function of time and climate indices as covariates, with findings indicating that 
the NS log-logistic distributions consistently surpassed stationary models at nearly all stations (Bazrafshan et al., 2022).

Historical evidence highlights that Iran has experienced long-term and devastating droughts over the centuries. Notably, the severe 
famines during 1870–1872 and 1917–1919, triggered by drought conditions, jeopardized water and food security across the country 
and resulted in the loss of half the population (Bazrafshan, 2017; Bazrafshan and Hejabi, 2018; Delavar et al., 2024; Anvari et al., 2023; 
Anvari and Rydén, 2025). Bazrafshan (2017) documented that between 1894 and 2010, Iran, with an average annual precipitation of 
254 mm, endured 23 drought events lasting from 1 to 10 years. Among these, the 2008–2010 and 1998–2002 droughts, with total 
precipitation deficits of 176.1 mm and 180.4 mm, respectively, were identified as the most severe and widespread.

The standardized runoff index (SRI) is one of the most widely used indices in the assessment of hydrological drought worldwide 
(Jiang et al., 2019). Proposed by Shukla and Wood (2008), the SRI is based on the theory of the SPI developed by McKee et al. (1993). 
Its broad acceptance stems from its simplicity in calculation, the minimal data requirements, and its ability to assess hydrological 
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drought across different time scales. However, the stationarity assumption of the SRI is frequently violated in the context of global 
warming and significant human disturbances (Xiong and Guo, 2004; Villarini et al., 2009; Liu et al., 2019).

This study aims to develop a Non-Stationary Standardized Runoff Index (NSRI) tailored to the context of Iran’s changing climate. 
The novelty lies in modeling the non-stationarity of climate-related variables using both temporal and hydro-climatic covariates that 
influence the regional climate dynamics. The proposed NSRI is evaluated against its stationary counterpart in terms of both temporal 
and spatial drought characteristics. Furthermore, its effectiveness in capturing the impact of the most severe drought period across Iran 
is assessed relative to the stationary SRI (SSRI). Methodologically, the study contributes to the statistical modeling literature by 
exploring NS parameterization within the GAMLSS framework, supported by model comparison using the Akaike Information Cri
terion (AIC) and diagnostic tools such as worm plots.

It should be noted that the present study primarily focuses on trend-driven non-stationarity, which is modeled through smooth 
covariate effects within the GAMLSS framework. This approach allows for the representation of gradual and continuous changes in the 
statistical behavior of runoff over time, thereby capturing the influence of evolving hydroclimatic conditions across the Halil-Rud 
Basin. In this context, we assume that these temporal variations can be reasonably approximated by linear trends in the covariates, 
reflecting long-term, systematic changes rather than abrupt fluctuations. Furthermore, we examine the spatio-temporal variability of 
both SSRI and NSRI, acknowledging that spatial heterogeneity arises from the geographical distribution of sites and the gradual 
transition of hydroclimatic variables from upstream to downstream areas. Based on previous studies of meteorological and hydro
logical drought monitoring in Iran (e.g., Morid et al., 2006; Naderi et al., 2022; Anvari et al., 2023), which have consistently 
demonstrated the superior performance of the gamma distribution, we assume that the gamma and non-stationary gamma 
(NS-gamma) distributions are suitable for modeling SSRI and NSRI, respectively.

The remainder of this paper is structured as follows: 2 provides an overview of the Halil-Rud River Basin and the data utilized. 3
outlines the methodological approach. 4 details the model development, presents the results, and offers a comprehensive analysis. 
Finally, 5 summarizes the main conclusions and proposes directions for future research.

2. Study area and datasets

2.1. Study area

The Halil-Rud river basin, situated in the subtropical monsoon region of Kerman Province, Iran, covers an area of approximately 
22,255 km². The section of the basin up to the Jirof Dam, which is the focus of this paper, spans about 7224 km² (see Fig. 1).

Influenced by its geographical location and topography, the basin experiences an annual average temperature of 13◦C. The 
maximum daily average temperature can reach up to 40◦C at Kenaroyeh station located near the outlet of the basin. The long-term 
average annual precipitation in the basin is less than 225 mm (1993–2009), most of which is received between January and May, 
whereas precipitation is negligible between June and December. The Halil-Rud River is a significant watercourse in the province, 
particularly in terms of discharge, and it contributes to the feeding of the Jazmorian Wetland. The water released from the Halil-Rud 
River to the wetland is controlled by the Jiroft Dam at Kenaroyeh station (shown in Fig. 1). During the period from 1993 to 2009, the 
maximum and minimum annual average discharges were 33 m³ /s in 1995 and 0.71 m³ /s in 2007, respectively. Annual potential 
evaporation (PE) at the Baft synoptic station ranges from 2039 to 2569 mm, contributing to a low runoff coefficient of 0.12 (Mahmoodi 
et al., 2020; Eslami et al., 2022).

2.2. Data collection and analysis

In this study, three distinct datasets were utilized to support the analysis: 

a) Monthly precipitation and air temperature records from three synoptic stations located within the Halil-Rud Basin (Fig. 1),
b) Historical runoff data from three hydrometric stations, and
c) Gridded climate data derived from the Climatic Research Unit (CRU) database.

− Station-based observations: The station-based dataset comprises long-term meteorological and hydrological records spanning 
the period 1980–2019. Monthly precipitation and temperature data were obtained from three synoptic stations—Baft, Jiroft, and 
Kahnooj—provided by the Iran Meteorological Organization (IMO). In parallel, monthly runoff data were sourced from five hy
drometric stations, namely Pole-Baft, Meidan, and Kenaroyeh, which are managed by the Iran Ministry of Energy. These obser
vational datasets formed the basis for assessing regional hydroclimatic variability and served as critical inputs for the subsequent 
drought modeling framework.

Fig. 2 illustrates the 40-year time series of runoff data for the Kenaroyeh and Meidan stations, presented sequentially.
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Climate Research Unit (CRU) data: As previously mentioned, this study utilized weather data, including precipitation and 
temperature (mean, maximum, and minimum), extracted from the CRU database. The CRU produced time series of monthly climate 
variables from 1901 to 2019 with a 0.5-degree spatial resolution (New et al., 1999; Mitchell and Jones, 2005). These monthly gridded 
data were generated from ground-based climate variables over land and interpolated using the Inverse Distance Weighted (IDW) 
method. The data can be accessed from the CRU data website.1 The accuracy of the CRU gridded data against observational 
point-based data was also measured using some evaluation criteria like root mean square error (RMSE) and coefficient of determi
nation (R²) for the period 1980–2019. Results showed both temat selected synoptic stations

3. Materials and methods

As illustrated in Fig. 3. flowchart of the methodology in current paper, ensures a comprehensive approach to analyzing drought 
scenarios under S and NS conditions, integrating trend analysis and statistical modeling for robust results.

The research begins with the collection of meteorological and hydrometric data from 1980 to 2019. The meteorological data 

Fig. 1. Multi-scale geographic overview depicting: (a) Iran’s global position, (b) the study area within Iran—Kerman Province, and (c) the spatial 
layout of selected hydrometric stations.

1 https://crudata.uea.ac.uk/cru/data
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undergo preprocessing and analysis to determine their correlation with runoff time series from hydrometric stations. These correla
tions are essential for developing NS covariate scenarios within the GAMLSS framework. Concurrently, hydrometric time series are 
assessed for non-stationarity using the Mann-Kendall (MK) trend test and the Augmented Dickey-Fuller (ADF) test. Based on the most 
statistically significant covariate scenarios, both S/NS drought models are constructed by fitting Gamma probability distributions. 
Next, the Stationary SRI (SSRI) and its NS variant (NSRI) are calculated to characterize drought events in terms of frequency, duration, 
and severity. A comparative analysis of SSRI and NSRI follows to identify the most effective index for capturing hydrological drought 
dynamics in the study area.

3.1. The Mann–Kendall Trend test

The non-parametric Mann-Kendall (M-K) test is a statistical method utilized for detecting trends in data time series. This test is used 
to identify whether the median of a data time series changes over time (Mann, 1945; Kendall 1976). In the M-K test, the H0 (null 
hypothesis) and H1 (alternative hypothesis) correspond to data time series without and with trend, respectively. The following re
lationships are used: The H0 is rejected when the test statistic is meaningfully different from zero at 5 % significance level, i.e., if | 
ZM= > 1.96, then H0 is rejected which means that trend has been detected in the time series.

3.2. Stationary test by Augmented Dickey–Fuller (ADF)

After confirming the presence of a trend in the data, the Augmented Dickey–Fuller (ADF) test (Dickey and Fuller, 1979) was 
employed to assess the stationarity of the series. The ADF test is an extension of the original Dickey–Fuller test (Dickey and Fuller, 
1979), designed to account for more complex data structures by including lagged difference terms. In this study, a 12-month cumu
lative runoff time series from 1980 to 2019 was used for the NS analysis of the SSRI. The ADF test was applied to this cumulative 
dataset to evaluate its stationarity. To determine stationarity, the calculated ADF test statistic was compared against the critical value 
at a 5 % significance level. If the test statistic exceeds the critical value, the null hypothesis—that the series is NS—is not rejected, 
indicating non-stationarity in the time series.

3.3. Stationary Standardized Runoff Index (SSRI)

Analogous to the SPI (McKee et al., 1993), the SRI (Shukla andWood, 2008), is one of the most widely used indices worldwide in the 
hydrological drought assessment (Jiang et al., 2019; Sun et al., 2020). Given that the traditional SRI is computed assuming stationarity, 
we will now denote it as the Stationary SRI (SSRI).

SRI remains the most broadly accepted index due to being simple to calculate, the limited data required, and the different time 
scales of hydrological drought assessed. To obtain this index, fit the runoff series for a certain period by using Gamma distribution 
firstly and then transform it into a standard normal distribution through an equal probability transformation. The specific calculation 
process is as follows:

Fig. 2. The 40-year time series of runoff data for (a) Meidan and (b) Kenaroyeh stations.
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Runoff data aggregation: Monthly runoff series from the three hydrometric stations (Pole-Baft, Meidan, and Kenaroyeh) covering 
1980–2019 were first collected. Let x(n) represents the runoff data at the nth month. Fourty years (1980–2019) of runoff data are 
available here, thus n ranges from 1 to 648. For a given time scale of k months (a time scale of 12-month is considered here), the 
cumulative runoff xk(n) is calculated as: 

xk(n) =
∑n

i=n− k+1

x(i) (1) 

Fitting a two-parameter Gamma distribution, denoted as xk(n) ~ Gamma (μ, σ), which has been widely applied for hydrological 
drought indices (Morid et al., 2006; Wang et al., 2015; Sun et al., 2020): 

f(xk (n)|μ,σ ) =
1

(σ2μ)1/σ2

(xk(n) ) 1
σ2 − 1exp⌊ − (xk (n) )/σ2μ ) ⌋

Γ(1/σ2)
, xk(n) > 0 (2) 

where μ and σ are the location and scale parameters in Gamma, μ > 0 and σ> 0. Γ(.) is the mathematical Gamma function.
The cumulative probability for a given time scale can be calculated as: 

Fig. 3. Development of a stationary /non-stationary SRI (SSRI and NSRI).
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F(xk (n)) =
∫ x

0
f(xk (n) ).dx (3) 

Converting cumulative probability to a standard normal distribution function 

SRI =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ω +
c0 +c1 ω + c2 ω2

1 + d1ω + d2 ω2 + d3 ω3

ω =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ln

[
1

F(xk (n)2

]√
√
√
√ 0 ≤ F(xk (n) ≤ 0.5

− ω +
c0 +c1 ω + c2 ω2

1 + d1ω + d2 ω2 + d3 ω3

ω =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ln

[
1

1 − F(xk (n)2

]√
√
√
√ 0.5 ≤ F(xk (n) ≤ 1

(4) 

where c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308 (Shukla andWood, 
2008). Negative SSRI values indicate dry periods (droughts), while positive values signify wet periods. For the last step, we followed in 
our work the implementation in base R of the inverse cumulative distribution of the normal distribution. This is also the imple
mentation found in the R package SPEI.

4. Non-stationary SRI (NSRI)

4.1. Theory of NSRI construction

The SSRI model operates under the assumption that the parameters of the gamma distribution fitted to the 12-month cumulative 
series remain constant over time. In contrast, the NSRI applies an optimized NS model, allowing the distribution parameters to var
y—either linearly or nonlinearly—with time or relevant external covariates.

Given the extended nature of hydrological time series—especially those spanning over 30 years—it is imperative to account for NS 
behavior to avoid misrepresenting drought characteristics (Russo et al., 2013). To this end, we adopted the Generalized Additive 
Models for Location, Scale, and Shape (GAMLSS) framework (Rigby and Stasinopoulos, 2001, 2005) to develop the NSRI. GAMLSS 
represents a flexible, distribution-based modeling approach that surpasses the constraints of traditional generalized linear models 
(GLMs) and generalized additive models (GAMs) (Hastie and Tibshirani, 1987). Unlike its predecessors, GAMLSS enables the modeling 
of multiple distributional parameters—including location, scale, and shape—as linear, non-linear, or non-parametric functions of 
explanatory variables and/or random effects (Rigby and Stasinopoulos, 2005).

4.2. NSRI computation procedure

The following section outlines the expanded steps involved in constructing the NSRI: 

• Runoff data aggregation and distributional assumptions: Monthly runoff data from 1980 to 2019 were aggregated to a 12- 
month timescale to form the cumulative runoff series series xk(t). Each series was modeled using a non-stationary (NS) Gamma 
distribution, where the location (μ) and scale (σ) parameters were expressed as linear functions of hydroclimatic covariates.

• Model fitting and covariate selection using the GAMLSS framework: To assess the direct influence of local hydrometeoro
logical variables on drought dynamics in the Halil-Rud Basin, four covariates—precipitation (P), temperature (T), potential 
evapotranspiration (PET), and antecedent runoff (R)—were evaluated using Pearson correlation analysis. The Generalized Additive 
Models for Location, Scale, and Shape (GAMLSS) framework was applied to capture non-stationarity in the aggregated runoff data, 
allowing μ and σ to vary linearly with selected covariates. The Rigby–Stasinopoulos (RS) algorithm ensured robust parameter 
estimation for the NS Gamma distribution. Three base models (M1–M3) were developed to represent different covariate combi
nations, resulting in 14 NS configurations by varying the covariate inputs for μ and σ. All models were fitted using penalized 
likelihood estimation, and their performance was compared using the Akaike Information Criterion (AIC; Akaike, 1974). For each 
hydrometric station, the model with the lowest AIC was identified as the optimal NSRI specification.

• NSRI Computation:After determining the best-fitting Gamma distribution for each station and month, NSRI values were derived 
by transforming observed runoff into standardized normal scores using the fitted cumulative distribution function (CDF). This 
process mirrors traditional SRI computation but employs a covariate-driven, time-varying distribution instead of a stationary one. 
In GAMLSS, the cumulative runoff xk(n) is modeled as xk(n) ~ Gamma (μn, σn). It is assumed that the changes of runoff with 
covariates obey the following distribution parameters: 

μn = a0 +
∑I

i=1
aizi(n) (5) 
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σn = b0 +
∑I

i=1
bi zi(n) (6) 

where μn and σn are the location and scale parameters in NS Gamma distribution, a0 and b0 are constant terms, zi (i = 1, 2,…, I) is 
the covariate, and I is the number of covariates. Here, four variables are selected as alternative covariates, namely precipitation (P), 
temperature (T), potential evapotranspiration (PET) and antecedent runoff (R).

• Validation and comparison: The NSRI was compared against the stationary SRI (SSRI) using metrics such as drought severity, 
duration, and intensity. Time series plots and drought event analyses were used to assess the indices’ responsiveness to hydro
climatic variability and anthropogenic influences.

The NSRI is analogous to SSRI since in both cases cumulative probabilities are converted into standard normal values, and similar 
drought-level standards for both indices are recommended (Guttman, 1999). Positive NSRI values in Table 2 indicate wet conditions, 
while negative values indicate dry conditions. Similarly to SSRI, a higher NSRI value signifies wetter conditions, and a lower value 
indicates drier conditions.

4.3. Evaluation criteria

Akaike Information Criterion (AIC) weighs up the goodness of fit of a model (Akaike, 1974). It is the most widely used model 
selection criterion and is defined as: 

AIC = − 2 (llh)+2K (7) 

where K is the number of estimated parameters and llh is the maximum value of the likelihood function for the model. The minimum 
AIC value corresponds to the best statistical model (Katz, 2010). The AIC was used for the selection of significant covariates.

AIC is a comparative measure, its actual value when comparing two models has no interpretation. When considering several op
tions, the difference in AIC, ΔAIC say, is of interest to assess. Rules of thumbs have then been established (Burnham and Anderson, 
2004); a too small difference in AIC might not be of practical interest. We here give a summary of differences and related conclusions: 

• ΔAIC ≤ 2: models have substantial support and are considered statistically indistinguishable
• 4 ≤ ΔAIC ≤ 7: models have considerably less support

• ΔAIC > 10: models have essentially no support compared to the best model

4.4. Drought characteristics

The characteristics of drought are commonly delineated by their severity, duration, and frequency. The theory of runs, a proba
bilistic methodology introduced by Yevjevich (1967), is widely employed to derive these drought characteristics based on indices such 
as the SPI and the Standardized Precipitation Evapotranspiration Index (SPEI) (McKee et al., 1993; Vicente-Serrano et al., 2010). This 
methodology is extensively utilized to compute the severity, duration, and frequency of drought events by establishing a definitive 
threshold level (Yevjevich, 1967; Guttman, 1998).

In this study, the run-theory methodology was applied to delineate drought conditions using the SSRI and the NSRI. According to 
this theoretical framework, drought severity is quantified as the cumulative sum of SSRI or NSRI values falling below the established 
threshold. Drought duration is defined as the continuous period during which the SSRI or NSRI remains below this threshold, while 
drought frequency denotes the number of times the index crosses below this threshold (Gan et al., 2023; Hao and AghaKouchak, 2013). 
Duration is considered as a discrete random variable and in the recent study discrete distribution is fitted to the drought duration time 
series (Sarhadi et al., 2016)

Table 1 
Hydrological and meteorological stations in the Halil-Rud River basin.

Station Type Station Name Code Longitude & Latitude Altitude (m)

Hydrometric Stations Pole-Baft 44–001 56.63(◦E), 29.24(◦N) 2270
Meidan 44–111 57.01 (◦E), 29.17 (◦N) 1915
Kenaroyeh 44–115 57.24 (◦E), 28.88 (◦N) 1410

Synoptic 
Stations

Baft 
(Upstream)

40853 56.58 (◦E), 29.23 (◦N) 2280

Jiroft-Miandeh 
(Downstream)

40866 57.80 (◦E), 28.58 (◦N) 722

Kahnooj 
(Downstream)

40877 57.70 (◦E), 27.96 (◦N) 470
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5. Results and discussion

5.1. Trend and stationary analysis

In this study, the SSRI was calculated on a 12-month timescale to align with the management practices of Iran’s water resources, 
which are based on a water-year scale (i.e., October of the current year to September of the following year) (Raziei et al., 2008). The 
12-month cumulative runoff time series data, spanning 1980–2019, were subjected to trend and stationarity tests using the MK method 
and ADF test. For these analyses, the ’trend’ and ’tseries’ packages in R were employed to compute P-values, trends, and Dickey-Fuller 
statistics directly. The MK test was conducted to evaluate the significance of trends at a 5 % significance level, as outlined in Table 3.

As demonstrated in Table 3, the p-values from the MK test for all stations are less than the 5 % significance level. Consequently, we 
reject the null hypothesis (which posits no trend) and accept the alternative hypothesis. To quantify the magnitude of this trend, Sen’s 
slope was utilized, with the average slope across the selected stations calculated to be approximately − 0.011, reflecting a decreasing 
trend. Notably, all three stations within the Halil-Rud basin exhibited a statistically significant decreasing trend in runoff time series 
data at the 5 % significance level, as indicated in Table 3. Moreover, the calculated p-values for ADF test during all selected months are 
greater than the (5 %) significance level, and so it is concluded that the null hypothesis of the NS state should be accepted.

As illustrated in Fig. 4, the Dickey–Fuller statistics for the Kenaroyeh, PoleBaft, and Meidan stations exceed the threshold of − 3.5, 
while their corresponding P-values surpass 0.05. These findings confirm, at the 0.05 significance level, that the cumulative runoff 
series at these stations exhibit NS behavior. So, the development of the NSRI framework is imperative for accurately modeling these 
series.

5.2. Choosing the hydro-climate covariates

In regression-based model development, examining the correlation between the response variable and potential covariates is a 
critical preliminary step. To inform covariate selection for the NSRI formulation, Pearson correlation coefficients were computed 
between monthly runoff and four hydroclimatic variables-precipitation (P), temperature (T), potential evapotranspiration (PET), and 
antecedent runoff (R)-across three hydrometric stations: Baft, Jiroft-MianDeh, and Kahnooj.

Across all stations, runoff exhibited a positive correlation with precipitation, with coefficients ranging from approximately 
0.20–0.37, indicating that higher rainfall generally leads to increased runoff. In contrast, both temperature and PET showed negative 
correlations with runoff (ranging from about –0.31 to –0.45), suggesting that increased heat and evaporative demand tend to reduce 
available surface runoff. Notably, antecedent runoff displayed a very strong positive correlation with current runoff, with coefficients 
exceeding 0.94 at all stations, highlighting the strong persistence and memory effects within the catchments.Overall, the correlation 
patterns were consistent across sites: moderate associations for precipitation, temperature, and ETP, and a markedly high correlation 
for antecedent runoff. These results provide a sound empirical basis for including these variables as potential covariates in the sub
sequent NS modeling framework.

6. GAMLSS results

To investigate seasonal runoff variability and its primary drivers, four models (M0–M3) were developed within a NS framework, 
each incorporating an increasing number of covariates. Model 0 (M0) serves as the baseline (stationarity), assuming constant Gamma 
distribution parameters with no covariates. Covariates are included in the models, in various configurations, following the schemes 

Table 2 
Drought-level standards and the threshold values.

Index value Category

> 2.00 Extreme wet
1.99–1.50 Very wet
1.49–1.00 Moderate wet
0.99–0.00 Near normal
0.00 to − 0.99 Mild drought
-1.00 to - 1.49 Moderate drought
-1.50 to − 1.99 Severe drought
≥ 2.00 Extreme drought

Table 3 
The results of MK test for the selected stations during 1980–2019 (alpha=5 %).

Station Kendall’s Tau Var(S) p-value 
(Two-tailed)

Sen’s slope Model interpretation

Pole-Baft -0.317 11498930 < 0.00001 -0.01443 Reject H0
Meidan -0.223 11498850 < 0.00001 -0.03289 Reject H0
Kenaroyeh -0.184 11498940 < 0.00001 -0.09637 Reject H0
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presented in Tables 5–7 (one table for each of the three synoptic stations under study). In total, 15 model variants were tested to 
evaluate the influence of input factors on runoff dynamics. Models M11 through M14 correspond to NS frameworks incorporating a 
single covariate, whereas models M21 to M26 represent cases with two covariates. Additionally, models M31 to M34 denote NS models 
that include three covariates. The resulting AIC values corresponding to each fitted GAMLSS model for three hydrometric stations of 
PoleBaft, Meidan, and Kenaroyeh are presented in Tables 4, 5 and 6, respectively. The covariates considered in the model fits are 
different synoptic station data (T, P, PET, R). Lower AIC values indicate better model performance (i.e., a more parsimonious model 
that better fits the data without overfitting). Note, however, that slight differences in AIC (up to two units, according to rules of thumbs 
(Burnham and Anderson, 2004)) may not imply important differences in practice.

According to Table 4, the S model (M0) consistently exhibits higher AIC values compared to most NS models, suggesting relatively 
poor performance due to the lack of dynamic covariates. Among the evaluated NS models, Model M25, which incorporates T and R as 
covariates, demonstrates superior performance by yielding the lowest AIC values for nine months of the hydrological year—namely 
October, November, January, February, March, May, June, July, August and September. This pattern indicates that M25 is the most 
effective model for capturing hydrological drought dynamics under NS conditions at the Pol-Baft hydrometric station. Moreover, 
during the main drought season of the summer months (June, July, and August), Model M25 continues to demonstrate competitive 
performance, closely aligning with other high-performing models such as M32 and M33.

As shown in Table 5, Model M26, utilizing PET and R in its GAMLSS framework, consistently achieved the lowest AIC values for 
nine months (January-September). This indicates M26’s capability of capturing NS hydrological drought at Meidan station. The strong 
performance of M26 suggests that the combined influence of PET and R effectively describes temporal variations in runoff distribution, 
yielding a more accurate and robust NS drought detection, superior to stationary (M0) and other NS models. Note, however, that AIC 
values are close to those of M25. Though, towards the end of the hydrological year, the differences in AIC are more pronounced.

Table 6 concerns Kenaroyeh, and like for previous site there is seasonal variability for the optimal NS model. Model M25 (T and R) 
was most frequently selected in the early/late hydrological year (October-January, April, September), which implies that T and R have 
critical influence. Conversely, Model M26 (PET and R) dominated summer (May-August). This intuitively reflects the influence of PET 
and R on runoff in warmer seasons. Note, again, that for some months the differences between NS models are slight. the findings of 

Fig. 4. Statistical results of the stationarity (ADF test) for cumulative runoff data in the study area, K= 12.

Table 4 
Summary of AICs for stationary (M0) and the NS Gamma models (M1, M2, M3) at PoleBaft station.

Model Covariate OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP

M0 - 237 240 241 241 241 240 240 240 240 239 239 235
M11 P 226 227 237 239 239 225 220 219 218 222 225 225
M12 T 233 235 234 232 232 233 234 234 233 233 233 230
M13 PET 232 235 238 238 237 234 234 231 232 232 232 229
M14 R 207 200 201 195 196 202 206 185 184 187 192 205
M21 P-T 214 215 236 235 233 220 216 214 212 212 213 211
M22 P-PET 217 223 240 241 240 225 220 217 216 218 217 214
M23 P-R 209 203 204 198 197 202 192 187 188 191 195 207
M24 T-PET 233 235 238 236 236 235 235 231 230 232 234 229
M25 T-R 201 188 192 181 190 197 206 179 177 179 184 194
M26 PET R 205 198 199 189 195 194 200 183 185 187 190 199
M31 P- T- PET 217 219 239 238 236 223 220 217 215 216 216 213
M32 P-T-R 201 190 193 183 193 175 183 182 181 183 187 197
M33 T- PET-R 204 191 190 183 194 192 205 182 181 183 187 198
M34 P-PET-R 204 198 199 189 198 197 186 186 187 188 189 200

The smallest AIC value in each type of model is denoted in bold font.
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Tables 4–6 demonstrate that the implementation of the GAMLSS framework at the three key hydrometric stations—PoleBaft, Meidan, 
and Kenaroyeh—revealed critical distinctions in runoff behavior under varying model specifications. The M0 yielded in all cases 
substantially higher AIC values, reflecting its limited capacity to accommodate underlying variability. In contrast, all NS models M1. – 
M3. which allow covariate-driven temporal shifts in the location and scale parameters of the Gamma distribution, achieved lower AICs, 
indicating improved goodness-of-fit. Among the tested configurations, the model incorporating non-stationarity in both location and 
scale parameters demonstrated superior performance. This underscores the methodological importance of simultaneously accounting 
for evolving central tendency and dispersion in streamflow behavior under NS climatic conditions.

Fig. 5 presents a comparative visualization of model performance between S and the best choices of the NS scenarios. The heat map 
displays ΔAIC values—computed as the difference in AIC scores between S and NS models—for the PoleBaft station, in conjunction 
with Baft, Jiroft, and Kahnooj covariates. Each cell represents the magnitude of ΔAIC for a specific month within the hydrological year 
(October–September), with warmer color intensities indicating stronger statistical preference for NS modeling configurations. These 
ΔAIC values function as diagnostic measures for evaluating model efficacy under time-varying covariate structures. Elevated values 
suggest that incorporating NS elements (in location, scale, or both) substantially improves runoff characterization, particularly in 
transitional periods such as late winter and early spring. This reinforces the rationale for adopting a flexible, climate-sensitive 
modeling framework in hydrological drought assessment.

As illustrated in Fig. 5, the Baft synoptic station consistently exhibited relatively higher values of ΔAIC for more than half of the 
hydrological year. In other words, the meteorological variables derived from the Baft station yielded superior model performance 
compared to those from the other synoptic stations. Therefore, Baft was selected as the representative station for further analysis and 
interpretation of the NS behavior of the SRI across the remaining hydrometric stations.

6.1. A note on assessment of worm plots

In this section, we discuss assessment of the fitted models, making use of so-called worm plots (Buuren and Fredriks, 2001). These 
could be seen as a detrended Q-Q plot of the residuals. The abscissa shows unit normal quantiles and the ordinate the difference 
between observed and expected quantiles (standardized residuals). As in conventional analysis of residuals, deviations should be minor 
and with no patterns. Using the implementation in R, 95 % confidence bands are displayed. We here present the scenarios for the three 
summer months July, August and September for each of the three hydrometric stations under study. In addition, we present the related 
AIC values.

In Fig. 6, top panel, we study PoleBaft. The fit is overall decent and satisfactorily. The worst case is the month of September, where a 
handful observations fall outside the confidence bands. This is not surprising when considering the AIC values – the AIC for September 
is considerably higher than for the other months, following the rules of thumbs for differences in AIC. Fig. 6, middle panel, displays the 
results for Meidan. Again, the fit is decent for July and August. In September, a wiggly S-curve pattern makes the fit less good. Finally, 
in Fig. 6 bottom panel, the worm plots for summer months at Kenaroyeh are displayed. The clouds of dots fall between the confidence 
bands for all months which is positive. The best fit is for July, while the other months show a tendency to wiggliness. AIC values 
support the interpretation, the lowest AIC (and hence best fit) being for July.

We conclude that interpretation of worm plots could have a degree of subjectiveness, but the conclusions are in line with corre
sponding AIC values. In some studies, e.g. Sun et al. (2020), worm plots are presented as a part of the model assessment. For our work, 
we draw from the cases presented above the conclusion that the AIC values serve as good indicators for the fit (as displayed in 
Tables 5–7).

6.2. Estimation of the SSRI and the NSRI and drought characteristics

Fig. 7 illustrates the 12-month SRI and NSRI time series spanning 1980–2019 across the three study stations, demonstrating a 
strong overall agreement in identifying major hydrological phases. Both indices—the SRI (black line) and NSRI (red line)—rise during 
periods of elevated runoff (wet conditions) and decline during runoff deficits (drought), confirming their mutual sensitivity to the 
underlying hydrological regime.

However, upon closer examination, notable discrepancies emerge, particularly under extreme events or sustained trends. These 

Fig. 5. ΔAIC Heatmap: Comparison of Stationary and Non-Stationary Model Performance Across Synoptic Station Combinations and Months.
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deviations underscore critical conceptual differences between the SRI and NSRI approaches to drought quantification. Although both 
indices encapsulate the same physical climate signals, their mathematical frameworks yield diverging assessments of drought severity 
and timing. These variations stem from the underlying assumptions: the SRI presumes temporal stability in hydrological processes, 
while the NSRI accounts for evolving climatic baselines—thereby offering a dynamic perspective on drought characterization under NS 
conditions.

At the Pole-Baft station, the time series in Fig. 7a illustrates notable periods of divergence between SRI and NSRI. For instance, 
during the severe drought period around 2008–2009, the SRI values plunge considerably lower, reaching below − 3.0, indicating an 
exceptionally extreme drought event. In contrast, the NSRI values, while still negative, remain comparatively higher, suggesting a less 
severe drought when the evolving hydrological baseline is considered. Similar, albeit less pronounced, differences can be observed in 
the late 1990s, early 2000s, and again in 2017–2018. Conversely, during some wet periods, such as the early 1990s, the SRI peaks at 
slightly higher positive values than the NSRI.

The Meidan station, as depicted in Fig. 7b, exhibits overall patterns similar to Pole-Baft, yet with potentially different magnitudes of 
divergence between SRI and NSRI. For example, during the drought in the early 2000s and again around 2008–2009, the SRI 
consistently shows more pronounced negative values compared to the NSRI, indicating a perception of greater drought severity under 
stationary assumptions. Beyond magnitude, subtle shifts in the timing of peaks and troughs, or the rate of change, are discernible 

Fig. 6. Worm plots of summer months for the best scenario of each hydrometric station.
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between SRI and NSRI. One index might indicate a drought ending slightly earlier or later than the other, or a period of recovery 
commencing at a different point in time.

At the Kenaruyeh station, as shown in Fig. 7c, similar patterns of divergence between SRI and NSRI are observed, particularly 
during significant drought events like those around 2008–2009 and 2017–2018, where SRI consistently indicates more severe con
ditions than NSRI. While the general tendencies of divergence are consistent across all three stations, the degree and specific timing of 
these divergences appear to vary. For instance, the magnitude of the difference between SRI and NSRI during a particular drought 
event might be larger at one station than another, or the periods of most significant divergence might not perfectly align across all 
locations.

Table 5 
Summary of AICs for stationary (M0) and the NS Gamma models (M1, M2, M3) at Meidan station.

Model Covariate OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP

M0 - 352 352 352 352 352 351 352 352 352 352 352 352
M11 P 334 333 344 348 350 348 342 336 335 336 336 335
M12 T 345 345 344 345 344 344 342 342 343 343 343 344
M13 PET 342 342 344 347 348 346 343 340 341 341 341 342
M14 R 292 291 286 283 286 298 296 285 294 294 294 294
M21 P-T 337 337 345 347 345 347 341 337 337 338 338 337
M22 P-PET 337 337 346 350 349 350 344 338 338 338 338 337
M23 P-R 290 288 286 284 284 293 295 283 289 289 292 292
M24 T-PET 345 345 347 345 343 347 345 344 344 345 345 346
M25 T-R 289 291 288 278 282 288 295 282 292 294 294 294
M26 PET R 289 290 287 277 278 288 293 277 285 288 289 292
M31 P- T- PET 341 339 349 348 347 347 340 338 339 341 341 341
M32 P-T-R 289 289 289 281 283 292 297 283 289 291 293 293
M33 T- PET-R 292 293 291 280 282 288 295 280 289 292 293 295
M34 P-PET-R 292 291 290 280 282 291 296 281 289 291 293 294

The smallest AIC value in each type of model is denoted in bold font.

Table 6 
Summary of AIC values for stationary (M0) and the NS Gamma models (M1, M2, M3) at Kenaroyeh hydrometric station.

Model OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP

M0 Covariate 441 441 441 441 440 439 439 440 441 441 441 441
M11 - 423 422 428 434 438 432 425 424 424 424 423 423
M12 P 442 441 441 440 440 438 439 440 440 440 440 441
M13 T 437 438 441 440 440 437 436 433 433 434 434 434
M14 PET 365 359 363 367 399 392 388 368 363 361 370 366
M21 R 425 425 431 436 440 434 428 427 426 426 425 425
M22 P-T 424 424 431 435 441 435 428 425 423 423 423 423
M23 P-PET 365 357 360 363 378 386 388 366 362 359 368 365
M24 P-R 439 440 444 440 442 440 438 435 433 435 436 435
M25 T-PET 360 357 362 360 388 386 386 365 361 356 369 362
M26 T-R 365 359 362 362 389 389 386 361 359 356 367 365
M31 PET R 426 427 435 437 443 437 431 429 426 426 426 425
M32 P- T- PET 362 357 362 362 384 381 387 364 361 356 367 362
M33 P-T-R 363 361 365 363 390 388 388 362 362 359 371 365
M34 P-PET-R 367 360 363 365 390 384 390 364 363 360 368 367

The smallest AIC value in each type of model is denoted in bold font.

Table 7 
Drought characteristics from the SSRI and the NSRI for three Hydrometric station in the study area.

SSRI

Station Number Peak Longest Duration (months) Maximum severity

PoleBaft 8 -3.77 96 -89.53
Meidan 10 -1.57 61 -26.61
Kenaroyeh 8 -1.86 100 -64.78
​
​ NSRI
Station Number Peak Longest Duration (months) Maximum severity
PoleBaft 9 -3.41 96 -87.64
Meidan 11 -2.04 61 -43.10
Kenaroyeh 9 -2.02 130 -101.13
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6.3. Drought characteristics based on SSRI and NSRI

Table 7 presents key drought characteristics derived from the SSRI-12 and NSRI-12 time series at the Pole-Baft, Meidan, and 
Kenaroyeh stations. The analysis specifically examines three main attributes of drought events: peak intensity, duration, and severity. 
These characteristics were identified and extracted based on the run-length theory.

The drought peak is defined as the minimum value of the drought index within a given drought event, representing the event’s 
maximum intensity. The duration refers to the time span from the onset to the end of the drought. Drought severity is quantified as the 
cumulative sum of the deviations of the drought index from a predefined threshold over the entire duration of the event (Yevjevich, 
1967; Gu et al., 2019). In this study, a threshold of zero was adopted to delineate drought events.

As presented in Table 7, the analysis of the SRI time series at the Pole-Baft station over the 40-year study period reveals distinct 
patterns in hydrological drought behavior. Using run-length theory, eight drought events were identified, with the most intense event 
reaching a peak SRI value of –3.77, signifying an extreme hydrological deficit. The longest drought persisted for 96 months, while the 
highest severity recorded was –89.53. In comparison, the application of the NSRI, which accounts for NS situation in hydrological 

Fig. 7. 12-Month SSRI and NSRI series (1980–2019) at three locations (a) station PoleBaft (b) station Meidan (c) station Kenaroyeh.
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processes, detected nine drought events. The most severe event under NSRI reached a peak value of –3.41, with a maximum drought 
severity of –87.64.

The Meidan station also identifies more drought events (11 events) based on the NSRI, while the drought peak (-2.04) and the 
maximum drought severity (-43.10) are higher than those from the SRI (-1.57 and − 26.61). The longest drought durations are quite 
close from both the NSRI and the SRI for this station.

The Kenaroyeh station exhibited eight drought events under the SRI method, with the most extreme event recording a peak in
tensity of –1.86. The longest drought lasted 100 months, with a maximum severity of –64.78. Under the NSRI approach, the number of 
drought events increased to nine. Notably, the peak intensity became more severe at –2.02, and both the longest duration and 
maximum severity also increased significantly—reaching 130 months and –101.13, respectively.

A comparative analysis of drought characteristics at the Pole-Baft, Meidan, and Kenaroyeh stations reveals marked spatial vari
ability and significant methodological divergence between the SRI and NSRI-12 approaches. At Pole-Baft, both indices consistently 
indicate prolonged and intense drought conditions, with a peak duration of 96 months and a marginal reduction in severity from 
–89.53 (SRI) to –87.64 (NSRI). In contrast, Meidan reflects milder droughts overall; however, the NSRI reveals heightened severity 
(–43.10 vs. –26.61) and intensity (–2.04 vs. –1.57), despite no change in maximum duration (61 months). The most pronounced shift 
occurs at Kenaroyeh, where NSRI captures an extension in drought duration from 100 to 130 months and a significant increase in 
severity from –64.78 to –101.13, underscoring the critical role of NS dynamics. Recall that Kenaroyeh is at the outlet of the basin, and 
in addition has the lowest elevation (1410 m) of the three stations.

6.4. Drought frequencies based on SSRI and NSRI

Fig. 8 illustrates drought occurrence frequencies (in %) for four drought categories—Mild, Moderate, Severe, and Extreme—based 
on both SRI and NSRI for three hydrometric stations: Pole-Baft, Meidan, and Kenaroyeh. This comparison reveals how the NS 
assumption affects drought characterization in different hydrological regimes.

According to Fig. 8, at the high-altitude Pole-Baft station (2270 m), the frequencies of drought categories derived from SRI and 
NSRI are closely aligned, with mild droughts dominating (~40 %) and only marginal differences observed in moderate and severe 
drought categories. This suggests a relatively stationary hydrological regime with limited influence from evolving climate or 
anthropogenic factors. In contrast, the Meidan station (1915 m) shows a marked divergence between SRI and NSRI, with NSRI 
indicating a substantial increase in moderate (and to a lesser extent, severe) drought frequencies. This deviation implies the presence of 
NS likely driven by hydroclimatic variability or changing watershed conditions. The effect is even more pronounced at Kenaroyeh 
(1410 m), where NSRI reflects significantly higher frequencies of moderate and severe droughts compared to SRI. Given Kenaroyeh’s 
downstream position and proximity to Jiroft Dam, these trends suggest the strong influence of human interventions such as dam 
regulation and agricultural water use.

7. Conclusions

Hydrological processes are increasingly influenced by climate variability and anthropogenic activities, challenging the reliability of 
traditional drought assessment methods. In the context of a non-stationary (NS) climate, it becomes essential to revisit and adapt 
drought indices, as key statistical properties such as mean and variability may no longer remain constant over time.

In this study, we introduced a Non-Stationary Standardized Runoff Index (NSRI) designed to more accurately capture hydrological 
drought dynamics in the Halil-Rud Basin, Iran. The NSRI is formulated using a NS Gamma distribution, where the location parameter is 
modeled as a function of time and hydro-climatic covariates. Model selection was conducted via forward selection within the 
Generalized Additive Models for Location, Scale, and Shape (GAMLSS) framework, offering a flexible and robust alternative to con
ventional statistical approaches such as the Mann-Kendall (MK) trend test.

Our findings highlight that the model incorporating nonstationarity in both the location and scale parameters consistently yielded 
superior performance, as determined by the Akaike Information Criterion (AIC). Although AIC values were often close among 
competing models, this dual-parameter approach provided a more nuanced understanding of drought variability. Worm plots were 
employed as diagnostic tools to evaluate model adequacy, particularly focusing on summer months when droughts tend to intensify. 
Among the three gauging stations analyzed, Pole-Baft, Meidan and Kenaroyeh, the poorest model fit was observed in September, 
suggesting greater model sensitivity during peak drought periods.

From a hydrological perspective, the NSRI results underscore spatial heterogeneity in drought conditions across the basin. At the 
upstream station (PolBaft), the limited influence of human activities was reflected in the NSRI outputs, whereas at the downstream 
station (Kenaroyeh), anthropogenic impacts—such as land use changes and water abstraction—were more pronounced. For instance, 
from Table 8, we find that SSRI identifies a total number of 26 droughts, while for NSRI the number is 29. The average peak for NSRI 
(-2,49) is higher compared to SSRI (-2.40). Considering the quantity of longest duration, only for the station of Kenaroyeh (at the outlet 
of the basin) a difference was found between the indices; the duration was 30 months longer with NSRI. Four our data, NSRI detected 
more draught episodes. These findings reinforce the importance of adopting non-stationary modeling approaches to account for 
evolving watershed conditions. Overall, the spatial pattern observed—from Pole-Baft to Kenaroyeh —indicates a gradient of increasing 
nonstationarity, emphasizing that traditional SSRI underrepresents drought severity and frequency in lower, more human-impacted 
regions. These findings highlight the importance of adopting nonstationary drought indices like NSRI for accurate drought risk 
assessment and informed water resources planning.

Our findings are relevant for the case study of Iran, but the framework offers a robust plan for policymakers to make use of NS 
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modeling into drought monitoring procedures. Hence, risk assessment and informing adaptive strategies for sustainable water resource 
management can be enhanced.

While both human activities and climate change influence the non-stationary behavior of droughts, the present study was limited 
by its reliance solely on hydroclimatic variables as covariates. Future research should incorporate large-scale climate drivers—such as 
the El Niño–Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO)—as well as indicators of human influence, 
including land-use change, to better quantify non-stationarity. Another promising direction involves exploring alternative two- 
parameter distributions beyond the conventional Gamma model originally proposed by Thom (1958). Particular attention could be 
given to distributions available within the GAMLSS framework, such as the lognormal distribution, which has been widely applied in 
drought studies and may yield complementary insights. Comparative evaluations of these models could improve understanding of 
performance and robustness across different settings. Finally, extending the analysis to additional case studies—such as coastal basins 
or regions characterized by contrasting climatic regimes—would further enhance the generalizability and applicability of the proposed 
methodology.
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