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Microbial food safety and sustainable 
resource management in cassava-based 
processing systems 

Abstract 
Cassava (Manihot esculenta Crantz) is one of Mozambique´s main staple crops, 
crucial for rural food security and livelihoods. However, its traditional processing 
into cassava roasted flour (rale) and other products generates considerable amount 
of solid and liquid residues that remain underutilised, while the associated handling 
practices may compromise food safety. 

This thesis investigates three interlinked aspects of cassava processing and 
utilisation: (i) the microbial safety and hygienic quality of rale produced in 
smallholder processing units; (ii) the potential of cassava residues as feedstocks for 
microbial lipid and ethanol production; and (iii) the cyanide tolerance of yeasts from 
cassava-processing environments. 

Microbial analyses showed that, although occasional microbial contaminants 
were detected, rale met microbial safety limits, with roasting acting as the key step 
in reducing both microbial loads and cyanogenic compounds. Enzymatic hydrolysis 
and yeast fermentation of cassava residues demonstrated efficient conversion of 
these into microbial lipids and ethanol by Rhodotorula toruloides CBS 14 and 
Saccharomyces cerevisiae J672, respectively. In parallel, isolates of microbes from 
cassava effluents, such as Pichia bovicola J709 and Magnusiomyces ingens J711, 
exhibited notable cyanide tolerance, suggesting potential for biological effluent 
detoxification. 

Overall, the study integrates food safety, residue valorisation, and microbial 
detoxification within cassava processing systems, highlighting the feasibility of 
combining safe food production with bio-based waste conversion and management. 
The findings in the work contribute to sustainable cassava bioprocessing strategies 
and can support Mozambique´s transition towards a circular, residue-driven 
bioeconomy. 

Keywords: cassava residues; food safety; microbial contaminants; cassava residues; 
microbial lipids; ethanol; cyanide tolerance  



Mikrobiell livsmedelssäkerhet och hållbar 
resurshantering i kassavabaserade 
processningssystem 

Sammanfattning 
Kassava (Manihot esculenta Crantz) är en av Moçambiques viktigaste basgrödor och 
har stor betydelse för landsbygdens livsmedelssäkerhet och försörjning. Den 
traditionella bearbetningen av kassava till rostat kassavamjöl (rale) och andra 
livsmedelsprodukter genererar dock betydande mängder fasta och flytande 
restströmmar som i stor utsträckning är outnyttjade, samtidigt som kassava som inte 
processas på ett bra sätt kan äventyra livsmedelssäkerheten. 

Arbetena presenterade i denna avhandling syftade till att undersöka tre 
sammankopplade aspekter av kassavautnyttjande: (i) den mikrobiologiska 
säkerheten och hygieniska kvaliteten hos rale som produceras i småskaliga 
bearbetningsenheter; (ii) potentialen med att utnyttja kassavarestprodukter som 
substrat för mikrobiell produktion av lipider och etanol; samt (iii) cyanidtoleransen 
hos jästarter från kassavabearbetningsmiljöer. 

De mikrobiologiska analyserna visade att rale uppfyllde livsmedelssäkerhetskraven, 
även om enstaka mikrobiella kontaminanter påträffades. Rostningen visade sig vara 
det avgörande steget för att minska både de mikrobiella halterna och cyanogena 
föreningar. Enzymatisk hydrolys och jästjäsning visade att man kan uppnå effektiv 
omvandling av kassavarestprodukter till mikrobiella lipider och etanol med hjälp av 
Rhodotorula toruloides CBS 14 respektive Saccharomyces cerevisiae J672. 
Samtidigt uppvisade isolat funna i, restvätskor från kassavaprocessingen såsom 
Pichia bovicola J709 och Magnusiomyces ingens J711, en anmärkningsvärd 
cyanidtolerans, vilket tyder på potential för biologisk rening av dessa restvätskor. 

Sammanfattat kan man säga att studien integrerar livsmedelssäkerhet, 
restvärdesförädling och mikrobiell detoxifiering inom kassavaprocessning och visar 
att säker livsmedelsproduktion kan kombineras med biobaserad resursåtervinning. 
De uppnådda resultaten kan bidra till utvecklingen av hållbara bioprocessstrategier 
för kassava och därigenom stödja Moçambiques övergång mot en mer cirkulär grön 
bioekonomi. 

Nyckelord: kassavarestprodukter; processningssystem; mikrobiell 
kontaminantering; mikrobiella lipider; etanol; cyanidtolerans  



 
 

Segurança microbiológica e gestão 
sustentável de recursos em sistemas de 
processamento da mandioca 

Resumo 
A mandioca (Manihot esculenta Crantz) é uma das principais culturas alimentares 
em Moçambique, desempenhando um papel central na segurança alimentar e 
subsistência das comunidades rurais. O processamento tradicional desta cultura para 
produção da farinha torrada (rale) e outros derivados produz quantidades 
consideráveis de resíduos sólidos e líquidos geralmente descartados sem 
reaproveitamento. Além disso, práticas inadequadas de manuseamento durante o 
processamento podem comprometer a segurança alimentar dos produtos finais. 

Esta tese tem como objectivo, investigar três aspectos interligados do 
processamento da mandioca em Moçambique: (i) a segurança microbiológica e a 
qualidade higiénica do rale produzido em unidades de processamento familiar; (ii) 
o potencial biotecnológico dos resíduos de mandioca como substractos para 
produção de lípidos microbianos e etanol; e (iii) a tolerância de leveduras associadas 
à ambientes de processamento de mandioca ao cianeto. 

As análises microbiológicas demonstraram que, apesar da detecção ocasional de 
microrganismos contaminantes, o rale apresentou cargas microbianas dentro dos 
limites de segurança alimentar, sendo a torrefação determinante na redução da carga 
microbiana e dos compostos cianogénicos. A hidrólise enzimática seguida de 
fermentação permitiu a conversão eficiente de resíduos de mandioca em lípidos 
microbianos e etanol, utilizando Rhodotorula toruloides CBS 14 e Saccharomyces 
cerevisiae J672, respectivamente. Adicionalmente, leveduras isoladas de efluentes 
de processamento da mandioca, nomeadamente Pichia bovicola J709 e 
Magnusiomyces ingens J711, demonstraram tolerância ao cianeto, indicando 
potencial para aplicação em processos biológicos de detoxificação de efluentes. 

De forma integrada, este estudo articula segurança alimentar, valorização de 
resíduos agroindustriais e detoxificação microbiana, demonstrando a viabilidade de 
conciliar produção de alimentos seguros com a conversão biotecnológica de resíduos 
contribuindo para estratégias sustentáveis de bioprocessamento da mandioca em 
Moçambique. 

Palavras-chave: resíduos de mandioca; segurança alimentar; contaminantes 
microbianos; lípidos microbianos; etanol; tolerância ao cianeto   



Preface 

This research was motivated by the need to strengthen food safety and promote 
sustainable resource management within cassava-based processing systems in 
Mozambique. By integrating microbiological assessment, bioprocess optimisation, 
and the physiological characterisation of yeasts associated with cassava processing 
environments, this thesis provides insights applicable to improving hygiene 
standards in small-scale food production, valorising agro-industrial residues, and 
supporting the development of circular bioresource systems in which safe food 
production and waste utilisation coexist in a single framework.   
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1. Introduction 

Mozambique, located along the southeastern coast of Africa, is an agrarian-
based country where more than 70% of the population depends on 
subsistence farming for food and income (Costa & Delgado, 2019; Bratley 
& Meyer-Cirkel, 2025). Agriculture is the cornerstone of rural livelihoods, 
providing employment and food security, yet productivity is constrained by 
climatic variability, weak infrastructure, and limited access to improved 
inputs (Dominguez-Torres & Biceño-Garmendia, 2011; Burns et al., 2012; 
Cambaza, 2023). The country´s tropical to subtropical climate, with 
alternating rainy and dry seasons, supports the cultivation of several staple 
crops, most notably cassava, which thrives in both fertile and marginal soils 
(Cambaza, 2023). 

Cassava (Manihot esculenta Crantz) is Mozambique´s main source of 
dietary starch, accounting for approximately 30% of total caloric intake and 
exceeding maize in dietary importance. It plays a crucial role in food security 
by acting as a reliable famine reserve crop, as its roots can remain 
unharvested in the soil for up to 30 months without spoilage (Costa & 
Delgado, 2019). The crop´s tolerance to drought and poor soils makes it 
particularly valuable in regions frequently affected by climatic variability. 
Nevertheless, cassava also presents significant limitations: its roots contain 
cyanogenic glucosides, which are toxic if not properly processed; its protein 
content is very low; and once harvested, its fresh roots deteriorate rapidly, 
typically within a few days (Tivana, 2012; Costa & Delgado, 2019). 

More than 100 cassava varieties are cultivated across Mozambique, 
including both sweet and bitter types that differ in taste, cyanogenic content, 
and adaptability to local agroecological conditions (Donovan et al., 2011). 
Approximately 90% of national cassava production consists of bitter 
varieties, which are more resistant to pests and diseases but contain 
cyanogenic glucosides that must be eliminated through proper post-harvest 
processing (Costa & Delgado, 2019). Sweet varieties, such as Xinhembwe 
and Munhaca, are mainly grown in the southern coastal region of the 
Inhambane province in the south of Mozambique and are preferred for their 
low cyanogenic content and desirable sensory proprieties (Donovan et al., 
2011). 
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In Mozambique, average cassava yields are low compared to those in 
West Africa and are roughly one-half to one-third of the yields in Latin 
America and Asia (Costa & Delgado, 2019). Nationally, cassava production 
covers approximately 873,953 ha of Mozambique, producing an estimated 
7.61 million tonnes of fresh cassava roots annually (MADER, 2023). Around 
70% of the cassava produced is intended for human consumption, serving as 
the staple food for more than half of the population in Mozambique, 
particularly in the northern and central regions provinces of Cabo Delgado, 
Nampula and Zambézia (Zvinavashe et al., 2011; Dias, 2012; Figure 1). 

Cassava is typically sold as fresh root, dried, or semi-processed into 
grated flour, depending on the region and local consumption patterns. In 
southern provinces of Mozambique, cassava roasted flour, also known as 
rale, serves also as staple food in many households (Paper I). Industrial-
scale cassava processing for food, feed or other applications remains 
virtually absent in the country, limiting the crop´s economic potential and 
value-chain diversification (Zvinavashe et al., 2011; Salvador et al., 2014; 
Costa & Delgado, 2019). 

In southern Mozambique, especially in the provinces of Gaza and 
Inhambane, farmers have associations equipped with semi-mechanised units 
to process cassava and are supported by technical training programs (Paper 
I). These initiatives have enhanced processing efficiency and product 
quality. However, cassava production remains predominantly artisanal, 
relying on simple, non-motorised tools for household use and small-scale 
trade. In Inhambane province which accounts for an annual production of 
approximately 163,798 tonnes of cassava (MADER, 2023), eighteen 
cassava-processing associations are actively engaged in rale production. 
Additionally, five associations are likewise involved in rale production in 
Gaza province. However, limited research has addressed the food safety and 
quality along the cassava roasted flour processing chain (Paper I). 
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Cassava processing generates substantial amounts of solid and liquid 
residues (Andrade et al., 2022; Ogbonna et al., 2025; Olaniyan et al., 2025; 
Paper II) that are often discarded untreated, contributing to environmental 
pollution because of their high organic load and cyanide content (Olukanni 
& Olatunji, 2018; Maciel et al., 2023). The biochemical composition and 
high organic load of cassava processing residues make them promising raw 
materials for microbial bioconversion into value-added products (Paper II; 
Paper III), offering a sustainable pathway to integrate waste reduction with 
bioresource valorisation and underscoring their potential contribution to a 
circular and sustainable bioeconomy (Zhang et al., 2016; Andrade et al., 
2022). 
 

 
Figure 1. Cassava production areas in Mozambique (Modified from Salvador et al., 
2014). 
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2. Cassava as a crop 

2.1 Cassava global production and socio-economic 
relevance 

Cassava (Manihot esculenta Crantz) is a perennial shrub belonging to the 
Euphorbiaceae family, which comprises more than 7 000 latex-producing 
species containing specialised laticifer cells (Konno, 2011; Shigaki, 2016). 
From a socio-economic perspective, cassava ranks among the most 
important crops in tropical and subtropical regions (Kosoe & Ogwu, 2024; 
Borku et al., 2025). It was domesticated in South America around a thousand 
years ago (McKey et al., 2010) and introduced to Africa during the 16th 
century, where it replaced native crops such as yam and pear millet and 
became a key staple food for low-income rural households (Pinto-Zevallos 
et al., 2016; Shigaki, 2016). Cassava is ranked as the fourth most important 
staple food crop worldwide, after rice, wheat, and maize, and contributes to 
the diet of more than one billion people due to its high carbohydrate content 
(Adebayo, 2023; Immanuel et al., 2024). 

Global cassava production reached approximately 333.6 million tonnes 
in 2023, with Africa contributing around 65% of the total (FAOSTAT, 2025; 
Abirami et al., 2025). Nigeria remains the largest cassava producer, 
accounting for nearly one-fifth of global output in 2021 (Table 1). In 
Southeastern Africa, United Republic of Tanzania, Malawi, Zambia and 
Mozambique, dominate cassava production, although in Mozambique only 
10–20% of harvests are commercially traded (Costa & Delgado, 2019; 
Abirami et al., 2025; FAOSTAT, 2025). 
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Table 1. Cassava Top Producing Countries in Africa and their contribution to African 
and World production in the early 2020´s. 

Country Position Output (tons) Africa 
production 

(%) 

World 
production 

(%) 
Nigeria 1 59,411,510 30.81 19.50 

The Democratic 
Republic of Congo 

2 40,050,112 20.85 13.19 

Ghana 3 22,447,635 11.69 7.40 

Angola 4 9,000,432 4.69 2.96 

United Republic of 
Tanzania 

5 8,184,093 4.26 2.70 

Cameroon 6 6,092,549 3.18 2.00 

Malawi 7 5,667,887 2.95 1.87 

Cote d´Ivoire 8 5,238,244 2.73 1.73 

Sierra Leone 9 4,588,612 2.39 1.51 

Zambia 10 4,036,584 2.10 1.33 

Mozambique 11 3,987,446 2.08 1.32 

Source: Data adapted from FAO (2023), Adebayo (2023) and Borku et al., (2025).  
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2.2 Cassava cultivation, processing and utilisation 
As described in Chapter 1, cassava´s ability to thrive under drought, low soil 
fertility, and minimal inputs underlies its widespread cultivation across 
Mozambique and other countries within Africa. Its perennial growth habit, 
and efficient photosynthesis between 25 ºC and 35 ºC (El-Sharkawy, 2004; 
Immanuel et al., 2024) make it particularly suited to marginal environments 
where it is cultivated by millions of rural households relying on family labour 
and basic tools (FAO & IFAD, 2000; Salvador et al., 2014; Immanuel et al., 
2024). 

Cassava can be harvested at any point between 6 and 30 months after 
planting and may be left in the ground as a food reserve. This flexibility 
ensures a continuous supply during droughts or periods of food scarcity, 
reinforcing its role as a cornerstone for food security and rural livelihood 
resilience (Anikwe & Ikenganyia, 2018; Costa & Delgado, 2019; Nadia et 
al., 2021). 

Across Africa, cassava processing and consumption have evolved from 
simple household practices into culturally embedded food systems that 
sustain both food security and dietary diversity (Kolawole et al., 2010). The 
crop’s labour-intensive cultivation and processing create substantial 
employment opportunities, particularly for women (Akpoghelie et al., 2025), 
making it both a subsistence and a commercial crop that contributes directly 
to household incomes and rural economic development (Amelework et al., 
2021; Borku et al., 2025). 

Driven by increasing demand for renewable feedstocks, cassava is now 
recognised as a strategic industrial raw material (Anyanwu et al., 2015; 
Zhang et al., 2016; Borku et al., 2025; Okolieuwa et al., 2025). Its high starch 
content (up to 90% on a dry-weight basis), combined with year-round 
availability and low-capital input requirements, positions it as an important 
feedstock for food, feed, and biotechnological applications (Howeler, 2000; 
Zhou & Thomson, 2009; Zhang et al., 2016; Borku et al., 2025). 

Consumption and processing methods vary across regions. In Central and 
East Africa, cassava roots are typically boiled or fried, while the leaves are 
used as a nutrient-rich vegetable (Nweke, 2004; Chiwona-Karltun et al., 
2015). In West Africa, fermented products such as gari, atiéké, lafun, and 
fufu are major staple foods, reflecting local detoxification and preservation 
traditions (Flibert et al., 2016; Halake & Chinthapalli, 2020; Obafemi et al., 
2022). Common practices such as peeling, grating, boiling, drying, and 
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fermenting (Scaria et al., 2024), not only reduce cyanogenic compounds, but 
also enhance flavour, texture, and shelf life (Tivana, 2012; Adebayo et al., 
2023). Differences in chemical composition, starch structure and anti-
nutritional content further determine cassava´s safety, quality, and suitability 
for industrial conversion (Montagnac et al., 2009; Morgan & Choct, 2016). 
A detailed understanding of these properties is thus essential for optimising 
cassava processing and promoting its sustainable utilisation in food and bio-
based systems. 

2.3 Nutritional composition of cassava 
The nutritional composition of cassava depends on the specific plant tissue 
(root or leaf) and on several factors such as variety, plant age, and 
environmental conditions (Tewe & Lutaladio, 2004). Cassava roots are 
characterised by a high carbohydrate content and low levels of lipids and 
proteins, which define their nutritional and energy profile (Montagnac et al., 
2009; Morgan & Choct, 2016). Carbohydrates represent the main 
macronutrient of cassava root, accounting for approximately 25–35% of the 
fresh weight (Scaria et al., 2024). About 80% of these carbohydrates are 
starch, composed of 83% amylopectin and 17% amylose. Cassava starch is 
highly digestible and contributes substantially to caloric intake in many 
tropical developing countries (Rawel & Kroll, 2003; Morgan & Choct, 
2016). It also contains dietary fibre which supports gastrointestinal function 
(Montagnac et al., 2009). 

Cassava root protein levels range between 0.7% and 1.3% on a fresh-
weight basis (Ngiki et al., 2014) and are usually deficient in essential amino 
acids (lysine, methionine, cysteine and tryptophan) but relatively rich in 
arginine, glutamic, and aspartic acids (Bradbury & Holloway, 1988; Gil & 
Buitrago, 2002). Roughly half of the nitrogen fraction occurs as free amino 
acids and non-protein nitrogen compounds such as nitrates and cyanogenic 
glycosides (Montagnac et al., 2009). 

Lipid content in cassava roots is extremely low, at approximately 0.1% 
of fresh weigh (Morgan & Choct, 2016). The small lipid fraction consists 
mainly of glycolipids (52%) and non-polar lipids (45%), with palmitic and 
oleic acids as the dominant fatty acids (Hudson & Ogunsua, 1974; Gil & 
Buitrago, 2002). Consequently, cassava contributes marginally to the dietary 
intake of fat-soluble vitamins. In contrast, cassava is a notable source of 
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vitamin C, a water-soluble vitamin, with reported contents ranging from 15 
to 45 mg per 100 g fresh weight (Okigbo, 1980; Charles et al., 2004) while 
B-vitamins are present in smaller amounts (Borku et al., 2025). The crop also 
provides minerals such as calcium, potassium, magnesium, and iron, with 
calcium levels (15–35 mg/100 g) higher than in many other tropical staples 
(Gil & Buitrago, 2002). 

In contrast, cassava leaves are highly nutritious, containing 17–40% 
protein (Khieu et al., 2005) and notable levels of vitamin B1, B2, C, and 
carotenoids, together with calcium and magnesium (Adewusi & Bradbury, 
1993). Young cassava leaves are also rich in vitamins A, B, C and K, which 
support vision, immune function, energy metabolism, and bone health 
(Shigaki, 2016; Rahman, 2025). These attributes make the cassava leaves a 
valuable dietary supplement in regions with limited access to animal protein, 
where low-alkaloid varieties are consumed as vegetable, providing essential 
nutrients (Borku et al., 2025). 

Despite these nutritional advantages, cassava and its derivatives still pose 
important food safety challenges due to its anti-nutritional factors, 
particularly cyanogenic glycosides, which require adequate processing to 
ensure safe consumption (Paper I). 

2.4 Anti-nutritional factors in cassava 
Antinutrients are naturally occurring compounds in plants that reduce the 
bioavailability or absorption of essential nutrients in the human body 
(Shigaki, 2016). Fresh cassava roots have a short post-harvest shelf life of 
only 1–3 days and contain several anti-nutritional compounds – phytates, 
tannins (phenolics), oxalates, nitrates/nitrites, and saponins – that can be 
toxic and reduce nutrient digestibility and bioavailability (Montagnac et al., 
2009; Salvador et al., 2014; Oresegun et al., 2016). 

Among these, the most critical from a food safety perspective are the 
cyanogenic glycosides, naturally occurring compounds capable of releasing 
hydrogen cyanide (HCN) during processing or digestion (Salvador et al., 
2014; Lateef & Ojo, 2016; Forkum et al., 2025). Cassava contains two 
principal cyanogenic glycosides: linamarin (93%) and lotaustralin (7%), 
whose concentrations range from 75 to 1000 mg HCN/kg of fresh root 
weight, varying depending on the variety, age, and environmental growth 
conditions (Burns et al., 2012; Ngiki et al., 2014). 
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When cassava tissues are disrupted during peeling, grating, and crushing, 
these compounds are enzymatically hydrolysed by endogenic linamarase, 
leading to the release of hydrogen cyanide (Tivana, 2012). Cyanide 
concentrations in cassava leaves are typically higher (up to six-fold) 
compared to the root, posing an additional health risk when leaves are 
consumed as vegetables (Ngiki et al., 2014). Depending on the content of 
cyanide glucosides, cassava varieties are classified into bitter and sweet. 
Farmers often prefer bitter varieties because of their superior yield, pest 
resistance, and prolonged in-ground storability (Tivana, 2012). However, 
these varieties are unsuitable for human consumption without extensive and 
adequate processing to eliminate cyanide (Salvador et al., 2014; Lateef & 
Ojo, 2016; Shigaki, 2016; Forkum et al., 2025). 

In humans, chronic exposure to sublethal doses of cyanide, particularly 
from insufficiently processed cassava, can deplete sulphur-containing amino 
acids such as methionine and cysteine and result in severe health disorders 
including tropical ataxic neuropathy, goitre, cretinism, and epidemic spastic 
paraparesis (konzo), the latter being the most commonly reported cyanide-
related illness in Mozambique (Cumbana et al., 2007; Nhassico et al., 2008; 
McKey et al., 2010, Tivana, 2012; Nyaika et al., 2024). 

This highlights the crucial role of post-harvest handling and processing 
of cassava to ensure health safety and nutritional quality of cassava-based 
foods. As fresh cassava has a rapid physiological deterioration that limits 
both food security and marketability (Tivana, 2012; Zainuddin et al., 2018), 
processing not only reduces the levels of cyanogenic glycosides and other 
anti-nutritional factors but also extends shelf life, improves palatability, and 
enables the production of diverse food and industrial products adapted to 
local and global markets. 
 
 
 
 
 

 
 
 
 



29 
 

2.5 Aims of the thesis 
Cassava utilisation in Mozambique, and in all cassava utilising countries, 
represents a multidimensional challenge: ensuring food safety in traditional 
processing systems, managing the large quantities of residues generated 
during processing, and understanding microbial adaptation to cyanide-rich 
environments. 

 
Building on this premise, this thesis investigates three interlinked 

perspectives covered in the chapters 3–5: 
• The microbial safety and hygienic practices of cassava roasted flour 

(rale), the most widely consumed cassava product in southern 
Mozambique. 

• The biotechnological potential of cassava processing residues for 
microbial conversion into value-added products. 

• Isolation and initial physiological characterisation of yeasts 
associated with cassava-processing environments. 

Addressing these three interrelated dimensions is important to improve 
food safety, reduce environmental pollution and promote circular bio-based 
solutions that benefit both rural livelihoods and industrial sustainability. 
Through an integrated approach combining microbial ecology, food safety 
assessment, and biotechnology applications, this thesis aims to generate new 
insights that contribute to safer food production and sustainable bioresource 
management within cassava food-based systems. 

 
To achieve these goals, the thesis is structured into three interrelated 

studies, each addressing specific objectives, which are: 
Paper I. Microbial contamination and food safety aspects of cassava roasted 
flour (rale) in Mozambique. 

• To evaluate the microbiological quality and safety of traditionally 
processed cassava flour (rale). 

• To identify potential contamination sources, and to assess 
hygienic practices during processing and marketing. 
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Paper II. Potential of conversion of cassava-processing residues by yeasts 
to produce value-added bioproducts. 

• To assess the ability of selected yeasts (Rhodotorula toruloides 
CBS 14 and Saccharomyces cerevisiae J672) to utilise cassava-
derived substrates (peels, fibres, and process press water) for 
microbial growth and to produce lipids and ethanol, and to 
evaluate the effect of nitrogen supplementation on lipid synthesis 
by R. toruloides. 

Paper III. Cyanide tolerance amongst yeasts from cassava processing 
effluents and reference strains. 

• To isolate, identify, and characterise environmental yeasts 
naturally adapted to cyanide-rich cassava residues. 

• To evaluate their physiological tolerance mechanisms as a basis 
for selecting robust strains for future bioconversion applications. 
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3. Cassava roots processing 

3.1 Cassava processing and residues generation 
Producing nutritious and safe food from cassava remains a significant 
challenge, as processing plays a crucial role in transforming the freshly 
harvested and highly perishable roots into safe, edible, and marketable 
products (Borku et al., 2025). As previously described in Chapter 2, cassava 
roots are highly perishable and contain toxic cyanogenic compounds; 
therefore, processing is indispensable for ensuring food safety and extending 
shelf life (Montagnac et al., 2009; Kolawole et al., 2010; Tivana 2012). The 
methods applied in Mozambique for cassava processing vary widely across 
regions and production scales, ranging from artisanal household techniques 
to semi-mechanised, and industrial operations. 

Cassava processing generally begins with cleaning of the roots to remove 
soil and impurities, followed by manual peeling using knives or other simple 
tools (Paper I). This first step generates the major solid by-product – the 
cassava peels – which account for approximately 10–20% of the fresh root 
weight (Adetan et al., 2003; Paper II). The peels contain cyanogenic 
compounds that can pose health and environmental risks if not properly 
managed (Kolawole et al., 2010; Isimah et al., 2023; Paper III). Although 
rich in fibre and residual carbohydrates that could be used for animal feed, 
compost or other applications, the peels are often discarded and left to 
decompose, leading to localised pollution (Morgan & Choct, 2016). 

After peeling, the roots are washed and grated or diced to release the 
starch and prepare the mash for fermentation. This stage, which typically 
lasts 1–3 days, improves product texture and flavour while substantially 
reducing cyanide levels. Fermentation is mainly driven by lactic acid bacteria 
(LAB) and yeasts. Linamarase released from disrupted plant tissues 
hydrolyses the cyanogenic glucosides linamarin and lotaustralin, releasing 
free hydrogen cyanide (HCN). Although this enzymatic hydrolysis initially 
increases free cyanide levels, it is a necessary step that enables subsequent 
detoxification through volatilisation and removal of HCN during 
fermentation, pressing, and roasting (Kostinec et al., 2005; Tivana, 2012). 
Once fermentation is complete, the mash is placed into porous bags and 
subjected to mechanical or manual pressing to remove excess liquid. This 
processing stage generates the second major by-product – the cassava 
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process press water – a liquid fraction rich in soluble organic matter and 
residual cyanide compounds (Olaniyan et al., 2025; Paper I; Paper III). 
Together with wastewater generated during washing and grating, this 
effluent often becomes a significant environmental pollutant when released 
untreated into surrounding ecosystems (Isimah et al., 2023). After pressing, 
the semi-dry mash is sieved and further processed according to the intended 
product through additional steps, such as roasting, drying or sedimentation.  

Each processing stage thus generates considerable quantities of solid and 
liquid residues with distinct physicochemical characteristics. Solid residues 
include cassava peels and fibres, the latter being a side stream specifically 
generated during cassava starch production. Liquid residues mainly comprise 
washing wastewater generated during root washing and grating, as well as 
cassava process press water produced during the pressing stage. Although 
traditionally regarded as waste, these materials represent valuable substrates 
for biotechnological valorisation (Paper II), particularly through microbial 
fermentation to produce biofuels, biosurfactants, microbial lipids and protein 
for animal feed (Hierro-Iglesias et al., 2022; De Oliveira Schmidt et al., 2023; 
Hossain et al., 2025). Figure 2 illustrates the main cassava side streams 
generated along the processing chain, for both roasted flour (rale) and starch 
production, including peels, fibres, and wastewater fractions, as observed in 
processing units in southern Mozambique. 
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Figure 2. Cassava residues generated during rale and starch production in cassava 
processing facilities in Southern Mozambique: (a-b) reception and unloading of fresh 
cassava roots; (c) sampling of cassava process press water from rale production; (d) 
discharge of cassava effluents from starch processing into open channel; (e) 
accumulation of cassava after peeling; (f) storage of pressed cassava fibre remaining after 
starch or flour extraction. Adapted from Papers II and III. 

3.2 Microbial contamination and hygienic risks during 
cassava processing 

Several studies across Africa have documented bacterial and fungal 
contamination in cassava-based food products. Aspergillus flavus, A. nomius, 
A. parasticus, and A. niger have been isolated from dried cassava chips and 
roasted fermented roots in Malawi, Zambia, and Nigeria, producing 
aflatoxins and other mycotoxins that pose serious health risks to humans and 
livestock (Kolawole et al., 2010; Chiona et al., 2014). Staphylococcus aureus 
and Escherichia coli are also frequently detected in cassava flour, reflecting 
inadequate hygiene, excessive manual handling, and the use of contaminated 
water during processing or marketing (Adebayo-Oyetoro et al., 2013; Lateef 
& Ojo, 2016). In Kenya, cassava products sold in rural markets exhibited 
high bacterial and coliform loads, confirming poor post-harvest handling and 
storage conditions (Gacheru et al., 2015). 
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Similar patterns have been reported in Côte d’Ivoire, where 
spontaneously fermented products such as attiéké displayed diverse 
microbial contamination, demonstrating that fermentation alone does not 
ensure food safety (Djeni et al., 2015). Studies in Nigeria and Côte d’Ivoire 
further highlighted the presence of pathogenic bacteria and toxigenic fungi 
in stored and marketed cassava products (lafún, attiéké and gari), 
highlighting the need for improved sanitary practices, clean water supply, 
and modern drying systems (Adebayo-Oyetoro et al., 2013; Kouamé et al., 
2013; Adjovi et al., 2015; Yusuf et al., 2024). 

Beyond microbial contamination, cassava-based foods may accumulate 
mycotoxins – particularly aflatoxins produced by Aspergillus species –
posing additional health risks (Roscoe et al., 2008; Ono et al., 2021; Matusse 
et al., 2024). In Paper I of this thesis, several mould species with toxigenic 
potential were identified and included species such as A. flavus (aflatoxin 
producer), Penicillium citrinum (citrinin), A. niger (ochratoxin A and 
fumonisins), and Fusarium oxysporun (fumonisins) (Marc, 2022; Pitt & 
Hocking, 2022). However, their abundance in rale samples was low, with A. 
flavus present at less than 3 cfu/g. These findings indicate that the risk of 
toxin production is minimal under normal storage conditions and would only 
become significant if rale were stored improperly, allowing mould growth 
and mycotoxin formation (Paper I). 

Notably, toxigenic moulds were absent in the market samples collected 
within this study (Paper I), while non-toxigenic moulds, yeasts, and S. 
aureus were occasionally detected. This likely reflects variations in hygiene 
awareness and handling practices – such as the use of uncovered containers 
and exposure to airborne dust and soil (Okolo & Makanjuola, 2021; Figure 
3). Matusse et al. (2024) detected low levels or even undetectable levels of 
aflatoxin in cassava flour samples from Gaza and Inhambane markets. These 
results indicate that, despite occasional contamination, the overall microbial 
and mycotoxin risks associated with artisanal rale production and trade 
appear to be low, provided that adequate hygiene and storage practices are 
maintained throughout the cassava value chain from cultivation to the 
household (Paper I). 
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Figure 3. Cassava manual peeling (a) and rale ready to sell in rural markets (b). 

Bacterial pathogens such as Listeria spp., S. aureus, Bacillus cereus, and 
E. coli have been detected in fermented or roasted cassava products in 
Nigeria, reflecting suboptimal hygiene and handling conditions (Obadina et 
al, 2008; Lateef & Ojo, 2016). Although few cassava-related foodborne 
outbreaks have been reported across Africa, the occurrence of these 
microorganisms represents a significant public-health concern, emphasising 
the need for improved fermentation control, sanitation, and staff training for 
small-scale producing units (Omojokun, 2013). In Paper I, bacteria from the 
Enterobacteriaceae family – including E. coli – were detected at low 
abundance in several samples taken at several steps during cassava 
processing, as well as in rale collected from both markets and processing 
units. Their low occurrence suggests incidental contamination rather than 
active proliferation, reinforcing the need for better hygiene practices and 
water quality during traditional processing. 

Despite cassava´s central role in diets across Africa, systematic studies 
on the microbial contamination and hygienic risks of roasted cassava flour 
(rale) under real processing and market conditions remain scarce, 
particularly in Mozambique (Paper I). Understanding microbial dynamics 
during processing is essential not only for ensuring safety but also for 
identifying beneficial microorganisms that may enhance flavour, texture, and 
shelf life. 
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3.2.1 Microbial contamination within the cassava processing chain: 
The case of Mozambique 

During this thesis work, a comprehensive assessment of cassava 
processing and marketing was conducted to evaluate microbial indicators of 
hygienic quality in southern Mozambique, assessed both during the rainy and 
the dry seasons (Paper I). Overall, the representative processing unit 
followed five main stages of cassava processing: 

a) delivery, peeling and washing of cassava roots; 
b) chopping of cassava roots to obtain paste or mash; 
c) pressing and/or fermentation of the paste which generates cassava 

process press water as a by-product; 
d) sieving of the cassava paste to achieve the desired granule size, and 
e) roasting, cooling, storage and packaging of the final product (rale) 

ready for marketing (Figure 4). 
Across the processing chain, microbial counts varied according to both 

processing stage and season (Figure 5). During the warmer, rainy season, 
higher counts of moulds, LAB, and Bacillus spp. were observed, while yeasts 
and S. aureus predominated during the cooler, dry season. The most frequent 
yeast species identified were: Wickeramomyces anomalus, Rhodotorula 
babjevae, Rhodotorula mucilaginosa, Pichia exigua and Meyerozyma 
caribbica. Seasonal differences were attributed to higher temperature and 
humidity (~29 ºC; 75% RH) during the rainy season, which favour microbial 
growth and mould contamination. The highest microbial loads occurred 
during early stages of processing, particularly after washing and chopping, 
reflecting contamination sources associated with water, utensils, and manual 
handling. Pressing and fermentation further modified microbial profiles, 
with LAB and yeasts dominating some batches, suggesting spontaneous 
fermentation activity (Figure 5; Paper I). 

Fermentation, typically driven by LAB and yeasts (Ray & Sivakumar, 
2009), plays a dual role in rale production as it enhances sensory quality and 
product safety. The characteristic flavour and aroma of rale arise from 
microbial metabolism, while enzymatic and acidification processes 
simultaneously promote detoxification (Kostinec et al., 2005). In particular, 
the enzyme linamarase, released from both plant tissues and microbial cells, 
hydrolyses the cyanogenic glucosides linamarin and lotaustralin, releasing 
volatile hydrogen cyanide and thereby reducing the product´s toxicity (NRC, 
1992; Kostinec et al., 2005). 
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Roasting markedly reduced total microbial viable counts, confirming its 
role as the critical control step for microbial inactivation. Beyond its effect 
on microbial viable counts, roasting also plays a decisive role in 
detoxification. The intense heat promotes the volatilisation of hydrogen 
cyanide released during fermentation and pressing, thereby reducing residual 
cyanogenic compounds to food safe levels. Indeed, the two most critical 
steps for cyanide elimination are the initial grating of cassava – where 
enzymatic hydrolysis of cyanogenic glucosides occurs – and the final 
roasting stage, which removes the liberated hydrogen cyanide through 
evaporation (Vasconcelos et al., 1990). However, occasional detection of 
moulds in the final roasted flour indicated possible post-roasting re-
contamination during cooling, storage, and marketing (Okolo & Makanjuola, 
2021; Paper I). 

Overall, the findings from Paper I demonstrate that the artisanal cassava-
processing systems in southern Mozambique are generally microbiologically 
safe, provided that basic hygiene and handling practices are maintained. The 
combined effect of fermentation and roasting ensures both detoxification and 
microbial safety, reflecting the effectiveness of traditional knowledge in 
securing food safety. Nonetheless, minor contamination risks particularly 
during post-roasting, handling and storage, indicate opportunities for 
improvement through targeted hygiene interventions. Beyond the food safety 
dimension, cassava processing also generates substantial amounts of by-
products that hold potential for valorisation rather than disposal of the 
processing residues (Paper II). This dual perspective – ensuring safe food 
production (Paper I) while promoting the reuse of cassava residues – forms 
the conceptual bridge to next chapter, which explores the conversion of 
cassava processing residues into value-added bioproducts through yeast-
based bioprocessing. 
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Figure 4. Main steps in cassava roasted flour (rale) processing at small-scale units in 
Inhambane: (a) root reception and peeling; (b) grating and pressing, (c) fermentation and 
liquid drainage; (d) sieving and drying; (e) roasting, packaging, and storage of final 
product (Adapted from Paper I). 
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Figure 5. Enumeration (log cfu/g) of different microbial groups isolated within the 
representative processing unit during (a) rainy and (b) dry seasons (Adapted from Paper 
I). 
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4. Conversion of lignocellulosic biomass 
into value-added products 

4.1 Lignocellulosic biomass and its structure 
Lignocellulosic biomass is an abundant and renewable plant-derived 
material composed mainly of cellulose, hemicellulose, and lignin, with 
minor amounts of proteins, lipids, pectin and minerals (Guerriero et al., 2016; 
Ning et al., 2021; dos Anjos et al., 2025). It is the most promising feedstock 
for potential second-generation (2G) bioethanol production, offering a 
sustainable alternative to first-generation resources (e.g., maize, wheat, or 
sugarcane) that compete with food supply (Zoghlami & Paës, 2019; Devi et 
al., 2021). 

The biochemical composition of lignocellulosic biomass depends on 
plant species, growing conditions, and tissue type (Zoghlami & Paës, 2019), 
but typically contains 35–55% cellulose, 20–40% hemicellulose, and 10–
25% lignin (Sharma et al., 2022). Cellulose, a linear polymer of D-glucose 
connected by β-1,4-glycosidic bonds, forms highly ordered crystalline 
microfibrils embedded in an amorphous matrix. Hemicellulose, in contrast, 
is a branched heteropolymer composed of pentoses (xylose, arabinose) and 
hexoses (mannose, glucose, galactose), which connects cellulose to lignin 
through hydrogen and covalent bonds. Lignin, a hydrophobic aromatic 
heteropolymer derived from monolignols such as p-coumaryl, coniferyl, and 
sinapyl alcohols, provides rigidity and resistance to enzymatic degradation, 
but also hinders access to fermentable carbohydrates (Zoghlami & Paës, 
2019; Devi et al., 2021) (Figure 6). This compact and interlinked architecture 
of lignocellulosic biomass, where lignin crosslinks cellulose and 
hemicellulose, creates the main barrier to efficient saccharification of the 
biomass, a phenomenon known as biomass recalcitrance (Zoghlami & Paës, 
2019). Consequently, effective pretreatment strategies are required to 
breakdown this structure and release fermentable sugars for microbial 
conversion (Shukla et al., 2023). 
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Figure 6. Lignocellulosic biomass structure and composition (Adapted from Tran et al., 
2019; Ojo, 2023). 

4.2 Pretreatment of lignocellulosic biomass 
The complex and highly ordered structure of lignocellulosic biomass must 
be disrupted through pretreatment, a crucial step to break down the 
interlinked network of cellulose, hemicellulose, and lignin, and enhance 
enzymatic accessibility (Shukla et al., 2023; Abolore et al., 2024; Woźniak 
et al., 2025). Various pretreatments strategies have been developed, broadly 
classified as physical, physicochemical, chemical and biological methods, 
each differing in mechanisms and efficiency (Shukla et al., 2023). The 
efficiency of lignocellulosic biomass conversion largely depends on the 
choice of pretreatment method, which must be tailored to the biomass type, 
structural complexity, and polymer composition (Wi et al., 2015; Sharma et 
al., 2023; Woźniak et al., 2025). Recent advances in bioprocessing have 
focused on the efficient conversion of lignocellulose into bio-based products, 
including bioethanol, microbial oils, organic acids, and biopolymers (Ojo, 
2023; Periyasamy et al., 2023; Alcocer-Garcia et al., 2025). 
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Physical pretreatments primarily aim to reduce particle size of the 
lignocellulosic biomass and increase the surface accessibility of 
polysaccharides through mechanical chopping, milling, extrusion, 
irradiation, or ultrasonication (Gallego-García et al., 2023; Sharma et al., 
2023; Sant’Ana Júnior et al., 2025). Among physical and chemical 
approaches, thermo-pressure or hydrothermal pretreatments (e.g., steam 
expansion, previously known as steam explosion) involve exposing biomass 
to high temperature (160–240 ºC) and pressure (10–20 bar) followed by rapid 
decompression. This process effectively disrupts the lignocellulosic structure 
and improves enzyme accessibility, without requiring the use of external 
chemicals (Ziegler-Devin et al., 2021; Woźniak et al., 2025). These 
approaches are environmentally friendly and effective in solubilising 
hemicellulose and redistributing lignin, although they can be energy 
demanding and may lead to sugar degradation and inhibitor formation 
(Jönsson & Martín, 2016; Galbe & Walberg, 2019). Chemical pretreatments, 
in contrast, target the cleavage of structural bonds within the biomass matrix 
using agents such as acids, alkalis, ionic liquids, or organic solvents to 
depolymerise cellulose and hemicellulose into fermentable sugars. While 
highly effective, these methods often require costly chemical recovery and 
can generate inhibitory by-products such as furfural and hemifurfural 
(Jönsson & Martín, 2016; Sharma et al., 2023). Bio-pretreatment employs 
lignin-degrading microorganisms, mainly fungi and bacteria, to modify the 
cell wall components in an environmentally friendly manner, though 
typically at slower rates (Zoghlami & Paës, 2019; Devi et al., 2021). 

Following physical and chemical pretreatments, enzymatic 
saccharification converts the exposed polysaccharides into fermentable 
sugars (Zhu et al., 2020; Tang et al., 2024). This process involves synergistic 
enzyme systems composed of cellulases, including endo-β-1,4-glucanase, 
cellobiohydrolase, and β-glucosidase, and hemicellulases such as xylanases, 
β-xylosidase, glucuronidase, and acetylesterase, which collectively 
hydrolyse cellulose and hemicellulose into monomeric sugars. More 
recently, auxiliary enzymes such as lytic polysaccharide monooxygenases 
(LPMOs), laccases, and manganese peroxidases have been used to enhance 
saccharification efficiency by promoting oxidative cleavage of recalcitrant 
polysaccharides and lignin removal, thereby improving glucose yields while 
reducing cellulose demand (Sharma et al., 2022, 2023). 
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Despite these advances, enzyme systems remain costly and sensitive to 
process conditions, which constrains large-scale applications. To address 
this, research has focused on cost-reduction strategies such as onsite enzyme 
production, enzyme immobilisation, and the development of tailored enzyme 
cocktails adapted to specific biomass feedstocks (Biely et al., 2016; Robescu 
et al., 2025). Beyond biofuels, enzymatic hydrolysates of pretreated 
lignocellulosic biomass also serve as precursors for a variety of value-added 
bioproducts, including xylo-oligosaccharides, organic acids, lignin-derived 
aromatics, and platform chemicals such as vanillin, syringaldehyde, and 
phenolic monomers (Manisha, 2017; Sharma et al., 2023; Alvaréz et al., 
2024). 

After enzymatic saccharification, microbial fermentation converts the 
resulting soluble sugars into bioethanol, lipids or other target products such 
as butanol, acetone, and lactic acid (Faraco, 2013; Khunnonkwao et al., 
2024). The selection of fermenting microorganisms depends on the 
composition of the hydrolysate, particularly the relative proportion of 
hexoses and pentoses, and the content of inhibitors in the fermenting broth. 
A variety of microorganisms have been investigated for ethanol production, 
including: yeasts such as Saccharomyces cerevisiae, Scheffersomyces 
stipites and Scheffersomyces shehatae; bacteria such as Zymomonas mobilis, 
Klebsiella oxytoca, and engineered Escherichia coli stains; and, Mucor 
indicus and other filamentous fungi from the genera Penicillium, 
Trichoderma and Aspergillus, which have primarily been evaluated at 
laboratory or pilot scale. While S. cerevisiae remains the industrial standard 
due to its robustness, inhibitor tolerance, and high ethanol productivity, 
alternative microorganisms continue to attract research interest for specific 
traits. These include the ability to ferment pentose sugars such as xylose, or 
highly efficient ethanol production pathways (Paulova et al., 2015; Saxena 
et al., 2023; Sharma et al., 2023, Al-Hammadi et al., 2025). 

The bioconversion of lignocellulosic biomass represents a promising 
route for transforming agricultural and industrial residues into value-added 
products (Paper II), supporting the global transition toward a waste-to-
wealth circular bioeconomy. Among these residues, cassava by-products 
such as peels, fibres, and cassava process press water share a composition 
similar to that of fresh roots. They consist mainly of starch (approximately 
90%), of which about 20% is linear amylose and 80% branched amylopectin, 
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making them a carbohydrate-rich substrates suitable for microbial 
bioconversion (Hierro-Iglesias et al., 2022). 

In this thesis, cassava peels and fibres were selected as representative 
substrates for bio-processing. In these hydrolysates, the hemicellulosic and 
cellulosic fractions provided fermentable sugars for lipid and ethanol 
production, whereas the solid residues (filtrate cake), mainly containing 
lignin, were not evaluated in this study (Paper II; Figure 7). 

 

 
Figure 7. Conversion of cassava residues in hydrolysates (Adapted from Paper II). (a) 
Pretreatment unit for steam expansion (STEX) of the lignocellulosic biomass at Lund 
University, Sweden; (b-c) Biomass after STEX; (d) Enzymatic hydrolysis applied for 
cassava biomass. 

4.3  Conversion of cassava peels and fibres into value-
added side streams 

4.3.1 Oleaginous microorganisms and lipid metabolism 
Lipids are indispensable biomolecules in all organisms, serving as 

structural components of membranes, energy reserves, and regulatory agents 
(Sandager et al., 2002; Lingwood & Simons, 2010; Eisenberg & Buttner, 
2014). In most microorganisms, lipids account for approximately 7–15% of 
their dry cell mass (Kaneko et al., 1976; Ali & Szabó, 2023). However, 
oleaginous yeasts possess an exceptional ability to accumulate lipids 
exceeding 20% of their dry cell mass (Passoth et al., 2023), with some strains 
reaching levels above 70% under optimised conditions (Ratledge & Wynn, 
2002; Ochsenreither et al., 2016). 

Oleaginous yeasts efficiently convert a wide range of carbon sources – 
including sugars from lignocellulosic hydrolysates, organic acids, aromatic 
compounds derived from lignin and glycerol from biodiesel production – 
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into lipids that closely resemble vegetable oils, making them promising 
candidates for biofuels, chemicals, and nutraceuticals (Valdés et al., 2000; 
Bharathiraja et al., 2017; Blomqvist et al., 2018; Passoth & Sandgren, 2019). 
Taxonomically, oleaginous yeasts include ascomycetous species such as 
Yarrowia lipolytica, Lipomyces starkeyi and Blastobotrys adeninivorans, as 
well as basidiomycetous species such as Rhodotorula toruloides, 
Rhodotorula glutinis, Rhodotorula babjevae, Cutaneotrichosporon 
curvatum (syn. Cryptococcus curvatus), and Cutaneotrichosporon 
oleaginosus (Sanya et al., 2021; Mota et al., 2022). 

Lipid accumulation generally occurs in two metabolic phases: a growth 
phase, during which nutrients are abundant, and biomass formation 
predominates; followed by a lipid accumulation phase, triggered by excess 
carbon and limited nitrogen, phosphorous, or sulphur availability (Granger 
et al., 1993; Wen et al., 2020; Diaz-Navarrete et al., 2023). Under such 
nutrient stress, the metabolic flux shifts from cell growth toward the 
synthesis and storage of triacylglycerols (TAGs) and, in some cases, free 
fatty acids (Ratledge & Wynn, 2002; Shapaval et al., 2019; Nagaraj et al., 
2022). 

In oleaginous yeasts such as R. toruloides, sugars including glucose and 
xylose are metabolised through glycolysis and the pentose phosphate 
pathway (PPP), generating adenosine triphosphate (ATP) and nicotinamide 
adenine dinucleotide phosphate (NADPH) required for fatty acid 
biosynthesis. Under nitrogen-sufficient conditions, most carbon flux is 
directed towards biomass formation through the tricarboxylic acid (TCA) 
cycle, supporting active protein, nucleotide, and cell-wall biosynthesis. 
When nitrogen becomes limiting, cellular growth is restricted, because 
nitrogen is essential for amino acids and macromolecule biosynthesis. Under 
nitrogen limitation, a key regulatory event occurs in the TCA cycle: 
mitochondrial isocitrate dehydrogenase activity is inhibited due to reduced 
availability of intracellular adenosine monophosphate (AMP), which is 
consumed during nitrogen starvation. This inhibition prevents the conversion 
of isocitrate to α-ketoglutarate, leading to citrate accumulation within the 
mitochondria. Excess citrate is subsequently exported to the cytosol, where 
ATP-citrate lyase converts citrate into acetyl-CoA – the main precursor for 
de novo fatty acid biosynthesis (Ratledge, 2014; Fakas, 2017; Passoth et al., 
2023). Excess carbon is therefore redirected from energy-generating 
pathways toward storage metabolism, resulting in the synthesis of 
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triacylglycerols (TAGs) via the Kennedy pathway and their storage in lipid 
bodies. Under optimised cultivation conditions, this metabolic shift enables 
storage lipids to constitute more than half of the total cell mass, positioning 
R. toruloides as a robust and versatile platform for sustainable microbial oil 
production (Passoth et al., 2023). 

Together, these metabolic capabilities make oleaginous yeast such as R. 
toruloides CBS 14, not only efficient lipid producers but also highly 
adaptable biocatalysts capable of converting low-cost, carbon-rich agro-
industrial residues into renewable bio-based products (Paper II). Their 
capacity to thrive under nutrient-limited and stress conditions is highlighted 
for valorising complex substrates such as cassava processing residues. 

4.3.2 Rhodotorula toruloides as a promising oleaginous yeast 
Among oleaginous yeasts, R. toruloides is one of the most studied yeast 
species, second to the model organism Yarrowia lipolytica. This non-
conventional basidiomycetous yeast (Sporidiobolaceae family) is 
remarkable for its ability to accumulate exceptionally high levels of lipids up 
to 76% of its cell dry weight (Wu et al., 2010; Ageitos et al. 2011; Xue et al., 
2018; Shen et al., 2017). 

Beyond its exceptional ability for lipid accumulation, R. toruloides 
exhibits remarkable tolerance to inhibitors typically found in lignocellulosic 
hydrolysates, enabling efficient growth, and synthesis from complex, low-
cost substrates (Brandenburg et al., 2021; Fernandes et al., 2023). The fatty 
acid composition of lipids produced by R. toruloides is generally similar to 
that of conventional vegetable oils, being dominated by oleic, palmitic, and 
linoleic acids, which supports its broad applicability for both bio-based fuels 
and oleochemical applications. In addition, certain R. toruloides strains have 
been shown to produce triacylglycerols with physicochemical properties 
similar to cocoa butter, suggesting potential niche applications in the food 
and confectionery sectors (Wei et al., 2017; Sun et al., 2023; Wu et al., 2023; 
Lee et al., 2024). 

The combination of high lipid productivity, substrate flexibility, and co-
production of valuable metabolites highlights R. toruloides as a robust yeast 
for integrated valorisation of cassava processing residues and its potential for 
sustainable bioconversion of cassava-derived lignocellulosic feedstocks. 
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4.3.3 Lipid production by cassava hydrolysates using R. toruloides  
In the experiment reported in Paper II, R. toruloides CBS 14 was cultivated 
using cassava peel and fibre hydrolysates as carbon source to evaluate its 
ability to convert hemicellulosic sugars into microbial lipids (Figure 8). 
Hydrolysates were diluted to 75% (v/v) and supplemented with 5% (v/v) 
cassava process press water, with or without addition of 2 g/L of ammonium 
sulphate, as nitrogen source. The addition of cassava press water provided 
an additional source of nitrogen and organic compounds while promoting 
valorisation of this liquid residue within the same bioprocess. This 
contributes to a more integrated and sustainable use of cassava processing 
streams. 
 

 
Figure 8. Cultivation of R. toruloides CBS 14 in cassava fibre hydrolysate in bioreactors. 

In cassava peel hydrolysate, R. toruloides CBS 14 performed well with 
and without nitrogen supplementation (Table 2). The addition of ammonium 
sulphate slightly increased biomass formation (from 17.1 to 19.3 g/L CDW) 
and accelerated glucose utilisation, shortening the time required to complete 
sugar depletion from 168 h to 96 h. Although, lipid content decreased slightly 
from 34.9% of CDW in the absence of ammonium sulphate to 30.3% of 
CDW upon ammonium sulphate supplementation, this reduction was not 
pronounced. Lipid yields, expressed as g lipid per g glucose consumed, 
ranged from 0.13 to 0.15 g/g in cultivations with and without nitrogen 
supplementation, respectively. Overall, nitrogen supplementation primarily 
stimulated growth and metabolic activity without substantially affecting lipid 
productivity. Importantly, the three-day reduction in fermentation time 
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represents a meaningful advantage for industrial applications, as faster sugar 
conversion directly translates into lower energy and operational costs. These 
outcomes are consistent with well-established metabolic behaviour of 
oleaginous yeasts, in which available nitrogen supports biomass formation, 
whereas high C/N conditions favour lipid accumulation (Ratledge 2013; 
Sitepu et al., 2014; Lopes et al., 2020; Saini et al., 2021; Paper II). 

A similar cultivation approach using cassava fibre hydrolysate (Paper II; 
Table 2) showed that despite its higher initial glucose concentration (150 
g/L), the performance of R. toruloides was influenced by the complex 
composition of the fibre-derived matrix, which includes residual 
lignocellulosic components and potential inhibitory compounds (Jönsson et 
al., 2013; Moreno et al., 2022). Without nitrogen supplementation, the yeast 
reached 16.5 g/L CDW and accumulated 49.6% lipids, resulting in the 
highest lipid yield (0.19 g/g). When ammonium sulphate was added, lipid 
content reduced to 23%, and lipid yield fell to 0.02 g/g, despite similar initial 
glucose levels. Notably, CDW also decreased under nitrogen 
supplementation, indicating that the reduced lipid accumulation cannot be 
attributed solely to stimulation of biomass formation. Instead, these results 
suggest that the fibre hydrolysate imposes additional physiological or 
inhibitory stress, leading to carbon being channelled towards maintenance 
energy and carbon dioxide (CO2) rather than biomass or lipid synthesis. This 
indicates that, although nitrogen supplementation improved sugar utilisation 
and shortened fermentation time (from 192 h to 72 h), it simultaneously 
repressed lipid accumulation, suggesting a clear trade-off between biomass 
formation and lipid storage. 

To investigate whether substrate concentration contributed to the 
observed inhibitory effects, cultivations were repeated at lower substrate 
dilution (20% v/v). Under these conditions, both growth and lipid 
accumulation decreased substantially, indicating that nutrient density and 
carbon availability are key determinants for efficient lipid biosynthesis 
(Costa et al., 2024). Nevertheless, R. toruloides has been shown in previous 
studies to accumulate substantially higher levels of lipids than those reported 
in Paper II (Nagaraj et al., 2022; Almuhayawi et al., 2023).  

Overall, these findings highlight the ability of R. toruloides CBS 14 to 
convert cassava-derived hydrolysates into microbial lipids, demonstrating 
the importance of optimising nutrient balance, cultivation parameters, and 
detoxification strategies to improve process efficiency (Paper II; Paper III). 
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Table 2. Growth and lipid accumulation of Rhodotorula toruloides CBS 14 cultivated in 
75% (v/v) cassava peel and fibre hydrolysates with and without nitrogen supplementation 
(2 g/L AS). AS – Ammonium sulphate. CDW – Cell dry weight. Values represent means 
± standard deviations (Adapted from Paper II). 

 
75% hydrolysate 20% hydrolysate 

Peels Peels  
+As 

Fibres Fibres  
+As 

Fibres Fibres  
+As 

Cultivation 
time (h) 

 

168 96 192 72 96 96 

Initial glucose 
concentration 

(g/L) 

50 50 150 150 50 50 

CDW (g/L) 17.14 ± 0.06 19.28 ± 1.27 16.51 ± 2.15 13.52 ± 0.47 8.51 ± 0.60 12.15 ± 0.44 

 
Lipid content 

(% CDW) 

 
34.94 ± 2.00 

 
30.31 ± 7.68 

 
49.55 ± 1.29 

 
23.14 ± 0.65 

 
10.41 ± 1.15 

 
25.81 ± 5.02 

 
Lipid 

concentration 
(g/L) 

 
5.99 ± 0.36 

 
5.89 ± 1.86 

 
8.18 ± 1.02 

 
3.13 ± 0.03 

 
0.88 ± 0.04 

 
3.12 ± 0.51 

 
Lipid yield  

(g/g glucose) 

 
0.15 ± 0.00 

 
0.13 ± 0.00 

 
0.19 ± 0.00 

 
0.02 ± 0.00 

 
0.07 ± 0.00 

 
0.02 ± 0.00 

4.3.4 Yeast oil as potential replacement for vegetable oil 
Lipids are mainly constituted of fatty acids, which are classified according 
to the degree of unsaturation as saturated (SFAs), monounsaturated 
(MUFAs), or polyunsaturated (PUFAs) (Domínguez et al., 2019). Based on 
the position of the first double bond from the methyl end, unsaturated fatty 
acids are further distinguished as ω-3 or ω-6 types, with linoleic (ω-6) and 
α-linolenic (ω-3) acids being essential since humans cannot synthesise them 
(Orsavová et al., 2015). Vegetable oils – composed mainly of triglycerides 
containing diverse fatty acids – are a key dietary source of MUFAs and 
PUFAs up to a chain length of C18, such as oleic (C18:1), linoleic (C18:2), 
and linolenic (C18:3) acids, which pay crucial roles in cardiovascular and 
metabolic health (Jiménez-López et al., 2020). Beyond serving as nutrition 
compounds, their physicochemical properties make them valuable for 
multiple food applications, including frying, bakery formulations, and 
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emulsified products (Gavahian et al., 2019; Barros et al., 2021). Common 
edible oils include olive-, sunflower-, canola-, soybean-, and palm oil, each 
differing in fatty acid composition and stability, which influence their 
functionality and health impact (Nieto & Lorenzo, 2022). 

However, the rapidly increasing global demand for vegetable oils, places 
significant pressure on agricultural land, water resources, and ecosystems, 
particularly in tropical regions where oilseed expansion has been associated 
with deforestation, biodiversity loss, and competition with food and feed 
crops (Meijaard et al., 2020; Ikegwu et al., 2022; Sivadas et al., 2025). These 
sustainability challenges have intensified interest in alternative lipid sources 
that dissociate lipid production from arable land use. 

In this context, microbial lipids, also referred as single-cell oils (SCOs), 
have emerged as a promising complement, and in some applications, as a 
substitute to vegetable oils (Bharataja et al., 2017; Carota et al., 2018). SCOs 
can be produced by a variety of oleaginous microorganisms, including 
bacteria, algae, filamentous fungi and yeasts. Among the different SCOs, 
yeast oils are most similar to vegetable oils, having a similar fatty acid 
composition, which makes them suitable for several applications 
(Chattopadhyay & Maiti, 2021; Sivadas et al., 2025). These oils 
predominantly include palmitic (16:0), stearic (C18:0), oleic (C18:1) and 
linoleic acids (C18:2) (Parsons et al., 2020). Their versatility extends from 
use as feedstock for biofuels and bio-lubricants to incorporation into 
nutraceutical and pharmaceutical formulations. Over the past decades, about 
113 yeasts species have been reported as lipid-accumulating yeasts, 
particularly species belonging to genera Yarrowia, Rhodotorula, Lipomyces, 
Trichosporon, Cryptococcus, Candida, and others. Advances in systems 
biology and metabolic engineering have further improved understanding of 
their lipid biosynthesis pathways, paving the way for sustainable microbial 
oil production from low-cost and renewable substrates (Chattopadhyay & 
Maiti, 2021; Lei et al., 2024). 

In Paper II, the fatty acid composition of lipids produced by Rhodotorula 
toruloides CBS 14 from cassava peel and fibre hydrolysates was very similar 
to that of common vegetable oils. Oleic acid (C18:1, n-9), was the main 
component, followed by palmitic (C16:00), linoleic (C18:2, n-6), and smaller 
amounts of stearic (C18:0) and α-linolenic (C18:3, n-3) acids. MUFAs were 
the most abundant group (about 47–60% of total lipids), while SFAs and 
PUFAs varied depending on the substrate and nitrogen availability. Adding 
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nitrogen slightly increased desaturation levels, resulting in more MUFAs 
while keeping the overall lipid composition balanced. Similar fatty acid 
patterns have been reported for R. toruloides grown on other lignocellulosic 
hydrolysates (Wang et al., 2012; Fei et al., 2016; Nagaraj et al., 2022, 
Nagaraj et al., 2025). Overall, R. toruloides demonstrated the ability to adjust 
its fatty acid composition under different nutrient growth conditions and to 
produce valuable fatty acids such as oleic, linoleic and linolenic acids, 
making it a promising yeast for sustainable microbial oil production. 

4.3.5 Saccharomyces cerevisiae as a benchmark microorganism for 
ethanol production 

Saccharomyces cerevisiae is one of the most extensively studied 
microorganisms and remains the benchmark yeast for industrial ethanol 
production. It is recognised for its long history of safe use, strong 
fermentative performance, and ability to adapt to a variety of lignocellulose-
based growth substrates (Erdei, 2013; Nandy & Srivastava, 2018). Owing to 
its high metabolic efficiency and robustness, S. cerevisiae dominates large-
scale bioethanol manufacturing processes, consistently achieving yields 
above 90% of the theoretical maximum (Caspeta et al. 2015; Tsegaye et al., 
2024). Despite its industrial advantages, S. cerevisiae faces several 
physiological challenges under commercial fermentation conditions 
(Paulova et al., 2015; Alves et al., 2023; Tsegaye et al., 2024). 

Recent advances in strain improvement, including genome shuffling, 
adaptative evolution, and metabolic engineering, have been instrumental in 
enhancing S. cerevisiae’s tolerance to thermal, osmotic, and ethanol-related 
stress (Caspeta et al., 2015; Topaloğlu et al., 2023). These innovations ensure 
that S. cerevisiae continues to serve as the principal reference microorganism 
for evaluating the performance of non-conventional yeast in lignocellulosic 
ethanol producing systems. 
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4.3.6 Ethanol production by cassava hydrolysates using 
Saccharomyces cerevisiae 

In the investigation detailed in Paper II, S. cerevisiae J672 was cultivated 
in 75% (v/v) cassava peel and fibre hydrolysates supplemented with 5% (v/v) 
cassava process press water, to assess their suitability as substrates for 
ethanol production and to determine how hydrolysate composition and 
potential inhibitory compounds influenced fermentation performance. 

 

 
Figure 9. Cultivation of S. cerevisiae J672 in cassava fibre hydrolysate in bioreactors. 

Fermentations with S. cerevisiae J672 in cassava peel and fibre 
hydrolysates exhibited different fermentation outcomes (Figure 9, Table 3, 
Paper II). In peel hydrolysate, glucose was rapidly consumed and efficiently 
converted into ethanol, yielding 0.45 ± 0.06 g/g glucose and reaching 23.1 ± 
3.2 g/L after 28 h. This indicates that peel hydrolysate supported fast sugar 
utilisation and efficient ethanol conversion. In contrast, fibre hydrolysate 
supported higher ethanol titre (48.3 ± 3.3 g/L) but with lower ethanol yield 
(0.37 ± 0.03 g/g) and incomplete glucose utilisation, accompanied by 
noticeable glycerol formation. These differences indicate that cassava fibre 
hydrolysate imposed osmotic and inhibitory stresses, limiting ethanol yield 
despite high substrate availability. 

Such outcomes align with previous reports describing inhibitory effects 
of furan derivatives, carboxylic acids, and phenolic compounds generated 
during pretreatment and enzymatic hydrolysis of lignocellulosic feedstocks 
(van der Pol et al., 2014; Kim et al., 2020; Paper II). Similar trends have 
been reported for other cassava-based substrates, where ethanol yields 
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strongly depend on feedstock composition, the chosen pretreatment strategy, 
and detoxification efficiency (Adegbehingbe et al., 2021; Pimpisai et al., 
2024; Sokan-Adeaga et al., 2024). 

Cassava residues naturally contain cyanogenic glycosides, organic acids, 
and phenolic compounds that can further inhibit yeast metabolism and 
ethanol production (Amalia et al., 2021; Nizzy et al., 2022). Additional 
lignin-derived molecules such as furans, phenolics, and amine-based 
compounds (e.g., vanillin) generated during enzymatic hydrolysis are also 
known to interfere with fermentation (Nuwamanya et al., 2012). 

Overall, these findings show that cassava residues, particularly peels, 
represent technically viable lignocellulosic feedstocks for microbial 
fermentations (Amalia et al., 2021; Paper II). However, efficient ethanol 
production will depend on mitigating inhibitory effects through appropriate 
detoxification, strain improvement, or process optimisation strategies. 
Table 3. Growth and ethanol production of Saccharomyces cerevisiae J672 cultivated in 
75% (v/v) cassava peel and fibre hydrolysates with addition of 5% (v/v) cassava process 
press water. Values represent means ± standard deviations (Adapted from Paper II). 

 75% hydrolysate 
 Peels Fibres 

Cultivation time (h) 
 

28 72 

Initial glucose concentration (g/L) 50 150 
Final ethanol concentration (g/L)  23.13 ± 3.18 48.29 ± 3.32 

Yield ethanol/glucose (g/g)  0.45 ± 0.06 0.37 ± 0.03 

Yield CDW/glucose (g/g)  0.13 ± 0.01 0.04 ± 0.00 

Yield glycerol/glucose (g/g) 0.05 ± 0.00 0.05 ± 0.00 
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4.3.7 Estimated potential of cassava residues for microbial lipid and 
ethanol production in Mozambique 

The results presented in Paper II demonstrate that pretreatment followed 
by enzymatic hydrolysis effectively converted cassava peels and fibres into 
fermentable hydrolysates suitable for microbial production of ethanol and 
microbial lipids. In Mozambique, annual cassava production is 
approximately 7.6 million tons of fresh roots (MADER, 2023). Assuming an 
average moisture content of 50%, this corresponds to about 3.8 million tons 
of dry matter, of which roughly 15% are peels (~570 000 tons) and 5% are 
fibres (~190 000 tons) generated as solid processing residues (Paper I; 
Paper II). 

During pretreatment and enzymatic hydrolysis, water was added to the 
biomass, resulting in the formation of a wet hydrolysate whose mass 
exceeded that of the initial dry residue. Under the experimental conditions 
applied in Paper II, 1 kg of dried cassava peels yielded approximately 1.7 
kg of wet hydrolysate, while 1 kg of dried cassava fibres yielded 
approximately 1.3 kg of wet hydrolysate. These hydrolysates were 
subsequently used as substrates for fermentation (Paper II). Final 
concentrations of ethanol and microbial lipids were quantified in the 
fermentation broth (g/L), converted to total product mass per cultivation, and 
subsequently normalised to the mass of dry cassava residue used to generate 
the hydrolysate. This normalisation allowed product yields to be expressed 
as percentages on a dry residue basis (w/w), which were used for national-
scale extrapolation. 

Experimental data from Paper II showed that fermentation of peel 
hydrolysate with S. cerevisiae resulted in an ethanol yield corresponding to 
5.24% (w/w) on a dry peel basis, while cultivation with R. toruloides led to 
microbial lipid accumulation equivalent to 1.36% (w/w) on a dry peel basis. 
Similarly, fermentation with cassava fibre hydrolysate resulted in an ethanol 
yield corresponding to 8.37% (w/w) on a dry fibre basis during S. cerevisiae 
cultivation, while R. toruloides fermentation led to microbial lipid 
accumulation equivalent to 1.42% (w/w) on a dry fibre basis (Paper II). All 
values represent theoretical yields normalised to the dry mass of cassava 
residues. 
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When extrapolated to a national scale, these experimentally determined 
conversion efficiencies correspond to theoretical annual potentials of 
approximately 29 900 tons of ethanol and 7 750 tons of microbial lipids from 
cassava peels, and about 15 900 tons of ethanol and 2 700 tons of microbial 
lipids from fibres, assuming full residue availability and excluding collection 
and processing losses. Altogether, cassava processing residues in 
Mozambique could theoretically generate approximately 45 800 tons of 
ethanol and 10 450 tons of microbial lipids per year (Paper II). 

These estimations underscore the considerable, yet largely 
underexploited, potential of cassava residues as bioresource for a circular 
and sustainable bioeconomy. Integrating residue valorisation into existing 
cassava-processing systems could substantially reduce environmental 
burdens, promote waste-to-value conversion, and enhance local economic 
opportunities through decentralised bioproduct generation. Such an approach 
would strengthen cassava-based value chains and align with national 
strategies for renewable energy, bioindustry and rural development. This 
provides the conceptual bridge to the next chapter, which explores yeast 
adaptation and tolerance mechanisms in cyanide-rich cassava processing 
effluents (Paper I; Paper III). 
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5. Cyanide glycosides in cassava 

5.1  Cyanide metabolism 
Cassava is one of more than 2000 plant species capable of producing 

cyanogenic glycosides (Vetter, 2000; Møller, 2010; Gleadow & Møller, 
2014). The main compounds are linamarin and lotaustralin, synthesised from 
the amino acids valine and isoleucine respectively, in a molar concentration 
ratio of 93:7 (Nartey, 1969; Burns et al., 2012). Linamarin is distributed 
throughout the tuber, with the highest concentration found in the outer 
cortical layers beneath the periderm, while its content in the leaves can 
exceed that in the root parenchyma by more than tenfold. The biosynthesis 
of these compounds occurs primarily in the leaves, from where they are 
translocated through the phloem to the roots (Burns et al., 2012). Some 
additional synthesis occurs in the periderm, thus, the elevated cyanogenic 
potential in the outer tissues (Jørgensen et al., 2005; Nyaika et al., 2024). 

In intact cassava tissues, linamarin is stored within vacuoles, spatially 
separated from its hydrolytic enzyme linamarase, a β-glucosidase enzyme 
associated with the cell wall and intercellular spaces (White et al., 1998). 
This spatial compartmentalisation prevents the formation of toxic hydrogen 
cyanide (HCN) during normal physiological conditions. When plant cells are 
disrupted by mechanical damage such as cutting, grating, or chewing, the 
vacuoles rupture, allowing linamarin to encounter linamarase (White et al., 
1998; Vetter, 2000). The enzyme linamarase hydrolyses linamarin to 
produce glucose and acetone cyanohydrin, which then decomposes 
spontaneously or under the action of α-hydroxynitrile lyase releasing acetone 
and hydrogen cyanide (White et al., 1998; Burns et al., 2012). Figure 10 
illustrates the enzymatic hydrolysis of linamarin and the subsequent release 
of hydrogen cyanide. 
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Figure 10. Enzymatic hydrolysis of linamarin leading to the release of hydrogen cyanide 
(HCN). Linamarin is hydrolysed by linamarase to form glucose and acetone 
cyanohydrin, which subsequently decomposes, either spontaneously or via α-
hydroxynitrile lyase, releasing hydrogen cyanide (Adapted from Kuliahsari et al., 2021). 

5.2 Microbial cyanide degradation pathways 
Although cyanide is highly toxic to most organisms, it occurs naturally and 
plays diverse biological roles. Cyanogenic compounds are produced by 
several organisms, including plants (such as cassava, almonds, and beans), 
fungi, bacteria, and even some arthropods such as beetles and butterflies 
(Baxter & Cummings, 2006; Dash et al., 2009). In nature, cyanide functions 
as a defence compound against predators, a regulator of insect mating 
behaviour, and in some microorganisms, as a precursor for secondary 
metabolites such as antibiotics (Martinez & Diaz, 2024). Microorganisms 
capable of surviving in cyanide-rich environments have evolved metabolic 
adaptations that allow them not only to tolerate but also transform cyanide 
into less toxic or assimilated forms through distinct adaptation pathways 
(Alvillo-Riveira et al., 2021; Berkinbayeva et al., 2025). 

Microorganisms capable of degrading cyanide employ a range of 
biochemical strategies that transform this toxic compound into less harmful 
or assimilable forms. These mechanisms are generally grouped into 
oxidative, hydrolytic, reductive, and substitution pathways, depending on the 
enzymatic reactions involved and the environmental conditions under which 
they occur (Dash et al., 2009; Luque-Amagro et al., 2018). 

In oxidative degradation, cyanide is converted into cyanate (OCN-) 
through the action of enzymes such as cyanide monooxygenase or cyanide 
dioxygenase. Cyanate can then be further hydrolysed to yield ammonia and 
carbon dioxide, which serve as nitrogen and carbon sources for cellular 
metabolism. The hydrolytic pathway involves enzymes such as cyanidase or 

Spontaneously/ 
α-hydroxynitrile lyase 
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cyanide hydratase, which directly hydrolyse cyanide to formamide or formic 
acid, releasing ammonia in the process (Luque-Amagro et al., 2018; Alvillo-
Riveira et al., 2021). Under anaerobic or low-oxygen conditions, 
microorganisms may employ reductive pathways, in which cyanide or metal-
cyanide complexes are reduced to methane or other simple compounds. 
Alternatively, in the substitution (replacement) pathway, cyanide reacts with 
sulphur-containing compounds to produce thiocyanate, catalysed by 
rhodanese or related sulfurtransferases. Thiocyanate can subsequently 
undergo further degradation to yield sulphate and ammonia (Luque-Amagro 
et al., 2018; Alvillo-Riveira et al., 2021). 

These enzymatic processes not only detoxify cyanide but also allow 
microorganisms to recover essential nutrients for growth. The efficiency and 
dominance of each pathway depend on environmental factors such as oxygen 
availability, pH, temperature, and the microbial community composition 
(Akcil et al., 2003; Mekuto et al., 2016). 

5.3 Cassava wastewater valorisation and applications 
Cassava processing (Paper I) generates considerable amounts of solid 

and liquid residues (Olukanni & Olatunji, 2018; Oghenejoboh et al., 2021, 
Paper II; Paper III). Processing 1 ton of fresh cassava roots into high-
quality cassava flour typically produces 250–300 kg of peels, 50–100 kg of 
fibrous bagasse, and 250–300 kg of wastewater (Ekop et al., 2019; Obonokut 
et al., 2022). In starch factories, the same quantity of roots generates 20-50 
kg of peels, about 600 kg of fibrous pulp, and 12–20 m3 of cyanide-rich 
wastewater (Ekop et al., 2019). Although discarded, these by-products 
contain appreciable levels of organic matter, sugars, and nutrients that could 
support microbial growth (Paper II; Paper III). However, the reuse of 
cassava residues is limited due to their cyanide content, derived from 
cyanogenic glucosides naturally present in the crop. 

During processing, enzymatic degradation of these compounds releases 
hydrogen cyanide (HCN), contributing to the overall toxicity of cassava 
wastewater (Paper I; Paper III). Continuous discharge of such effluents has 
been associated with soil acidification, reduced fertility, and disruption of 
microbial communities near processing sites (Igbinosa & Igiehon, 2015; 
Ajao et al., 2025). Conventional chemical treatments are costly and often 
ineffective for effluents with high organic loads, whereas biological 
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processes provide more sustainable and adaptable alternatives (Kandasamy 
et al., 2015; Maciel et al., 2023; Berkinbayeva et al. 2025). 

Cassava wastewater, also known as cassava press water, is a nutrient-rich 
effluent generated during root pressing (Paper I). It contains starch, free 
sugars (mainly glucose), proteins, lipids, minerals, and cyanogenic 
compounds, making it both an environmental challenge and a valuable 
bioresource (De Oliveira Schmidt et al., 2023). Owing to its high organic 
load and balanced nutrient composition, research has explored its reuse in 
agriculture and biotechnology (Paper II; Paper III). When applied in 
controlled doses, cassava wastewater can function as a biofertilizer and 
natural pesticide, improving crop productivity and soil fertility, while 
reducing dependence on mineral fertilisers (Bezerra et al., 2017; Pinto-
Zevallos et al., 2018; Costa et al., 2020). 

Beyond agricultural use, cassava press water has gained attention as a 
low-cost substrate for microbial and biotechnological applications. It has 
been successfully applied in anaerobic digestion for biogas and biohydrogen 
production (Andreani et al., 2015; Watthier et al., 2019; Achi et al., 2020), 
achieving a high chemical oxygen demand (COD) removal efficiencies and 
methane yields when properly pre-treated to reduce cyanide levels (Montoro 
et al., 2019; Andrade Cruz et al., 2020). Cassava wastewater has additionally 
been explored as a fermentation medium for microbial metabolite 
production, supporting the synthesis of carotenoids and fatty acids by 
Rhodotorula glutinis (Ribeiro et al., 2019; Paper II) and biosurfactants by 
Bacillus subtilis (Nitschke & Pastore, 2004). 

These findings demonstrate that cassava press water, despite its cyanide 
content, possesses a nutrient composition capable of sustaining microbial 
growth and metabolite production (Paper II; Paper III). Notably, several 
yeast species have been reported to tolerate and adapt to cassava-derived 
effluents, highlighting their potential role in detoxification and 
bioconversion processes, aspects further investigated in Paper III. 
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5.4 Microorganisms isolated from the cassava 
processing chain and their tolerance mechanisms 

The presence of cyanide and other inhibitory compounds in wastewater from 
cassava processing imposes strong selective pressure on the resident 
microbiota, favouring the persistence of tolerant species (Paper III). Yeasts 
are promising candidates for effluent valorisation and detoxification due to 
their metabolic versatility, robustness, and stress tolerance (Wang et al., 
2018; González et al., 2025). To date, no cyanide-degrading enzymatic 
pathway has been conclusively demonstrated in yeasts. Shen et al. (2021) 
reported cyanide reduction during fermentations involving Saccharomyces 
cerevisiae, however, the results are difficult to interpret, as experimental 
design did not allow a clear distinction between biodegradation and abiotic 
losses such as volatilisation. Thus, while their findings suggest a potential 
biodegradative potential, the evidence remains inconclusive. In contrast, 
non-conventional yeasts belonging to the species Pichia exigua, isolated 
from cassava effluents, have demonstrated cyanide tolerance (Banwo et al., 
2023). These findings indicate that cassava-processing environments host 
yeast communities with adaptative traits of high biotechnological interest 
(Maciel et al., 2023). 

Cyanide is a potent metabolic inhibitor that binds to cytochrome oxidase, 
blocking the terminal step of the respiratory chain and preventing cellular 
oxygen uptake (Maciel et al., 2023; Bebarta & Nath, 2025). Several yeasts 
have evolved strategies to survive in cyanide-rich environments. Reported 
mechanisms include cyanide-insensitive respiration, in which alternative 
oxidases bypass the blocked cytochrome pathway (Henry et al., 1974; 
Ainsworth et al., 1980; Veiga et al., 2003), and surface adsorption or 
complexation, which decreases the concentration of free cyanide in the 
medium (Dehghani et al., 2016). These mechanisms maintain redox balance 
and energy metabolism, enabling yeasts to persist in effluents that would 
otherwise inhibit their growth. 

Selected yeasts isolated from cassava processing units (Paper I) were 
tested to evaluate their behaviour in the presence of cyanide (Paper III). The 
isolates included Rhodotorula mucilaginosa J703, Wickerhamomyces 
anomalus J704, Torulaspora delbrueckii J705, Kwoniella heveanensis J706, 
Kazachstania unispora J707 and Rhodotorula glutinis CBS 2890 (reference 
strain). These yeasts were cultivated in media containing synthetic cyanide 
(KCN) and in cassava process press water, which naturally contains cyanide. 
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The experiments did not confirm cyanide tolerance; however, T. delbrueckii 
J705 and W. anomalus J704 showed comparatively better performance under 
cyanide stress, being able to survive and grow in the presence of cyanide, 
particularly in cassava press water. These observations suggest that some 
yeasts associated with cassava-processing environments may possess 
adaptative traits that allow them to withstand toxic compounds such as 
cyanide. 
T. delbrueckii and W. anomalus have previously been reported as stress-
tolerant yeasts (Passoth et al., 2006; Kemsawasd et al., 2015; Li et al., 2023). 
T. delbrueckii is recognised for its ability to tolerate multiple stress 
conditions and for its potential relevance in industrial applications at both 
physiological and biochemical levels (Pacheco et al., 2012; Fernandes et al., 
2021). W. anomalus has received scientific attention due to its distinctive 
physiology, potential as biocontrol agent, and its broad metabolic capacity, 
particularly in the wine industry, where it enhances fermentation 
performance and contributes to aroma formation (Passoth et al., 2006; Li et 
al., 2023; Carbonero-Pacheco et al., 2025). These physiological traits may 
explain their better performance under cyanide stress observed in the present 
study (Paper III). 

In a sampling of cassava effluents, a greater yeast diversity was detected, 
including W. anomalus, Pichia bovicola, Candida tropicalis, Magnusomyces 
ingens and Saccharomyces cerevisiae. This suggests temporal variability 
likely influenced by environmental and processing conditions. Interestingly, 
several yeasts species identified in these effluents – such as W. anomalus and 
Pichia spp. – have also been identified in Paper I within the cassava 
processing chain. Their recurrence across both food products and effluent 
samples supports the hypothesis that these yeasts constitute a stable 
community within cassava processing environments, rather than resulting 
from incidental contamination. 

Four representative strains corresponding to the four most frequent yeast 
species isolated from cassava effluents – P. bovicola J709, C. tropicalis J710, 
M. ingens J711, and S. cerevisiae J712 – were evaluated for cyanide 
tolerance in liquid culture (Paper III). Among them, P. bovicola J709 
showed the highest tolerance (up to 0.2 g/L KCN), while M. ingens 
performed optimally at 0.04 g/L KCN. These results highlight the potential 
of native isolates as promising candidates for further characterisation and for 
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future applications in cyanide-rich cassava effluent bioprocesses, as 
discussed in Paper III. 

A detailed assay with the two most cyanide-tolerant yeast isolates 
revealed distinct physiological responses. M. ingens J711 achieved superior 
growth in cassava press water compared to P. bovicola J709, particularly 
when ammonium sulphate was supplemented. In synthetic media, cyanide 
concentrations decreased at comparable rates in both inoculated cultures and 
their corresponding blanks, indicating that volatilisation was the primary 
mechanism of cyanide loss. In contrast, cyanide levels in cassava press water 
remained stable throughout cultivation, suggesting that its complex matrix 
limited evaporation. No cyanide accumulation was detected in the microbial 
biomass, and residual cyanide measured at time point 0 h was attributed to 
liquid carryover. Overall, the findings demonstrate that both isolates 
tolerated cyanide and may have contributed slightly to its reduction, although 
no conclusive evidence of cyanide metabolism or biodegradation was 
observed under the tested conditions (Paper III). 
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6. Summary conclusion 

This thesis explores three interlinked dimensions of cassava utilisation in 
Mozambique: (i) food safety within traditional processing systems; (ii) 
biotechnological valorisation of cassava processing residues, and (iii) 
isolation of cyanide tolerant yeasts with potential detoxification traits. By 
combining field-based microbial assessments, bioprocess optimisation, and 
microbial-physiological studies on yeast tolerance, the results provide new 
insights into how cassava-based value chains can be evolved towards safer 
and more sustainable practices. 

Cassava is among the most consumed carbohydrate sources in 
Mozambique, as well as in many other developing tropical countries. Its 
processing into roasted cassava flour (Mozambican rale) supports food 
security and rural livelihoods, thus its widespread consumption underscores 
the need to ensure food safety for human health. The results from Paper I 
demonstrated that artisanal rale production in southern Mozambique 
presents minor hygiene challenges but remains microbiologically safe when 
basic sanitary measures are followed. Although bacterial and fungal 
contaminants were occasionally detected, overall microbial loads and toxin-
producing moulds were low. Fermentation and roasting proved to be the 
most critical processing steps for cyanide detoxification and microbial 
inactivation in rale. These findings reinforce that strengthening hygiene, 
proper cooling and drying after roasting, and improved storage practices 
could further enhance the safety and quality of traditional cassava-based 
foods, especially rale. 

Building on these observations, Paper II addressed the valorisation of 
cassava-processing residues – particularly peels, fibres, and process press 
water – which are often discarded as waste, on arable land. Given that these 
cassava processing residues remain rich in fermentable sugars and 
lignocellulosic material (cellulose, hemicellulose, and residual starch), it was 
essential to study the process residues’ potential as a renewable feedstock for 
microbial lipid and ethanol production through enzymatic hydrolysis, with 
cassava press water further incorporated as a nutrient-rich supplement during 
yeast fermentation. The oleaginous yeast R. toruloides CBS 14 efficiently 
converted cassava hydrolysates into microbial lipids, whereas S. cerevisiae 
J672 produced ethanol under similar growth conditions. When extrapolated 
to Mozambique´s national cassava output, these cassava processing residues 
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could yield approximately 10 450 tons of microbial lipids and 45 800 tons of 
ethanol annually. These results demonstrate that cassava residues, 
traditionally treated as waste, can be transformed into valuable 
lignocellulosic resources, contributing to circular-bioeconomy strategies and 
sustainable rural development. 

Paper III investigated the cyanide tolerance of yeasts associated with 
cassava-processing environments, focusing on their potential role in effluent 
detoxification and bioprocess integration. Cassava process press water, a 
cyanide-rich by-product of root processing, represents both an environmental 
challenge and a potential microbial growth medium. Yeasts isolated from 
cassava-processing chains and effluents were tested in media containing 
synthetic and natural cyanide sources, i.e., cassava press water. Although 
none of the isolates demonstrated cyanide biodegradation, several strains –
including T. delbrueckii J705, W. anomalus J704, P. bovicola J709, and 
M.ingens J711 – exhibited notable cyanide tolerance, maintaining growth 
under cyanide stress. The non-conventional yeasts P. bovicola J709 and M. 
ingens J711 showed the highest survival rates, with M. ingens J711 
displaying improved growth in cassava press water supplemented with 
ammonium sulphate. These findings reveal the presence of native yeast 
populations capable of withstanding cyanide exposure, suggesting that such 
strains could contribute to biological treatment and valorisation of cassava 
effluents. 
The three studies comprising this thesis provide complementary insights into 
cassava´s microbiological safety, residue bioconversion potential, and 
microbial resilience to cyanide stress. By linking traditional food systems 
with modern biotechnological approaches, this work contributes to a holistic 
framework for safer food production and sustainable residue management, 
advancing the transition towards a circular cassava-based bioeconomy in 
Mozambique and beyond.   
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7. Future perspectives 

Building on the findings of this thesis, several opportunities emerge for 
advancing both the scientific understanding and practical applications of 
cassava-based systems in Mozambique and similar contexts. 

From a food safety perspective, future research should focus on 
developing optimisation protocols within the cassava processing units to 
enhance hygienic practices for rale production. The introduction of low-cost 
drying facilities and innovative packing technologies could significantly 
reduce microbial contamination while extending product shelf life. Applying 
molecular and metagenomic tools would allow a more detailed 
characterisation of the beneficial microbial consortia involved in cassava 
fermentation, clarifying their roles in flavour development, detoxification, 
and spoilage prevention. These insights could support the formulation of 
starter cultures specifically adapted to local processing conditions, 
strengthening both food safety and product consistency. 

On the bioprocessing front, the valorisation of cassava residues offers 
promising prospects for producing biofuels and microbial lipids that can be 
used as ingredients in food and feed. Scaling up the processes tested in this 
thesis will require optimisation of fermentation conditions and nutrient 
balance to enhance lipid and ethanol yields. Particular attention should be 
given to the use of cassava process press water as a liquid feedstock for 
microbial fermentations. Although this effluent contains cyanide, its nutrient 
composition makes it a valuable low-cost substrate that could be effectively 
integrated into fermentation systems after suitable detoxification and process 
control. A detailed characterisation of its nutrient profile would therefore be 
crucial to optimise its use, refine supplementation strategies, and ensure 
consistent microbial performance. Results from this work showed that 
cyanide tends to evaporate during fermentation and does not bind to yeast 
biomass. This resulting microbial biomass could be explored as a source of 
single-cell protein, providing an additional valorisation pathway that 
connects biofuel production with sustainable feed and food applications 
within a circular cassava-based bioeconomy. 

Regarding cyanide tolerance and effluent management, future studies 
should investigate the molecular basis of yeast resilience to cyanide exposure 
using transcriptomic, proteomic, and metabolomic approaches to identify 
key regulatory pathways and detoxification mechanisms. Understanding 
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these adaptative responses could enable the selection or engineering of 
strains capable of partial cyanide detoxification, complementing existing 
physicochemical biomass treatments and advancing sustainable effluent 
management strategies.  

Finaly, collaborative efforts between academia, industry, and local 
communities will be necessary to translate these scientific findings into 
practical solutions that strengthen food security, environmental protection, 
and socio-economic resilience in developing countries. 
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Popular science summary 

Cassava is one of the most important staple crops in Mozambique, ensuring 
food security and providing income for rural households. Its roots are 
traditionally processed into cassava roasted flour, locally known as rale, 
which is widely consumed as food across the whole country. However, 
handling practices during this process can influence both product quality and 
food safety, and the process itself generates large amounts of solid and liquid 
wastes that are seldom reused. 

This thesis explores how cassava can be used more efficiently and safely 
by linking food production, waste stream valorisation, and environmental 
protection within the same system. The first part examined the microbial 
safety of rale produced in smallholder processing units in Southern 
Mozambique. Although occasional microbial contaminants were detected, 
rale met food safety standards, and roasting proved to be the key step for 
reducing both microbes and the naturally-occurring cyanide compounds 
found in fresh cassava. 

The second part demonstrated that cassava residues – such as peels, 
fibres, and processing cassava press water – can be converted into valuable 
products instead of being discarded. Using selected yeasts strains, these 
residues were efficiently transformed into useful products such as microbial 
oils and ethanol, showing potential for biofuel or other bioproduct 
applications. 

Finally, yeast strains isolated from cassava effluents displayed 
remarkable tolerance to cyanide, suggesting their potential role in natural 
detoxification processes. 

Overall, this study connects traditional cassava processing with modern 
biotechnology to support safer food production and reduce waste. Cassava is 
not only a staple food for Mozambicans – it also shows a strong potential as 
a renewable resource capable of contributing to a more sustainable, circular, 
bioeconomy for the country. 
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Populärvetenskaplig sammanfattning 

Kassava är en av de viktigaste basgrödorna i Moçambique och spelar en 
avgörande roll för livsmedelssäkerhet och inkomster för 
landsbygdsbefolkningen. Rötterna hos kassava bearbetas traditionellt till 
rostat kassavamjöl, kallat rale Moçambique, som är mycket konsumerat i 
landet. Bearbetning av kassavarötter till rale genererar dock stora mängder 
fasta och flytande restprodukter som sällan återanvänds, och 
hanteringsmetoderna kan påverka både produktkvalitet och 
livsmedelssäkerhet. 

I denna avhandling undersöker vi hur kassava kan användas mer effektivt 
och säkert genom att koppla samman livsmedelsproduktion, 
restvärdesförädling och miljöskydd i ett och samma system. Den första delen 
av avhandlingen utvärderas den mikrobiologiska säkerheten hos rale från 
småskaliga produktionsenheter i södra Moçambique. Trots att vissa 
mikrobiella föroreningar påträffades uppfyllde rale 
livsmedelssäkerhetskraven, och rostningen visade sig vara det avgörande 
steget för att minska både mängden mikrober och de naturligt förekommande 
cyanidföreningar som finns i färsk kassava. 

Den andra delen visade att kassavarestprodukter – såsom skal, fibrer och 
pressvatten – kan omvandlas till värdefulla produkter i stället för att kastas. 
Med hjälp av utvalda jäststammar kunde dessa restprodukter effektivt 
omvandlas till användbara produkter såsom mikrobiella oljor och etanol, 
med potential för produktion av bioenergi eller för användning inom andra 
biotekniska tillämpningar. 

Slutligen uppvisade jäststammar isolerade från restvätskeströmmar från 
kassava processning en anmärkningsvärd tolerans mot cyanid, vilket tyder 
på en möjlig användning av dessa inom naturliga avgiftningsprocesser. 

Sammanfattningsvis kopplar denna studie samman traditionell 
kassavabearbetning med modern bioteknik för att stödja en säkrare 
livsmedelsproduktion och minskad mängd avfall vid kassavaprocessning. 
Kassava är inte bara en basföda i Moçambique – den har också en stor 
potential som en förnybar resurs som kan bidra till en mer hållbar och 
cirkulär bioekonomi i landet. 
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Resumo de divulgação científica popular 

A mandioca é uma das principais culturas alimentares, em Moçambique, 
crucial para a segurança alimentar e geração de rendimento para muitas 
famílias rurais. As suas raízes são tradicionalmente processadas em farinha 
torrada, localmente conhecida como rale, amplamente consumida em todo o 
país. No entanto, este processamento gera grandes quantidades de resíduos 
sólidos e líquidos que raramente são reaproveitados, ainda que as práticas de 
manuseamento possam influenciar a qualidade e a segurança do produto 
final. 

Esta tese investiga como a mandioca pode ser utilizada de forma mais 
eficiente e segura, ligando a produção de alimentos, a valorização de resíduos 
e a protecção ambiental num único sistema. 

A primeira parte avaliou a segurança microbiológica do rale produzido 
em unidades de processamento familiares, no sul de Moçambique. Embora 
alguns contaminantes microbianos tenham sido identificados, o rale cumpriu 
os padrões de segurança alimentar, e a etapa de torrefação revelou-se 
essencial para reduzir tanto os microrganismos como os compostos 
cianogénicos naturalmente presentes na mandioca fresca. 

A segunda parte da pesquisa demonstrou que os resíduos da mandioca – 
como cascas, fibras e água prensada – podem ser convertidos em produtos 
de valor acrescentado, em vez de serem descartados. Usando estirpes 
seleccionadas de leveduras, estes resíduos foram transformados 
eficientemente em produtos úteis, como óleos microbianos e etanol, com 
potencial para biocombustíveis ou outras aplicações biotecnológicas. 

Finalmente, estirpes de leveduras isoladas de efluentes de processamento 
de mandioca mostraram notável tolerância ao cianeto, sugerindo o seu 
possível papel em processos naturais de detoxificação. 

Em geral, este estudo conecta o processamento tradicional da mandioca 
com abordagens modernas da biotecnologia, demonstrando que a segurança 
alimentar e a valorização de resíduos podem coexistir num quadro 
sustentável. A mandioca não é apenas um alimento básico para os 
moçambicanos – ela também possui grande potencial como recurso 
renovável capaz de apoiar a transição do país para uma bioeconomia circular 
baseada em resíduos. 
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Abstract: Cassava is an important staple food that contributes to the food security of small-
scale Mozambican farmers. In southern Mozambique, cassava roots are usually processed
into cassava roasted flour, locally known as “rale”. The handling and processing practices
connected to “rale” production may introduce microbial contamination. We assessed the
microbial contamination of “rale” processed in local farmers’ associations and consumed
either locally or sold in rural markets. Microbial sampling was carried out both during
the warmer rainy and cooler dry seasons, and microorganisms of relevance for food safety
and fermentation were enumerated. The results revealed variation in terms of microbial
diversity in all stages of cassava root processing. In samples collected in the warmer rainy
season, molds, lactic acid bacteria, general aerobic bacteria and Bacillus spp. were isolated,
whereas in samples collected in the cooler dry season, other groups of microorganisms such
as yeasts and Staphylococcus aureus were present. Wickerhamomyces anomalus, Rhodotorula
mucilaginosa, Pichia exigua, Meyerozyma caribbica and Torulaspora delbrueckii were the most
frequent yeast species found within the cassava processing stages. Aflatoxin-producing
molds were observed infrequently in this study, and only at low counts, thus, the risk
for aflatoxin contamination appears to be low. The results obtained from the Illumina
16S rRNA gene sequencing can be considered a complementary technique to the plating
methods relied on in this study. From a food quality and safety point of view, this staple
food does not appear to pose a high risk for foodborne disease.

Keywords: cassava roasted flour; “rale”; food quality; food safety; microbial contamination;
microbial diversity; Mozambique

1. Introduction
Cassava (Manihot esculenta Crantz) is an important staple food in most tropical regions

worldwide and represents a source of nourishment especially in Africa, Asia, and South
America [1,2]. Africa is considered the continent with the largest cassava production, where
this crop is cultivated in around 40 countries. Nigeria is the largest producer, harvesting
more than 59 Mt of fresh cassava roots annually [3–6]. In Mozambique, cassava is ranked
as the most important staple food, followed by maize [7]. At least 97% of small-scale
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Mozambican farmers select cassava as a main production crop, due to its ability to grow in
different ranges of climate and altitudes, and its tolerance to a wide variety of soils, diseases
and drought when compared to other agricultural crops [2,8,9].

This subsistence crop is important for food security at several levels, both for govern-
ment and rural families—it has potential to increase farmers’ incomes, and reduce rural and
urban poverty levels [10–12]. It is considered an attractive and low-risk crop for African
farmers, being produced with family labor using simple hand instruments [13]. Cassava
also holds a great promise for feeding Africa’s growing population, as a readily available
and cheap staple food for low–income rural households [12].

Producing nutritional and safe food products from cassava is a challenge for many rea-
sons. Fresh cassava roots have a very short shelf-life of 1–3 days after harvest, limiting food
security [8,14]. After harvesting, fresh cassava roots deteriorate rapidly due to a complex
biochemical and physiological process, known as postharvest physiological deterioration,
PPD. The rapid PDD reduces both the shelf life and quality attributes of cassava roots [15].
Furthermore, despite its nutritional value, cassava contains antinutrients such as phytates,
tannins (phenolics), oxalates, nitrates/nitrites, and saponins. These compounds can be
toxic and hinder the absorption of certain nutrients [13,16,17]. Some bitter cassava varieties
contain high levels of toxic cyanogenic compounds (cyanogenic glycosides) in edible parts.
These cassava varieties can represent a source of intoxication for consumers if not prepared
properly [13]. The use of adequate processing techniques can reduce both the antinutrients
and the cyanogenic glycoside levels in cassava varieties, resulting in better nutrient quality,
higher levels of vitamins, especially the B group, essential amino acids, and improvement
in protein digestibility [13,18].

In Africa, the processing techniques for dried fermented cassava products such as
cassava flour, often lead to low quality products since they are not usually protected during
the drying process from environmental contamination including the action of animals and
pests. As a result, fouling products, exposure to microorganisms, mycotoxin formation
and contamination by pathogens can be observed [1]. Records of aflatoxin contamination
by Aspergillus flavus, Aspergillus nomius, and Aspergillus parasiticus have previously been
reported in cassava processed products such as cassava roasted fermented flour from
Malawi and Zambia [19]. On the other hand, another study in Tanzania concluded that
samples of cassava flour collected immediately after the drying process did not show any
aflatoxin contamination [20]. Likewise, contamination of stored cassava flour by A. flavus,
Aspergillus niger, Rhizopus stolonifer, Mucor racemosus and Fusarium oxysporum, has also been
reported in Nigeria [21].

In southern Mozambique, cassava is commonly processed to produce cassava roasted
flour, also known as “rale”, a traditional food consumed by families. Most of the ”rale”
production in the country is handmade, using simple tools and non-motorized equipment,
by rural producers for their own consumption or sale. The industrial production of “rale”
in Mozambique is limited. However, there are some cassava processing associations that
benefit from the use of specialized and more advanced equipment. Their products are
destined for sale in small, open-air or rural markets in the regions, including in larger
cities. The cassava roasted flour processing chain starts with the reception of the cassava
roots, followed by washing, peeling, chopping, pressing, sieving, and finally, roasting of
the final product. In the southern region of Mozambique, there are 18 identified cassava
processing farmers associations which produce “rale”, of which 5 are in the Gaza province
and 13 in the Inhambane province. The “rale” produced in these associations is intended
for consumption by the association’s members and for sale in the local markets.

The processing of cassava roots to “rale” appears to be simple; however, it is necessary
that hygienic aspects are controlled at all stages to avoid contamination by microorganisms
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that can compromise the quality of the final product and its safety for consumers [22]. Few
studies have been carried out to deeply evaluate the microbiological safety and quality of
this traditional fermented cassava product. The present study aimed at surveying relevant
microbes as indicators of hygienic quality existing (a) within the whole chain of processing
cassava in the main processing unit (production unit called “Unit J” in this study); (b) in
“rale” produced in different cassava processing units; and (c) in “rale” sold in rural markets.
Our results show how the microbial contamination can affect the food quality and safety of
the cassava derivatives produced, consumed and sold in southern Mozambique based on
microbiological and molecular approaches.

2. Materials and Methods
2.1. Description of Study Area

The cassava sampling took place in the Gaza (24◦54′02.7′′ S; 33◦57′37.5′′ E) and the
Inhambane (24◦39′06.0′′ S; 34◦36′27.0′′ E) provinces, in the southern part of Mozambique
and at two different occasions: November 2020 and August 2021. From a climatic point of
view, what differentiates the two climate seasons in Mozambique is the amount of rain that
falls during these seasons. Mozambique has two seasons: a rainy season which normally
lasts from November to April, and a dry season between May and October.

The temperature remains relatively stable throughout the year with differences of just a
few degrees between the seasons and between day and night. Maximum temperatures vary
between 24 ◦C and 30 ◦C along the south coast, with the hottest months between December
and February. The same happens with minimum temperatures ranging between 14 ◦C and
22 ◦C, with June and July having the coldest temperatures. The annual precipitation varies
from 800 mm to 900 mm per year [23].

2.2. Sampling Procedure for Assessment of Indicator Microbes for Hygiene Quality
2.2.1. Steps of Casava Processing Within Unit J and Sampling

The microbial contamination at different stages of processing cassava (from roots
to cassava roasted flour) was assessed in the main cassava processing association unit,
hereafter called Unit J. This unit is considered a model for cassava processing, including
the application of food and hygiene practices during the “rale” processing.

The cassava processing started with manual cassava harvesting at cassava farmers’
fields of Unit J. After harvest, the roots were transported to the association unit by animal-
drawn carts or trucks. Upon arrival, cassava tubers were discharged directly onto a plastic
sheet or net on the ground, where the association members proceeded with the peeling
process. This was carried out outdoors and manually, without any washing or sanitizing
step included. The peeled cassava roots were washed once by hand in big plastic basins
containing tap water mixed with sodium hypochlorite to remove the impurities and soil
residues. The washed and sanitized cassava roots were placed in clean plastic basins and
thereafter, 4 stages of processing were followed (Figure 1).

The first stage of cassava processing is called “Chopping”. This was performed using a
gasoline-powered chopper. The chopped cassava mass was placed into clean raffia bags.
After chopping the roots, the “Pressing” stage was carried out using a manually driven
mechanical press for no more than 24 h. The raffia bags with chopped cassava mass were
placed into the pressing machine. From this point, the press water was released, and the
pressing stage was finished. The cassava pressed mass was taken out from the raffia bags
and placed in big metal containers for sampling, and the press water was collected and
stored in clean plastic bottles.
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After pressing, the cassava mass was introduced into a gasoline-powered grater
for disaggregation and reduction of agglomerates. This stage is called “Grating”. The
“Sieving” process consisted of the screening of the cassava mass in a polyethylene net with
wooden borders to separate the small homogenous particles from non-grated pieces and
fibrous material.
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Finally, the “Roasting” of the resulting processed cassava mass was either carried out
outdoors (November 2020) or indoors (August 2021). This was due to the season and the
installation of a new roasting machine at Unit J. The drying and cooling of “rale” was
carried out on top of a tarpaulin on the floor of a closed storage room for approximately
7–15 days to reduce as much as possible the humidity left in the product. After cooling, the
“rale” was placed in raffia bags, and when necessary, it was packed in plastic bags of 1 kg
each for further distribution.

Approximately 500 g of casava material was randomly collected in triplicates for
microbial assessment at each stage of the processing procedure, respectively: Chopping,
Pressing (including the Press water), Sieving and Roasting, both during rainy and dry seasons.

2.2.2. Sampling Procedure for Assessment of Indicator Microbes for Hygiene Quality in
“Rale” Produced in Different Cassava Processing Units

To assess the microbial contamination in “rale” processed and stored in cassava pro-
cessing units, six cassava processing units located in Gaza and Inhambane provinces,
including the reference Unit J, were selected for sampling collection, and these cassava
processing units are hereafter called Units V, W, P, Z, and C. From each season, approxi-
mately 500 g of stored cassava roasted flour was collected in triplicate at each processing
unit. The cassava processing units were selected considering the following criteria: having
a considerable cassava processing activity and having been trained to keep good hygiene
practices during cassava processing according to Mozambican’s Agricultural Authorities.

2.2.3. Sampling Procedure for Assessment of Indicator Microbes for Hygiene Quality in
“Rale” Sold in Different Rural Markets

The study of the microbial contamination of “rale” sold in rural markets in Mozam-
bique included a total of five different markets located along the National Road Number 1
(EN1), hereafter called Markets AM, GB, MK, ES, and MC. The EN1 connects the Southern
part of the country to the Centre and Northern regions of Mozambique. The markets were
selected considering easy access and history/or tradition of selling “rale”. In each market,
three vendors were randomly selected, and approximately 500 g of the “rale” was collected
in triplicates, comprising a total of 15 unique “rale” vendors.

The samples collected at different stages of processing cassava at Unit J (Section 2.2.1)
and the “rale” collected both in cassava processing units (Section 2.2.2) and rural markets
(Section 2.2.3) were stored in sterile plastic bags and kept frozen (−20 ◦C) until transporta-
tion to the Department of Molecular Sciences, Swedish University of Agricultural Sciences
(Uppsala) for microbial and molecular analyses.

2.3. Culture-Based Analyses of Indicator Microbes for Hygiene Quality

All chemicals and culture media were obtained from Merck KGaA, Darmstadt, Ger-
many; Sigma-Aldrich Inc., St. Louis, MO, USA and Oxoid Ltd., Basingstoke, Hampshire,
UK. About 25 g of cassava sample from each triplicate was aseptically transferred to Erlen-
meyer flasks containing 225 mL with sterile peptone water (0.1% peptone, w/v) to dilute
the samples. The casava samples were then homogenized for 120 s at normal speed using a
Stomacher 400 Laboratory blender (Seward Medical, London, UK). These samples were
serially diluted and poured or spread plated on relevant selection media for enumeration
of viable counts as specified by the manufacturer to isolate the desired microbes. The
following groups of microorganisms were screened for:
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(a) Yeasts and Molds

Yeasts and Molds were isolated by surface plating in triplicates on Dichloran Rose-
Bengal Agar plates supplemented with 0.1 g/L Chloramphenicol to inhibit bacterial
growth [24,25]. The yeast plates were placed in an incubator at 25◦C for 72 h. After
incubation, approx. 50 yeasts colonies representative of various colony morphologies
present were transferred to Yeast Peptone Dextrose Agar (20 g/L peptone, 10 g/L Yeast
extract, 20 g/L glucose, 20 g/L agar) supplemented with 0.1 g/L Chloramphenicol, and
incubated at 25 ◦C for 2–3 days. Mold plates were incubated at 25 ◦C for 7 days. After incu-
bation, approx. 30 molds representing all observed colony morphologies were transferred
and cultivated on Malt Extract Agar at 25◦C for 3–7 days for identification.

(b) Lactic Acid Bacteria and Bacterial Indicators of Hygienic Quality

Lactic Acid Bacteria (LAB) were quantified on De Man Rogosa Sharpe Agar supple-
mented with 0.1 g/L Delvocide (active compound, natamycin; Gist-Brocades B.V., Delft,
The Netherlands) to inhibit fungal growth. Plates were incubated anaerobically using a
GasPackTM EZ system (Becton Dickinson; Sparks, MD, USA) at 30 ◦C for 48 h [26,27].

Total bacterial Counts (TBC) were enumerated by the pour plate method using Tryptone
Glucose Yeast Extract Agar supplemented with 0.1 g/L Delvocide to suppress fungal
growth. Plates were incubated at 30 ◦C for 3 days [25,28].

Enterobacteriaceae were quantified on Violet Red Bile Agar (VRBG) by pour plating.
Plates were incubated at 37 ◦C for 24 h [29]. Presumptive Escherichia coli was enumerated
by an additional set of VRBG Agar plates incubated at 44 ◦C for 24 h [30,31].

(c) Enumeration of Bacillus cereus, Bacillus spp., Staphylococcus aureus and Escherichia coli

To enumerate B. cereus and other aerobic spore formers, the serial dilution tubes were
heated for 13 min. in a water bath at 80 ◦C before plating. B. cereus was enumerated by
surface plating on Mannitol Egg-yolk Polymyxin Agar (MYPA) followed by incubation at
37 ◦C for 24 h. All large, rounded colonies, pink in color and surrounded by a precipitation
zone were enumerated as presumptive B. cereus [32,33].

Bacillus spp. counts were quantified on Reinforced Clostridial Agar incubated aerobi-
cally at 37 ◦C for 24 h.

S. aureus was quantified on Baird-Parker Agar with egg-yolk tellurite by surface
plating followed by incubation at 37 ◦C for 48 h. Gray-black colonies with haloes were
enumerated as presumptive S. aureus [34,35].

Presumptive colonies of E. coli, B. cereus and S. aureus were confirmed using PCR as
described by [36]. Microbial counts were expressed as log10 mean (n = 3) cfu/g of cassava
solid sample or cfu/mL of cassava press water sample.

All microbial analyses described above were performed for samples collected within
the whole chain of cassava processing at Unit J, whereas for “rale” (the finished product)
collected both in different markets and different cassava processing units, we focused on
enumeration of yeasts, molds, S. aureus, TBC, Enterobacteriaceae and B. cereus.

2.4. Yeast and Mold Identification

Preliminary identifications of purified representative isolates as described in
Section 2.3–a), were based on macro and micro-morphology. Isolates that appeared to
have similar macro and micro-morphology were grouped and given codes for further
steps. These representative yeast and mold isolates were grown in Yeast Extract Peptone
Dextrose broth (20 g/L peptone, 10 g/L Yeast extract, 20 g/L glucose) for DNA extraction
and sequence-based species identification.

PCR analysis was performed for yeast isolates by selecting single colonies as tem-
plates. Material from a single yeast colony was boiled in 20 µL 0.02 M NaOH for 5 min,
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and 2 µL of the resulting suspension was used as PCR template with primers NL1/NL4 to
amplify the D1/D2 region of the 26S rRNA gene [37,38]. For molds, DNA was extracted
using the method described by [39]. The following genes were selected for identification
by partial amplification and sequencing: translation elongation factor 1 α for presump-
tive Fusarium spp. with primers EF1/EF2 [40]; β-tubulin gene in Penicillium subgenus
Penicillium spp. with primers bt2a/bt2b [41]; and rDNA internal transcribed spacer in
all other species with primers ITS1F/ITS4 [42]. Amplicons were sequenced at Macro-
gen, Amsterdam, The Netherlands, and all representative isolates were identified by
sequence search and comparison against the NCBI database (Nucleotide Blast, Core nu-
cleotide database “https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_
TYPE=BlaSearch&LINK_LOC=blasthome (accessed on 25 June 2023)”.

2.5. Culture-Independent Analysis of Bacterial Community by Illumina Amplicon Sequencing

16S rRNA gene sequencing was applied as a culture-independent method to gain an
overview of bacterial diversity. DNA was extracted using a Quick-DNA Fungal/Bacterial
Microprep Kit (Zymo Research™, Freiburg, Germany) including an additional bead-beating
step: briefly, 20 ± 10 mg sample was weighed in ZR BashingBead™ Lysis tubes (Freiburg,
Germany) and placed on ice. A total of 750 µL of BashingBead™ Buffer (Freiburg, Germany)
was added in the sample directly to the tube and capped tightly. The tube was placed in
a FastPrep Instrument (MPBiomedicals™, Freiburg, Germany) for 40 s at speed setting
6.0 and centrifuged at 10,000× g for 10 min at room temperature (20 ◦C). Then, 400 µL
of the obtained supernatant was transferred into a new microcentrifuge tube and treated
as described in the manufacturer’s protocol. The DNA concentration was approximated
using Qubit© fluorometer dsDNA protocol (Invitrogen –Thermo Fisher Scientific, Dreieich,
Germany). DNA was purified in triplicates for all samples, and some replicates had to be
diluted before PCR to overcome inhibitory effects. PCR amplification, purification, and
barcoding/preparation of libraries for Illumina Sequencing were performed using the
protocol modified by [43].

16S rRNA gene amplicon libraries were constructed as triplicates using two consecutive
PCR procedures. The first PCR targeted and amplified the V4 region of bacteria, using the
primers 515F (ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNGTGBCAGCMGC-
CGCGAA) and 805R (AGACGTGTGCTCTTCCGATCTGGACTACHVGGGTWTCTAAT),
and it attaches adaptors to the amplicons [43]. The reaction mixture contained 2× Phusion
High-Fidelity DNA Polymerase/dNTP mix (Thermo Fischer Scientific, Hudson, NH, USA),
10 µM of each primer, and approx. 5–10 ng DNA template in a final volume of 25 µL. The
condition for amplification was as follows: initial denaturing at 98 ◦C for 30 s, 30 cycles of 10 s
at 98 ◦C, 30 s at 60 ◦C, 4 s at 72 ◦C, and a final extension at 72 ◦C for 2 min. The PCR products
were checked for size and quality by electrophoresis.

Amplicons were purified using Agencourt AMPure XP (Becker Coulter, Brea, CA,
USA), using a magnetic particle/DNA volume ratio of 0.8:1. In the second PCR, Illumina-
compatible barcodes were added to the amplicons [44]. The PCR reaction contained 10 µL
purified amplicon from the first step, 2× Phusion High-Fidelity DNA Polymerase/dNTP
mix and 10 µM each of the primers 5’-AATGATACGGCGACCACCAGATCTACACX8AC
ACTCTTTCCCTACACGACG-3’ and 5′-CAAGCAGAAGACGGCATACGAGATX8GTGA
CTGGAGTTCAGACGTGTGCTCTTCCGATCT-3′, where X8 in the primer sequence repre-
sented a specific Illumina-compatible barcode (Eurofins– Genomics). The total volume was
25 µL. The following conditions were used for the second PCR step: initial denaturing at
98 ◦C for 30 s, 8 cycles of 10 s at 98 ◦C, 30 s at 62 ◦C, 5 s at 72 ◦C, and a final extension at
72 ◦C for 2 min. The PCR products were checked by electrophoresis and purified using
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Agencourt AMPure XP. The PCR products were then each diluted to a DNA concentration
of approx. 24 nM and pooled together.

Pair-end sequencing was performed on the MiSeq platform (Illumina, Inc., San Diego,
CA, USA) at ScilifeLab, National Genomics Infrastructure (Stockholm, Sweden). Amplicon
sequence variants, abundancies and taxonomic affiliation were determined using the
package dada2 (version 1.6.0) [45] in R (version 3.4.0), which is implemented on the SLUBI
computing cluster in Uppsala (running on CentOS Linux release 7.1.1503; module handling
by Modules based on Lua: Version 6.0.1 “https://www.slubi.se/ (accessed on 16 October
2023)”. For further details see [44].

2.6. Statistical Analysis

Statistical analysis was carried out using R in the RStudio (2024.09.1) environment [46].
The normality function from the dlookr version 0.6.3 package [47] was used to retrieve
the results of the Shapiro test and therefore assess whether the collected data fulfil the
assumptions for the ANOVA test. The Bartlett’s test was performed using an inbuilt function
from the R software (version 4.3.2) to assess other ANOVA assumptions (homogeneity of
variances). Since the assumptions were not satisfied, the Kruskal–Wallis’s test was used
as a non-parametric alternative to ANOVA. The Dunn test was performed as a post-hoc
test to derive pairwise multiple comparisons among significant groups of microorganisms
in Cassava Processing Stages, Cassava Processing Units and Rural Markets. The p-values
for multiple comparisons were adjusted using the Bonferroni method. All results were
considered significant at p < 0.05. In general, the gtsummary package version 1.7.2 [48] was
used to compute both the descriptive statistics and inferential statistics. The rstatix package
version 0.7.2 [49] was used to derive both the Kruskal–Wallis’s and Dunn tests.

For Illumina 16S rRNA gene sequencing results, all abundances below the cut-off
value of 0.5% were removed from considerations.

3. Results
3.1. Microbes as Indicators of Hygienic Quality Within Unit J

Table 1 describes microbes indicative of hygienic quality isolated from cassava samples
collected in different stages of cassava processing within Unit J during the rainy and dry
seasons. Molds, Lactic Acid Bacteria (LAB), Aerobic bacteria (Total Aerobic Bacteria Counts,
TBC) and Bacillus spp. were observed in the cassava samples from the rainy season, and
the presence of yeasts and S. aureus were found in cassava samples collected during the
dry season.

The counts of microorganisms in the processing chain of cassava differ significantly
between each stage of processing cassava tubers to cassava roasted flour (“rale”) in both
rainy and dry seasons, as well as when combining all seasons (Table 1). The dry season
generally reported higher counts of microorganisms in the cassava processing chain com-
pared to the rainy season. On both occasions, the counts of Enterobacteriaceae, presence of E.
coli, and B. cereus were below the detection limit (Table 1).

Specifically, in the rainy season, the levels of contamination of cassava samples
by yeasts and S. aureus were below the detection limit in all processing stages. Mold
counts were generally low, with the roasting process having the highest counts (mean
1.33 log cfu/g) followed by chopping and pressing stages (mean 0.33 log cfu/g). LAB, TBC
and Bacillus spp. were only detected during the chopping, pressing, and sieving stages,
with counts ranging from 5.54 to 6.81 log cfu/g for LAB, 5.32 to 6.53 log cfu/g for TBC, and
3.04 to 3.33 log cfu/g for Bacillus spp. (Table 1).

In contrast, during the dry season, the presence of yeasts and S. aureus were ob-served
in the stages of chopping, pressing, and sieving. The pressing stage recorded the highest
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cfu in both groups of microorganisms (4.21 log cfu/g for yeasts and 5.73 log cfu/g for S.
aureus, respectively). In this season, molds, LAB, and TBC were also present during all
cassava processing stages. The highest mold count was observed in the roasting process
(2.72 log cfu/g), while the lowest values were reported during the sieving stage (bdl). For
LAB and TBC, the highest cfu counts were observed in the pressing stage (6.50 log cfu/g
for LAB and 6.22 log cfu/g for TBC), and the lowest values were found for the press water
collected during the pressing stage (bdl for LAB and 2.23 log cfu/mL for TBC). The presence
of Bacillus spp. in this season was below the limit of detection (Table 1). When combining
all seasons of study, significant differences were observed within cassava processing stages
for LAB, TBC and Bacillus spp.

Table 1. Enumeration (log cfu/g) of different microbial groups isolated within Unit J during rainy,
dry and both seasons. Values are presented as mean ± standard deviation (n = 3 for each season and
n = 6 for both seasons). Different superscript letters represent significant differences (p < 0.05).

Cassava Processing Stages
Microbes Chopping 1 Pressing 1 Press Water 1 Sieving 1 Roasting 1 p-Value 2

Rainy season (November 2020)
Yeast bdl bdl bdl bdl bdl na

Molds 0.33 ± 0.58 0.33 ± 0.58 0.10 ± 0.17 ■ 1.33 ± 1.59 0.52
LAB 5.54 ± 0.13 a 6.81 ± 0.90 a bdl 5.71 ± 0.34 a bdl 0.011 *

S. aureus bdl bdl bdl bdl bdl na
TBC 5.32 ± 0.08 a 6.17 ± 0.10 a bdl 6.53 ± 0.4 a bdl 0.009 **

Enterobacteriaceae bdl bdl bdl bdl bdl na
Pres. of E. coli bdl bdl bdl bdl bdl na
Bacillus spp. 3.04 ± 0.87 a 3.33 ± 1.15 a bdl 3.05 ± 0.40 a bdl 0.026 *

Bacillus cereus bdl bdl bdl bdl bdl na
Dry season (August 2021)

Yeast 4.13 ± 0.34 a 4.21 ± 0.05 a 2.84 ± 0.79 a 4.02 ± 0.18 a bdl 0.026 *
Molds 0.67 ± 1.15 0.40 ± 0.17 0.58 ± 0.51 bdl 2.72 ± 0.13 0.05
LAB 4.52 ± 0.31 a 6.50 ± 0.65 a bdl bdl 3.35 ± 0.60 a 0.011 *

S. aureus 5.61 ± 0.12 a 5.73 ± 0.05 a bdl 5.50 ± 0.56 a bdl 0.024 *
TBC 5.90 ± 0.21 ab 6.22 ± 0.27 a 2.23 ± 0.11 b 5.67 ± 0.30 ab 3.25 ± 1.08 ab 0.017 *

Enterobacteriaceae bdl bdl bdl bdl bdl na
Pres. of E. coli bdl bdl bdl bdl bdl na
Bacillus spp. 3.04 ± 0.87 a 3.33 ± 1.15 a bdl 3.05 ± 0.40 a bdl 0.028 *

Bacillus cereus bdl bdl bdl bdl bdl na
All seasons (Rainy and Dry)

Yeast 2.91 ± 1.35 2.96 ± 1.38 2.27 ± 0.80 2.86 ± 1.28 1.85 ± 0.16 0.81
Molds 0.33 ± 0.82 0.20 ± 0.25 1.41 ± 1.44 bdl 0.37 ± 0.43 0.1
LAB 5.03 ± 0.60 ab 6.65 ± 0.72 a 2.36 ± 0.40 b 6.10 ± 0.47 a 2.67 ± 0.83 b <0.001 ***

S. aureus 3.80 ± 1.98 3.87 ± 2.04 bdl 3.75 ± 1.95 bdl 0.09
TBC 5.61 ± 0.35 ab 6.19 ± 0.18 a 2.11 ± 0.14 b 6.10 ± 0.57 a 2.62 ± 0.97 b <0.001 ***

Enterobacteriaceae bdl bdl bdl bdl bdl na
Pres. of E. coli bdl bdl bdl bdl bdl na
Bacillus spp. 3.04 ± 0.78 a 3.33 ± 1.03 a 1.85 ± 0.16 b 3.05 ± 0.36 a bdl <0.001 ***

Bacillus cereus bdl bdl bdl bdl bdl na
Abbreviations: bdl—below the detection limit; na—not applicable; LAB—lactic acid bacteria; TBC—total bacterial
count; ■—less than two colonies/plate (10−1); cfu— colony forming units; 1 Mean (SD); 2* p < 0.05; ** p < 0.01;
*** p < 0.001.

In the rainy season, molds of the genus Penicillium (P. ochrochloron, P. primulinum, P.
citreonigrum) were isolated from chopping, pressing and press water samples, whereas the
roasting stage was more contaminated by Alternaria infectoria, Cladosporium sphaerospermum
and A. flavus. No yeast contamination was observed in all cassava samples assessed in this
season (Table 2).
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Table 2. Molds and yeasts (% of isolates) identified in cassava samples from Unit J during rainy and
dry seasons.

Rainy Season (November 2020) Dry Season (August 2021)

Mold Isolates Yeast Isolates Mold Isolates Yeast Isolates

Chopping Penicillium
ochrochloron (100%)

-

Curvularia sp. (50%) Wickerhamomyces anomalus (71%)
Rhizopus stolonifer (50%) Rhodotorula mucilaginosa (14%)

Pichia exigua (7.5%)
Rhodotorula alborubescens (7.5%)

Pressing

Penicillium
primulinum

(50%)

-

Pestalotiopsis sp. (16.7%) Wickerhamomyces anomalus
(31%)

Penicillium
citreonigrum (50%) Rhizopus stolonifer (16.7%) Pichia exigua (19%)

Pitomyces sacchari (16.7%) Rhodotorula mucilaginosa (19%)
Aspergillus fumigatus

(16.7%) Meyerozyma caribbica (12.5%)

Penicillium griseofulvum
(16.7%) Torulaspora delbrueckii (12.5%)

Didymella sp. (16.5%) Candida orthopsilosis (6%)

Press water
Penicillium olsonii

(100%)
Penicillium restrictum

(100%)
Rhodotorula babjevae (50%)
Meyerozyma caribbica (50%)

Sieving - - -

Wickerhamomyces anomalus
(37.5%)

Rhodotorula mucilaginosa (25%)
Naganishia diffluens (12.5%)

Kwoniella heavenis (6.3%)
Kazachstania unispora (12.4%)
Candida orthopsilosis (6.3%)

Roasting

Alternaria infectoria
(33.3%)

-

Stagonosporopsis sp. (25%)

Cladosporium
sphaerospermum

(33.3%)

Cladosporium
sphaerospermum (12.5%)

Aspergillus flavus
(33.3%)

Cladosporium
cladosporioides (12.5%)

Cladosporium oxysporum
(12.5%)

Rhizopus stolonifer (12.5%)
Arthinium sp. (12.5%)
Dothideales sp. (12.5%)

The contamination of the cassava samples by both molds and yeasts was higher during
the dry season than the rainy season. Samples were contaminated by Aspergillus fumigatus,
Penicillium griseofulvum and Rhizopus stolonifer at the pressing stage, and Cladosporium
cladosporioides, Cladosporium oxysporum and R. stolonifer at the roasting stage. In contrast, the
chopping, pressing and sieving stages were found to have the highest diversity of yeasts.
Wickerhamomyces anomalus, Rhodotorula mucilaginosa, Pichia exigua and Meyerozyma caribbica
were the most frequent yeast species found in these cassava processing stages. Rhodotorula
babjevae, a red oleaginous yeast, was also observed in the press water samples.

All samples from the sieving stage were free from contamination by molds in both
surveyed seasons (Table 2). Certain microbial isolates could not be identified in the present
study due to the lack of reference sequences in the NCBI database (Nucleotide Blast,
Core nucleotide database) “https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&
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PAGE_TYPE=BlastSearch&LINK_LOC=blasthome (accessed on 15 January 2022)”. How-
ever, identified isolates presented here were deemed sufficient to give an indication of the
types of species present (Table 2).

Illumina 16S rRNA gene sequencing analysis of the bacterial microbiota revealed high
prevalence of LAB and Lactobacillales in all samples for the two seasons of the study. The
LAB affiliates to the genera Fructobacillus, Lactobacillus, Lactococcus, Leuconostoc and Weissella
(Figure 2). This included samples from the roasting stage during the rainy season where
LAB counts were below the detection limit (Table 1). Amplicons representing Cyanobacteria
were also abundantly found in the samples. Regarding Gram-negative bacteria, in both
seasons, bacteria from the order Rickettsiales, and the genera Pseudomonas and Klebsiella
were observed at somewhat greater abundance in samples collected at the roasting stage.
Bacterial species of Aeromonas and Escherichia/Shigella were also found in samples collected
in the roasting stage within the first sampling period.
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3.2. Microbes as Indicators of Hygienic Quality in “Rale” Sampled from Cassava Processing Units

Counts of microorganisms from the final cassava product (“rale”) differ significantly
between the six main cassava processing units located in Gaza and Inhambane provinces,
Mozambique, in both the rainy and dry seasons (Table 3). However, no significant difference
in terms of microbial contamination was found when combining the two seasons. On all
occasions, yeasts and Enterobacteriaceae were always found to be below the limit of detection.

Table 3. Enumeration (log cfu/g) of different microbial groups isolated in “rale” processed in six
cassava processing units during rainy, dry and both seasons. Values are presented as mean ± standard
deviation (n = 3 for each season and n = 6 for both seasons). Different superscript letters represent
significant differences (p < 0.05).

Cassava Processing Units
Microbes V 1 W 1 P 1 Z 1 C 1 J 1 p-Value 2

Rainy season (November 2020)
Yeast bdl bdl bdl bdl bdl bdl na

Molds 0.36 ± 0.32 0.20 ± 0.35 1.33 ± 0.17 3.47 ± 2.29 1.53 ± 2.66 0.26 ± 0.24 0.1
S. aureus bdl 2.33 ± 0.58 bdl bdl bdl bdl 0.42

TBC 7.30 ± 4.59 bdl bdl bdl 3.33 ± 2.31 6.67 ± 3.21 0.054
Enterobacteriaceae bdl bdl bdl bdl bdl bdl na
Bacillus cereus bdl bdl bdl bdl bdl bdl na

Dry season (August 2021)
Yeast bdl bdl bdl bdl bdl bdl na

Molds 3.90 ± 0.53 a 1.22 ± 1.10 a 1.26 ± 0.12 a bdl 0.89 ± 0.25 a bdl 0.028 *
S. aureus bdl 2.00 ± 0.01 bdl bdl bdl bdl 0.42

TBC 1.83 ± 0.30 1.41 ± 0.17 1.75 ± 0.62 1.60 ± 0.11 1.67 ± 0.57 1.34 ± 0.57 0.66
Enterobacteriaceae bdl bdl bdl bdl bdl bdl na
Bacillus cereus bdl bdl bdl bdl 2.33 ± 0.58 bdl 0.42

All seasons (Rainy and Dry)
Yeast bdl bdl bdl bdl bdl bdl na

Molds 2.13 ± 1.98 0.71 ± 0.92 1.29 ± 0.14 2.73 ± 1.66 1.21 ± 1.72 1.13 ± 0.97 0.15
S. aureus bdl 2.17 ± 0.41 bdl bdl bdl bdl 0.068

TBC 4.56 ± 4.18 1.70 ± 0.34 1.88 ± 0.41 1.80 ± 0.23 2.34 ± 1.86 4.17 ± 3.43 0.38
Enterobacteriaceae bdl bdl bdl bdl bdl bdl na
Bacillus cereus bdl bdl bdl bdl 2.17 ± 0.41 bdl 0.42

Abbreviations: bdl—below the detection limit; na—not applicable; LAB—lactic acid bacteria; TBC—total bacterial
count; cfu—colony forming units; 1 Mean (SD); 2 * p < 0.05.

During the rainy season, molds appeared to dominate most samples collected from all
cassava processing units, with counts varying from 0.20 log cfu/g (Unit W) to 3.47 log cfu/g
(Unit Z). TBC could only be quantified in samples collected in Unit C (3.33 log cfu/g), Unit
J (6.67 log cfu/g) and Unit V (7.30 log cfu/g), while S. aureus was only found in Unit W
(2.33 log cfu/g). B. cereus was not detected in any of the samples.

In the dry season, TBCs were more frequently isolated than other groups of tested
microorganisms, varying from 1.34 log cfu/g (Unit J) to 1.83 log cfu/g (Unit V). Molds
were observed in four out of the six associations included in this study, ranging from
0.89 log cfu/g (Unit C) to 3.90 log cfu/g (Unit V). The highest counts of B. cereus were
reported at Unit C (2.33 log cfu/g). Similar to the rainy season, S. aureus was reported only
at Unit W (2 log cfu/g), while in other units the counts for this microbe were below the
level of detection (Table 3).
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The highest diversity of molds in “rale” samples collected at the six cassava processing
units was observed in the dry season (Table 4). Penicillium spp., Aspergillus spp., Fusarium
spp., and Alternaria spp. were reported in both seasons.

Table 4. Molds (% of isolates) identified in “rale” processed in six cassava processing units during
rainy and dry seasons.

Rainy Season (November 2020) Dry Season (August 2021)

Mold isolates

Units

V *n.i.
Aspergillus ruber (29%)

Pithomyces sacchari (43%)
Chaetomium globosum (28%)

W

Penicillium purpureum (17%) Pithomyces sacchari (44%)
Alternaria sp. (17%) Aspergillus penicillioides (11%)

Aspergillus flavus (17%) Aspergillus chevalieri (22%)
Aspergillus niger (17%) Fusarium solani (11%)

Aureobasidium pullulans (17%) Pleurotus ostreatus (12%)
Cladosporium cladosporioides (15%)

P

Penicillium citreonigrum (50%) Penicillium citrinum (7%)
Fusarium oxysporum (50%) Neopestalotiopsis egyptiaca (7%)

Chaetomium globosum (5%)
Pithomyces sacchari (51%)
Alternaria alternata (7%)

Pithomyces maydicus (7%)
Paraphaeosphaeria michotii (7%)

Aspergillus nidulans (7%)

Z
Penicillium citreonigrum (50%) -

Penicillium ruber (50%)

C

Penicillium ruber (67%) Phoma pereupyrena (10%)
Trichoderma sp. (33%) Pithomyces sacchari (60%)

Aspergillus calidoustus (10%)
Talaromyces sp. (10%)
Aspergillus sp. (10%)

J

Aspergillus niger (14%)

-

Alternaria infectoria (14%)
Cladosporium sphaerospermum (14%)

Penicillium primulinum (14%)
Penicillium citreonigrum (16%)
Penicillium ochrochloron (14%)

Epicoccum sp. (14%)
Abbreviations: *n.i.—not identified.

Relative abundance of bacterial groups in “rale” samples collected in six different
cassava processing units is shown in Figure 3. LAB (Fructobacillus, Lactobacillus, Lactococcus,
Leuconostoc and Weisiella) and the Cyanobacteria class were the most dominant in samples
collected both in dry and rainy seasons, and in all cassava processing units. Other genera
present included Klebsiella, Escherichia/Shigella, Cloacibacterium and Staphylococcus, as well as
the order Rickettsiales and family Neisseriaceae.

The Gram-negative genera Pseudoxanthomonas and Pseudomonas were also occasion-
ally present in “rale” samples, and Unit Z was found to have the highest diversity of
bacterial microbiota.
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3.3. Microbes as Indicators of Hygienic Quality of “Rale” Collected in Rural Markets

Table 5 describes the enumeration of various microbes in “rale” samples collected
in five rural markets, where “rale” is traditionally sold. The diversity of microorganisms
varied between the two seasons of study within the five assessed markets. No signifi-
cant differences in microbial diversity were found between the rural markets during the
rainy season, whereas significant differences were found during the dry season and when
combining the microbe counts from both seasons.

In the rainy season, S. aureus was only confirmed from one market (MK) at
2.01 log cfu/g. The same scenario was observed for TBC, which were only reported in
one market (GB) at 2.05 log cfu/g. The counts for yeasts, Enterobacteriaceae and B. cereus
were below the detection level. Average mold counts were very low, as reflected by a few
colonies on occasional plates (Table 5).
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Table 5. Enumeration (log cfu/g) of different microbial groups isolated in “rale” sold in five rural
markets during rainy, dry and both seasons. Values are presented as mean ± standard deviation
(n = 3 for each season and n = 6 for both seasons). Different superscript letters represent significant
differences (p < 0.05).

Rural Markets
Microbes AM 1 GB 1 MK 1 ES 1 MC 1 p-Value 2

Rainy season (November 2020)
Yeast bdl bdl bdl bdl bdl na

Molds bdl ■ bdl ■ ■ na
S. aureus bdl bdl 2.01 ± 0.01 bdl bdl 0.071

TBC bdl 2.05 ± 0.09 bdl bdl bdl 0.41
Enterobacteriaceae bdl bdl bdl bdl bdl na

Bacillus cereus bdl bdl bdl bdl bdl na
Dry season (August 2021)

Yeast bdl bdl bdl bdl 4.55 ± 0.55 a 0.008 **
Molds bdl ■ 0.26 ± 0.24 a

■ 2.32 ± 0.36 a 0.016 *
S. aureus bdl bdl bdl bdl 2.16 ± 0.28 0.41

TBC 2.46 ± 0.05 a 2.54 ± 0.06 a 1.71 ± 0.20 a 2.06 ± 0.28 a 1.86 ± 0.29 a 0.023 *
Enterobacteriaceae bdl bdl bdl bdl bdl na

Bacillus cereus 2.01 ± 0.00 a bdl bdl bdl 2.33 ± 0.58 a 0.050 *
All seasons (rainy and dry)

Yeast bdl bdl bdl bdl 3.27 ± 1.44 0.012 *
Molds bdl ■ 0.13 ± 0.21 a

■ 1.16 ± 1.29 a 0.045 *
S. aureus bdl bdl 2.00 ± 0.01 bdl 2.08 ± 0.19 0.24

TBC 2.23 ± 0.26 ab 2.30 ± 0.28 a 1.85 ± 0.20 b 2.03 ± 0.18 ab 1.93 ± 0.20 ab 0.023 *
Enterobacteriaceae bdl bdl bdl bdl bdl na

Bacillus cereus bdl bdl bdl bdl 2.17 ± 0.41 0.063
Abbreviations: bdl—below the detection limit; na—not applicable; LAB—lactic acid bacteria; TBC—total bacterial
count; ■—less than two colonies/plate (10−1); cfu— colony forming units; 1 Mean (SD); 2 * p < 0.05; ** p < 0.01.

In contrast, in the dry season, the highest counts for yeasts (4.55 log cfu/g), molds
(2.32 log cfu/g), and S. aureus (2.16 log cfu/g) were observed in samples belonging to
the MC market. All market samples were positive for TBC, with values ranging from
1.71 log cfu/g (MK) to 2.54 log cfu/g (GB). Market MC had the highest counts for B. cereus
(2.33 log cfu/g) followed by market AM (2.01 log cfu/g). In this season, all market samples
were found to be negative for Enterobacteriaceae. When combining both seasons of study,
significant differences of microbial contamination were observed among rural markets for
molds and TBC (Table 5).

Molds identified in “rale” samples collected in rural markets during the rainy season
belonged to the genera Fusarium, Rhizopus and Talaromyces (Table 6). In the dry season,
Pithomyces, Aspergillus, Talaromyces, and Trematosphaeia were identified. The MK market
samples had somewhat higher mold counts and much greater species diversity during the
dry season compared to the rainy season.

The composition of the bacterial community displayed as relative abundance from
“rale” samples collected in rural markets are presented in Figure 4. During both seasons,
bacteria from the class Cyanobacteria, and the genera Fructobacillus, Lactobacillus, Lacto-
coccus, Leuconostoc and the Weisiella genus were most frequent in all surveyed markets.
Regarding the Gram-negative community, the genus Klebsiella and Acinetobacter, the family
Neisseriaceae, and the order Rickettsiales were also dominant in samples from both seasons.
The samples from markets AM and ES reported the highest relative abundance of bacterial
community within the rainy season. In contrast, during the dry season, “rale” sold in the
GB, MK and MC markets showed high prevalence of bacterial populations, complementing
the results found with the plating method (Table 5).
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Table 6. Molds (% of isolates) identified in “rale” samples collected in five rural markets during rainy
and dry seasons.

Rainy Season (November 2020) Dry Season (August 2021)

Mold Isolates

Markets

AM Talaromyces amestolkiae (100%) bdl

GB Fusarium petroliphilum (100%) Talaromyces sp. (100%)

MK bdl
Pithomyces sacchari (80%)

Aspergillus shendaweii (20%)

ES bdl Pithomyces sacchari (100%)

MC

Fusarium solani (50%) Pithomyces sacchari (25%)
Rhizopus oryzae (50%) Aspergillus calidoustus (25%)

Trematosphaeria grisea (25%)
Pithomyces chartarum (25%)

Abbreviations: bdl—below the detection limit.
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4. Discussion
4.1. Microbes as Indicators of Hygienic Quality Within Unit J

During the processing chain to produce cassava roasted flour (“rale”), the highest
counts of molds and bacteria were found precisely after chopping. This can be explained
by the high level of humidity that is found in cassava roots [50]. Cassava roots consist of,
on average, 70% moisture, which requires prompt processing after harvesting to increase
the shelf life of the cassava root products [22]. The rainy season is the most challenging
season for Mozambican cassava farmers, as the processing and storage of cassava and its
derivatives are more susceptible to mold contamination due to high temperatures and
relative humidity (± 29 ◦C ± 75% HR) at the locations of the associations included in the
study. High TBCs were reported by [51] in “rale” samples and they correlated their findings
with the contamination of samples by bacteria both from the cassava processors (when
handling the flour) and from the environment.

S. aureus was isolated during the dry season at various stages of cassava processing
(Table 1). According to [52], the presence of S. aureus in processed foods, or on food
processing equipment, is generally an indication of inadequate sanitation or handling [52].
There are many records of severe food poisoning outbreaks caused by this microorganism.
S. aureus can contaminate food processes when handling with bare hands; their presence
in cassava samples might be related to direct contact or air-droplet mechanisms such as
coughing or sneezing by “rale” processors. Foods contaminated by S. aureus, Bacillus spp.,
Shigella sp., and Enterobacter sp. have been connected to food infections and intoxication
leading to different forms of diarrhea diseases among other complications, especially in
young children, the elderly and the immunocompromised [51,53,54]. Fortunately, the
production of “rale” includes heat treatment during roasting at approx. 110 ◦C, which is
sufficient to eliminate these microbes (as well as natural microbiota such as LAB), though
spores of Bacillus sp. may survive. In this context, it is noteworthy that S. aureus in certain
samples from the dry season (Table 1) approaches levels of >106 cfu/g which indicate a
risk for the production of a heat-stable toxin which would still be present in the roasted
product [54,55].

Recontamination of samples after roasting may occur if ideal storage conditions are
not put in place [51]. As the water content is reduced during roasting, this favors in
particular the presence of molds (Table 1), which thrive at low water activity. Additionally,
the roasting process in the rainy season samples took place outdoors using less advanced
roasters, while for the subsequent dry season, a new roasting machine had been installed
in Unit J. Rainy season samples were at greater risk for contamination by soil residues, the
surrounding environment and sweat, as well as the lack of awareness of hygiene practices
when carrying out this activity.

Various mold species were isolated from cassava processing samples (Table 2), in-
cluding Penicillium and Aspergillus species, which have been previously reported from
cassava derivatives in Benin [56] and Ghana [57]. Some of these molds may cause physical–
chemical damage in the product and even potentially affect human and animal health,
via the production of aflatoxins and other mycotoxins [58–61]. Fifteen samples of cassava
flour in Brazil were investigated by [62] and this study concluded that 80% of the samples
were contaminated by A. niger, A. fumigatus and Penicillium species. Contamination of
cassava samples by Penicillium spp., Aspergillus spp., genera Rhizopus and Cladosporium, and
yeasts were reported by [63] in Brazil. In our study, only low colony counts of potentially
toxigenic molds such as A. flavus were detected in ”rale” samples. This would seem to
indicate that the risk for aflatoxin contamination is fairly low [64] in the “rale” produced
and processed at Unit J using the current technology. Likewise, although citreoviridin may
have hypothetically been produced by P. citreonigrum, the counts were low (Table 2) and
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the occurrence of this toxin in foods is not regulated, despite its past role in causing beriberi
from contaminated rice [65]. A pre-study we conducted in February 2020 in Gaza and
Inhambane provinces showed similar trends regarding yeasts, molds, LAB, Enterobacteri-
aceae, TBC and Bacillus spp. in samples from the cassava processing chain, suggesting that
the results from subsequent seasons (November 2020 and August 2021) were not unusual.
Penicillium sp., Aspergillus sp., Aureobasidium sp. and Cladosporium sp. were also isolated in
the pre-study.

4.2. Microbes as Indicators of Hygienic Quality in “Rale” Sampled from Cassava Processing Units

Regarding the study performed in the cassava processing units, our findings show
concordance with the work carried out by [66,67] in Brazil, where they observed high
records of mold in cassava flour in at least 67 to 75% of the samples. Studies carried out
by [68] in Nigeria reported mold counts ranging from 3.55 to 5.99 log cfu/g, which repre-
sents higher contaminations of samples compared to the units of the current study (Table 3).
The maximum allowable level for molds in cassava flour is 103 cfu/g or 3 log cfu/g [64],
meaning that the counts observed in the “rale” processed in the majority of units meet the
limits; this is probably assisted by the roasting process which reduces the initial mold load.
However, Units V and Z were slightly over the limit. These units are smaller, processing
less volumes than the other units, and therefore, the sampled “rale” was either not fresh or
properly stored, contributing to the very high microbial counts.

B. cereus was isolated at low levels from a few units. This can be related to the
occurrence of this bacteria in soil, and, from there, its contamination of cereals, tubers and
vegetables [69]. S. aureus was reported in the most rudimentary unit (Unit W) that relies on
very old machines and less advanced infrastructure to produce, process and store cassava
derivatives. Consequently, our study strongly suggests that reducing contamination from
handling is a challenge when using old machinery and infrastructure. The contamination
of samples by both molds and E. coli reduces the conformity of the cassava product to
microbial quality and safety regulations [64].

The microbes identified in the present study are aligned with those obtained by [68], in
which they reported the presence of Aspergillus spp., Penicillium spp., Fusarium, Alternaria
spp., Cladosporium sp. and Rhizopus sp. in cassava roasted flour samples. Most species listed
in Table 2 are non-toxigenic, however, the list does include A. flavus, a producer of aflatoxin;
P. citrinum, a producer of citrinin; A. niger, producer of ochratoxin A and fumonisins; and F.
oxysporum, where a few strains produce fumonisin [65,70]. These toxins are among those
whose occurrence in certain foods is regulated in the European Union [71]. Other species
producing non-regulated mycotoxins include P. citreonigrum (citreoviridin, discussed in
Section 4.1) and A. alternata (alternariols, tenuazonic acid) [65]. Despite the presence of
these species, the risk for mycotoxin production is deemed to be low, because the mold
counts were fairly low in all samples (<104 cfu/g or 4 log cfu/g), and in particular, A. flavus
was present at <3 cfu/g or 0.5 log cfu/g. The toxigenic molds are only likely to pose a
risk if the “rale” is stored for long periods with high humidity, which would permit mold
growth and toxin production.

4.3. Microbes as Indicators of Hygienic Quality in “Rale” Collected in Rural Markets

In general, the market samples revealed lower counts and less diversity of microorgan-
isms compared to the cassava processing unit samples. Furthermore, mycotoxigenic mold
species were not observed in the market samples. The presence of molds, yeasts and S.
aureus in certain market samples might be related with variations in personal hygiene and
food safety consciousness, e.g., using clean containers with covers to store the “rale” that
is sold in markets as a way to reduce the direct and indirect contaminations by air-borne
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droplets and molds and yeast in dust, soil, and air [51]. High loads of bacteria, Staphylococ-
cus spp. and coliforms were reported by [72] in dried chips and cassava flour samples in
Kenya. These findings were correlated with excessive personnel handling and insufficient
hygiene applied during post-harvest processing, handling, and marketing. The same study
confirmed the occurrence of high mold counts in cassava flour because of storage practices
of the products, meaning that it is very difficult to follow the hygiene-safety regulations
outside the processing unit.

The “rale” sold in rural markets of Gaza and Inhambane is usually home-made
or mainly produced in artisanal processing units that do not rely on proper processing
equipment/technology. This tradition of processing cassava hypothetically contributes to
fluctuating hygienic quality in the final product. The goal of standardizing small–scale
processing products is a challenge. For instance, in their review, the authors [15] mention
that the desirable attributes of cassava flour differ across ethnicities and regions, and
emphasize that varying quality of the products among processors and even between batches
from the same processor hinders commercialization of locally produced cassava products.

The risk for contamination of “rale” sold in rural markets by molds can be associated
with lack of awareness and improper handling by the vendors. Open containers used by
vendors to stock the cassava flour in the markets means that they are constantly exposed
to air, which permits mold spores and other microbes to contaminate the product [51].
Proper training on good practices especially good hygiene, as well as equipping farmers,
processors and retailers with more hygienic equipment and methods, could be a strategy to
reduce microbial loads on the cassava products available in the market, leading to improved
quality and safety [72,73].

4.4. Culture-Independent Analysis of Bacterial Community

LAB were the dominant microbes (present at >50%) found at all cassava processing
stages and in the final “rale” product collected from all of the included processing units
(Figures 2–4). These are the primary fermentation organisms during cassava wet-processing
and therefore key members of cassava natural microbiota [74]. This is reflected in the
relatively high abundance of amplicons from DNA of lactic acid bacteria during processing
and in all subsequent samples taken thereafter. The sequencing method applied in this
study does not distinguish between DNA from live and dead bacteria, meaning that some
of the DNA could be carried over from bacteria present in earlier stages of processing but
which are non-viable.

Enterobacteriaceae (Klebsiella, E. coli/Shigella) were detected at low relative abundance
in many samples during processing (<2% relative abundance, Figure 2), in “rale” collected
from six units (<15% relative abundance, Figure 3) and in “rale” from markets (<5% rel-
ative abundance, Figure 4). These genera are indicators of poor hygiene linked to fecal
contamination of, for example, processing water or from handlers [75]. However, Enter-
obacteriaceae were not detected during plating of any samples (detection limit < 33 cfu/g
or 1.52 log cfu/g). Despite some potential loss of viability among Gram-negative bacteria
during freeze-storage of the samples, the overall picture is that this group was unlikely to
be present at levels posing a health risk.

Pseudomonas, a commonly abundant environmental and spoilage bacteria [76], was
found to be present at low relative abundance during processing (<20% relative abun-
dance, Figure 2) and in “rale” collected from six processing units (<5% relative abundance,
Figure 3), but it was increased in abundance in “rale” samples collected at rural markets
(50–80% relative abundance, Figure 4). This increase is due to aerobic storage and handling
of the “rale” prior to being sold at the markets.
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Thus, the results obtained from the Illumina 16S rRNA gene sequencing are in accor-
dance with the trends observed by the plating method, and can be considered a comple-
mentary technique to the plating methods applied in this and previous studies e.g., [51,64].

5. Conclusions
This study revealed differences in terms of the microbial contamination within the

processing chain of cassava roots to cassava roasted flour produced at processing Unit J in
the surveyed seasons. Lack of hygiene practices during the processing chain of cassava
by the processors might lead to high levels of microbial contamination, compromising the
final quality of the product and the food safety for the consumers. Hence, it is important to
maintain high quality and safety process standards in place at Unit J.

High mold counts in cassava roasted flour indicates anomalies during storage of the
cassava product “rale”, at the production facilities and/or the markets. The low counts of
microorganisms found in “rale” collected both in cassava processing units as well as in
the rural markets suggests an acceptable quality of the product for human consumption.
To acquire a better overview of microbial hygiene within the markets, frequent sampling
would be necessary. However, our study gives indications that the hygiene is reasonable
during both the dry and rainy seasons.

The results obtained within this study did not point towards any risks for aflatoxin
contamination in cassava samples. The inclusion of more processing units that rely on
rudimentary equipment for processing cassava would broaden our understanding of
possible variations in microbiota during cassava processing. However, it is still important
to maintain and reinforce basic hygiene and sanitary practices to improve quality and safety
of the cassava derivatives in southern Mozambique.
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