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Urbanisation is leading to an increase in outdoor lighting technologies in cities, 
which can disrupt wildlife habitats in urban greenery and alter their natural biological, 
physiological, and behavioural rhythms. Despite the flexibility of LED lighting 
technology, it is not being used effectively in practise to minimise ecological 
disturbances while providing sufficient illumination for people. A PRISMA review 
of 31 papers on lighting using contemporary LED sources and wildlife species 
revealed that lighting parameters were inadequately described to (1) characterise 
the relationship between assessed ecological impacts and light properties and (2) 
adjust properties of contemporary lighting technologies to reduce such impacts 
on animals. The authors suggest strengthening interdisciplinary collaborations 
for informed sustainable development by establishing common procedures and 
methods to ensure the transferability of research outcomes to practical applications.
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1 Introduction

Artificial light at night (ALAN), an outcome of urbanisation, alters natural light and dark 
conditions in cities and beyond (Gaston et al., 2015; Bara and Falchi, 2023). Light pollution 
includes glare, light trespass, skyglow, and over-illumination; and outdoor electric lighting of 
an urban area can result in skyglow that extends hundreds of kilometres, impacting night skies 
and ecosystems (Jägerbrand and Spoelstra, 2023; Zielińska-Dabkowska et al., 2020; Kocifaj et 
al., 2023). Skyglow affects 23% of the global land area (Falchi et al., 2016), and is intensified by 
atmospheric conditions, such as weather (particularly clouds and snow) (Gaston et al., 2015; 
Jechow and Hölker, 2019; Rozman Cafuta, 2021). For example, sky brightness can increase by 
up to 10 times in entirely overcast conditions compared to clear skies (Kyba et al., 2012). Local 
light trespass can affect wildlife at distances of 10 to 50 m from the light source (Azam et 
al., 2018).

“Ecological” light pollution specifically refers to the modified natural light–dark cycles for 
non-human species (Longcore and Rich, 2004) whose biology evolved in synchrony with these 
cycles (Bradshaw and Holzapfel, 2010).

Beyond altering the visual character of built and natural environments, light exposure 
triggers diverse physiological and behavioural responses in humans and wildlife. In particular, 
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electric lighting can alter circadian rhythms, hormonal cycles 
(Seebacher, 2022; Cabrera-Cruz et al., 2018), reproductive systems 
(Dominoni et al., 2013; Kempenaers et al., 2010), disease susceptibility 
(Dominoni et al., 2013; Ouyang et al., 2017), and orientation during 
flight (Cabrera-Cruz et al., 2018). Nocturnal species are particularly 
vulnerable, as darkness offers protection and foraging advantages. 
Electric lighting can heighten predation risk (McMunn et al., 2019; 
Barrientos et al., 2023; Ditmer et al., 2020) and attract species (e.g., 
insects) to hazardous areas (Gaston et al., 2013). Disrupted natural 
light regimes may impair life history traits and individual fitness, with 
cascading effects on community interactions (Dominoni et al., 2016) 
and broader ecological dynamics (Cieraad et al., 2022). Despite this, 
ecosystem-level consequences of light pollution remain underexplored 
(Hölker et al., 2021; Hirt et al., 2023).

Cities retain significant biodiversity within urban green spaces 
(Aronson et al., 2014), however, urban expansion and increased 
ALAN threaten these ecosystems (Seto et al., 2012). Limiting electric 
lighting, particularly in natural zones could mitigate species loss. The 
recent habitat restoration law in Europe highlights shifting from the 
current lighting practises by stating, “Member States should be able to 
consider to stop, reduce and remediate light pollution in all ecosystems” 
(Habitat Restoration, 2024). Humans have implemented lighting to 
provide security and safety during commuting, recreation, and 
socialisation (Boyce, 2019). Recently, there has been a larger focus in 
the Convention on Biodiversity (target 12.4) (Convention Biological 
Diversity, 2022) on conserving and restoring species biodiversity 
alongside ensuring human well-being.

One way to support biodiversity conservation and advance 
sustainable planning is to adapt new lighting technologies based on 
the identification and localisation of species. The transition to LEDs 
in recent decades has altered the character of after-dark environments, 
natural habitats and species interactions (Longcore and Rich, 2004; 
Gaston et al., 2013; Pawson and Bader, 2014; Perez Vega et al., 2022). 
Some ecological effects have been documented, however, little 
attention has been given to LED characteristics and to how they are 
defined and measured outside the specialised lighting community, 
hindering comparability and translation of findings into practise.

“Light” is defined as the range of wavelengths in the 
electromagnetic spectrum that are visible to humans (CIE, 2020). 
Electromagnetic radiation, however, includes a wide range of 
wavelengths beyond what humans can see (Schreuder, 2008), 
including ultraviolet (UV) and infrared (IR), which are perceived by 
species other than humans.

Commercial white LEDs typically have a peak in short-
wavelength radiation (blue-appearing light in the wavelength region 
between 440 and 490 nm). Short-wavelength light especially 
contributes to increasing skyglow and affects the visual and non-visual 
mechanisms of species (Illuminating Engineering Society, 2023a). 
Broad-spectrum lighting (encompassing most or all wavelengths of 
the visible spectrum, 380 nm–740 nm) is favourable for supporting 
the overall vision of some organisms, while it might be 
disadvantageous for others due to exacerbating predator–prey 
relations (Dominoni et al., 2016; Rich and Longcore, 2006). LEDs can 
be dimmed by rapidly turning off and on, causing temporal light 
modulations (TLM), commonly called flicker (Lindén and 
Dam-Hansen, 2022). This temporal variation can be fast and invisible 
to most species; still, it may present visual and non-visual challenges 
(e.g., stress, eyestrain, and headaches in humans) (Abelson et al., 2023; 

Inger et al., 2014) especially for sensitive individuals (Miller et al., 
2023). In contrast, daylight and some older technologies do not 
exhibit flicker.

Within state-of-the-art lighting design research, anticipating 
animal responses at a community ecology scale is limited due to a lack 
of integrated knowledge. While LED technology offers potentials for 
customisability, further studies are needed to test lighting parameters 
across seasons, geographical locations and species. Such research 
could improve the evaluation of ecosystem-level effects (Gaston et al., 
2013; Hirt et al., 2023) and guide future use of LEDs to mitigate 
ecological impacts of electric lighting.

Pedestrian lighting systems are the main sources of light trespass 
in urban parks. Two lighting metrics often used to characterise 
pedestrian outdoor lighting are horizontal and vertical illuminance, 
estimating the amount of light projected on a surface (measured in lx) 
(Schreuder, 2008). The other is correlated colour temperature (CCT), 
describing the colour appearance of warm-cool white light sources 
defined in Kelvin (K) (Schreuder, 2008). They serve as guidelines 
based on visual performance criteria for different outdoor settings 
(European Committee for Standardization, 2016; Trafikverket, 2022). 
In practise (when this review was conducted), a CCT of 3,000 K, 
generally considered as “warm white” (DCCEEW, 2023; Illuminating 
Engineering Society, 2023b) or “neutral white” in colour appearance, 
has commonly been opted for by municipalities for pedestrian 
lighting. However, these metrics are developed based on the 
photometric and colourimetric system (Illuminating Engineering 
Society, 2011), for (limited) aspects of human vision. While useful in 
planning for visual performance, they remain simplified and 
insufficient from a multispecies perspective, and arguably inadequate 
for fully capturing human experience.

Spectral sensitivities of species vary compared to one another and 
humans (Longcore, 2023a,b). To better understand how light (and the 
broader electromagnetic spectrum) is evaluated in wildlife research 
and to assess how this research could apply to contemporary practise, 
we reviewed recent studies. Specifically, we aimed to explore two 
questions: (1) how (LED) lighting properties are measured, assessed, 
defined, and communicated in animal studies compared to human-
targeted lighting research; and (2) how this could inform lighting 
practise aiming at minimising disturbance on wildlife.

2 Current practises identified

To guide our inquiry, we reviewed recent literature on the 
ecological studies involving LED lighting technologies. PRISMA 2020 
guidelines were applied across Web of Science, PubMed, and Scopus 
between 2023 and 2024, resulting in 1,690 articles. Keyword 
combinations in the non-human organism category (Figure 1) 
intentionally focused on taxa relevant to our broader research 
objectives. In line with the review’s focus, we excluded studies that 
addressed roadway- or building-adjacent lighting, omitted LEDs, 
involved unidentified organism groups, or used undefined light 
sources, or which were broadly described as ALAN. After applying the 
exclusion criteria, 31 recent research papers remained, focusing on 
avian species (11), bats (8), mammals (other than bats) (9), and 
amphibians (3). The review aimed to understand how lighting 
parameters are defined and measured in current wildlife ecology 
research, often with an emphasis on reducing ecological disruption.
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The results demonstrated limited alignment between light 
measurements and descriptions across studies. The lighting 
parameters in the reviewed papers were similar to those used in urban 
lighting design practises for humans (not wildlife). Species-neutral 
radiometric parameters relevant to ecological assessments were often 
omitted. Figure 2 summarises a range of possible lighting parameters 
and metrics and whether they were found in the 31 studies. Most 
reported metrics described to varying extents (e.g., sufficient, 
incomplete, or missing) are human-based (e.g., spot illuminance, 
illuminance distribution, CCT), and also radiometric information 
(peak wavelength, SPD). “Complete” or “missing” indicates whether 

studies included or omitted a parameter entirely, while “incomplete” 
denotes partial inclusion (e.g., a label or range without specificity).

Illuminance was included in 23 papers and was the most used 
parameter. CCT was described in ten papers; the other ten papers 
contained broad light colour descriptions (e.g., white, blue, and so on). 
Peak wavelength was reported in eight papers, and four other papers 
reported wavelength ranges (SPD); one paper studied light 
distribution. The experimental studies were conducted in either field 
or lab settings, except for one review paper. The term “field” is defined 
for studies conducted in natural environments of species, and the “lab” 
for controlled indoor facilities.

FIGURE 1

Flow chart for the literature search process and selected studies for review using PRISMA 2020 guidelines. The literature searches were performed 
during the period of February to March 2023, and the papers were reviewed from March to May 2024. Additional searches were performed in March 
2024 using the same research databases. The literature search was aimed at detecting and including only peer-reviewed articles, proceedings papers, 
and book chapters. In the identification stage, 1,690 studies were identified, and articles not relevant to our inquiry were excluded. The graphical 
inspiration is based on Figure 3 in Perez Vega et al. (2022).
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3 Wildlife responses

To clarify the type of ecological outcomes of electric lighting, this 
section summarises the findings from the reviewed papers. The studies 
aim to inform ecology-sensitive lighting practise and demonstrate electric 
lighting as a disrupting variable. The underlying question whether 
reporting different parameters (Figure 2) would allow for additional 
interpretations or comparisons is subsequently discussed.

3.1 Birds

11 studies were reviewed, ten experimental and one review. The 
majority of species were Great tits (Parus major), Blue tits (Cyanistes 
caeruleus), Zebra finch (Taeniopygia gutatta) and Tree swallows 
(Tachycineta bicolor) in the studies. Lighting descriptions contained 
limited detail on CCT or spectra. Reported parameters included 
illuminance (0.5–5 lx) (Injaian et al., 2021; Dominoni et al., 2020; 
Dominoni et al., 2021; Dominoni et al., 2022; Grunst et al., 2020; 

McGlade et al., 2023; Alaasam et al., 2021; Ziegler et al., 2021), CCT, 
and spectral composition (Grunst et al., 2020; Zhao et al., 2020; van 
Dis et al., 2021). Light levels were linked to both physiological and 
behavioural changes (Injaian et al., 2021; Dominoni et al., 2020; 
Dominoni et al., 2021; Dominoni et al., 2022; McGlade et al., 2023; 
Alaasam et al., 2021; Ziegler et al., 2021), and spectral variation was 
mainly tested for behaviour (Zhao et al., 2020; van Dis et al., 2021). A 
review reported migratory disruptions at multiple spatial scales due 
to exposure to light pollution (Burt et al., 2023).

Reported effects varied, sometimes contradicting earlier 
findings (e.g., red light harmful to migration vs. later studies 
suggesting the opposite) (Zhao et al., 2020). Such inconsistencies 
likely reflect species sensory differences, age, health, habitat, 
additional stressors (noise, weather, and pollution), and study 
design (Dominoni et al., 2020; van Dis et al., 2021). Even low 
intensities (0.5–1.5 lx) induced physiological stress, altering 
hormones, immune responses, circadian regulation, sleep, and 
activity rhythms (Dominoni et al., 2021; Dominoni et al., 2022; 
Grunst et al., 2020; Ziegler et al., 2021). Migratory birds were 

FIGURE 2

The lighting parameters included and the relevant omitted parameters in the reviewed studies. The detailed units and definitions are found in the 
Supplementary Table 1.
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strongly attracted to short-wavelength LEDs, especially in foggy or 
windy conditions, increasing collision risk (Zhao et al., 2020). 
“White” LEDs disturbed incubation behaviour (early start) (van Dis 
et al., 2021), with rural bird populations showing greater sensitivity 
than urban ones (McGlade et al., 2023).

3.2 Bats

One review paper and eight experimental studies investigated 
through LED lighting, some in comparison with other light sources 
[e.g., gas discharge (Li and Wilkins, 2022), mercury vapour lamps 
(Haddock et al., 2019) or high-pressure sodium (Rowse et al., 2016)]. 
All were measured in field experiments and connected to foraging and 
commuting activities. Some papers included information on CCT, 
energy usage in watts (W), or flux output in lumens (lm). Two papers 
specified peak wavelengths (Luo et al., 2021; Bolliger et al., 2020), and 
another paper compared light distributions described as “focused,” 
“diffused,” and “standard” (Bolliger et al., 2022). The measured light 
levels ranged from low (1–25 lx) to high (24–250 lx). Two reviewed 
papers experimented with different CCTs, including warm-appearing 
light (1750 K and 2,700 K), and reported either an inexplicit influence 
due to avoidance of cold-appearing light (4,000 K) (Bolliger et al., 
2022) or no effect on bat activity (Bolliger et al., 2020).

The common pipistrelle (Pipistrellus pipistrellus) was described as 
benefiting from electric lighting to hunt prey (Rowse et al., 2016; 
Bolliger et al., 2020), while horseshoe bats (Rhinolophus) reduced 
foraging in lit areas (Luo et al., 2021). It appears that light tolerance 
varies amongst bats, influencing their foraging behaviour, boosting 
prey access for opportunists but not altering bat-insect predator–prey 
dynamics (Li and Wilkins, 2022; Bolliger et al., 2020). One study 
linked LED lighting to changes in activity levels, with confounding 
variables (e.g., vegetation, habituation, and monitoring duration) 
complicating specific assessments of effects (Haddock et al., 2019).

3.3 Mammals (other than bats)

We identified nine papers on other mammals than bats; seven 
were lab studies conducted on rats or mice to investigate the 
physiological mechanisms of human health (Faborode et al., 2021; 
Romeo et al., 2017; Rumanova et al., 2022; Lundberg et al., 2019; 
Martynhak et al., 2017; Orhan et al., 2021; Zubidat et al., 2018; 
Willems et al., 2021), one studied pinyon mouse (Peromyscus truei) 
(Willems et al., 2021) in the field, and the other was a lab study on 
shrews (Crocidura russula) (Aparício et al., 2022). Light levels in 
illuminance (between 2 and 700 lx) were reported in seven studies 
(Faborode et al., 2021; Rumanova et al., 2022; Lundberg et al., 2019; 
Martynhak et al., 2017; Orhan et al., 2021; Zubidat et al., 2018; 
Aparício et al., 2022), and CCT (2700–3000 K) was reported in one 
study (Li and Wilkins, 2022). In other studies, light’s colour was 
described semantically as “yellow-LED” (Zubidat et al., 2018) or 
“white-LED” (Faborode et al., 2021; Willems et al., 2021) without CCT 
or SPD. The spectral range was described in three studies (Romeo et 
al., 2017; Rumanova et al., 2022; Zubidat et al., 2018), whereas the 
other two studies provided the peak wavelengths (Faborode et al., 
2021). Species-neutral parameters, photon flux, and irradiance were 
included in two studies (Romeo et al., 2017; Zubidat et al., 2018).

3.4 Amphibians

The three reviewed papers included the common toad (Bufo bufo), 
Agile frog (Rana dalmatina) and Serrate-legged small treefrog 
(Kurixalus odontotarsus). Illuminance levels were used for assessments 
were grouped into lower (0.01 lx) to higher illuminances (55 lx). Two 
studies investigating gene expressions in juveniles indicated the CCT 
(6000–6500 K) (Touzot et al., 2023; Touzot et al., 2022). One study 
found minimal effect on melatonin-related genes, which suggests 
responses are species-specific (Touzot et al., 2023). Another study 
showed a significant effect on immune and lipid pathways under 5 lx 
with effects prolonging into daytime (Touzot et al., 2022).

Electric lighting has notable effects on molecular changes even in 
urban-tolerant species (e.g., common toad). One study found female 
small treefrogs preferring brighter lit environments mimicking the full 
moon illuminance [reported as 2.1 lx, although the full moon under 
clear sky is between 0.1 and 0.3 lx (Kyba et al., 2017)], implying an 
easier mate detection under increased light (Deng et al., 2019). 
Aquatic insects and anurans possess photosensitive receptors capable 
of detecting UV and near-IR light, with intensity and wavelength 
driving alterations (Schroer and Hölker, 2017; Holker et al., 2023). 
However, relevant parameters of irradiance or photon flux across UV 
and IR bands were not included in the studies.

4 Discussion – lighting design and 
wildlife research

Our review demonstrates that the most animal studies define and 
report LED lighting properties using a human-based system, 
reinforcing the human–ecology dichotomy in research and practise 
(Erixon et al., 2013). To make in-depth evaluations of the relationship 
between electric lighting and terrestrial species, a measurement 
toolbox on the use of different techniques and systems for measuring 
light and radiation beyond human vision (Hölker et al., 2021; 
DCCEEW, 2023; Apfelbeck et al., 2020) is needed. The ecological 
implications of electric lighting for wildlife species are mapped in 
previous research (Rich and Longcore, 2006; Schroer and Hölker, 
2017; Perez Vega et al., 2022). This study’s results on how lighting 
properties are defined, measured, assessed, and communicated, 
notably including LEDs, call for transdisciplinary dialogues (Apfelbeck 
et al., 2020; Garrard et al., 2017). These initiatives have capacity to 
bridge ecological knowledge with human safety in lighting, urban and 
landscape planning practises. Likewise, ecology needs clearer 
definitions of light in experiments to enable properly adapted design 
practises for after-dark environments (Pérez Vega et al., 2021).

The review revealed inconsistent use and reporting of LEDs (e.g., 
“blue-LED”). Although spectral information is essential when 
studying species-specific responses, only a few papers reported on 
peak wavelength or spectral range, while others included CCT 
(indicating the light colour appearance). Incomplete and inaccurate 
descriptions (e.g., CCT or vague colour information) limits studying 
specific vulnerabilities further.

The measurement of SPD (radiant energy at different wavelengths) 
(Kalinkat et al., 2021) by researchers and practitioners could serve as 
a basis for follow-up calculations. Other methods to biologically assess 
species habitats include “environmental light field (ELF)” by Nilsson 
and Smolka (2021), “spectral tuning” by Longcore (2023a), and 
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“α-opic irradiance metrology” (spectral tuning according to species 
light receptor physiology) by Lucas et al. (2024) and Schlangen and 
Price (2021). Some procedural recommendations include temporal 
and methodological variation in taxon sampling, in-depth analysis of 
control conditions, and relevant modes of measurement (e.g., 
determining location, time, metrics, and instruments) based on the 
research inquiry (Kalinkat et al., 2021; Jägerbrand and Bouroussis, 
2021). Light pollution monitoring employs various measurement 
techniques (e.g., ground-based approaches, satellite-based, and 
airborne observations) (Kocifaj et al., 2023; Linares Arroyo et al., 
2024), which are distinct from those used in wildlife and ecological 
studies (e.g., camera traps, acoustic sensors, or GPS tracking). Both 
approaches can be complementary in understanding impact of ALAN 
on ecological processes. However, the real-world dynamics and 
temporality (e.g., physical clutter, albedo, cloud height, aerosols) 
complicate both measurement accuracy and ecological implications 
(Kocifaj et al., 2023).

Wildlife assessments in the reviewed studies showed strong or 
weak correlations with lighting conditions. Disentangling the 
contribution of lighting from environmental stressors (e.g., other 
pollutants, weather conditions, and species-specific traits) is 
challenging. Low light levels (0.5–1.8 lx) have been shown to disrupt 
sleep patterns, extending the active period and accelerating incubation 
in birds. Recent research indicates even lower light levels can alter 
breeding, foraging, and singing behaviours (0.05 lx) and melatonin 
production (0.01 lx) (Aulsebrook et al., 2022).

An average light level on a pedestrian pathway in a suburban 
context (5 lx), was linked to substantial long-term physiological effects 
(e.g., on frogs). Short-wavelength-rich LEDs attracted some birds, 
altered incubation, and caused avoidance in certain bats under cold-
appearing light at 4000 K. Later studies have shown that red light 
attracts some bat species while repelling others (Durmus et al., 2024). 
Variations or even contradictions across studies reveal confounder 
effects, such as seasonality and trait-based responses to multiple 
sensory pollutants (Hölker et al., 2021; Rich and Longcore, 2006; 
Haddock et al., 2019; Dominoni et al., 2020). These pollutants can 
have additive (effects sum), synergistic (effects exceed or shift from 
expectation), or antagonistic (mutually dampening) effects (Piggott et 
al., 2015). Such interactions vary in magnitude and direction 
depending on ecological scale, and sensory, physiological, and natural 
history (Dominoni et al., 2020).

Although confounding variables in the field might obscure 
implications of electric lighting, lab studies tend to employ unnaturally 
dark or overly bright conditions, failing to reflect the actual animal 
environments (Aulsebrook et al., 2022). Both approaches can offer 
complementary insights; however, they come with limitations. One 
approach could be conducting lab studies at the molecular, cellular, 
and organ-system levels while carrying out field research on organism 
and population behaviours. However, experimental setups and devices 
that lack sensitivity (or are costly) to detect dim conditions accurately 
risk misinterpreting results. Other works suggest a need for long-term 
monitoring (Kalinkat et al., 2021), and before-and-after control 
studies of wildlife and biodiversity, as they are rarely conducted 
(Christie et al., 2019), with even fewer studies focused on before-and-
after different lighting conditions.

Carefully interpreting these outcomes leads to the assumption 
that lowered light levels and long-wavelength light content are 

worthwhile mitigation strategies for ALAN in site-specific testing. 
Such prototypical testing, by tuning light levels and spectrum, could 
be easily implemented with LED lighting systems. Additionally, 
dimming technologies can introduce temporal light modulation 
(flicker), which can negatively influence living organisms (Inger et al., 
2014). More complete flicker characteristics and descriptions can be 
enabled through field-measuring devices in future studies.

Due to the inconsistencies identified in this review and the 
absence of consensus-based protocols (Kocifaj et al., 2023; Kalinkat 
et al., 2021), we propose using ecologically relevant lighting 
parameters (Figure 2; Supplementary Table 1) to be reported in 
animal studies to enable reproducibility and support ecologists as 
well as practitioners. Ongoing research by interdisciplinary teams 
could contribute to the development of realistic guidelines, metrics, 
methods, and instrument specifications for outdoor illumination 
(obtrusive light and skyglow) and wildlife measurements. Examples 
of current initiatives include: The Plan-B European Project, 
Aquaplan, NorDark, several IES and CIE Technical Committees 
(TC2-95, TC4-61), 4th Manchester Workshop on Light Metrics for 
Biology: Light Pollution.

5 Conclusion

In the reviewed studies on LEDs and its effect on animals, we 
found little alignment between reported light measures and species-
specific sensitivities, making nuanced, practise-relevant interpretations 
difficult. Collaboration between lighting and ecology researchers 
could support more precise use of technology and design knowledge 
to consistently characterise light qualities in lab and field. Critically 
assessing and translating emergent knowledge (e.g., pilot studies in 
urban parks) into planning practise depends on transdisciplinary 
engagement, with policymakers, researchers, and stakeholders. When 
properly designed, wildlife-adapted LED illumination could support 
balancing human vision on walking paths and minimising adverse 
effects for other species, as highlighted in the Convention on 
Biodiversity. New findings will play a significant role when 
implementing the EU Nature Restoration Regulation (Habitat 
Restoration, 2024) or the Kunming-Montreal Global Biodiversity 
Framework (Convention Biological Diversity, 2022).
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